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Abstract 

Polymer nanocomposites containing carbon nanomaterials such as carbon black, carbon nanotubes, 

and graphene exhibit exceptional mechanical, thermal, electrical, and gas barrier properties. 

Although the materials property benefits are well established, controlling the dispersion of carbon 

nanomaterials in polymer matrices during processing is still a difficult task using current methods. 

Here, we report a simple, yet versatile method to simultaneously achieve the reduction of graphene 

oxide (GO) and polymerization of styrene to create reduced graphene oxide/poly(styrene) 

(RGO/PS) nanocomposite materials via microwave heating. The RGO/PS mixture is then 

processed into films of desired thicknesses by first removing unreacted styrene and then pressing 

the powder at elevated temperatures. X-ray photoelectron spectroscopy (XPS) indicated that 

microwave processing was able to reduce GO, which resulted in a change in the carbon to oxygen 

ratio (C/O) from 2.0 of GO to 4.5 for RGO. Furthermore, the addition of GO in the RGO/PS 

nanocomposites lead to an increase in the static dielectric constant (εs) relative to pure PS, with 
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minimal change in tan δ (~0.06% at room temperature). The simultaneous microwave 

reduction/polymerization method described here will potentially lead to the production of 

polymer-based dielectric nanocomposite materials with tunable dielectric constants for energy 

storage applications. 

 

Keywords: reduced graphene oxide, polymer nanocomposites, microwave synthesis, dielectric 

constant, dielectric relaxation spectroscopy 
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Introduction 

Graphene-based polymer nanocomposites have attracted significant attention from the polymer 

and nanomaterial communities in recent years due to their excellent electrical,1,2 mechanical,3,4 

and gas barrier properties.5,6 The superior properties that arise from dispersing carbon-based 

nanomaterials such as graphene, graphene oxide (GO), and reduced graphene oxide (RGO) within 

polymer matrices are produced through a combination of the inherent physical properties of 

graphene (e.g., high electrical and thermal conductivity)7,8 and the geometric shape.9 For example, 

well-dispersed anisotropic atomistically-thin two-dimensional (2D) RGO nanosheets are able to 

prevent crack propagation within epoxy nanocomposites, increasing the fracture toughness of the 

materials.9 On the other hand, RGO/epoxy nanocomposites in which the RGO nanosheets are 

aggregated exhibited significantly reduced electrical conductivity as compared to the well-

dispersed samples.9 The enhanced properties of graphene-based polymer nanocomposites are 

ultimately controlled by the level of dispersion and orientation of the carbon nanofillers,9,10 and by 

judicious selection of the chemical and architectural composition of the polymer matrix in order 

to maximize the interfacial interactions between the filler and the polymer.3,4,6,11,12 With the vast 

array of synthetic and processing techniques available to researchers, much still remains to be 

explored with respect to tailoring the physical properties of graphene-based polymer 

nanocomposites, as well as finely tuning the nanostructure of the materials. 

 

When preparing graphene-based polymer nanocomposites, three techniques are commonly 

employed: in situ polymerization, solution blending, and melt blending.13,14 While in situ methods 

in many cases lead to more uniform dispersion of the graphene, GO, and RGO nanofillers,4,15,16 

the latter two processing techniques are more commonly used in industry due to the economic 
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benefits and scalability.13 In many of the polymer nanocomposite preparation methods, harsh 

chemical reagents like hydrazine hydrate are used to remove (reduce) the oxygen-containing 

functional groups (e.g., epoxide, carbonyl, hydroxyl, phenol) from GO during fabrication.17,18 For 

these reasons, many have explored using less hazardous chemical reduction processes to form 

RGO by thermal treatments,19,20 microwave processes,21 or green syntheses.22-24 From an 

environmental perspective, processes that utilize the convenient, rapid, and uniform heating that 

simultaneously reduces GO while maintaining dispersion in polymer matrices are highly desirable. 

 

Graphene-based polymer nanocomposite materials created using in situ polymerization procedures 

have shown to increase graphene, RGO, and GO dispersion within polymer matrices, and lead to 

enhanced mechanical and electrical properties.10,16,25,26 One method in particular, microwave 

heating, to simultaneously reduce GO and synthesize polymers has been shown to be an efficient 

method for creating polymer nanocomposites with well-dispersed RGO.25,27,28 Microwave heating 

has been broadly applied to many chemical reactions ranging from organic syntheses to 

polymerization due to increased product yields and reaction rates.29,30 For example, as compared 

to conventional heating, microwave-assisted synthesis of poly(styrene) has been shown to reduce 

reaction times.31,32 Furthermore, microwave-assisted polymer grafting on diblock copolymers to 

induce nanostructural transitions have been recently reported,33 suggesting that the combination of 

nanoscale fillers with polymer materials using microwave reaction processes will lead to advances 

in the creation of nanostructured hybrid polymer materials. Therefore, the combination of 

microwave heating to simultaneously polymerize monomer and reduce GO has major benefits for 

rapidly producing RGO polymer nanocomposites. Previous results indicate that it is possible to 

reduce GO during microwave heating with hydrazine hydrate to create polymer nanocomposites 
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with improved hardness and elastic modulus.25 Although the increase in the mechanical properties 

of RGO/polymer nanocomposites are of interest, the electrical property enhancement of graphene-

based composites fabricated using microwave heating will potentially lead to advancements in 

energy storage applications.34,35 Furthermore, microwave heating has been shown to be an 

effective method for completely reducing GO to pristine graphene.21 Therefore, by combining 

microwave heating to simultaneously reduce GO without chemical reducing reagents and 

polymerize polymers using controlled radical polymerization methods,31,36-39 it will be possible to 

rapidly create graphene-based polymer nanocomposite materials with tunable physical properties. 

 

The simultaneous reduction of GO and polymerization of monomer using microwave heating to 

produce hybrid polymer materials for dielectric polymer capacitor films is an exciting area with 

enormous potential in energy storage.40 Polymeric films need to exhibit a combination of a high 

dielectric constant (εs), a low dissipation factor (tan δ), and a wide temperature window to be 

properly implemented for dielectric capacitors.35 To this end, researchers have investigated 

incorporating RGO as a conductive filler in polymer matrices and its effect on dielectric 

properties.41-44 While these studies have been able to produce enhanced dielectric constants with 

increasing RGO content into the matrix, they also lead to an elevated dissipation factor in the film, 

which is likely due to the low glass transition temperature (Tg) of the polymer matrix. By 

introducing RGO into polymer matrices exhibiting low Tg, RGO fillers are able to form a 

percolating network, leading to an increase in the dissipation factor.40 As a result, tan δ increases, 

reducing the material’s effectiveness in capacitor applications. Therefore, it is imperative to 

investigate the effects of RGO, or additional nanoscale fillers, in polymer matrices with elevated 

Tg in order to increase εs while maintaining low tan δ for uses in high-energy-density storage 
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dielectric capacitors.34,45-49 

 

Here, in an effort to address the elevated dissipation factor in RGO nanocomposite materials in 

previously reported work using low Tg polymers, we report the simultaneous reduction of GO and 

the nitroxide-mediated polymerization (NMP) of styrene to form RGO/poly(styrene) (PS) 

nanocomposites with varying weight percent of GO. PS is a model polymer for studying the 

dielectric and dissipative properties in RGO nanocomposite materials due to the much higher Tg 

as compared to previous low Tg polymers. Transmission electron microscopy (TEM) images reveal 

that the microwave process to produce RGO/PS nanocomposite materials described here results in 

well-dispersed RGO in the PS matrix, and the materials exhibit increased dielectric constants and 

low tan δ. The static dielectric constant of the RGO/PS nanocomposites synthesized increased with 

increasing GO content, which is attributed to increasing the content of a higher dielectric constant 

material, such as RGO. Moreover, the RGO-containing polymer nanocomposites exhibit low loss 

values that are similar to commercially used polymer materials. The microwave processing method 

described here to achieve RGO/PS nanocomposite materials has potential applications in dielectric 

polymer nanocomposite materials. 

 

Experimental 

Materials and methods 

Graphite powder (Shandong Nanshu Graphite Ore Co., Ltd., China) was converted to graphite 

oxide following a modified Hummers method,50 and dried at 50 °C for 12 h. Styrene (≥ 99%), 

benzoyl peroxide (BPO, 98%), and 4-hydroxy-2,2,6,6-tetramethylpiperidine (OH-TEMPO, 97%) 

were purchased from Sigma-Aldrich. 
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Preparation of RGO/PS nanocomposites 

The synthetic procedure for creating RGO/PS polymer nanocomposites is shown in Figure 1. First, 

a desired amount of GO powder was dispersed in 20 mL styrene (the inhibitor in styrene was 

removed by passing styrene through basic alumina) and was sonicated for 1 h to form GO/styrene 

suspensions at various concentrations (0.05, 0.1, 0.25, 0.5, 1, 2.5 wt% of GO in styrene). Next, 

BPO (0.01421 g) and OH-TEMPO (0.0067 g) where added to the GO/styrene suspensions. The 

reduction and polymerization of GO and styrene, respectively, was performed under microwave 

radiation for 3 h at 200 °C and 100 W using a Discover LabMate with IntelliVent pressure and 

infrared temperature control system (CEM Co.) in dynamic power mode. Note, the CEM Co. 

Discover LabMate with IntelliVent pressure device can manage reactions at temperatures above 

the boiling point of solvents and monomers like styrene (e.g., b.p. 145 °C). After the microwave 

reaction, the mixture was cooled to room temperature, and unreacted styrene was removed by 

applying dynamic vacuum for 4 h at 120 °C. Finally, the RGO/PS nanocomposite powder was 

fabricated into films using a vacuum mold pressing instrument (105 °C for 10 min). As shown in 

Figure 1, the film (~0.15 mm) containing 2.5 wt% GO is black and opaque. 

 

 



8 
 

 

Figure 1. Overview of the synthetic and processing method for the preparation of RGO/PS 

polymer nanocomposites. As seen in the digital photograph on the right, RGO/PS polymer 

nanocomposites films (2.5 wt% GO) are easily obtained after thermal pressing. The image of the 

RGO/PS nanocomposite film shown on the right is 0.15 mm thick. 

 

 

X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) experiments were performed using a Physical Electronics 

VersaProbe II instrument equipped with a monochromatic Al kα x-ray source (hν = 1,486.7 eV) 

and a concentric hemispherical analyzer. Charge neutralization was performed using both low 

energy electrons (<5 eV) and argon ions. The binding energy axis was calibrated using sputter 

cleaned Cu foil (Cu 2p3/2 = 932.7 eV, Cu 2p3/2 = 75.1 eV). Peaks were charge referenced to CHx 

band in the carbon 1s spectra at 284.8 eV. Measurements were made at a takeoff angle of 45° with 

respect to the sample surface plane. This resulted in a typical sampling depth of 3 – 6 nm (95% of 

the signal originated from this depth or shallower). Quantification was done using instrumental 

relative sensitivity factors (RSFs) that account for the x-ray cross section and inelastic mean free 

path of the electrons. 

 

Differential Scanning Calorimetry (DSC) 

Glass transition temperatures (Tg) of the PS and RGO/PS polymer nanocomposites were 

determined using a PerkinElmer 8500 differential scanning calorimeter (DSC) under dry nitrogen 

purge. All samples were placed in vacuum oven for 80 °C for 24 h to remove residual moisture. 

Approximately 8 mg of sample was used as the sample size. Polymer samples were heated from 

room temperature to 140 °C and annealed for 30 min. After annealing at 140 °C, samples were 
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cooled to 20 °C, and then heated back to 140 °C. Cooling and heating rates were of 10 °C/min. 

The Tg was determined by the inflection point in the heat capacity change during the second heating 

cycle. 

 

Transmission electron microscopy (TEM) 

Two TEM sample preparation methods were used to characterize GO in solution and RGO in PS 

matrices. To characterize the lateral dimensions of GO before and after sonication (before 

polymerization), a solution of graphene oxide (0.5 wt% in toluene) was drop cast onto a carbon-

copper grid before and after sonication (1 h). To characterize the RGO dispersion in PS, a 2.5 wt% 

RGO in PS film was microtomed into 70 – 90 nm sections using a Leica UC6 ultramicrotome. 

Samples were imaged using a FEI Tecnai G2 Spirit BioTwin TEM. 

 

Dielectric Relaxation Spectroscopy (DRS) 

Dielectric measurements of the PS and RGO/PS polymer nanocomposites were carried out by 

dielectric relaxation spectroscopy (DRS) using a Novocontrol GmbH Concept 40 broadband 

dielectric spectrometer. All samples were sandwiched between a polished 10 mm top brass 

electrode and a polished 30 mm brass electrode with thicknesses of the films ranging between 0.12 

– 0.15 mm. The thicknesses were measured before and after measuring to ensure proper results. 

Each sample was loaded into the Novocontrol and annealed at 80 °C under nitrogen for an 

additional hour to remove any moisture picked up during sample loading. Isothermal dielectric 

data were then collected using a sinusoidal voltage with an amplitude of 1.5 V over a frequency 

range of 10-1 – 107 Hz in steps of 10 °C on cooling from 80 °C to 0 °C followed by steps of 5 °C 

on heating from 0 °C to 80 °C to ensure the data were reproducible over the same frequency and 
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temperature range. 

 

Results and Discussion 

Synthesis of RGO/PS nanocomposite films 

Reduced graphene oxide/poly(styrene) (RGO/PS) films of controlled thickness were produced by 

first simultaneously reducing and polymerizing GO and styrene, respectively, using microwave 

radiation (3 h at 200 °C and 100 W), and then thermally pressing the RGO/PS powder under 

vacuum after removal of unreacted styrene (Figure 1). Distinct color changes occurred in 

GO/styrene mixtures after microwave synthesis. For all GO/styrene mixtures, the color 

transitioned from brown to black, which is indicative of the removal of the oxygen-containing 

functional groups.17 Neat PS samples were also produced using the same microwave reaction 

conditions, which is similar to previously published NMP results for the synthesis of PS.38,39 The 

number-average and weight-average molecular weight (Mn and Mw), and dispersity (Ð) of the neat 

PS after microwave synthesis (3 h at 200 °C and 100 W) and vacuum drying was found to be 10.1 

kg/mol, 14.3 kg/mol, and 1.42, respectively. 

 

The reaction and processing procedures for creating RGO/PS nanocomposites was easily adaptable 

to incorporate varying amounts of RGO in the PS matrices (Figure 2). As seen in Figure 2, the 

pure PS film is transparent, but increasing GO in styrene, the appearance of the films transitioned 

from transparent and light gray to opaque and black. To control the amount of RGO in the PS 

matrices, different quantities of dried GO powder were dispersed in styrene in prescribed weight 

fractions via sonication prior to microwave radiation. Furthermore, the thermal pressing process 

allowed for the fabrication of RGO/PS nanocomposite films with relatively large areas and 
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uniform composition. 

 

 
 

Figure 2. Images of pressed polymer and polymer nanocomposite films. RGO/PS nanocomposite 

materials containing (a) 0, (b) 0.05, (c) 0.25, (d) 0.5, (e) 1.0, and (f) 2.5 wt% GO. The polymer 

nanocomposite films become significantly darker with increasing RGO content. 

 

X-ray photoelectron spectroscopy (XPS) analysis 

To evaluate the reduction efficiency of GO using the microwave heating conditions described here, 

XPS was used to determine the carbon-to-oxygen ratio (C/O), which is a quantitative indicator of 

the reduction efficiency.51 Figure 3 shows the C 1s XPS spectra for GO and RGO before and after 

microwave heating, respectively, and of PS and 2.5 wt% RGO in PS after film processing. The GO 
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sample was the graphene oxide produced from the Hummers method, and the RGO sample was 

produced by microwave heating GO in deionized (DI) water (1 h at 200 °C and 100 W). The XPS 

analysis for the 2.5 wt% RGO in PS after film processing was chosen because it was either not 

possible or very hard to detect the graphitic signal using XPS signal for the RGO/PS samples with 

reduced RGO content. 

 

The C 1s spectrum of GO often has characteristic peaks centered at the binding energy 284.8 eV, 

286.2 eV, 287.8 eV, and 289.0 eV, which represent the C-C, C-O, C=O, O-C=O, respectively.17,51  

From fitting the spectra, it was found that after microwave treatment, the peaks representing C-O 

and C=O decreased dramatically, suggesting the removal of oxygen-containing functional groups. 

The C/O ratio of the GO we obtained was determined to be 2.0 by XPS, which is in agreement 

with previous studies.17,51 After microwave treatment, the C/O ratio increased from 2.2 (GO) to 

4.5 (RGO), demonstrating the successful de-oxygenation of GO by microwave heating. As for the 

2.5 wt% RGO in PS after film processing, analysis of the O 1s spectrum indicates that there is 

minimal oxygen species (C/O ratio is 240), which correlates to a dilution of RGO in PS if the O 

content of the RGO is constant during polymerization. Table 1 lists the experimentally determined 

C, O, and C/O ratios for GO, RGO, PS, and 2.5 wt% RGO in PS. Although the C/O ratio of RGO 

created by microwave heating shown here is not as efficient as standard chemical methods or 

microwave heating procedures, the process reported here is quicker, easier, and uses less hazardous 

chemicals to produce RGO/PS nanocomposite materials.17 It is worth noting that the RGO created 

here is chemically different from as pure graphene, as there is still a considerable amount of 

oxygen-containing species on the RGO sheets, which is difficult to remove by microwave 

treatment using the procedure described here. 
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Figure 3. XPS C 1s (left side) and O 1s (right side) spectra for GO, RGO, PS, and 2.5 wt% RGO 

in PS. (a) Fitted XPS C 1s and (b) O 1s spectra for GO. (c) Fitted XPS C 1s and (d) O 1s spectra 

for RGO after microwave treatment of GO in water (1 h at 200 °C and 100 W). XPS C 1s and O 

1s spectra for (e, f) PS and (g, h) 2.5 wt% RGO in PS. 

 

 

Table 1. C, O, and C/O ratio for GO, RGO, PS, and 2.5 wt% RGO in PS 

Carbon Containing Species GO RGO PS 2.5 wt% 

Total C 66.8 81.8 100.0 99.6 

Total O 33.2 18.2 NA 0.4 

C/O ratio 2.0 4.5 NA 240 

 

Thermal and Structural Characterization 
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To understand how the glass transition temperature changes as a function of GO content, we used 

differential scanning calorimetry (DSC) and analyzed the change in heat capacity. The Tg values 

for four different samples (RGO content: 0, 0.05, 0.5, and 2.5 wt% in PS) are listed in Table 2. All 

four samples show similar Tg values (range: 82.0 – 87.5 °C), which is less than the Tg value for 

bulk PS.52 The reduction in Tg for the four samples in Table 2 is hypothesized to be due to the 

processing method, which leaves oligomeric PS species in the sample that are not removed during 

vacuum drying. This claim is supported by the fact that PS samples produced using the same 

microwave heating process described here exhibit Tg ≈ 101 °C when precipitated in methanol, 

vacuum dried, and run using DSC (Note: the molecular weight of the PS samples processed using 

different procedures (e.g., vacuum dried vs precipitated have similar molecular weights as shown 

in Tables 2 and S1.)). Oligomeric PS species will plasticize the PS materials, reducing the overall 

Tg. 

 

Table 2. Molecular and thermal characterization for polymer samples containing 

varying amounts of RGOa 

RGO wt% Mn (kg/mol) Mw (kg/mol) Đ Tg (°C) 

0 10.1 14.3 1.42 82.0 

0.05 14.4 17.0 1.18 86.0 

0.5 17.6 22.4 1.27 87.5 

2.5 25.2 35.2 1.40 84.2 
aMolecular weights and dispersities (Đ) were determined using a Tosoh EcoSEC 

(Tosoh Co.) equipped with a Wyatt Dawn Heleos-II eight angle light scattering 

detector (Wyatt Technology Corp.) using in tetrahydrofuran as the mobile phase 

at 40 °C. 

 

Previously published results suggest that the decrease in the RGO/PS nanocomposites is due to 

non-uniform dispersion of RGO in the polymer matrix.25 That is not the case here. TEM images 

of the 2.5 wt% RGO in PS indicate that the RGO is well-dispersed in the PS matrix (Figure 4). 
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The major difference in the system shown here is that the TEM images suggest that the RGO either 

reduces in size or clumps up during the microwave heating. The TEM images of GO before and 

after sonication show no noticeable change in the lateral dimensions of GO. After 3 h microwave 

heating, the RGO is significantly reduced in dimension. In all, the reduced Tg is hypothesized to 

result in residual oligomeric PS species in the samples, not microstructural contributions such as 

RGO aggregation. 

 

 

Figure 4. TEM images of GO and RGO/PS nanocomposites. Images of GO (a) before and (b) after 

sonication in toluene. GO was sonicated in toluene for 1 h, similar to the sonication procedure for 

preparing GO/styrene mixtures before microwave. (c, d) TEM images of microtomed RGO/PS 

nanocomposite films containing 2.5 wt% RGO. 

 

Dielectric Constant and Dissipation Factor of RGO/PS Films 

Utilizing DRS allows for the precise measurement of the static dielectric constant (εs) of polymeric 

materials, which is of significant importance for polymer film capacitors.53 Typically, εs is 
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determined from the low frequency plateau of the real part of permittivity (ε') prior to electrode 

polarization (EP).54,55 However, due to all of the measurements occurring at temperatures below 

the Tg of the PS and RGO/PS nanocomposites, no EP was detected and ε' ≈ εs, which is similar to 

what has been previously shown in polymer nanocomposite materials for samples below Tg.56 To 

illustrate this, Figure 5 shows the temperature dependence of the permittivity for the PS and 

RGO/PS nanocomposites. As the GO content increased in the nanocomposite, ε' reaches a 

maximum value of 3.14 at room temperature which is greater than neat polymers that have been 

incorporated for capacitor use such as polycarbonate (PC, 2.8), polypropylene (PP, 2.2), and 

polyphenylene sulfide (PPS, 3.0).57 While it appears that εs reaches a saturation limit with 

increasing GO content, it is expected that the εs will decrease with further increases in GO content, 

which has been previously reported in nanocomposite systems.56 In the work presented here, the 

highest GO loading possible was 2.5 wt% due to the minimal solubility of GO in styrene. 

 

In addition to increasing the dielectric constant of the RGO/PS nanocomposites with increase RGO 

content, there is minimal change in the loss (𝑡𝑎𝑛 𝛿 =  
𝜀"

𝜀′ ) at constant temperature (Figure 5). 

Furthermore, there is an increase in tan δ for PS and the RGO/PS nanocomposites with increasing 

temperature. The increase in tan δ is due to the RGO/PS nanocomposites approaching Tg. However, 

while tan δ increases with increasing GO content, the value is never greater than ~0.06% at room 

temperature, which is comparable to polymeric systems currently used for capacitor applications.57 

 



17 
 

 

Figure 5. Temperature dependence on the static dielectric constant and tan δ of RGO/PS 

nanocomposite materials. Isochronal temperature dependence of the real permittivity (ε') and the 

dissipation factor (tan δ) as a function of temperature of PS and RGO/PS polymer nanocomposite 

films at a fixed frequency (1.23 kHz). 

 

 

Conclusion 

 

The work reported here describes a microwave heating method to create RGO/PS polymer 

nanocomposites by simultaneously reducing and polymerizing a GO/styrene mixture. The 

RGO/PS nanocomposite materials were processed into films of desired thicknesses by vacuum 

pressing powdered samples at elevated temperatures. The RGO/PS polymer nanocomposites 

exhibited greater static dielectric constants as compared to neat PS, which is attributed to the 

addition of a higher dielectric constant filler into the polymer matrix. The simultaneous reduction-

polymerization process described here has potential applications for facile synthesis and 

processing of dielectric materials for energy storage applications. 
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