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Abstract—Unmanned aerial vehicle (UAV) trajectory planning
in urban environments is considered. Equipped with a three-
dimensional (3-D) environment map, the UAV navigates by fusing
global navigation satellite systems (GNSS) signals with ambient
cellular signals of opportunity. A trajectory planning approach
is developed to allow the UAV to reach a target location, while
constraining its position uncertainty and multipath-induced biases
in cellular pseudoranges to be below a desired threshold. Exper-
imental results are presented demonstrating that following the
proposed trajectory yields a reduction of 30.69% and 58.86% in
the position root-mean squared error and the maximum position
error, respectively, compared to following the shortest trajectory
between the start and target locations.

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) is gaining

popularity in applications requiring them to navigate in urban

environments, such as infrastructure inspection, package deliv-

ery, emergency response, and filming. In these environments,

global navigation satellite systems (GNSS) signals do not

provide a reliable or accurate navigation solution due to line-

of-sight (LOS) blockage and reflections by high-rise structures

[1]. Opportunely, in these environments, cellular signals are (i)

abundant, (ii) powerful, and (iii) distributed in geometrically

favorable configurations, making them an attractive comple-

ment to GNSS signals [2]. Recent literature presented receivers

capable of producing navigation observables from cellular

signals [3], [4], fusion of cellular signal navigation observables

with external sensors (e.g., lidar [5] and inertial measurement

unit (IMU) [6]) to correct the accumulated error, and fusion of

cellular signals with GNSS signals to reduce the positioning

error [7]. Due to the terrestrial nature of cellular transmitters,

their received signals in urban environments suffer from LOS

blockage and multipath. This induces errors in their navigation

observables, to which multipath mitigation techniques have

been proposed [8]–[13]. In addition to employing these tech-

niques, a UAV could optimize its trajectory to constrain large

multipath-induced biases in cellular navigation observables.

Numerous trajectory planning approaches have been pro-

posed in the literature. In [14], UAV trajectory planning was

considered for target tracking. In [15], UAV trajectory planning

was considered to optimize received GPS signal quality. In [16],

computationally efficient innovation-based greedy optimization

metrics were proposed for radio simultaneous localization and

mapping (SLAM). In [17], receding horizon trajectory planning

strategies were studied for radio SLAM. In [18], information

seeking was considered for simultaneous localization and target

tracking. In [19], trajectory planning for UAVs was considered

to maximize state observability. In [20], UAV trajectory plan-

ning was considered to maximize uplink throughput for ground

users together with downlink power allocation for wireless

power transfer. In [21], GNSS and cellular signal reliability

maps were considered for trajectory planning.

In contrast to existing literature, this paper considers optimiz-

ing the UAV’s trajectory to constrain multipath-induced biases

in cellular pseudorange observables. To this end, a computation-

ally efficient method is proposed, which considers thresholds on

the pseudorange bias and the position uncertainty. This paper

considers the following problem. A UAV is equipped with a

GNSS receiver and a cellular receiver capable of producing

pseudoranges to cellular transmitters in the environment. The

UAV has access to a three-dimensional (3-D) map of the static

obstructions (e.g., buildings) in the environment. The UAV

desires to reach a target location, while navigating by fusing its

GNSS-derived position estimate and cellular pseudoranges. The

UAV plans its trajectory while constraining its position uncer-

tainty and multipath-induced biases in cellular pseudoranges.

This paper makes the following contributions. First, a com-

putationally efficient method for simulating pseudorange bias

due to multipath is proposed. Second, a trajectory planning

algorithm is proposed, which minimizes the distance to the

target location while guaranteeing that (i) maximum uncertainty

about the UAV’s position is below a certain threshold and (ii)

biases in cellular pseudoranges are below a certain threshold.

Third, the performance is analyzed experimentally, showing

that following the proposed trajectory yields a reduction of

30.69% and 58.86% in the position root-mean squared error

(RMSE) and maximum position error, respectively, compared

to following the shortest trajectory.

The remainder of this paper is organized as follows. Section

II describes the UAV and measurement model and formulates

the trajectory planning problem. Section III discusses simu-

lating obstructed LOS and large multipath biases. Section IV

presents the trajectory planning algorithm. Section V presents

experimental results. Section VI gives concluding remarks.



II. MODEL DESCRIPTION

A. UAV/base Framework

The navigation environment comprises a UAV, N GNSS

satellites, M cellular towers, and a stationary base, as depicted

in Fig. 1. The cellular towers are assumed to be stationary

with known 3-D positions {rcell,m}
M

m=1
. The stationary base

has knowledge of its state vector xbase, which comprises its

3-D position rbase, clock bias δtbase, and clock drift δ̇tbase.

The UAV is equipped with a GNSS receiver that estimates

the UAV’s 3-D position rUAV. The GNSS receiver’s estimate

of the UAV’s position, denoted r̂UAV,GNSS may be expressed

as r̂UAV,GNSS = rUAV+vUAV,GNSS, where vUAV,GNSS is the

error in the estimated position, which is modeled as a zero-

mean Gaussian random vector with covariance RUAV,GNSS.

The base and the UAV make pseudorange measurements

to the same cellular towers, denoted {ρUAV,m}
M

m=1
and

{ρbase,m}
M

m=1
. The base communicates its measurements along

with rbase and δtbase with the UAV. The UAV eliminates the

unknown clock biases of the cellular towers {δtcell,m}
M

m=1

by differencing its own pseudorange measurements with the

ones made by the base to get {∆ρm}Mm=1. The UAV’s and

base’s measurement noise; {vcell,m}
M

m=1
and {vbase,m}

M

m=1
,

respectively; are modeled as independent and identically zero-

mean white Gaussian sequences with variance σ2
cell.

B. UAV Dynamics Model

The UAV is assumed to be moving according to continuous

white noise acceleration dynamics with process noise intensity

q̃x, q̃y , and q̃z . The UAV’s receiver clock error (i.e., bias δtUAV

and drift δ̇tUAV) are modeled as a double integrator driven

by process noise w̃δt and w̃δ̇t [22]. The power spectra of the

continuous-time process noise driving the clock bias and drift

are denoted Sw̃δt
and Sw̃δ̇t

, respectively. Therefore, the UAV’s

state vector xUAV evolves according to

xUAV(k + 1) = FxUAV(k) +w(k),

F ,
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where T is the sampling time and w is the process noise, which

is zero-mean with covariance Q = diag [Qpv,Qclk] given by
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C. UAV State Estimation

The UAV estimates its state vector xUAV via an extended

Kalman filter (EKF), which fuses r̂UAV,GNSS with {∆ρm}
M

m=1.

D. Configuration Space Description

The 3-D configuration space (i.e., all possible positions of

the UAV) is discretized to create a collection of points denoted

as pts. A subset of pts is stored in a directed graph G(n, e)
with nodes n, where adjacent nodes are connected by edges e.

The collection of all trajectories πsd from start s to target d is

denoted Psd. The cost C(πsd) of a trajectory πsd is

C(πsd) =
∑

ei∈Psd

wei ,

where wei is the weight of the i-th edge corresponding to the

distance between two nodes which are connected by i-th edge.

The trajectory with the shortest distance is desired such that

certain metrics related to the position error are bounded, namely

minimize
πsd∈Psd

C(πsd)

subject to λmax

{

[

H̃TR−1H̃
]−1

}

≤ λ̄max

| b | ≤ 1M×1bmax,

(1)

where λmax {A} denotes the largest eigenvalue of A, λ̄max

is a threshold for the largest uncertainty, b is the vector of

pseudorange biases, bmax is a threshold on pseudorange biases,

H̃ , [HUAV,1M×1], |·| denotes the absolute value of each

element in the vector, 1M×1 is an M × 1 vector of ones, and

R = diag[RUAV,GNSS, 2σ
2
cell, . . . , 2σ

2
cell ],

HUAV ,

[

r̂
T

UAV − r
T

cell1

‖r̂UAV − rcell1‖2
, . . . ,

r̂
T

UAV − r
T

cellM

‖r̂UAV − rcellM ‖2

]T

.

The first constraint is a threshold on a part of the state estima-

tion uncertainty from the measurements. The second constraint

is a threshold on the pseudorange bias due to multipath.

III. OBSTRUCTED LOS AND MULTIPATH CALCULATIONS

The constraints in (1) require calculation of pseudorange

biases {bm}Mm=1. Pseudorange biases result from: non-LOS

(NLOS) bias and multipath interference. NLOS bias occurs

when the receiver obtains a measurement from a reflected signal

and does not receive the LOS signal. Multipath interference

occurs when reflected signals constructively and destructively

interfere with the LOS signal at the receiver and cause posi-

tive or negative biases in the pseudorange [23]. This section

describes how to account for multipath errors using two new

concepts: obstructed LOS volumes and multipath volumes. Fig.

2 illustrates the obstructed LOS and multipath volumes in

purple and pink colors, respectively.

A. Obstructed LOS Volumes

The obstructed LOS volume is defined such that if a receiver

is inside the volume, the LOS between the receiver and trans-

mitter would be blocked by a building. As shown by the purple

volumes in Fig. 2, the volume can be computed by extruding the

building away from the transmitter. Obstructed LOS volumes

are calculated for each cellular transmitter and for each building

in the area of interest.
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Fig. 1. Base/UAV framework for navigation with GNSS and cellular towers

Cellular Transmitter

Obstructed LOS Volumes

Multipath Volumes

Building

Fig. 2. Multipath volumes and obstructed LOS volumes for a cellular
transmitter.

B. Multipath Volumes

Multipath volumes have previously been used in [24] for

direction of arrival measurements from terrestrial transmitters.

In this paper, the multipath volume is defined such that if a

receiver was inside a volume, the multipath bias is likely to

exceed a threshold. This subsection describes the 1) rationale,

2) calculation, and 3) evaluation of multipath volumes.

1) Rationale for Multipath Volumes: To calculate multipath

interference, the channel impulse response needs to be simu-

lated based on the knowledge of the environment (e.g., 3-D

building and transmitters’ locations) at all possible receiver

locations. However, this comes at significant computational

burden as the number of receiver locations can be large in a

desired UAV coverage area. This paper proposes an alternative,

computationally efficient approach.

Examples from the GNSS literature proposed ways to reduce

multipath information by only using the first two trajectories

[25] and by grouping similar trajectories together [26]. In this

paper, the magnitude of multipath interference {bm}Mm=1 is said

to exceed a multipath interference threshold bmax if the relative

path delay (i.e., the difference between the length of the first

reflected signal path and the length of the LOS path, denoted

τ ) is between the thresholds τmin and τmax.

The rationale of this claim is explained graphically using Fig.

3, which illustrates the relative phase delay difference envelopes

for multipath interference as a function of relative path delay

Fig. 3. The envelopes for multipath interference for an LTE signal with a 20
MHz bandwidth. The salmon graph shows destructive interference, while the
blue graph shows constructive interference.

and relative signal power for cellular long-term evolution (LTE)

signals [27]. Fig. 3 shows that multipath interference decreases

as the relative path delay increases. Thus, it is reasonable to

approximate regions where |bm| ≤ bmax without simulating

relative signal power and relative phase difference.

The proposed approach uses binary classification [28]. Here,

binary classification refers to finding thresholds that minimize

the number of misclassified points. Fig. 4 shows the result

of binary classification for a cellular LTE transmitter in LOS

regions with concrete buildings. When bmax = 1 m, binary

classification yields τmin = 6 m and τmax = 24 m. Fig. 4(a)

shows receiver locations where τmin ≤ τ ≤ τmax in salmon,

and Fig. 4(b) shows receiver locations where |bm| ≤ bmax

in salmon. The precision, or percentage of points for which

|bm| ≤ bmax among those that satisfy τ ≤ τmin or τ ≥ τmax

is 94.31%. The recall, or the percentage of points for which

τ ≤ τmin or τ ≥ τmax among those that satisfy |bm| ≤ bmax,

is 89.70%. As can be seen, the regions where τmin ≤ τ ≤ τmax

is close to areas where |bm| ≥ bmax. Separate thresholds can

be calculated for other signals and building materials.

Therefore, multipath volumes can be defined as receiver

locations where τmin ≤ τ ≤ τmax. Multipath volumes can

be used instead of channel impulse response simulations at the

price of reduced resolution in the pseudorange error.



(a) (b)

Fig. 4. The salmon color represents (a) areas where multipath interference is
above 1 m and (b) areas where relative path delay is between 6 and 24 m. The
light blue areas represent buildings.

2) Calculation of Multipath Volumes: A multipath volume

can be calculated given a transmitter location rt, a building

surface, and the relative path delay thresholds τmin and τmax.

For simplicity, the calculation of multipath volumes will be

done using τmax. The relative path delay can be written as the

difference between the length of the first reflected path and the

length of the LOS path, i.e.,

τmax ≥ τ =
∥

∥rtimg
− rp

∥

∥− ‖rt − rp‖ , (2)

where rp is a receiver location inside the multipath volume and

rtimg
is the image (reflection on the building surface) of the

transmitter. The multipath volume is calculated as the convex

hull of multipath volume corners. The multipath volume cor-

ners consist of building surface corners and boundary surface

corners. The boundary refers to the surface where (2) holds with

equality. For terrestrial transmitters, the shape of the boundary

is one-side of a two-sheeted hyperboloid. A cross-section of

the boundary is shown as the curved red line in Fig. 5(a).

rc
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rtrtimg

jjrt { rpjj+ τmax
rp

Building

Multpath volume

Boundary

Transmitter

Transmitter image

nb

a
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Fig. 5. (a) The image of the transmitter and a 2-D cross-section of the boundary
in red. (b) Geometric relationship between the variables used to calculate each
corner and multipath volume. (c)Multipath volume for one building surface.

The multipath volume corners are calculated as follows. Each

boundary surface corner is calculated from a building surface

corner. For a building surface corner, rb = [xrb , yrb , zrb ]
T, a

boundary surface corner rc = [xrc , yrc , zrc ]
T is given by

rc = rtimg
+ d

rb − rtimg
∥

∥rb − rtimg

∥

∥

, d =
4a2 − τ2max

4acos(φ)− 2τmax

,

where d is the distance from the image of the transmitter to

rc, rtimg
= rt + 2anb, a is the shortest distance between the

transmitter and the building surface, nb is the normal of the

surface, and φ is the angle between the line containing rtimg

and rb and the line containing rtimg
and rt (see Fig. 5(b)).

Then, the multipath volume is calculated as the convex hull of

the building surface corners and the boundary surface corners

as shown in Fig. 5(c).

IV. TRAJECTORY PLANNING

This section describes the steps to constrain the 3-D config-

uration space based on multipath volumes and the obstructed

LOS volumes introduced in Section III. The algorithm inputs

are the UAV’s start and target points, M cellular transmitter

locations, and a 3-D building map. The algorithm outputs are

the UAV’s optimal trajectory with P waypoints and a P × 2M
table of boolean values. In the table, each waypoint in the

optimal trajectory has a corresponding row, and each transmitter

has two corresponding columns. Each element in the table

contains a boolean value indicating whether a receiver location

is inside an obstructed LOS or multipath volume.

Prior to the algorithm, the 3-D configuration space is dis-

cretized to create pts. The points corresponding to a building

face are identified. Then, a table is generated where the number

of rows is the same as the number of points in pts and the

number of columns is 2M . Then, Algorithm 1 is executed to

populate the table.

Algorithm 1 Populate table with boolean values for receiver

locations being inside an obstructed LOS or multipath volume

Input: Buildings, transmitter positions, pts

Output: Table of boolean values

Initialize table to false for all 2M columns

For each m cellular transmitter in the environment

For each building

Calculate obstructed LOS volume corners

For each point p in pts that is inside the building

Label the p-th row and m-th column as true

For each building surface with unobstructed LOS

Calculate multipath volume corners

For each point p in pts inside the multipath volume

Label the p-th row and (m+M)-th column as true

After the table is populated, it is used to generate the directed

graph, G(n, e). Then, the shortest trajectory πsd is computed

by using Dijkstra’s algorithm [29], where edges are created

between adjacent nodes and edge weights are the Euclidean

distance. The vehicle is then given the trajectory composed

of P waypoints, and the P × 2M table is used to ignore

measurements from cellular towers with large multipath biases

or NLOS reception.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

A field test was conducted to evaluate the performance of

the proposed method. Over the course of the experiment, real

GPS and LTE signals were collected to estimate the UAV’s
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Fig. 6. (a) The UAV equipped with GPS and LTE receivers. (b) Multipath
volume calculated by the proposed method. (c) Location of LTE tower, shortest
trajectory, and prescribed trajectory between start and target points.

position in an urban environment with multiple obstructions.

An Autel X-Star Premium UAV was equipped with GPS and

LTE receivers. Due to the UAV’s payload constraints, only one

cellular LTE tower was used, which was operated by the U.S.

cellular provided AT&T, transmitting at a carrier frequency of

1955 MHz. The signals were down-mixed and sampled using

a National Instruments (NI) universal software radio peripheral

(USRP)-E312 R©, driven by a GPS-disciplined oscillator. The

GPS receiver returned the latitude, longitude, altitude, and a

time-stamp. The LTE receiver collected LTE I/Q data, which

were post-processed to produce pseudoranges [4] that were

fused with the estimated positions from GPS. The experiment

was conducted at the University of California, Riverside. The

3-D map was obtained from ArcGIS Online. The experiment

parameters are tabulated in Table I, and the experimental setup

along with the experiment environment is shown in Fig. 6.

TABLE I
EXPERIMENT SETTINGS

Parameter Definition Value

σ2

cell
Cellular measurement noise variance 5 m2

q̃x, q̃y , q̃z
Power spectra of continuous white

noise acceleration intensity
20 m2/ s3

Sω̃δt

Clock bias process noise power
spectral density

4× 10
−16 s

Sω̃
δ̇t

Clock drift process noise power
spectral density

7.89× 10
−18 1/s

bmax Threshold on multipath interference 4 m

τmax

Threshold on path delay for LTE with
3 MHz bandwidth and brick material

25 m

B. Scenario Description

Two UAVs were flown with the same start and target lo-

cations were equipped with GPS and LTE receivers. The first

Estimated shortest trajectory
Ground truth shortest trajectory

Start

Target

Estimated prescribed trajectory
Ground truth prescribed trajectory

Fig. 7. Experimental results showing the true UAVs’ trajectories (blue) and
estimated UAVs’ trajectories (red) for the shortest and optimal trajectories.

(d)(c)

(a) (b)

Fig. 8. Position estimation errors and corresponding ±3σ in the x- and y-
directions: (a)–(b) shortest trajectory (c)–(d) prescribed trajectory.

UAV was prescribed the trajectory that was calculated using the

proposed algorithm, while the second UAV chose the shortest

trajectory. The RMSE was computed for both trajectories and

compared to the ground truth stored in the UAV’s flight data,

which was obtained from GPS, IMU, and other sensors. The

location of the LTE tower, shortest trajectory, and prescribed

trajectory between start and target points are shown in Fig. 6 (c).

The optimal trajectory was calculated according to the method

described in Sections III and IV by using the obstructed LOS

volume and multipath volume of the cellular LTE transmitter.

C. Experimental Results

This subsection presents the experimental results for the

shortest trajectory and the optimal trajectory. Fig. 7 shows

the UAVs’ ground truth and estimated trajectories for both

the shortest and optimal paths. Fig. 8 shows the 2-D position

estimation error trajectories and corresponding ±3σ. Table II

compares the navigation performance of the optimal trajectory

versus that of the shortest trajectory.

In Fig. 7, compare the closeness of (i) the estimated pre-

scribed trajectory to the UAV’s ground truth prescribed trajec-

tory versus (ii) the estimated shortest trajectory to the UAV’s

ground truth shortest trajectory. It can be seen that (i) produced

closer results than (ii). This is also evident from Fig. 8, from

which it can be seen that the estimation errors for the shortest

trajectory exceeded the ±3σ bounds, indicating that there are



unmodeled large multipath biases in LTE pseudoranges. In

contrast, the estimation errors are within the ±3σ bounds for

the optimal trajectory. Table II shows the reduction in position

RMSE and maximum error upon following the prescribed

trajectory versus the shortest trajectory.

TABLE II
NAVIGATION SOLUTIONS PERFORMANCE

Trajectory 2-D RMSE [m] 2-D Max. error [m]

Shortest 3.03 8.92

Prescribed 2.10 3.67

Reduction 30.69% 58.86%

VI. CONCLUSION

This paper proposed an approach for UAV trajectory plan-

ning to reduce the position estimation error by avoiding areas

where cellular pseudoranges are affected by obstructed LOS

and severe multipath. It was shown that simulating the threshold

on multipath interference can be simplified by only considering

the relative path delay of the LOS path and the first reflected

path. A directed graph was generated using transmitters with

unobstructed LOS and multipath interference smaller than a

threshold. The optimal trajectory was calculated using Dijk-

stra’s algorithm. Experimental test demonstrated that choosing

the proposed optimal trajectory over the shortest trajectory

reduced the 2-D position RMSE and the position maximum

error by 30.69% and 58.86%, respectively.
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