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ABSTRACT

A method for improving the integrity monitoring measure of Global Positioning System (GPS) by exploiting terres-
trial signals of opportunity (SOPs) is developed. The proposed method considers a receiver mounted on an unmanned
aerial vehicle (UAV), which makes pseudorange observations on GPS satellites and terrestrial SOPs. First, SOP pseu-
dorange measurement errors are characterized from an extensive data collected with a UAV in different environments:
open sky, semi-urban, and urban. Next, the vertical protection level (VPL) reduction by exploiting terrestrial SOPs
is studied. It is demonstrated that adding terrestrial SOP measurements, which are inherently at low elevation angles
is more effective to reduce VPL over adding GPS measurements. Experimental results to evaluate the developed
method are presented for a UAV navigating in an urban environment over a trajectory of 823 m, while collecting
GPS signals and cellular real long-term evolution (LTE) SOPs. It is demonstrated that the proposed method reduces
the VPL by 57.76% from the VPL of GPS-only.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) rely on a suite of sensors and actuators in order to control their motion, monitor
their surrounding, and navigate safely. Global navigation satellite system (GNSS) is one of the main components
of a UAV’s navigation system. However, GNSS signals are jammable, spoofable, and may not be reliable in certain
environments (e.g., indoors and deep urban canyons) [1, 2]. Integrity monitoring is one criterion to evaluate GNSS
performance, and refers to the capability of the system to detect anomalies and warn the user when the system should
not be used [3]. A high-integrity navigation system must be able to (i) detect and (ii) reject incorrect measurements
and provide an integrity measure of the confidence in the system performance at any time [4].

The integrity of GNSS measurements can be obtained through the navigation message, which indicates the anomalies
related to satellite operation such as the transmitters’ clock errors and satellite service failure. However, the integrity
information provided by the navigation message is not desirable for real-time applications as the ground control
segment (GCS) requires a few hours to broadcast the failure [5]. Hence, integrity monitoring is usually obtained by
means of additional frameworks. These frameworks are divided into internal and external categories [6]. External
methods (e.g., ground based augmentation system (GBAS), satellite based augmentation system (SBAS), etc.)
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leverage a network of ground monitoring stations to monitor the transmitted signals, while internal methods (e.g.,
receiver autonomous integrity monitoring (RAIM)) typically use the redundant information within the transmitted
navigation signals. In contrast to external integrity monitoring methods, RAIM alleviates the need for costly, bulky,
and computationally intensive infrastructures. RAIM detects pseudorange measurement faults by only exploiting
the redundancy of GNSS signals to check the measurements’ consistency [7].

Since the redundancy of measurements is essential for RAIM-based fault detection and exclusion, incorporating
more measurements in a favorable transmitter-to-receiver geometry could significantly enhance the performance of
integrity monitoring. Hence, the joint use of measurements provided by different GNSS satellite constellations,
namely the multi-constellation approach, has been extensively studied in the literature [8–10]. In contrast to existing
approaches in the literature, this paper considers exploiting terrestrial signals of opportunity (SOPs) as an additional
“constellation” to improve integrity monitoring measures. SOPs are radio frequency (RF) signals that are not
intended for navigation but can be exploited for navigation, especially in GNSS-challenged environments. SOPs are
abundant in urban canyons and are free to use, making them desirable sources for navigation, either as a complement
or an alternative to GNSS signals [11, 12]. Recent research have demonstrated how to exploit SOPs (e.g., cellular
signals [13], digital television signals [14], AM/FM signals [15], and low Earth orbit satellite signals [16]) to produce a
navigation solution in a standalone fashion and in an integrated fashion, aiding an inertial measurement unit (IMU)
[17, 18] and lidar [19]. Moreover, the literature demonstrated the benefit of fusing SOP and GNSS signals to reduce
the vertical dilution of precision (VDOP) [20, 21]. However, to the author’s knowledge, this is the first paper that
studies the enhancement in integrity monitoring measures by coupling SOP and Global Positioning System (GPS)
signals.

This paper adopts the traditional GPS RAIM algorithm to incorporate terrestrial SOPs. The proposed algorithm
provides improved performance with respect to the traditional RAIM algorithm by (i) increasing measurement
redundancy and (ii) establishing favorable SOP-to-UAV geometry. This paper assesses the integrity monitoring
performance by analyzing the UAV’s vertical protection level (VPL). The protection level refers to a circular area
centered at the user’s real position, which assures to contain the estimated position with a probability equal or
smaller than a pre-defined threshold, called the integrity risk [22].

Protection levels can be predicted using the transmitter-to-receiver geometry [4]. With the exception of GPS re-
ceivers mounted on high-flying UAVs, all GPS satellites are typically above the receiver. As a consequence, GPS
satellite observables lack elevation angle diversity and the VPL of a GPS-only navigation solution is degraded. In
the proposed framework, the elevation angle span may effectively double, as the UAV could fly above SOP transmit-
ters. Hence, incorporating additional measurements obtained from terrestrial SOPs, not only enhances the RAIM
performance by increasing redundant measurements, but also improves the protection levels by exploiting the in-
herently small elevation angles of terrestrial SOPs. Fig. 1 illustrates the proposed approach. As can be seen, the
proposed approach differs from existing ground-based integrity monitoring approaches (e.g., GBAS), as it increases
the measurement redundancy and improves the geometry without requiring installing dedicated, costly ground-based
stations. Using the abundant and free-to-use terrestrial SOP transmitters, makes the proposed framework desirable
for UAV navigation in the urban environments.

This paper considers the following problem. A UAV-mounted receiver navigating in an urban environment is as-
sumed to make pseudorange observations on multiple GPS satellites and multiple terrestrial SOPs and to fuse these
observations through an estimator. A modified RAIM approach is employed to calculate the VPL. This paper studies
the enhancement in VPL by adding a varying number of SOPs, which are inherently at low elevation angles and
provide a better transmitter-to-receiver geometry. This paper makes three contributions. First, a GPS-SOP RAIM
framework for UAVs is developed. Second, the improvement in the integrity monitoring measures due to incorpo-
rating terrestrial SOP measurements is studied. Third, simulation and experimental results with cellular long-term
evolution (LTE) SOPs are presented evaluating the efficacy of the proposed integrity monitoring framework on a
UAV navigating in an urban environment. It is demonstrated that while the integrity monitoring measures are
improved when additional observables from GPS satellites are used, adding SOP observables is more effective to
tighten the VPL over adding GPS observables. The experimental results using GPS and 11 cellular SOPs show that
the proposed framework reduces the VPL by 57.76%.

The structure of this paper is organized as follows. Section II formulates the GPS-SOP navigation solution. Section
III studies empirically the salient attributes of cellular SOP measurements, namely accuracy, outliers, and failure
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Fig. 1. The proposed method which combines pseudoranges obtained from GPS satellites and terrestrial SOP transmitters to enhance
the integrity monitoring measures. Note the abundance of cellular LTE SOPs in this environment: Riverside, California, USA. Many
other types of SOPs are also present in the environment but are not plotted here.

rate. This methodology can be applied to other terrestrial SOP classes. Section IV discusses the enhancement in the
RAIM VPL by incorporating the SOP measurement. Section V presents simulation and experimental results with
cellular LTE signals, evaluating the efficacy and accuracy of the proposed framework. Concluding remarks are given
in Section VI.

II. NAVIGATION FRAMEWORK

This section formulates the UAV navigation framework. The environment is assumed to comprise N spatially-
stationary SOP transmitters, denoted {Sn}Nn=1. The location of SOP transmitters is assumed to be known a priori.
This can be achieved via different approaches, such as satellite images, digital maps, cloud database, or radio
mapping [23, 24]. The environment is also assumed to comprise M GPS satellites, denoted {Gm}Mm=1. The UAV-

mounted receiver makes pseudorange measurements to the M GPS satellites, denoted {zGPSm
}Mm=1, and to the

N SOP transmitters, denoted {zSOPn
}Nn=1. These measurements are fused through a weighted nonlinear least-

squares (WNLS) estimator to estimate the receiver’s state vector xr ,
[

rr
T, cδtr

]T

, where c is the speed of light,

rr , [xr , yr, zr]
T
is the receiver’s position, and δtr is the receiver’s clock bias.

The m-th GPS pseudorange measurement, after compensating for ionospheric and tropospheric delays, is modeled
as

z′GPSm
(k) = ‖rr(k)− rGPSm

(k)‖
2
+ c · [δtr(k)− δtGPSm

(k)] + vGPSm
(k),

where k is the time-step at which the pseudorange is drawn; z′GPSm
, zGPSm

−c ·δtiono−c ·δttropo; rGPSm
and δtGPSm

are the position and clock bias states of the m-th GPS satellite, respectively; δtiono and δttropo are the ionospheric
and tropospheric delays, respectively; and vGPSm

is the GPS measurement noise, which is modeled as a zero-mean
white Gaussian random sequence with variance σ2

GPSm
.

The n-th SOP pseudorange measurement, after mild approximations discussed in [25], is modeled as

zSOPn
(k) = ‖rr(k)− rSOPn

(k)‖
2
+ c · [δtr(k)− δtSOPn

(k)] + vSOPn
(k),

where rSOPn
and δtSOPn

are the position and clock bias states of the n-th SOP transmitter, respectively and vSOPn

is the SOP measurement noise, which is modeled as a zero-mean white Gaussian random sequence with variance
σ2
SOPn

. The clock biases {δtSOPn
}Nn=1 are modeled as first-order polynomials, i.e., δtSOPn

(k) = δ̇tSOPn
kT + δtSOPn,0

,

where δ̇tSOPn
is the constant clock drift of the n-th transmitter and δtSOPn,0

is the corresponding initial bias. More
details about the first-order polynomial model of the SOP clock bias is discussed in [26–28].
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The UAV-mounted receiver’s state vector xr is estimated from the measurement vector

z ,
[

z′GPS1
, . . . , z′GPSM

, zSOP1
, . . . , zSOPN

]T

,

through a WNLS estimator, given by
∆z = H∆xr + v,

where ∆z , z − ẑ is the difference between the measurement vector z and its estimate ẑ, ∆xr , xr − x̂r is the
difference between the receivers’s state vector xr and its estimate x̂r, and v , [vGPS1

, . . . , vGPSM
, vSOP1

, . . . , vSOPN
]
T
.

The measurement Jacobian used in the WNLS estimator is H ,
[

HT

GPS,H
T

SOP

]T

, where

HGPS,







−c(elGPS1
)s(azGPS1

) −c(elGPS1
)c(azGPS1

) −s(elGPS1
) 1

...
...

...
...

−c(elGPSM)s(azGPSM) −c(elGPSM)c(azGPSM) −s(elGPSM) 1






,

HSOP,







−c(elSOP1
)s(azSOP1

) −c(elSOP1
)c(azSOP1

) −s(elSOP1
) 1

...
...

...
...

−c(elSOPN)s(azSOPN) −c(elSOPN)c(azSOPN) −s(elSOPN) 1






,

where c(·) and s(·) denote the cosine and sine functions, respectively; elGPSm
and azGPSm

are the elevation and
azimuth angles of the m-th GPS satellites, respectively; and elSOPn

and azSOPn
are the elevation and azimuth angles

of the n-th SOP transmitter, respectively. All elevation and azimuth angles are expressed in the East, North, Up
(ENU) local coordinate frame, centered at the receiver’s position. The weighting matrix in the WNLS is chosen as
the inverse of the measurement noise covariance

R = diag
[

σ2
GPS1

, . . . , σ2
GPSM

, σ2
SOP1

, . . . , σ2
SOPN

]

,

where diag(·) denote a diagonal matrix.

III. SOP PSEUDORANGE ERROR CHARACTERIZATION

In order to incorporate sop signals into RAIM frameworks (e.g., least squares (LS) RAIM, advanced RAIM (ARAIM),
etc.), it is important to characterize the statistics of SOP signals as ranging measurements. Two important char-
acteristics that must be evaluated are the accuracy and availability of SOP measurements. Accuracy refers to the
degree of conformance of the measurements with the true ranges, while availability refers to the percentage of time
that the measurements are usable by the navigator [4]. In contrast to GPS signals, SOP signals do not have pub-
licly available records for their ranging performance. Therefore, the definition of fault for these measurements is
still an open area of research. An initial study to analyze the statistics of cellular SOP pseudoranges for ground
vehicle navigation was conducted in [28]. This paper extends [28] to characterize cellular SOP pseudoranges for
UAV navigation. This methodology can be applied to other terrestrial SOP classes. In this paper, the data center
of the Autonomous Systems Perception Intelligent and Navigation (ASPIN) Laboratory was used to statistically
characterize the performance of cellular SOP pseudorange measurements. To collect this data, a UAV was flown for
several hours, recoding cellular SOP pseudoranges. The pseudoranges were obtained using the Multichannel Adap-
tive TRansceiver Information eXtractor (MATRIX) software-defined reciever (SDR) discussed in [29–31] in several
different (i) environments, including semi-urban and urban environments; (ii) carrier frequencies, and (iii) signal
types, including LTE and code-division multiple access (CDMA) signals. Table I summarizes the characteristics of
recorded cellular SOPs.

Next, the pseudorange measurements’ errors were characterized using the method discussed in [28] via the following
steps:

• Step 1: The true ranges between the receiver and SOP transmitter (i.e., ‖rr(k)− rSOPn
(k)‖

2
) are removed from

the recorded pseudoranges zSOPn
(k). The true ranges are known a priori from the knowledge of the transmitters’

location and receiver’s ground truth position. The resulting measurement after removing the true range is given by:

z′SOPn
(k) , zSOPn

(k)− ‖rr(k)− rSOPn
(k)‖

2
= c · [δtr(k)− δtSOPn

(k)] + vSOPn
(k).
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TABLE I

Characteristics of recorded cellular SOPs

Environment
Number of
Towers

Freq.
[MHz]

Bandwidth
[MHz]

Type
Date

[DD/MM/YYYY]
Length

[s]

Open sky
and

Semi-urban
2 882.75 1.23 CDMA 13/5/2017 345

7 882.75 1.23 CDMA 22/2/2017 360

8 882.75 1.23 CDMA 1/10/2017 200

8 882.75 1.23 CDMA 1/10/2017 285

2 882.75 1.23 CDMA 15/11/2017 365

Urban 11
739, 1955,
2125, 2145

10 LTE 16/6/2019 250

• Step 2: The error term due to the difference between the receiver’s and the transmitter’s clock biases (i.e., c ·
[δtr(k)− δtSOPn

(k)]) is removed from the measurement z′SOPn
(k). To this end, a first-order polynomial approximation

with a constant initial clock bias cδtr,SOP
n,0

and drift cδ̇tr,SOP
n,0

is used to model the difference between the receiver’s
and transmitter’s clock biases, i.e.,

c · [δtr(k)− δtSOPn
(k)] = cδ̇tr,SOP

n,0
kT + cδtr,SOP

n,0
,

where T is the sampling time. The constants cδ̇tr,SOP
n,0

and cδtr,SOP
n,0

are estimated by post-processing the recorded
data from time-step 0 to time-step K via a least-squares (LS) estimator, which minimizes the cost function G given
by

G ,

(

∥

∥

∥

∥

y − S

[

cδ̇tr,SOP
n,0

cδtr,SOP
n,0

]∥

∥

∥

∥

2

)2

, S ,

[

0 T . . . KT
1 1 . . . 1

]T

,

where the LS observation vector y is given by

y ,
[

z′SOPn
(0), . . . , z′SOPn

(K)
]T

.

The resulting measurement after removing the error due to clock bias difference is given by:

z′′SOPn
(k) , z′SOPn

(k)− cδ̇tr,SOP
n,0

kT − cδtr,SOP
n,0

≃ vSOPn
(k).

• Step 3: The sample mean and sample variance of the measurement error’s probability density function (pdf) are
calculated from

µ̂SOPn
=

1

K + 1

K
∑

k=0

z′′SOPn
(k), σ̂2

SOPn
=

1

K

K
∑

k=0

(

z′′SOPn
(k)− µ̂SOPn

)2
,

where E{.} is the expected value.

Fig. 2 illustrates the different environments in which the measurements were collected and the empirical pdfs found
from the collected measurements. Overlayed on these pdfs are Gaussian pdfs with the calculated sample mean and
sample variance. Table II summarizes µ̂ and σ̂ in different environments.

Calculating the SOP measurements’ availability is a more challenging problem as no official SOP measurement
integrity standard has been issued yet. According to the Air Force GPS Standard Positioning Service Performance
Standard (SPS PS) [32], the GPS measurement fault is defined by an error greater than 4.42 times the broadcast User
Range Accuracy (URA). However, this cannot directly apply to SOP measurements since the SOP navigation message
does not include URA information. Similar to the method discussed in [33], the SOP URA can be approximated
using the collected empirical measurements. As shown earlier in this section, the SOP measurement error is generally
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TABLE II

sample mean µ̂ and sample variance σ̂ of Gaussian pdfs of pseudorange measurement error in different environments

Environment µ̂ σ̂

Open sky and semi-urban −3.66× 10−18 m 0.75 m

Urban 7.10× 10−18 m 1.23 m

(b)

San
Bernardino

(a)

Aliso ViejoRiverside

Open sky and semi-urban Urban

Fig. 2. Characterization of cellular SOP pseudorange measurement accuracy in different environments in which the pseudoranges were
collected. Empirical pdf of pseudorange errors and analytical Gaussian pdfs are illustrated for each environment: (a) Open sky and
semi-urban and (b) urban.

less than 3 m. Therefore, it is possible to use 3 m as the SOP URA. Accordingly, an induced bias larger than 13.5
m can be considered as a fault and the probability of a cellular SOP transmitter being in a faulty state can be
tentatively assumed to be 10−5.

IV. VPL REDUCTION VIA ADDING SOPs

RAIM algorithms provide the user with an estimate of the confidence in the vertical position information via VPL.
Several methods to calculate VPL have been proposed in the literature. Since all of these methods employ the
transmitter-to-receiver geometry to construct the VPL, this paper considers a simple LS RAIM-based VPL [34] to
study the effect of adding SOPs into the transmitter-to-receiver geometry. Formulating other types of RAIM for
SOP-GPS framework is similar and could be investigated in future work.

The LS RAIM considers only one fault at each time, where a bias with magnitude bi is added into the i-th pseudorange
measurement. A hypothesis test, which considers residual test statistic can be formulated to detect a fault in the
system according to

ϕ = rTR−1r,

where r is the vector of pseudorange residuals (r = z − ẑ). The resulting test statistic follows a central chi-squared
distribution under fault-free operation and a non-central chi-squared distribution under faulty operation [35]. In
both operations, the degrees of freedom is d = N +M − 4. The non-centrality parameter λ in faulty operation is
given by

λ = bTR−1(I−B)b,

where I is the identity matrix, b , [0, . . . , 0, bi, 0, . . . , 0]
T
indicates the faulty measurement, and B is given by

B , H
(

HTR−1H
)−1

HTR−1.
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The faulty operation’s alarm is triggered if and only if the test statistic ϕ exceeds a threshold Th, where the value of
Th may be obtained according to

PFA =

∫

∞

Th

fχ2

d
(τ)dτ, (1)

where PFA is the probability of false alarm and fχ2

d
is the chi-squared pdf with d degrees of freedom. Similarly,

the non-centrality of the chi-squared distribution under a faulty operation that results in a probability of missed
detection PMD can be computed according to

PMD =

∫ Th

0

fχ2

d
,λmin

(τ)dτ, (2)

where fχ2

d
,λmin

represents the non-central chi-squared pdf with d degrees of freedom and non-centrality parameter

λmin. It is important to note that PFA and PMD are pre-defined design parameters. Using (1) and (2), the value of
Th and λmin can be obtained from a chi-square cumulative density function (cdf) table. Next, a parameter called
slopei is introduced to project the bias in the faulty measurement onto the vertical position error domain. The term
slopei depends on the transmitter-to-receiver geometry and is given by

slopei =
‖B3i‖

√
Rii√

Sii

,

where S , I−B and Xij denotes the element of i-th row and j-th column of a matrix X. The VPL is calculated as
the projection onto the vertical position domain of the measurement bias that generates a non-centrality parameter
equal to λmin in the transmitter with the maximum slope [34], i.e.,

VPL = slopemax

√

λmin , slopemax = max
i

{slopei} , i = 1, . . . , N +M.

It is important to note that when the slopes are large, a large vertical position error corresponds to a small error
component in the test statistic. As a results, the RAIM is less likely able to detect the fault with probability equal to
PMD. Therefore, more favorable transmitter-to-user geometry is desirable to minimize slopemax, to which the VPL
is proportional.

Since all GPS satellites are typically above the UAV-mounted receiver, the GPS elevation angle range is theoretically
limited between 0 and 90 degrees. Moreover, GPS receivers typically restrict the lowest elevation angle to some
elevation mask, in order to ignore signals that are heavily degraded due to the ionosphere, troposphere, and multipath.
In contrast to GPS-only approaches, the proposed SOP-GPS approach doubles the elevation angle range to −90 to
90 degrees, due to the fact that UAVs can fly directly above SOP transmitters. As a consequence, the proposed SOP-
GPS approach increases the elevation angle diversity, which in turn improves the transmitter-to-receiver geometry
and reduces the slopemax value.

To illustrate the VPL reduction by incorporating additional GPS measurements versus additional SOP measurements,
a Monte Carlo simulation with 106 realizations was conducted. In each Monte Carlo realization, M GPS satellite
azimuth and elevation angles were generated from uniform distributions over the interval [−180, 180] degrees for
the azimuth angles and the interval [0, 90] degrees for the elevation angles. The GPS elevation angles were limited
considering different elevation masks, i.e., 0, 5, 10, and 15 degrees. Then, an additional measurement at elnew
and aznew was introduced. The azimuth angle of this additional measurement, aznew, was generated from uniform
distribution over the interval [−180, 180] degrees, while its elevation angle, elnew, was swept between −90 to 90
degrees. The reduction in the VPL due to adding an additional measurement was then recorded at each elevation
angle. The corresponding VPL reduction for introducing an additional measurement at a sweeping elevation angle
−90 ≤ elnew ≤ 90 degrees is plotted in Fig. 3 and Fig. 4 for different values of M and different GPS elevation mask.

The following may be concluded from these plots. First, while adding more measurements from other satellites
decreases the VPL, it was observed that measurements from transmitters at low elevation angle are more effective in
minimizing the VPL than transmitters at elevation angles between 0 and 90 degrees. Therefore, adding terrestrial
SOP measurements, which are coming from transmitters at practically −90 to 0 degrees elevation angle range,
minimize the VPL more than adding other GPS satellites. Second, in the environment with large GPS elevation
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Fig. 3. The reduction in VPL after adding additional measurement at an elevation angle −90 ≤ elnew ≤ 90 degrees for M = 6, . . . , 9.

-50 0 50
0

10

20

30

V
P

L
 r

e
d

u
c
ti
o

n
 [

m
]

GPS elevation mask: 0 degrees

-50 0 50
0

10

20

30

V
P

L
 r

e
d

u
c
ti
o

n
 [

m
]

GPS elevation mask: 5 degrees

-50 0 50
0

10

20

30

V
P

L
 r

e
d

u
c
ti
o

n
 [

m
]

GPS elevation mask: 10 degrees

-50 0 50
0

10

20

30

V
P

L
 r

e
d

u
c
ti
o

n
 [

m
]

GPS elevation mask: 15 degrees

Fig. 4. The reduction in VPL after adding an additional measurement at an elevation angle −90 ≤ elnew ≤ 90 degrees for different
elevation masks: 0, 5, 10, and 15 degrees. In this simulation, M = 7.

mask (e.g., deep urban canyon), the reduction in VPL due to adding SOP measurements is more significant than
adding an additional GPS measurement. Third, in poor transmitter-to-receiver conditions where the receiver has
LOS to only few GPS satellites, adding SOP measurements can significantly improve the transmitter-to-receiver
geometry, compared to adding a new GPS measurements. Fourth, the VPL reduction values are comparable in the
range of −90 to 0 degrees. This conveys an important conclusion that regardless of the UAV’s flight height (whether
above the SOPs or at the same height with respect to SOPs), this approach can provide the same VPL reduction.

V. EXPERIMENTAL RESULTS

A field test was conducted to demonstrate the efficacy of the proposed approach on a UAV. This section presents
the hardware used in this experiment along with the experimental results.
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A. Hardware Setup

A DJI Matrice 600 UAV was equipped with a dual-channel National Instrument (NI) universal software radio
peripheral (USRP)-2955, driven by a GPSDO [36], to sample LTE SOPs. For this experiment, four LTE carrier
frequencies were used: 739, 1955, 2125, and 2145 MHz. These frequencies are channels allocated for the USA
cellular providers AT&T, T-Mobile, and Verizon. The sampling rate was set to 10 MSps, which was the LTE
signals’ bandwidth. The sampled LTE signals were saved on the computer and processed by MATRIX SDR [13,
30, 31], developed by the ASPIN Laboratory at the University of California, Irvine. The UAV was also equipped
with a Septentrio AsteRx-i V integrated GNSS-IMU sensor [37]. Over the course of the experiment, the ground-
truth trajectory of the UAV was obtained from this integrated GNSS-IMU navigation system, while the raw GPS
measurements were used to estimate the receiver’s position via the framework presented in Section II and to calculate
the VPL via approach presented in Section IV. Septentrio’s post-processing software development kit (PP-SDK) was
used to process carrier phase observables collected by the AsteRx-i V and by a nearby differential GPS base station
to obtain a carrier phase-based navigation solution. This integrated GNSS-IMU real-time kinematic (RTK) system
was used to produce the ground-truth results with which the proposed navigation framework was compared. Fig. 5
illustrates the experimental hardware setup, the location of LTE transmitters, and the traversed trajectory.

End

Integrated
GPS-IMU

Cellular antennas

Storage

USRP RIO

Navigating
UAV

Ground truth

SOP 1

Start

Battery

SOP 2

SOP 3

SOP 4

SOP 5SOP 6

SOP 7

SOP 8

SOP 9

SOP 10

SOP 11

Fig. 5. Experimental hardware setup and the traversed trajectory along with the position of cellular LTE SOP towers. A UAV was
equipped with an integrated AsteRx-i V GNSS-IMU system, cellular antennas, and a USRP. The UAV traveled 823 m in an urban area
(Irvine, California, USA) collecting GPS and cellular LTE signals from 11 cellular LTE SOP towers.

B. Experimental Results

The UAV flew for 240 s, while simultaneously listening to 11 LTE SOP transmitters. The GPS and cellular LTE
pseudoranges were fed to a WNLS estimator, producing x̂r. Throughout the test, the fault detection test and VPL
calculations were performed. The probability of false alarm for the outlier detection test was set to PFA = 0.005 and
the probability of missed detection was set to PMD = 0.0001. Fig. 6 (a)–(b) show the sky plots of the transmitters
available in the test environment for the GPS-only and GPS-SOP systems, respectively. Fig. 6 (c)–(d) shows the
fault detection test, which compares the test statistic ϕ against the detection threshold Th. Fig. 6 (e)–(f) shows
the calculated VPL without and with incorporating the SOP signals, respectively, at a particular time instance (t
= 100 s) during which the GPS-only VPL exceeds 23 m. The average GPS-only VPL over 240 s of flight was 22.21
m, whereas the average GPS-SOP VPL was 9.38 m. Hence, incorporating SOP transmitters reduces the VPL by
57.76%.
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Fig. 6. Comparison between GPS-only and GPS-SOP frameworks: (a)–(b) Sky plots of the GPS and SOP transmitters available at
the test environment, where the blue circles and the green circles represent GPS and SOP transmitters, respectively. (c)–(d) The test
statistic ϕ and the detection threshold Th for GPS-only and GPS-SOP frameworks. (e)–(f) A particular time instance during which the
GPS-only VPL exceeds 23 m. It is evident from (f) that incorporating the SOP signals significantly reduces the VPL.

Table III compares VPL as well as the navigation performance of the proposed framework versus that of the GPS-only
system.

TABLE III

Comparison between navigation solution performance

Scenario
2-D RMSE

[m]
3-D RMSE

[m]

2-D
Maximum
error [m]

3-D
Maximum
error [m]

VPL [m]

GPS-only solution 2.34 4.37 9.11 18.08 22.21

GPS-sop solution 1.13 3.63 8.28 15.86 9.38

Improvement 51.46% 16.98% 9.14% 12.25% 57.76%

VI. CONCLUSION

This paper studied the reduction in a UAV’s VPL of a GPS-based navigation solution by exploiting terrestrial SOPs.
It was demonstrated that the VPL of the GPS-only solution can be reduced by exploiting the inherently small
elevation angles of terrestrial SOPs. To this end, an LS RAIM was studied, which used the GPS measurements
and the pseudorange measurements extracted from ambient SOP transmitters. Experimental results over a total
traversed trajectory of 823 m validated the efficacy of the proposed framework and showed that the proposed
framework significantly reduced the VPL, as it enables a full span of observation elevation angles. While this paper
considered LS RAIM, more sophisticated RAIM algorithms, such as ARAIM, could be investigated in future work
to account for multi-fault conditions.
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