

Bulletin of the American Physical Society**60th Annual Meeting of the APS Division of Plasma Physics****Volume 63, Number 11****Monday–Friday, November 5–9, 2018; Portland, Oregon****Session TO8: Plasma Acceleration: Computation, Beam Driven, Mid-IR lasers**

9:30 AM–12:30 PM, Thursday, November 8, 2018

OCC Room: C120-122

Chair: Jessica Shaw, Laboratory for Laser Energetics, Rochester, NY

Abstract ID: BAPS.2018.DPP.TO8.14

Abstract: TO8.00014 : Plasma-assisted light bullets and wavelength scaling of laser filamentation in the long-wavelength infrared*

12:06 PM–12:18 PM

 Abstract **Presenter:**Rostislav Igorevitch Grynko
(Binghamton University)**Authors:**Rostislav Igorevitch Grynko
(Binghamton University)Garima Chaudhary Nagar
(Binghamton University)Bonggu Shim
(Binghamton University)

We model laser filamentation in ZnSe in the mid-infrared (Mid-IR, wavelengths $\lambda = 4$ and $6 \mu\text{m}$) and the long-wavelength infrared (LWIR, $\lambda = 8$ and $10 \mu\text{m}$) using carrier-resolved unidirectional pulse propagation equations (UPPE) [1]. We predict an unprecedented propagation regime at $\lambda = 8 \mu\text{m}$ that supports light bullets [2], which are spatio-temporally non-spreading electromagnetic pulses. Furthermore, in contrast to the previous report in air in the mid-IR [3], we predict that LWIR light bullets in solids critically rely on plasma-mediated dispersion, which dynamically evolves during multiphoton and tunneling ionization as peak plasma densities reach $\rho \sim 6.6 \times 10^{18} \text{ cm}^{-3}$. Finally, the plasma-assisted light bullets propagate with sub-cycle pulse durations and peak intensities $I \sim 1.1 \times 10^{12} \text{ W/cm}^2$, making them useful for high-harmonic generation and attosecond pulse generation. [1] M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004). [2] Y. Silberberg, Opt. Lett. 15, 1282 (1990). [3] P. Panagiotopoulos, P. Whalen, M. Kolesik, and J. V. Moloney, Nat. Photon. 9, 543 (2015).

*Funded by National Science Foundation (NSF) (PHY-1707237), Air Force Office of Scientific Research (AFOSR)(FA9950-18-1-0223), and the Integrated Electronics Engineering Center (IEEC) at Binghamton University.

To cite this abstract, use the following reference: <http://meetings.aps.org/link/BAPS.2018.DPP.TO8.14>