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Abstract—Unmanned aerial vehicle (UAV) trajectory planning
in urban environments is considered. Equipped with a three-
dimensional (3-D) environment map, the UAV navigates by fusing
global navigation satellite systems (GNSS) signals with ambient
cellular signals of opportunity. A trajectory planning approach
is developed to allow the UAV to reach a target location, while
constraining its position uncertainty and multipath-induced biases
in cellular pseudoranges to be below a desired threshold. Exper-
imental results are presented demonstrating that following the
proposed trajectory yields a reduction of 30.69% and 58.86% in
the position root-mean squared error and the maximum position
error, respectively, compared to following the shortest trajectory
between the start and target locations.

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) is gaining
popularity in applications requiring them to navigate in urban
environments, such as infrastructure inspection, package deliv-
ery, emergency response, and filming. In these environments,
global navigation satellite systems (GNSS) signals do not
provide a reliable or accurate navigation solution due to line-
of-sight (LOS) blockage and reflections by high-rise structures
[1]. Opportunely, in these environments, cellular signals are (i)
abundant, (ii) powerful, and (iii) distributed in geometrically
favorable configurations, making them an attractive comple-
ment to GNSS signals [2]. Recent literature presented receivers
capable of producing navigation observables from cellular
signals [3], [4], fusion of cellular signal navigation observables
with external sensors (e.g., lidar [5] and inertial measurement
unit (IMU) [6]) to correct the accumulated error, and fusion of
cellular signals with GNSS signals to reduce the positioning
error [7]. Due to the terrestrial nature of cellular transmitters,
their received signals in urban environments suffer from LOS
blockage and multipath. This induces errors in their navigation
observables, to which multipath mitigation techniques have
been proposed [8]-[13]. In addition to employing these tech-
niques, a UAV could optimize its trajectory to constrain large
multipath-induced biases in cellular navigation observables.

Numerous trajectory planning approaches have been pro-
posed in the literature. In [14], UAV trajectory planning was
considered for target tracking. In [15], UAV trajectory planning
was considered to optimize received GPS signal quality. In [16],
computationally efficient innovation-based greedy optimization
metrics were proposed for radio simultaneous localization and
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mapping (SLAM). In [17], receding horizon trajectory planning
strategies were studied for radio SLAM. In [18], information
seeking was considered for simultaneous localization and target
tracking. In [19], trajectory planning for UAVs was considered
to maximize state observability. In [20], UAV trajectory plan-
ning was considered to maximize uplink throughput for ground
users together with downlink power allocation for wireless
power transfer. In [21], GNSS and cellular signal reliability
maps were considered for trajectory planning.

In contrast to existing literature, this paper considers optimiz-
ing the UAV’s trajectory to constrain multipath-induced biases
in cellular pseudorange observables. To this end, a computation-
ally efficient method is proposed, which considers thresholds on
the pseudorange bias and the position uncertainty. This paper
considers the following problem. A UAV is equipped with a
GNSS receiver and a cellular receiver capable of producing
pseudoranges to cellular transmitters in the environment. The
UAV has access to a three-dimensional (3-D) map of the static
obstructions (e.g., buildings) in the environment. The UAV
desires to reach a target location, while navigating by fusing its
GNSS-derived position estimate and cellular pseudoranges. The
UAV plans its trajectory while constraining its position uncer-
tainty and multipath-induced biases in cellular pseudoranges.

This paper makes the following contributions. First, a com-
putationally efficient method for simulating pseudorange bias
due to multipath is proposed. Second, a trajectory planning
algorithm is proposed, which minimizes the distance to the
target location while guaranteeing that (i) maximum uncertainty
about the UAV’s position is below a certain threshold and (ii)
biases in cellular pseudoranges are below a certain threshold.
Third, the performance is analyzed experimentally, showing
that following the proposed trajectory yields a reduction of
30.69% and 58.86% in the position root-mean squared error
(RMSE) and maximum position error, respectively, compared
to following the shortest trajectory.

The remainder of this paper is organized as follows. Section
IT describes the UAV and measurement model and formulates
the trajectory planning problem. Section III discusses simu-
lating obstructed LOS and large multipath biases. Section IV
presents the trajectory planning algorithm. Section V presents
experimental results. Section VI gives concluding remarks.



II. MODEL DESCRIPTION
A. UAV/base Framework

The navigation environment comprises a UAV, N GNSS
satellites, M cellular towers, and a stationary base, as depicted
in Fig. 1. The cellular towers are assumed to be stationary
with known 3-D positions {chll,m}n]\le- The stationary base
has knowledge of its state vector ®nase, Which comprises its
3-D position Thse, clock bias dtpase, and clock drift Stbase.

The UAV is equipped with a GNSS receiver that estimates
the UAV’s 3-D position riyay. The GNSS receiver’s estimate
of the UAV’s position, denoted #uav,gnss may be expressed
as PUAV,GNSS = TUAV + VUAV,GNsS, Where vyav, anss is the
error in the estimated position, which is modeled as a zero-
mean Gaussian random vector with covariance Ryav,anss.

The base and the UAV make pseudorange measurements
to the same cellular towers, denoted {pUA\/,m}%:1 and
{ pbasc_’m}ﬁle. The base communicates its measurements along
with Ppase and Otpase With the UAV. The UAV eliminates the
unknown clock biases of the cellular towers {5tce11,m},]g:1
by differencing its own pseudorange measurements with the
ones made by the base to get {Apm}%:l- The UAV’s and
base’s measurement noise; {vcen,m}fg:l and {vbase,m}n]\le,
respectively; are modeled as independent and identically zero-
mean white Gaussian sequences with variance o2,);.

B. UAV Dynamics Model

The UAV is assumed to be moving according to continuous
white noise acceleration dynamics with process noise intensity
Gz» Gy, and g.. The UAV’s receiver clock error (i.e., bias dtuay
and drift StUAV) are modeled as a double integrator driven
by process noise ws; and wg, [22]. The power spectra of the
continuous-time process noise driving the clock bias and drift
are denoted Sy, and Sy e respectively. Therefore, the UAV’s
state vector xyay evolves according to
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where T is the sampling time and w is the process noise, which
is zero-mean with covariance Q = diag [Qpv, Qcix] given by
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C. UAV State Estimation

The UAV estimates its state vector xyay via an extended
Kalman filter (EKF), which fuses #yav,anss with {Apm}nj\le.

D. Configuration Space Description

The 3-D configuration space (i.e., all possible positions of
the UAV) is discretized to create a collection of points denoted
as pts. A subset of pts is stored in a directed graph G(n,e)
with nodes n, where adjacent nodes are connected by edges e.
The collection of all trajectories 7,4 from start s to target d is
denoted Psg. The cost C(msq) of a trajectory msq is
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where w,, is the weight of the ¢-th edge corresponding to the
distance between two nodes which are connected by ¢-th edge.
The trajectory with the shortest distance is desired such that
certain metrics related to the position error are bounded, namely
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where Apnax {A} denotes the largest eigenvalue of A, Apax
is a threshold for the largest uncertainty, b is the vector of
pseudorange biases, byax is a threshold on pseudorange biases,
H 2 [Huav, 1arxi], |-| denotes the absolute value of each
element in the vector, 1571 is an M X 1 vector of ones, and
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The first constraint is a threshold on a part of the state estima-
tion uncertainty from the measurements. The second constraint
is a threshold on the pseudorange bias due to multipath.

III. OBSTRUCTED LOS AND MULTIPATH CALCULATIONS

The constraints in (1) require calculation of pseudorange
biases {b,,}}_,. Pseudorange biases result from: non-LOS
(NLOS) bias and multipath interference. NLOS bias occurs
when the receiver obtains a measurement from a reflected signal
and does not receive the LOS signal. Multipath interference
occurs when reflected signals constructively and destructively
interfere with the LOS signal at the receiver and cause posi-
tive or negative biases in the pseudorange [23]. This section
describes how to account for multipath errors using two new
concepts: obstructed LOS volumes and multipath volumes. Fig.
2 illustrates the obstructed LOS and multipath volumes in
purple and pink colors, respectively.

A. Obstructed LOS Volumes

The obstructed LOS volume is defined such that if a receiver
is inside the volume, the LOS between the receiver and trans-
mitter would be blocked by a building. As shown by the purple
volumes in Fig. 2, the volume can be computed by extruding the
building away from the transmitter. Obstructed LOS volumes
are calculated for each cellular transmitter and for each building
in the area of interest.
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Fig. 1. Base/UAV framework for navigation with GNSS and cellular towers
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Fig. 2.  Multipath volumes and obstructed LOS volumes for a cellular
transmitter.

B. Multipath Volumes

Multipath volumes have previously been used in [24] for
direction of arrival measurements from terrestrial transmitters.
In this paper, the multipath volume is defined such that if a
receiver was inside a volume, the multipath bias is likely to
exceed a threshold. This subsection describes the 1) rationale,
2) calculation, and 3) evaluation of multipath volumes.

1) Rationale for Multipath Volumes: To calculate multipath
interference, the channel impulse response needs to be simu-
lated based on the knowledge of the environment (e.g., 3-D
building and transmitters’ locations) at all possible receiver
locations. However, this comes at significant computational
burden as the number of receiver locations can be large in a
desired UAV coverage area. This paper proposes an alternative,
computationally efficient approach.

Examples from the GNSS literature proposed ways to reduce
multipath information by only using the first two trajectories
[25] and by grouping similar trajectories together [26]. In this
paper, the magnitude of multipath interference {bm}n]\f:1 is said
to exceed a multipath interference threshold b, if the relative
path delay (i.e., the difference between the length of the first
reflected signal path and the length of the LOS path, denoted
T) is between the thresholds 7,5, and 7,,q4.

The rationale of this claim is explained graphically using Fig.
3, which illustrates the relative phase delay difference envelopes
for multipath interference as a function of relative path delay
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Fig. 3. The envelopes for multipath interference for an LTE signal with a 20
MHz bandwidth. The salmon graph shows destructive interference, while the
blue graph shows constructive interference.

and relative signal power for cellular long-term evolution (LTE)
signals [27]. Fig. 3 shows that multipath interference decreases
as the relative path delay increases. Thus, it is reasonable to
approximate regions where |b,,| < byq, without simulating
relative signal power and relative phase difference.

The proposed approach uses binary classification [28]. Here,
binary classification refers to finding thresholds that minimize
the number of misclassified points. Fig. 4 shows the result
of binary classification for a cellular LTE transmitter in LOS
regions with concrete buildings. When b,,,, = 1 m, binary
classification yields 7,,;, = 6 m and 7,4, = 24 m. Fig. 4(a)
shows receiver locations where Ty,in < 7 < Tinas 1N Salmon,
and Fig. 4(b) shows receiver locations where |b,,| < bnax
in salmon. The precision, or percentage of points for which
|| < bimax among those that satisfy 7 < Ty OF T > Tinax
is 94.31%. The recall, or the percentage of points for which
T < Tmin OF T > Tima, among those that satisfy |by,| < bpmazs
is 89.70%. As can be seen, the regions where Tynin < 7 < Tinaz
is close to areas where |b,,| > b4, Separate thresholds can
be calculated for other signals and building materials.

Therefore, multipath volumes can be defined as receiver
locations where Ty < T < Tpae. Multipath volumes can
be used instead of channel impulse response simulations at the
price of reduced resolution in the pseudorange error.
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Fig. 4. The salmon color represents (a) areas where multipath interference is
above 1 m and (b) areas where relative path delay is between 6 and 24 m. The
light blue areas represent buildings.

2) Calculation of Multipath Volumes: A multipath volume
can be calculated given a transmitter location 7, a building
surface, and the relative path delay thresholds 7, and 7,,q,.
For simplicity, the calculation of multipath volumes will be
done using 7,,4.. The relative path delay can be written as the
difference between the length of the first reflected path and the
length of the LOS path, i.e.,

Tmaz = T = Hrtimg - TpH - ||Tt - rp” ) (2)

where r,, is a receiver location inside the multipath volume and
Tt,., 18 the image (reflection on the building surface) of the
transmitter. The multipath volume is calculated as the convex
hull of multipath volume corners. The multipath volume cor-
ners consist of building surface corners and boundary surface
corners. The boundary refers to the surface where (2) holds with
equality. For terrestrial transmitters, the shape of the boundary
is one-side of a two-sheeted hyperboloid. A cross-section of
the boundary is shown as the curved red line in Fig. 5(a).
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Fig. 5. (a) The image of the transmitter and a 2-D cross-section of the boundary
in red. (b) Geometric relationship between the variables used to calculate each
corner and multipath volume. (c)Multipath volume for one building surface.

The multipath volume corners are calculated as follows. Each
boundary surface corner is calculated from a building surface
corner. For a building surface corner, , = [2,,,Yr,, 2] > @

boundary surface corner r. = [z,_,yr., 2-.|| is given by
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where d is the distance from the image of the transmitter to
Te, Tt = r; + 2any, a is the shortest distance between the

img

transmitter and the building surface, np is the normal of the
surface, and ¢ is the angle between the line containing ry,,,,
and 7, and the line containing 7, and r; (see Fig. 5(b)).
Then, the multipath volume is calculated as the convex hull of
the building surface corners and the boundary surface corners
as shown in Fig. 5(c).

IV. TRAJECTORY PLANNING

This section describes the steps to constrain the 3-D config-
uration space based on multipath volumes and the obstructed
LOS volumes introduced in Section III. The algorithm inputs
are the UAV’s start and target points, M cellular transmitter
locations, and a 3-D building map. The algorithm outputs are
the UAV’s optimal trajectory with P waypoints and a P x 2M
table of boolean values. In the table, each waypoint in the
optimal trajectory has a corresponding row, and each transmitter
has two corresponding columns. Each element in the table
contains a boolean value indicating whether a receiver location
is inside an obstructed LOS or multipath volume.

Prior to the algorithm, the 3-D configuration space is dis-
cretized to create pts. The points corresponding to a building
face are identified. Then, a table is generated where the number
of rows is the same as the number of points in pts and the
number of columns is 2M. Then, Algorithm 1 is executed to
populate the table.

Algorithm 1 Populate table with boolean values for receiver
locations being inside an obstructed LOS or multipath volume
Input: Buildings, transmitter positions, pts
Output: Table of boolean values
Initialize table to false for all 2\ columns
For each m cellular transmitter in the environment
For each building
Calculate obstructed LOS volume corners
For each point p in pts that is inside the building
Label the p-th row and m-th column as true
For each building surface with unobstructed LOS
Calculate multipath volume corners
For each point p in pts inside the multipath volume
Label the p-th row and (m + M)-th column as true

After the table is populated, it is used to generate the directed
graph, G(n,e). Then, the shortest trajectory 754 is computed
by using Dijkstra’s algorithm [29], where edges are created
between adjacent nodes and edge weights are the Euclidean
distance. The vehicle is then given the trajectory composed
of P waypoints, and the P x 2M table is used to ignore
measurements from cellular towers with large multipath biases
or NLOS reception.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

A field test was conducted to evaluate the performance of
the proposed method. Over the course of the experiment, real
GPS and LTE signals were collected to estimate the UAV’s
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Fig. 6. (a) The UAV equipped with GPS and LTE receivers. (b) Multipath
volume calculated by the proposed method. (c) Location of LTE tower, shortest
trajectory, and prescribed trajectory between start and target points.

position in an urban environment with multiple obstructions.
An Autel X-Star Premium UAV was equipped with GPS and
LTE receivers. Due to the UAV’s payload constraints, only one
cellular LTE tower was used, which was operated by the U.S.
cellular provided AT&T, transmitting at a carrier frequency of
1955 MHz. The signals were down-mixed and sampled using
a National Instruments (NI) universal software radio peripheral
(USRP)-E312®, driven by a GPS-disciplined oscillator. The
GPS receiver returned the latitude, longitude, altitude, and a
time-stamp. The LTE receiver collected LTE 1/Q data, which
were post-processed to produce pseudoranges [4] that were
fused with the estimated positions from GPS. The experiment
was conducted at the University of California, Riverside. The
3-D map was obtained from ArcGIS Online. The experiment
parameters are tabulated in Table I, and the experimental setup
along with the experiment environment is shown in Fig. 6.

TABLE I
EXPERIMENT SETTINGS
Parameter Definition Value
Ucze” Cellular measurement noise variance 5 m?
O Power spectra of continuous white 2, .3
e dy> 9= noise acceleration intensity 20 m%/'s
B Clock bias process noise power _16
Siss spectral density 4% 10 s
~ Clock drift process noise power _18
S“"é't spectral density 7.89 x 10 1s
bmax Threshold on multipath interference 4 m
Threshold on path delay for LTE with
Tmax 25 m

3 MHz bandwidth and brick material

B. Scenario Description

Two UAVs were flown with the same start and target lo-
cations were equipped with GPS and LTE receivers. The first
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—— Estimated prescribed trajectory
— Ground truth prescribed trajectory
—— Estimated shortest trajectory
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Fig. 7. Experimental results showing the true UAVs’ trajectories (blue) and
estimated UAVs’ trajectories (red) for the shortest and optimal trajectories.
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Fig. 8. Position estimation errors and corresponding 3¢ in the x- and y-
directions: (a)—(b) shortest trajectory (c)—(d) prescribed trajectory.

UAV was prescribed the trajectory that was calculated using the
proposed algorithm, while the second UAV chose the shortest
trajectory. The RMSE was computed for both trajectories and
compared to the ground truth stored in the UAV’s flight data,
which was obtained from GPS, IMU, and other sensors. The
location of the LTE tower, shortest trajectory, and prescribed
trajectory between start and target points are shown in Fig. 6 (c).
The optimal trajectory was calculated according to the method
described in Sections III and IV by using the obstructed LOS
volume and multipath volume of the cellular LTE transmitter.

C. Experimental Results

This subsection presents the experimental results for the
shortest trajectory and the optimal trajectory. Fig. 7 shows
the UAVs’ ground truth and estimated trajectories for both
the shortest and optimal paths. Fig. 8 shows the 2-D position
estimation error trajectories and corresponding +£3¢. Table II
compares the navigation performance of the optimal trajectory
versus that of the shortest trajectory.

In Fig. 7, compare the closeness of (i) the estimated pre-
scribed trajectory to the UAV’s ground truth prescribed trajec-
tory versus (ii) the estimated shortest trajectory to the UAV’s
ground truth shortest trajectory. It can be seen that (i) produced
closer results than (ii). This is also evident from Fig. 8, from
which it can be seen that the estimation errors for the shortest
trajectory exceeded the +30 bounds, indicating that there are



unmodeled large multipath biases in LTE pseudoranges. In
contrast, the estimation errors are within the =30 bounds for
the optimal trajectory. Table II shows the reduction in position
RMSE and maximum error upon following the prescribed
trajectory versus the shortest trajectory.

TABLE II
NAVIGATION SOLUTIONS PERFORMANCE

Trajectory 2-D RMSE [m] 2-D Max. error [m]
Shortest 3.03 8.92

Prescribed 2.10 3.67
Reduction 30.69% 58.86%

VI. CONCLUSION

This paper proposed an approach for UAV trajectory plan-
ning to reduce the position estimation error by avoiding areas
where cellular pseudoranges are affected by obstructed LOS
and severe multipath. It was shown that simulating the threshold
on multipath interference can be simplified by only considering
the relative path delay of the LOS path and the first reflected
path. A directed graph was generated using transmitters with
unobstructed LOS and multipath interference smaller than a
threshold. The optimal trajectory was calculated using Dijk-
stra’s algorithm. Experimental test demonstrated that choosing
the proposed optimal trajectory over the shortest trajectory
reduced the 2-D position RMSE and the position maximum
error by 30.69% and 58.86%, respectively.

ACKNOWLEDGMENT

This work was supported in part by the Office of Naval
Research (ONR) under Grant NO0014-16-1-2809 and in part by
the National Science Foundation (NSF) under Grants 1929571
and 1929965. The authors would like to thank Joe Khalife,
Joshua Morales, Kimia Shamaei, and Gogol Bhattacharya for
their help with data collection.

REFERENCES

[1] Inside GNSS, “Multipath vs. NLOS
multipath-vs-nlos-signals/, November 2013.

[2] Z. Kassas, J. Khalife, K. Shamaei, and J. Morales, “I hear, therefore
I know where I am: Compensating for GNSS limitations with cellular
signals,” IEEE Signal Processing Magazine, pp. 111-124, September
2017.

[3] J. del Peral-Rosado, J. Lopez-Salcedo, G. Seco-Granados, F. Zanier,
P. Crosta, R. Toannides, and M. Crisci, “Software-defined radio LTE
positioning receiver towards future hybrid localization systems,” in Pro-
ceedings of International Communication Satellite Systems Conference,
October 2013, pp. 14-17.

[4] K. Shamaei, J. Khalife, and Z. Kassas, “Exploiting LTE signals for
navigation: Theory to implementation,” IEEE Transactions on Wireless
Communications, vol. 17, no. 4, pp. 2173-2189, April 2018.

[5] M. Maaref, J. Khalife, and Z. Kassas, “Lane-level localization and
mapping in GNSS-challenged environments by fusing lidar data and
cellular pseudoranges,” IEEE Transactions on Intelligent Vehicles, vol. 4,
no. 1, pp. 73-89, March 2019.

[6] Z. Kassas, J. Morales, K. Shamaei, and J. Khalife, “LTE steers UAV,”
GPS World Magazine, vol. 28, no. 4, pp. 18-25, April 2017.

[7] J. Morales, J. Khalife, and Z. Kassas, “GNSS vertical dilution of precision
reduction using terrestrial signals of opportunity,” in Proceedings of ION
International Technical Meeting Conference, January 2016, pp. 664—669.

signals,”  insidegnss.com/

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

J. del Peral-Rosado, J. Lopez-Salcedo, G. Seco-Granados, F. Zanier, and
M. Crisci, “Evaluation of the LTE positioning capabilities under typical
multipath channels,” in Proceedings of Advanced Satellite Multimedia
Systems Conference and Signal Processing for Space Communications
Workshop, September 2012, pp. 139-146.

M. Ulmschneider and C. Gentner, “Multipath assisted positioning for
pedestrians using LTE signals,” in Proceedings of IEEE/ION Position,
Location, and Navigation Symposium, April 2016, pp. 386-392.

M. Driusso, C. Marshall, M. Sabathy, F. Knutti, H. Mathis, and F. Babich,
“Vehicular position tracking using LTE signals,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 4, pp. 3376-3391, April 2017.

K. Shamaei and Z. Kassas, “LTE receiver design and multipath analysis
for navigation in urban environments,” NAVIGATION, Journal of the
Institute of Navigation, vol. 65, no. 4, pp. 655-675, December 2018.

K. Shamaei, J. Morales, and Z. Kassas, “A framework for navigation
with LTE time-correlated pseudorange errors in multipath environments,”
in Proceedings of IEEE Vehicular Technology Conference, 2019, pp. 1-6.
A. Abdallah and Z. Kassas, “Evaluation of feedback and feedforward cou-
pling of synthetic aperture navigation with LTE signals,” in Proceedings
of IEEE Vehicular Technology Conference, 2019, accepted.

S. Ponda, “Trajectory optimization for target localization using small
unmanned aerial vehicles,” Master’s thesis, Massachusetts Institute of
Technology, MA, USA, 2008.

J. Isaacs, C. Magee, A. Subbaraman, F. Quitin, K. Fregene, A. Teel,
U. Madhow, and J. Hespanha, “GPS-optimal micro air vehicle navigation
in degraded environments,” in Proceedings of American Control Confer-
ence, June 2014, pp. 1864-1871.

Z. Kassas, A. Arapostathis, and T. Humphreys, “Greedy motion planning
for simultaneous signal landscape mapping and receiver localization,”
IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 2, pp.
247-258, March 2015.

Z. Kassas, J. Bhatti, and T. Humphreys, ‘“Receding horizon trajectory
optimization for simultaneous signal landscape mapping and receiver
localization,” in Proceedings of ION GNSS Conference, September 2013,
pp. 1962-1969.

F. Meyer, H. Wymeersch, M. Frohle, and F. Hlawatsch, “Distributed
estimation with information-seeking control in agent networks,” IEEE
Journal on Selected Areas in Communications, vol. 33, no. 11, pp. 2439—
2456, November 2015.

H. Bai and C. Taylor, “Observability driven path planing for relative
navigation of unmanned aerial systems,” in Proceedings of IEEE/ION
Position Location and Navigation Symposium, April 2018, pp. 793-800.
L. Xie, J. Xu, and R. Zhang, “Throughput maximization for UAV-enabled
wireless powered communication networks,” in Proceedings of IEEE
Vehicular Technology Conference, June 2018, pp. 1-7.

S. Ragothaman, “Path planning for autonomous ground vehicles using
GNSS and cellular LTE signal reliability maps and GIS 3-D maps,”
Master’s thesis, University of California, Riverside, USA, 2018.

Y. Bar-Shalom, X. Li, and T. Kirubarajan, Estimation with Applications
to Tracking and Navigation. New York, NY: John Wiley & Sons, 2002.
K. Shamaei, J. Khalife, and Z. Kassas, “Pseudorange and multipath
analysis of positioning with LTE secondary synchronization signals,” in
Proceedings of Wireless Communications and Networking Conference,
April 2018, pp. 286-291.

J. Liberti and T. Rappaport, “A geometrically based model for line-
of-sight multipath radio channels,” in Proceedings of IEEE Vehicular
Technology Conference, vol. 2, April 1996, pp. 844-848.

J. Soubielle, I. Fijalkow, P. Duvaut, and A. Bibaut, “GPS positioning
in a multipath environment,” IEEE Transactions on Signal Processing,
vol. 50, no. 1, pp. 141-150, January 2002.

F. Ribaud, M. Ait-Ighil, S. Rougerie, J. Lemorton, O. Julien, and F. Perez-
Fontan, “Reduction of the multipath channel impulse response for GNSS
applications,” in Proceedings of European Conference on Antennas and
Propagation, April 2016, pp. 1-5.

B. Yang, K. Letaief, R. Cheng, and Z. Cao, “Timing recovery for OFDM
transmission,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 11, pp. 2278-2291, November 2000.

J. Davis and M. Goadrich, “The relationship between precision-recall and
ROC curves,” in Proceedings of the International Conference on Machine
Learning, June 2006, pp. 233-240.

Yujin and G. Xiaoxue, “Optimal route planning of parking lot based
on Dijkstra algorithm,” in Proceedings of the Robots Intelligent System
Conference, October 2017, pp. 221-224.



