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Abstract—Modern applications significantly enhance user ex-
perience by adapting to each user’s individual condition and/or
preferences. While this adaptation can greatly improve a user’s
experience or be essential for the application to work, the expo-
sure of user data to the application presents a significant privacy
threat to the users—even when the traces are anonymized—since
the statistical matching of an anonymized trace to prior user
behavior can identify a user and their habits. Because of the
current and growing algorithmic and computational capabilities
of adversaries, provable privacy guarantees as a function of
the degree of anonymization and obfuscation of the traces are
necessary. Our previous work has established the requirements
on anonymization and obfuscation in the case that data traces are
independent between users. However, the data traces of different
users will be dependent in many applications, and an adversary
can potentially exploit such. In this paper, we consider the nega-
tive impact of dependency between user traces on their privacy.
First, we demonstrate that the adversary can readily identify
the association graph of the obfuscated and anonymized version
of the data, revealing which user data traces are dependent.
Next, we demonstrate that the adversary can use this association
graph to break user privacy with significantly shorter traces
than in the case of independent users, and that obfuscating
data traces independently across users is often insufficient to
remedy such leakage. In other words, we have shown that inter-
user dependency is disastrous to privacy, and any non-negligible
dependency between users significantly reduces the effectiveness
of anonymization and obfuscation schemes. Finally, we discuss
how users can improve privacy by employing joint obfuscation
that removes or reduces the data dependency.

Index Terms—Information theoretic privacy, inter-user depen-
dency, Internet of Things (IoT), obfuscation and anonymization,
Privacy-Protection Mechanisms (PPM).

I. INTRODUCTION

Many modern applications provide an enhanced user expe-
rience by exploiting users’ characteristics, including their past
choices and present states. In particular, emerging Internet of
Things (IoT) applications include smart homes, healthcare, and
connected vehicles that intelligently tailor their performance to
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their users. For instance, a typical connected vehicle applica-
tion optimizes its route selection based on the current location
of the vehicle, traffic conditions, and the users’ preferences.
For such applications to be able to provide their enhanced,
user-tailored performances, they need to request their clients
for potentially sensitive user information such as mobility
behaviors and social preferences. Therefore, such applications
trade off user privacy for enhanced utility. Previous work [2]
shows that even if users’ data traces are anonymized before
being provided to such applications, standard statistical match-
ing techniques can be used to leak users’ private information.
Thus, privacy and security threats are a major obstacle to the
wide adoption of IoT applications, as demonstrated by prior
studies [3]-[18].

The bulk of previous work assumes independence between
the traces of different users. In [19]-[25], temporal and spatial
dependencies within data traces are considered, but not cross-
user dependency. In [19], an obfuscation technique is em-
ployed to achieve privacy; however, for continuous Location-
Based Services (LBS) queries, there is often strong temporal
dependency in the locations. Hence, [19] considers how tem-
poral dependency of the users’ obfuscated data can impact
privacy, and then employs an adaptive noise level to improve
privacy while still maintaining an acceptable level of utility.
Liu et al. [21] show that the spatiotemporal dependency be-
tween neighboring location sets can ruin the privacy achieved
using a dummy-based location-privacy preserving mechanism
(LPPM); to solve this problem, they propose a spatiotemporal
dependency-aware privacy protection that perturbs the spa-
tiotemporal dependency between neighboring locations. Zhang
et al. [20] employ Protecting Location Privacy (PLP) against
dependency-analysis attack in crowd sensing: the potential
dependency between users’ data is modeled, and the data is
filtered to remove the samples that disclose the user’s private
data. In [22], locations of a single user are temporally depen-
dent, and ¢-location set based differential privacy is proposed
to achieve location privacy at every timestamp. Finally, Song
et al. [26] provide privacy when there is dependency within
the data of a single user. In summary, previous studies do
not consider dependency between users, which is the focus
of this work. We argue that for many applications, there is
dependency between the traces of different users. For example,
friends tend to travel together or might meet at given places,
hence introducing dependency between the traces of their
location information. Several previous works [27]-[33] have
considered cross-user dependency; however, this only has been
for protecting queries on aggregated data, which is different
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than our application scenario.

We use the notion of “perfect privacy” and “no privacy”,
as introduced in our prior work [34], [35], to evaluate the
privacy of user traces. The “perfect privacy” notion provides
an information-theoretic guarantee on privacy in the presence
of a strong adversary who has complete knowledge on users’
prior data traces. On the opposite extreme is the notion
of ‘no privacy”. It means there exists an algorithm for the
adversary to estimate the actual data points of users with
diminishing error probability. Through a series of work [34]-
[39], we have derived the degree of user anonymization and
data obfuscation required to obtain perfect privacy—assuming
that the data traces of different users are independent across
users. Particularly, we evaluated the case of independent and
identically distributed (i.i.d.) samples from a given user and
the case when there is temporal dependency within the trace
of a given user [35], [36] (but independent across users). In
this work, we expand our study to the case where there is
dependency between the data traces of different users. That is,
we investigate how privacy is affected by the presence of de-
pendency between the data traces of users when anonymization
and obfuscation techniques are used. We show that dependency
significantly reduces the privacy of users. Specifically, we
show that the same anonymization and obfuscation levels that
could produce perfect privacy for independent users result
in no privacy for dependent users. Thus, in the presence
of inter-user dependency, we need to employ much stronger
anonymization and obfuscation compare to the case data traces
of different users are independent.

We model dependency between user traces with an asso-
ciation graph, where the presence of an edge between the
vertices corresponding to a pair of users indicates a non-zero
dependency between their data traces. We employ standard
concentration inequalities to demonstrate that the adversary
can readily determine this association graph. Using this asso-
ciation graph and statistical data about the users, the adversary
can attempt to identify users, and we demonstrate that this
provides the adversary with a significant advantage versus the
case when the data traces of different users are independent of
one another. This suggests that, unless additional countermea-
sures are employed, the results of [34]-[37] for independent
traces are optimistic when user traces are dependent. We
next consider the effectiveness of countermeasures. First, we
argue that adding independent obfuscation to user data points
is often ineffective in improving the privacy of (dependent)
users. Next, we demonstrate that, if users with dependent
traces can jointly design their obfuscation, user privacy can
be significantly improved.

A related but parallel approach to our study is graph
alignment in which the edge set is sampled at random. Graph
alignment is the problem of finding a matching between the
vertices of the two graphs that matches, or aligns, many edges
of the first graph with edges of the second graph. Shirani et.
al. [40], [41] and Cullina et. al. [42] have done significant
work on graph alignment. Although the graph alignment
problem looks similar to our problem on the surface, there
exist notable differences between the two. First, in Shirani et.
al.’s work [40], [41], [43], graphs are generated using a model
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which is sampled at random from a probability distribution,
while here the association graph is deterministic, as it is based
on the dependency between data traces of users. Consequently,
Shirani et. al. [40], [41], [43] employed a completely different
approach and solution to de-anonymize users. In other words,
they have not used the probability distribution of the data
traces of each user to break anonymization, while here the
probability distribution of the data trace of each user is a
key characteristic which helps the adversary to break users’
privacy. Finally, Shirani et. al. [40], [41] considered discrete
values for the correlation between users and used them to de-
anonymize the graph, while here the correlation between users
have continuous values and the adversary does not have access
to the exact value of them.

In [42], [44], [45], the graph alignment for two correlated
graphs is considered, while here we assume the adversary
has the association graph and tries to reconstruct it from the
anonymized and obfuscated data traces. Thus, in our work,
the adversary has two identical graphs and their goal is to
identify all of the users based on the observed data and
their statistical knowledge of users. Also, Cullina et. al. [42]
considered fractional matching, while here the adversary can
identify not only all of the users but also the data points of
each user at all time with small error probability. Matching of
non-identical pairs of correlated Erdos-Rényi graphs is studied
in [46]-[49].

Also, graph isomorphism studied in [50]-[53] is an instance
of the matching problem where the two graphs are identical
copies of one another. Bollabds et al. [53] studied different
algorithms such as maximum degree algorithms to match two
identical graphs for the case where each edge of the graph
has a fixed probability of being present or absent which is
in the range of [a) logn/n%),l —w(logn/n%)], where n
is the number of vertices in the graph. Here, the approach
of our work is completely different, as the adversary uses
probability distributions of users’ data traces to reconstruct
the association graph. After reconstruction of the association
graph, the adversary uses the size of each disjoint group to
identify all of the members.

In summary, although matching (alignment) between graphs
can be considered as a part of our analysis, the analysis based
on the users’ data traces and the statistical knowledge of the
adversary is a key part of this paper which distinguishes it
from previous works on graph alignment.

The rest of this paper is organized as follows. In Section II
we present the model and metrics considered in this work.
In Sections III and IV, we show dependency between users’
traces degrades privacy. In Section V, we discuss how our
methodology can be applied to a more general setting for
the association graph. In Section VI, we propose a method
to improve privacy in the case when there exists inter-user
dependency. Finally, Section VIII presents the conclusions and
ideas for continuing work.

A. Summary of the Results

Consider a setting with n total users. As in our previous
work [35], privacy depends on two parameters: (1) m = m(n),
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Fig. 1: Representations of the no-privacy region in the case of dependent and independent users. Note that m(n) is the number
of the adversary’s observations per user (degree of anonymization), and a, is the amount of noise level (degree of obfuscation).
Here, the size of the group of users whose data traces are dependent is equal to the finite value of s.

the number of data points after which the pseudonyms of users
are changed in the anonymization technique, i.e., smaller m
implies higher levels of anonymization; and (2) a,, which
indicates the amplitude of the obfuscation noise, i.e., larger
a, implies higher levels of obfuscation.

When there are a large number of users in the setting (n —
o0) and each user’s dataset is governed by an i.i.d. process
with r possible values for each data point (e.g., r possible
locations), we obtain a no-privacy region in the m(n) — a,
plane. Figure 1a shows the no-privacy region for the case when
there exists inter-user dependency, and Figure 1b shows the no-
privacy region when the users’ traces are independent across
users. There exists a larger no-privacy region in the presence
of inter-user dependency; therefore, we find that dependency
between users weakens their privacy.

In addition, for the case where users’ datasets are governed
by an irreducible and aperiodic Markov chains with r states
and |E| edges, we obtain similar results, again showing that
inter-user dependency degrades user privacy.

Note that for the case when only anonymization is em-
ployed, an initial extension in Gaussian case with known
covariance matrix is also presented in [54].

II. SYSTEM MODEL, DEFINITIONS, AND METRICS

Here, we employ a similar framework to [34], [35]. The sys-
tem has n users, and X,, (k) is the data point of user u at time
k. Our main goal is protecting X,, (k) from a strong adversary
who has full knowledge of the (unique) marginal probability
distribution function of the data points of each user based on
previous observations or other sources. In order to achieve
data privacy for users, both anonymization and obfuscation
techniques can be used as shown in Figure 2. In Figure 2,
Z, (k) shows the (reported) data point of user u at time k
after applying obfuscation, and Y, (k) shows the (reported)
data point of user u at time k after applying anonymization to

Z, (k). Let m = m(n) be the number of data points after which
the pseudonyms of users are changed using anonymization.
To break obfuscation and anonymization, the adversary tries
to estimate X, (k), k =1,2,---,m, from m observations per
user by matching the sequence of observations to the known
statistical characteristics of the users. Let X,, be the m X 1

X, (k)— Obfuscation |— Z, (k) —| Anonymization |— Y;, (k)

Fig. 2: Applying obfuscation and anonymization techniques to
the users’ data points.

vector containing the data points of user #, and X be the m xn
matrix with the u’* column equal to X,

[ Xu(1))

X.(2)
X1 X

_Xu (m)

Data Points Model: Here, we assume two different models for
users’ data points: in the first case, we assume the sequence of
data for any individual user is modeled as i.i.d. which could
apply directly to data that is sampled at a low rate. In addition,
understanding the i.i.d. case can also be considered the first
step toward understanding the more complicated case where
there is temporal dependency. In the second case, we assume
the data trace of any individual user is governed by a Markov
chain that governs how samples of a user’s data are dependent
over time.

We also assume users’ data points can have one of r possible
values (0,1,---,r — 1). Thus, according to a user-specific
probability distribution (p,), X, (k) is equal to a value in
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{0,1,---,r — 1} at any time. Note p, (i) is the probability
of user u having the data value i, so

pu(l)

Pu(2)

p, = , foreach ue{1,2,---,n}.

_pu(r - 1)_

We also assume p,’s are drawn independently from some
continuous density function, fp(p,), which has support on
a subset of the (0, 1)"~! hypercube. Note these user-specific
probability distributions, i.e., p,’s, are known to the adversary
and form the basis upon which they perform (statistical)
matching.

Association Graph: An association graph or dependency graph
is an undirected graph representing dependency of the data
of users with each other. Let G(V, F) denote the association
graph with set of nodes V, (|'V| = n), and set of edges F. Two
vertices (users) are connected if their data sets are dependent.
More specifically,

e (u,u’) ¢ F if and only if I(X, (k); X, (k)) =0,

e (u,u’) € F if and only if I(X, (k); X,/ (k)) > 0,
where I (X,(k); X, (k)) is the mutual information between
the k' data point of user u and user u’!.

Obfuscation Model: Obfuscation perturbs the users’ data
points [55]-[57]; in other words, the obfuscation can be
viewed as passing data through a noisy channel. Normally,
in such settings, each user has only limited knowledge of
the characteristics of the overall population. Thus, usually, a
simple distributed method in which the data points of each
user are reported with error with a certain probability is
employed [58]. Note that this probability itself is generated
randomly for each user. Let Z, be the vector that contains
the obfuscated version of user u’s data points, and Z be the
collection of Z,, for all users,

(2.1

Z,(2)

7= [Zl Z, Zn] .

Z.(m)

Here, we define the asymptotic noise level for an obfuscation
technique. Loosely speaking, the asymptotic noise level of
obfuscation is the highest probable percentage of data points
that are corrupted. More precisely, for a subset of users U, let
X, (k) be the actual data point of user u at time k, u € U,
k € {1,2,---,m}, and let Z,(k) be the obfuscated (noisy)
version of X, (k). Define

[{k : Zu (k) # Xu(K)}|
- :

Am(u) =

U1t is worth noting that the mechanism that determines the joint distribution
of X, (k) and X, (k) does not affect the results of this paper as long as
the marginal densities of X, (k)’s (i.e., p,,’s) are drawn independently from

Jo(pu)-

Then, the asymptotic noise level for user u is defined as
follows:

a(u):inf{‘rzO:IP(Am(u) >T)—>0asm—>00}.

Also, define

2% Kk Zy (k) # Xu (k) }
A = uell
m mlul s

then, the asymptotic noise level for the entire dataset is

azinf{TZO:P(Am>T)—>Oasm—>oo}.

Note that while the above definition is given for a general
case required in Section VI, in practice we often use simple
obfuscation techniques that employ i.i.d. noise sequences.
Then, by the Strong Law of Large Number (SLLN),

[tk Zu (k) # Xu (O 25 o 7 ) 2 X, (K))

m

and for any k,
a(u) =P (Z,(k) # X, (k)) .

Anonymization Model: In the anonymization technique, the
identity of the users is perturbed [2], [59]-[64]. Anonymiza-
tion is modeled as a random permutation IT on the set of n
users. Let Y, be the vector which contains the anonymized
version of Z,,, and Y is the collection of Y,, for all users, thus

Y =Perm (Z,,Z>,- - ,Z,;1])

=[Zn1y Zno Zyoi ]

=[Y; Y» Y.,

where Perm( . ,II) is the permutation operation with permu-
tation function Il. As a result, Y, = Zn—l(u) and Yru) = Zy.
Adversary Model: We assume the adversary has full knowl-
edge of the marginal probability distribution function of each
of the users on {0,1,...,r — 1}. As discussed in the data
points models in succeeding sections, the parameters p,
u =1,2,--- ,n are drawn independently from a continuous
density function, fp(p, ), which has support on a subset of a
given hypercube. The density fp(p,) might be unknown to the
adversary, so all that is assumed here is that such a density
exists. From the results of the paper, it will be evident that
knowing or not knowing fp(p,) does not change the results
asymptotically.

The adversary knows the anonymization mechanism but
does not know the realization of the random permutation. The
adversary also knows the obfuscation mechanism but does not
know the realization of the noise parameters. And finally, the
adversary knows the association graph G(V, F), but does not
necessarily know the exact nature of the dependency. That is,
while the adversary knows the marginal distributions X, (k)
as well as which pairs of users have strictly positive mutual
information, they might not know the joint distributions or
even the values of the mutual information I (X, (k); X,r(k)).

It is critical to note that the adversary does not have any
other auxiliary information or side information about users’
data.
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We adopt the definitions of perfect privacy and no privacy
from [34], [35]:

Definition 1. For an algorithm for the adversary that tries to
estimate the actual data point of user u at time k, define the
error probability as

Pe(u, k) = P (X (0) # X (0))

where X, (k) is the actual data point of user u at time k,
X, (k) is the adversary’s estimated data point of user u at
time k. Now, define &€ as the set of all possible adversary’s
estimators. Then, user u has no privacy at time k, if and only
if for large enough n,

P, (u,k) = inf P (Xu(k) + Xu(k)) 0.

Hence, a user has no privacy if there exists an algorithm for the
adversary to estimate X,, (k) with diminishing error probability
as n goes to infinity.

Definition 2. User u has perfect privacy at time k if and only
if

lim I(X,(k);Y) =0,
n—oo

where I(X,(k);Y) denotes the mutual information between
the data point of user u at time k and the collection of the
adversary’s observations for all of the users.

Discussion 1: The studied anonymization and obfuscation
mechanisms improve user privacy at the cost of user utility.
An anonymization mechanism works by frequently changing
the pseudonym mappings of users to reduce the length of time
series that can be exploited by statistical analysis. However,
such frequent changes may also degrade the usability of the
underlying application by concealing the temporal relation
between a user’s data points, e.g., for a dining recommendation
system that makes suggestions based on the dining history
of its users. On the other hand, obfuscation mechanisms
work by adding noise to users’ collected data, e.g., location
information. The added noise may also degrade the utility of
the system. In this work, our goal is studying the level of
anonymization and obfuscation one should employ to ensure
privacy with the minimum loss in utility. In other words, we
derive the optimal frequency of changing user pseudonyms
during anonymization, and the optimal extent of noise added
by an obfuscation mechanism while guaranteeing privacy.
However, like similar works in privacy [2], [18], [59]-[62],
we consider the quantification of utility orthogonal to our
privacy evaluations for two reasons: (1) the implications of
our PPMs on utility do not impact our privacy analysis, and
(2) unlike privacy, the desired level of utility is application
specific.
Discussion 2: Note that there are two kinds of dependency:
« Intra-user dependency: In this case, there are temporal
and spatial dependency within data traces of one user.
For example, when the data trace of a user is governed
by a Markov chain model, the Markov chain characterizes
temporal intra-user dependency. Thus, the adversary can
benefit from this dependency and break the users’ privacy.

According to the results obtained in [35], when there are
a large number of users in the setting (n — o0), and data
traces of the users are governed by i.i.d. statistics with r
possible values for each data point, users have no privacy
if the number of adversary’s observations per user (m)
is significantly larger than n7 and the amount of noise
level (a,) is significantly smaller than n‘ﬁ; however,
if the data trace of users is governed by an irreducible
and aperiodic Markov chains with r states and |E| edges,
users have no privacy if the number of adversary’s 02b-
servations per user (m) is significantly larger than nfEl-r
and the amount of noise level (a,) is significantly smaller
than n_ﬁ. Most of the previous work [19]-[25] that
considers intra-user dependency assumes independence
between the traces of different users, which is different
from our work as described below.

« Inter-user dependency: Here, there exists dependency be-
tween the traces of different users. This is the main focus
of our work. First, we demonstrate that the adversary can
readily identify the association graph of the obfuscated
and anonymized version of the data, revealing which
user data traces are dependent. Next, we demonstrate that
the adversary can use this association graph along with
their statistical knowledge and the observed obfuscated
and anonymized sequences to break user privacy with
significantly shorter traces than in the case of independent
users, and that obfuscating data traces independently
across users is often insufficient to remedy such leakage.

Discussion 3: The multi-user models in classical information
theory generally assume a fixed number of users and the fun-
damental limits of communication systems are characterized in
the limit of large coding blocklength [65]-[68]. However, the
emerging Internet of Things enables an ever-increasing number
of users to share and access information on a large scale; in
applications such as ride sharing and dining recommendation,
the number of users is large. Thus, the number of users is
allowed to grow with the blocklength [69]-[71], and our goal
is for the asymptotic results to provide good insight into the
performance of the privacy-preserving mechanisms for these
applications. Moreover, both of the privacy definitions given
above (perfect privacy and no privacy) are asymptotic in the
number of users (n — oo0), which allows us to find clean
analytical results for the fundamental limits.

III. IMPACT OF DEPENDENCY ON PRIVACY USING
ANONYMIZATION

In this section, we consider only anonymization and thus
the obfuscation block in Figure 2 is not present. In this case,
the adversary’s observation Y is the anonymized version of X;
thus

Y = Perm (X1, Xy, - -+ , X3 IT)
= X1y X1 X1 ) |
=[Y; Y Y.l
A. r-State i.i.d. Model

There is potentially dependency between the data of dif-
ferent users, but we assume here that the sequence of data
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for any individual user is i.i.d.. We also assume users’ data
points can have r possibilities (0,1,---,r—1), and p, (i)
is the probability of user u having the data value i, ie.,
pu(i) =P (X, (k) =i), for k =1,2,--- ,m. Note that p,(0) =
1 - Z;;} pu(r); thus, the adversary can focus on a subset
of size r — 1 of the probabilities for recovering the entire
probability vector of user u. As a result, we define the vectors
p, and p as

(D) |

Pu(2)
P. . >

p=I[p P, Pal-

»pu(r - 1)_

We also assume p,’s are drawn independently from some
continuous density function, fp(p,), which has support on
a subset of the (0,1)"~! hypercube. In particular, define the
range of the distribution as

Rp = {(xl,xz,-u X)) € (0, D)7 i x; >0,
X1 +x24+ - +x-1 < ]},
then, we assume there are 81, 0> > 0 such that:

01 < fr(pu) < 62,
fP(pu) =0,

The adversary knows the values of p,,, u =1,2,--- ,n, and
uses this knowledge to match the observed traces to the users.
We will use capital letters (i.e., P,,) when we are referring to
the random variable, and use lower case (i.e., p,) to refer to
the realization of P,,.

A vector containing the permutation of those probabilities
after anonymization is

P, € Rp.
p, € Rp.

W =Perm (P, Py, - ,P,; 1)

P
W.1,

= [Priy Py
=[W; W,

where W,, = Ppp-1(,,) and Wry,,) = Py,.
In this case, we can say:
e (u,u’) ¢ F if and only if for all i,j € {0,1,--- ,r — 1},
Puw (@5 ) = pu(D)puw (j),
o (u,u’) € F if and only if for at least one pair of i, j €
{O’ 1’ R 1}7 Puu’(i,j) * Pu(l)pu’(f),
where  pu(i,j) = P(Xu(k) =i, X (k) =j), puli) =
P(X,(k) =1i), and p,(j) = P(X,(k)=j). Note that the
adversary knows the association graph G(V, F), but does not
necessarily know the joint probability distribution for each
specific (u,u’) € F. The adversary observes the anonymized
version of users’ data traces and combines them with their full
knowledge of the marginal probability distribution of each of
the users and the structure of the whole association graph to
break users’ privacy with arbitrarily small error probability.
In the first step, we show that the adversary can reliably
reconstruct the entire association graph for the anonymized

6

version of the data (i.e., the observed data traces) with
relatively few observations.

Lemma 1. Consider a general association graph G(V, F). If
the adversary obtains m = (log @3 _anonymized observations
per user, they can construct G = G(V, F), where V = {II(u) :
u € V} =V, such that with high probability, for all u,u’ € V;
(u,u’) € F if and only if (IT(u),II(«’)) € F. We write this
statement as P(G =~ G) — 1, i.e., Graph G and Graph G are
isomorphic with high probability.

Proof. For u,u’ € {1,2,---,n}, we normally write v = IT(u)
and v’ = TI(u"). We provide an algorithm for the adversary that
with high probability obtains all edges of F correctly. First,
for all v,v' € {1,2,--- ,n}, and all i, j € {0,_1_,1 ,r—1} the
adversary computes p,, (i, j), py (i), and p,-(j) as follows:

_ k() =i Y (k) = ) _ Myw (L))

pvv’(i’j) (1)
m m
o) = Ik = Yy (k) =i}| _ Mv(i), @)
m m
o)) = [k Yy (k) = 3 _ va(j)’ 3)
m m
where

My (i ) = [{k 2 Yy (k) = 1, Y, (K) = j}.
M, (i) = [{k : Y, (k) = i}].
My () = |{k : Yy (k) = j}.

After observing m = (logn)® data points per user and
computing the above expressions, the adversary constructs G
in the following way:

o If |M‘w;n<i,j> _ M) My ()

m m

) < m5 for all i,j €
{0,1,---,r — 1}, then (v,v’) ¢ F.

M, (i) M, () My ())
° If m - m m

of i,j €{0,1,--- ,r—1}, then (v,v’) € F.
We show the above method yields P(G ~ G) — 1 as n — oo,
as follows. Note

-1 .
> m~5 for at least one pair

Mwl(i,j) ~ Binomial(m, w,,, (i, J)),

M, (i) ~ Binomial(m, w, (i)),

M,/(j) ~ Binomial (m, wy/(j)),
where w1, j) = P (Y, (k) =i,Yy (k) = J) =
Pty G 0)s wo(@ = P (k) =1) = ppoig,) (),
and wy (j) = P(Yy (k) =j) = pp-1()(j). Now, for all
v,v' €{l,2,---,n} and all i, j € {0,1,--- ,r — 1}, define

Mo i
O > ).

then, for all v,v’ € {1,2,--- ,n}and all i, j € {0, 1,--- ,r—1},
the Chernoff bound yields

- va’(i, ])

m

P(Jow (i ) < 2exp (-m W)

) < ZCXp (—T .
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Similarly, for all v,v" € {1,2,---,n} and all i,j €
{0,1,---,r =1}, define
M.o(i
Jv(i)={ O ) zm-i},
m
. Mv' A . 1
o) = {22 ] 2

then, the Chernoff bound yields,

B (S, (1)) < 2exp (—@)

P () < 2exp (—@)

Now, by employing a union bound, for all v,v’ € {1,2,--- ,n}
and all i,j € {0,1,---,r— 1}, we have

P(Fov (0, ) VG (D) U T ()

B R WG|
)

Then, by employing a union bound again,
r—-1r-1

2| UU i 0 50 0 50

v=1v’=l i=0 j=0

(logn)>
o)

so the right-side of (4) goes to 0 as n — oo. Thus, (4) yields
that with high probability, for all v,v’ € {1,2,--- ,n} and all

= 6r2 exp {210gn -

i,j€{0,1,---,r—1}, we have
0 < mwy, (l ]) _m4 < Mvv (l ]) < MWy (l ])+m%
)
OSmwv(i)—m%1 sl\?v(i) Smwv(i)+m%. (6)
0 < mwy(j) —mi < My (j) <mw,(j)+mi.  (7)

Let us define event A, (i, j) as the event that (5), (6), and
(7) are all valid, thus, as shown in (4), we have

r—1r-1

M {Av (i )} = 1, @®)

v=1v’=1 i=0 j=0

i )=
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as n — oo, Now, if A,/ (i,j) is true for some v,v' €

{1,2,---,n} and some i, j € {0,1,--- ,r — 1}, we have
My (i j) My (i) My ())
m m m
< mwoyy (6, J) + mi mw,, (i) — mi mw. (i) — mi
- m m m
.. . . _1
=Wy (6, ) = wy (Dwyr (j) +m™3
+ (o (i) + Wy (j))m ™5 = m™3
< va/(i» ]) - Wv(i)wv’(j) +m 4
+ (o (D) +wyr ()m™F + 72 )
Similarly,
Mvv’(iaj) _ Mv(l) MV’(])
m m m
S mwyy (i, ) — mi mw., (i) + mi mw (i) +mi
- m m m
=Wy (I, J) = Wv(i)wv’(j) -m 2
= (wy (i) + Wy (j))m™F = m™2. (10)

Thus, by using (9) and (10), for some v,v’ € {1,2,---
some i, j € {0,1,---,r — 1}, we have

(MW,(Z-, N MyG) My ()

,n} and

m m

) = Wy (6, 7) =wy (Dwy ()

< (T+wy(@)+wy(G)m™ 5 +m™2. (1)

Let us define event B, (i, j) as the event that (11) is valid
for v, v/, i, and j. We have shown, for any v,v’ € {1,2,--- ,n}
and any i,j € {0,1,--- ,r =1}, Ay, (i, ) € By (i, J), thus

r—1r-1

_ n n r-=1r-1
(1A G, J)}}c{ﬂﬂ () {Buv G, n}}

v=1lv/=1i=0 j=0 v=1v’'=1i=0 j=0

and as a result,

{Avw (i, ))} ]

NN Brti |1

as n — co. Hence, with high probability, (11) is simultaneously
valid for all v,v’ € {1,2,--- ,n}and all i, j € {0, 1,--- ,r—1}.

Now, if (u,u’) ¢ F, then for all i,j € {0,1,--- ,r — 1}, we
have p./ (i, j) — pu(i)pw (j) =0, and as a result, w,, (i, j) —
wy, ()wy(j) = 0. Thus, we have

My (i) My (i) My (j)
m m

< (L +wy (@) +wo(G))m T +m™2,

(12)
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G,

A\

The subgraph containing the users
that the adversary wants to
de-anonymize.

The remainder of the association graph (G')

Fig. 3: The structure of the association graph (G): Group [ with
s; vertices is disjoint from the remainder of the association
graph (G).

and as a result, for large enough m,

Mvv’(i’j)_ﬂv(i)ﬂv’(j) < m-
m m m - '

13)

Thus, we can conclude, (v,v’) ¢ F , and in other words,
(I(u),T1(«’)) ¢ F. This is true with high probability, for all
u,u’ €{1,2,--- ,n} where (u,u’) ¢ F.

Similarly, if (u,u’) € F, there exists at least one pair of
i,j €40, 1, ,r =1} With pu (i, )) = pu(Dpu (j) = €—m™3
for a fixed value of €. Thus, there exists at least one pair of
i,j€{0,1,---,r=1} withw, (i, j))—w, (D)w, (j) = e—m"i.
As a result, for large enough m, we have

Mvv’(i’j) _ Mv(l) Mv’(j) > m_%
m m m - '

Thus, we can conclude, (v,v’) € F and in other words,
(I(u), (') € F. Again, this is true with high probability,
for all u,u’ € {1,2,---,n} where (u,u’) € F.

Now, we can conclude, for large enough n, we have
P(é ~ G) — 1, so the adversary can reconstruct the as-
sociation graph of the anonymized version of the data with
an arbitrarily small error probability. Note that reconstruction
of the association graph does not require the adversary’s
knowledge about user statistics (i.e., the values of p,’s). O

The structure of the association graph (G) can leak a lot
of information. For the rest of this section, we consider a
graph structure shown in Figure 3. In this structure, G, the
subgraph consisting of the users the adversary wants to de-
anonymize, has s; vertices and is disjoint from the remainder
of the association graph. So, we can write G;(V}, F;), where
|Vi| = s;. Note that we assume s; is finite. In particular,
the subgraph G; can be thought of as a group of “friends”
or ‘“associates” such that their data sets are dependent. In
Section V, we discuss how our methodology can be applied
to the settings where the subgraph G is not disjoint from the
remainder of the graph (G’) [72]-[81].

The following theorem states that if the number 2of obser-
vations per user (m) is significantly larger than ns@-D in the
r-state i.i.d. model, where s is the size of a group, then the
adversary can successfully de-anonymize all of the data at
different time samples (k = 1,2,---,m) for all of the users

in that group as the number of users in the network (n) goes
to infinity.

Theorem 1. For the above r-state model, if Y is the
anonymized version of X as defined above, the size of the
group including User 1 is s, and

—Zta
e m=Q(nst-D , for any a > 0;

then, User 1 has no privacy at time k.

Discussion 4: It is insightful to compare this result to [34,
Theorem 2], where it is stated that if the users are not depen-
dent, then all users have perfect privacy as long as the number
of adversary’s observations per user (m) is smaller than
O(n%‘“). Here, Theorem 1 states that with much smaller
m, the adversary can de-anonymize the users. Therefore, we
see that dependency can significantly reduce the privacy of
users.

Proof of Theorem 1:

Proof. As shown in Figure 4, the proof of Theorem 1 consists
of three parts:

« First Step: Showing the adversary can reconstruct the
association graph of the anonymized version of the data
with an arbitrarily small error probability (as shown in
Figure 4a).

« Second Step: Showing the adversary can uniquely iden-
tify Group 1 with an arbitrarily small error probability
(as shown in Figure 4b).

o Third Step: Showing the adversary can individually
identify all the members within Group 1 with an arbi-
trarily small error probability (as shown in Figure 4c).

The first part of the proof exploits the fact that the ad-

versary can readily reconstruct the association graph of the
anonymized data in m = (logn)>. It is the second and third
parts that give rise to the condition m = Q (nﬁ”’), and
it is in the second part where we see the mechanism for the
effectiveness of the adversary’s algorithm relative to the case
where user traces are independent. In particular, due to the
dependence between users breaking them into groups, the key
search for the adversary now involves finding a set of users
corresponding to a length-s vector of probabilities rather than
searching for a single user associated with a given probability.
First step: Reconstruction of the association graph from
the observed data: In this step, we use Lemma 1. More
specifically, since nﬁ > (logn)? for large enough n, we can
use Lemma 1 to conclude that the adversary can reconstruct
the association graph with arbitrarily small error probability.
Second step: Identifying Group 1 among all of the groups:
Now, assume the size of Group 1 is s. Without loss of general-

ity, suppose the members of Group 1 are users {1,2,---,s}.
Note that there are at most % isolated groups of size s in
the association graph. We call these Groups 1,2, -- ,g. The
adversary needs to first identify Group 1 among all of these
groups.
First, for all u € {1,2,--- ,n} and all i € {1,2,---,r — 1},
the adversary computes p, (i) as:
o M =0 M) 14

m m
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Reconstruction of the 4, A
whole association graph n

Sequence 1: ¥, (1),Y,(2),,¥,(m)

| ] Step 1 —2A,— .
| Soquence i Ky(D, K@), Yy(m) ! i A L
1 v y
: : | — Adversory B
1 1
1 1

Sequence 2: Y,,(l)., Yp(2),+, Yu(m) T(n) I
"""""""" <) N -
py > |B

(a) First step: Reconstruction of the association graph from the observed data. l

Sequence 1: ¥ (1),Y,(2),--,Y5(m) 1

\ Group 1 with size s
Sequence 2: ¥, (1), ¥,(2), -+, Y, (m)

User 1’s data is in this group

Sequence 2: ¥y (1), ¥y(2), -+, Ya(m) |
1

' v
oo , Adversary Sm&(@) Agi Fig. 5: P, sets 7 and H™ for the case r = s = 2.
Nl %

where ®, € R"™! and ¥,, € R"~!. We need to (slightly) re-
define our distance measure as

(b) Second step: Identifying Group 1 among all of the groups after the

association graph is reconstructed. D(®,¥) = ur_rgg {deo (@, ¥)},
S

AR 1
| Sequence 1: ¥y (1),1,(2), -, Yy(m) 1 e 2 .
| Sequence 2: ,(1), 1,(2), -, Yy(m) : User 1: This is User 1’s where
] data sequence
1 ‘ ] i
I Sequence 2: ¥, (1),Y,(2),, Y (m) ! -~ . .
B ket ! Step 3 N é de ((I), ‘I’a—) = max . max {q>u (l)’ lIla'(u) (l)} .
_______________ , Adversary I ue{l,2,---,s} ie€{l,2,--,r-1}

Gl

@ Here, let P%Y) be a vector which contains probability dis-

tributions of users belonging to Group [, and PI(TI) be a
PR S S vector which contains the estimate of the adversary about
(c) Third step: Identifying User 1 among all of the members of Group | after (he probability distribution of users belong to Group I. For
Group 1 is uniquely identified.

example, for Group 1, we have
Fig. 4: The algorithm of the adversary to estimate data points

of User 1 with vanishing error probability. P = [Py P, - P,
and
and as a result, —
P = [pny Pne - Pog)]
—  Wk: X, (k) =i} M,®) I () Fr) M(s)] -
P (i) = = , (15)
m m . #_{_a
—~ Now, we claim for m = cnst-D and large enough n,

where M, (i) = [{k : Y, (k) =i}|] and M, (i) =

I{k : X, (k) = i}|. Let p, be the collection of p, (i) and pyy, R P(D (p(l)’fxg)) < An) -1,
be the collection of pry(,) (i) forall i € {1,2,---,r—1}:

n

— : SR . P {D (P“),Pf{)) < A,,} -0,
pu(l) P (1) 1=2
—_— __1__«a
_ Pu(2) P (2) where A, =n S0 E
Py, = ] > P = ) . Define the hypercubes of 7 and H ™ as
— — (n) _ r-n\".
pulr=1) PRt — 1) 7O ={x o x € (ROV)

. — < = [
Now, define X as the set of all permutations on s elements; m,f X{I%u =Py} < Anou=1,2, > S}’

for o € X, o0 : {1,2,--- ,s} — {1,2,---,s} is a one-to-one
mapping.

First, we provide the definition of a distance measure — g(n) _ {(x],xz,u .X,) € (R(r—l))
D (®,Y¥) for vectors

s

max{ |X, — S2An’u:l’2,...’s},
o=[D O, - D], ax{[xu = [}

Y=[¥ ¥, --- Y, Figure 5 shows sets F and H™ in the case r = s = 2.
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First, we prove I;EIT) is in set ¥, thus, D P(l)’@) < outside of F ™ For all u € Group [ and all i € {1,2,--- ,r—
) 1}, (16) and the union bound yield,
A,. Note that forall u € {1,2,--- ,n}and alli € {1,2,--- ,r—

1}, a Chernoff bound yields . (D (P(l),f{({)) g An) (D (P(l) P(l)) 9 )
M, (i) . ) ( mAz) )
P —pu()| = A, | <2exp|[-=— — .
( m Pu(i) n P 3pu < ZP(MM(l) 0 ZAn)
2 m
u=1 i=1
= 2exp — (c”ﬁ+a/) 1 1 .
nﬁ+% 3pu <2s(r—1)exp (—gnz)
< 2exp (—gn%) . (16) Now by using a union bound, again, we have

n

Thus, for all u € Group 1 and all i € {1,2,---,r =1}, (16) U{D (P”),Pf{)) 5 An} < ZP(D (P(o,Pg)) 5 An)
and the union bound yield

=2 =2
n C «a
— s =l ; < =2s(r—1)exp|(-zn?
M,

(o (e R) = a0) < 3 32 (0 - o2 ) : 5)

e m = 2n(r - 1) exp (—gnf). (19)
<2s(r—1)exp (—En%). 17 ) .

3 The right-side of (19) goes to 0 as n — oo. Thus, for all

n ) ’ ’ .
The right-side of (17) goes to 0 as n — co. As a result, [ €{2,3,--- AS} P() s are close to P()’s, thus, they will be
D (P(l),f’g)) < A, with high probability. outside of T(" with high probability. Now, we can conclude

as n — oo,

In the next step, we prove P O {D (P(l),P(l)) <A } — 5 —
pwep (1—2 " " P U{D (p<1>,pg>) < A,,} 0.
0. Note that for all groups other than Group 1, we have 1=2
(4A )S(r—1)51 <P (P(l) c (]_{(n)) < (4A )s(r—l)éz This means that with high probability, for all [ €
n —_ - n ’
{2,3,--- } P(l) ’s are outside of 77("), so the adversary can
and as a result, successfully 1dent1fy Group 1 among all of the groups.
Third step: Identifying User 1 among all of the members
P(P(l) € 7—{(”)) < 55(4A,) Y of Group 1: In this step, we prove that, after identifying
1 Group 1, the adversary can correctly identify all of members
=6,4°0D e of Group 1. This step can be done using a similar approach
nes to the one above. We define two sets 8" and C"” around
Similarly, for any o € X, p;- We will show that with high probability, the true estimated
value of p; (shown as p,) is inside of 8. Also, all p,’s of
P (Pg) c «H(n)) < 52(4A,)5 D other members of Group 1 are outside of C", and since their
{ estimated values are close to p,’s, the estimated values will
= 5,451 be outside of 8. Therefore, the adversary can successfully

nl+gstr=’ invert the permutation IT within Group 1 and identify all of

the members. Below are the details.

and since |Xg| = s!, by a union bound, we have
From (14) and (15), for all u € {1,2,---,s} and all i €

n u {1,2,---,r — 1}, we have
P U{U {Pﬁi’ew('”}} <> P(Pg)eﬂ“’)) )
1Y, =
1=2 \oez, =2 oex, pu(i) = M, (20)
n 1 "
s(r—1
< ;5!524 ( )—n1+%s(r—1) and as a result,
= (s = 4D~ 3s0=D 0 (18) —  Hk:Xu(k) =i} M)
P (i) = . = (21)

The right-side of (18) goes to 0 as n — oo. Thus, all p)g . .
are outside of " with high probability. w?ere M, (i) = |{k : X, (k) =i}|. Let’s define sets 8" and
Now, given the fact that all P©)’s are outside of H™, we € as
prove P O {D (P(l),Pg)) < An}) — 0 as n — oco. We show B ={(x1,x2, c LX) €ERp X = pr(D)] £ Ap,
1=2

. =120 -1,
that P(l)’s are close to P(l>’s, and as a result, they will be ! "
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1 %2

Fig. 6: p;, sets 8" and C" in Rp for case r = 3.

c Z{(xl,xz,“- JXr—1) € Rp 1 |x; — p1(D)] £ 24,
i=1,2,-~~,r—1},

1 a
where A, = n s¢-D" 4. Figure 6 shows p;, sets B and
c™ in range of Rp for case r = 3. Now, we claim for m =

2
—E—+a
cns(r—l) s

1 P(p~n(1) E B<">) -1,
2) P(U (P € B<">}) -0,
u=2
as n — oco. Thus, the adversary can identify TI(1) by examin-
ing p,,’s and choosing the only one that belongs to 8.
In the first part, we want to show that as n goes to infinity,

P (P € 8) > 1.

For all i € {1,2,---,r — 1}, By using (16) and the union
bound, we have

r—1 .

M, (i .

ZP('ﬁ —p)

- m

i=1

C a

<(r-1 (2exp (—§n2 )) ;

P(p’n‘(; ¢ B(")) <

>4,

thus,
P(m c B<">) >1-2(r = 1) exp (—%nf) (22)

The right-side of (22) goes to 1 as n — oo.
In the second part, we need to show that as n goes to infinity,

(o <o)

u=2

— 0.

We show as n goes to infinity,

P (U b, € c“”}) 0.

u=2
Note

4(A) s <P (pu c c<">) <4(A) 16y,

11

and according to the union bound, we have

.

u=

< ZP(pu € C("))

u=.
< 4s (An)r_l 02

1
<4s———0».
l+ar(r71)
ns 4

(23)

The right-side of (23) goes to 0 as n — oo, and as a result,
all p,,’s are outside of C (") with high probability.
Now, we claim that given all p,’s are outside of cm,

P<p~n(u) € 8™) is small. Note, for all i € {1,2,---,r — 1},
by using (16) and the union bounds, we have

P (pH(u) € B(n)) <P (|pH(u) - pu| 2 An)

r—1 .
B (|2 -y
=1

IA

> )

m

4

<2(r—1)exp (—%n%) .

As a result, by using another union bound,

P(O {IPric — Pu| > An}) <s (2(r —1)exp (—%n%)) .
= (24)

The right-side of (24) goes to 0 as n — oo. Thus, for all
ue{2,3,---,s} Pri(w)’s are close to p,’s; thus, they will be
outside of 8, Now, we can conclude that:

U {5}

u=2

P

-0

s

as n — oo. 2

Thus, we have proved that if m = cns0-0 "% there exists
an algorithm for the adversary to successfully recover User 1.
Remember, the adversary identifies the members of Group 1
independent of the structure of the subgraph. O

Discussion 5: Complexity of the adversary’s algorithm shown
in Figure 4:

1) Reconstruction of the association graph from the ob-
served data: According to (1), for each of n? points,
the adversary needs to perform m operations; thus, the
complexity for the adversary is O(mn?). In addition, ac-
cording to (2), for each of n points, the adversary needs to
perform m operations, so the complexity for the adversary
of (2) is O(mn). Then, the thresholding requires O (mn?)
operations. Since m can be as small as (logn)? (according
to Lemma 1), the minimum complexity of the adversary
for the first step is O ((logn)’n?).

2) Identifying Group 1 among all of the groups: According
to (15), for each of n points, the adversary needs to per-
form m operations; thus, the complexity for the adversary
is O(mn).Then, adversary has to search all - groups of
size s to find the one for which Group 1’s vector is close.
Since matching to an s—length group is O(1) (since s is
finite), the complexity of the adversary in the second step
is O (mn).
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3) Identifying User 1 among all of the members of Group
1: According to (21), for each of s points, the adversary
needs to perform m operations; thus, the complexity for
the adversary is O(ms). Since s is finite, the complexity
of the adversary in the third step is O (m).

Thus, the overall complexity of the adversary’s algorithm
could be O(mn?). Now, if the adversary was not overly
concerned with complexity, they would need the m from the
theorem statement put into step 1 results above (O(mn?)).
If they were more concerned about their complexity and did
not use all m points from the Theorem statement to build
the data dependency graph, but only the O((logn)?) that
they need in the first step, often the complexity would be
max {O((logn)*n?), 0(mn)}, which for s(r — 1) > 2 would
be O((logn)3n?).

B. r-State Markov Chain Model

In Sections III-A, we assumed each user’s data pattern
was i.i.d.; however, in this section, users’ data patterns are
modeled using Markov chains in which each user’s data
points are dependent over time. In this model, we again
assume there are r possibilities for each users’ data point,
ie., X, (k) € {0,1,--- ,r — 1}. More specifically, each user’s
data set is modeled as a Markov chain with r states. It is
assumed that the Markov chains of all users have the same
structure but have different transition probabilities. Let E be
the set of edges in the assumed transition graph, so, (i, j) € E
if there exists an edge from state i to state j, meaning that
pu(i,j) = P(X,(k+1)=j|X,(k)=i) > 0. The transition
matrix is a square matrix used to describe the transitions
of a Markov chain; thus, different users can have different

transition probability matrices. Note for each state i, we have
r—1
> puli,j) =1, so, the adversary can focus on a subset of
J=1
size |E| — r of the transition probabilities for recovering the
entire transition matrix. Let p, be the vector that contains

these transition probabilities for user u. We write

pu(1)

Pu(2)

P _ . p=1[p1 P2 Pl

pu(IE - 1)]

We also consider all p,(i)’s are drawn independently from
some continuous density function, fp(p,,), on the (0, 1)IF1=
hypercube. Define the range of distribution as

Rp = {(xl,xz,"- XE|-r) € (0, DIEFT x> 0,
Xp+X2+ -+ X g < 1},
and as before, we assume there are 61,0, > 0, such that

o1 < fe(p,) < 02,
fP(pu) = 0’

P, € Rp.
P, ¢ Rp.

12

Now, we can repeat the similar steps as the previous sections
to prove the following theorem.

Theorem 2. For an irreducible, aperiodic Markov chain
model, if Y is the anonymized version of X as defined above,
the size of the group including User 1 is s, and

2
em=Q (nsHEH)J'“), for any « > 0;
then, User 1 has no privacy at time k.

Proof. The basic ideas behind the proof of Theorem 2 are
similar to the ones for Theorem 1; thus, we highlight only the
differences and key ideas.

Define the random variable M, (i) as the total number of
visits by user u to state i, for all u € {1,2,---,n} and i €
{0,1,---,r — 1}. Since the Markov chain is irreducible and
aperiodic, and m — oo, all M'T(“) converge to their stationary
values [82]. Given M, (i) = m,(i), the transitions from state
i to state j for user u has a multinomial distribution with
probabilities p,, (i, j). Now, considering the fact that the vector
p,, uniquely determines the user u, the adversary can invert
the anonymization permutation function in a similar way to
the i.i.d. case by focusing on p,,’s. Let

Q=[P D D],
¥Y=[¥ Y Y],

where @, € RIFI7" and ¥, € RIEI"". We need to (slightly)
re-define our distance measure as

D (®,%¥) = min {de (®,¥,)},
OEX
where

doo (®,¥,,) =

max max {®u (i), Yo (D)} -

ue{l,2,---,s} i€{l,2,---,|E|-r}
We claim for m = cnS<IEZI*’) " and large enough n,
—~— ’
. P(D (P<‘>,P{1)) < An) -1,
s - ,
e P lgz{D (P(l),PI(I)) < An}) -0,

where A, = n” @ This can be shown similar to the
proof of Theorem 1. First, define ¥ /() and H'M ag

S
() ={(X1,XZ,~~- X,) € (Ruzsw—r)) :

1=

max{ix, — I} < Aju=1,2 s;
u

)

e ={(X1,Xz,--- X,) € (R(IEI—r))
max{[x, — P,l} < 247,u=1,2,- - ,s};
u

then, it is straightforward to show that the adversary can
identify Group 1 successfully.

In the next step, the adversary has to identify each member
of Group 1 correctly. Define sets 8’ and C’™ as

B/(n) :{(Xl,xz,"' ,X|E|,r) eERp:|x;i—p1(i)] < A;w

i=1,2,0 [l =1},
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C,(n) ={()C1,Xz,"- ,X|E|,r) ERp:|x;i—p1(i)] < ZA;,
i=1,2,0 [l =1},

1 a 2
__1___a . _2 .
where A, = n” sTEI-H "4 Now, we claim for m = cns0E) e

D P (b € ) > 1,

s
2) P L_)2 {Pricu) € B’(")}) — 0,

as n — oo. This can be shown in a similar manner to the proof
of Theorem 1, so the adversary can successfully recover the
data traces of User 1. O

Discussion 6: Note that the i.i.d. case can also be written as
a Markov chain with a transition matrix with identical rows;
then, |E| = r2. However, for the i.i.d. case, if the adversary
knows r—1 elements of a row, they know that row and all of the
others. In other words, if we restrict the users’ data models
to i.i.d., then we are using a different model where p, (i)’s
are restricted in a way to create an i.i.d. sequence. This is a
different model and is not compatible to our model for the
Markov chain where p,(i)’s are drawn independently from
some continuous density function, fp(p,,), on the (0, 1)IE1="
hypercube. Thus, the results of Theorem 2 cannot be applied
to the i.i.d. case.

IV. IMPACT OF DEPENDENCY ON PRIVACY USING
ANONYMIZATION AND OBFUSCATION

Here, we consider the case when both anonymization and
obfuscation techniques are employed, as shown in Figure 2.

The mechanism that we employ is called randomized re-
sponse in privacy literature [58] . In randomized response,
the answer is changed randomly with some small probability.
Note that the randomized response method has been analyzed
frequently [83]-[93]; however, in those studies, a different
approach to privacy termed differential privacy has been
considered. Differential privacy is mainly used when there
is a statistical database of users’ sensitive information and
the goal is to protect an individual’s data while publishing
aggregate information about the database [57], [94]-[97]. In
contrast, here we consider the fundamental limits of a similar
obfuscation technique for providing privacy in the long time
series of emerging applications.

Here, we assume similar obfuscation to [35]. To obfuscate
the users’ data points, for each user u, we independently
generate a random variable R, that is uniformly distributed
between 0 and a,, where a, € (0, 1]. The value of R, is the
probability that the user’s data point is changed to a different
value by obfuscation, and a, is termed the “noise level’ of
the system. Let Z,, be the vector that contains the obfuscated
version of user u’s data points, and Z be the collection of Z,
for all users,

[ Z.(1)|

Zu(2)

Z=12, 7, Z.].

Zu(m)|

13

Thus, the adversary’s observation Y is the anonymized version
of Z;

Y =Perm (Zy,Z;,- -+ ,Z,;11)

=[Znooy Xog - Zoow]

=[Y: Y» Y.].

A. r-State i.i.d. Model

Now, assume users’ data points can have r possibilities
(0,1,---,r —1). Similar to Section III-A, we assume p,,’s are
drawn independently from some continuous density function,
fp(p,,), which has support on a subset of the (0, 1)"~! hyper-
cube, and p,,, fp(p,), and Rp are defined as in Section III-A.

To create a noisy version of the data samples, for each
user u, we independently generate a random variable R,
that is uniformly distributed between O and a,, per above
a, € (0,1] is the noise level?. Then, the obfuscated data is
obtained by passing the users’ data through an r-ary symmetric
channel with a random error probability R, [58], so for
je{0,1,---,r—1}%

. . 1-R,, forj=i.
P(Zu(k) = j|Xu(k) =10) = R, for i +1i
1 or j #1.

The effect of the obfuscation is to alter the probability
distribution function of each user’s data points in a way that
is unknown to the adversary, since it is independent of all past
activity of the user, and hence, the obfuscation inhibits user
identification. For each user, R, is generated once and is kept
constant for the collection of data points of length m, thus
providing a very low-weight obfuscation algorithm.

Now, define

Qu(l) =P (Zu(k) = i) s

where

Qu(i) = Py (i)(1 = Ry) + (1 = Py (i))Ry
The vectors Q,, and Q which contain the obfuscated proba-
bilities are defined as below:

Qu(1)

0u(2)

Qu = s Q = [Q] Q2 Qn] s

_Qu(r - 1)_

2t is desirable that our results are true over the largest set of strategies
that users can employ. In fact, our results would apply to a general set of
distributions and are true for any random noise with support that extends out
to the maximum amount of a,. The reason that we have used a uniformly
random noise is that we want to have a similar mechanism as [35] to have
a good comparison between the results of this paper and [35] to show that
dependency is a significant detriment to the privacy of users.
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and the vector containing the permutation of those probabili-
ties after anonymization is W. Thus,

W =Perm (Q,Qy, -+ ,Q,,;; 1)
= [Qu-11) Q-2 Q-1 (n) |
=[W; W, W,].

The following theorem states that if the numbezr of obser-
vations per user m is significantly larger than nst-1 and ?he
amount of noise level a,, is significantly smaller that n st--D
in the r-state i.i.d. model, where s is the size of a group, then
the adversary can successfully de-anonymize and de-obfuscate
all of the data at different time samples (k = 1,2,--- ,m) for
all of the users in that group as the number of users in the
network (n) goes to infinity.

Theorem 3. For the above r-state model, if Z is the obfuscated
version of X, and Y is the anonymized version of Z as defined
above, the size of the group including User 1 is s, and

«em=Q (cns'(rzfl)m) for any a > 0;

e R, ~ Uniform[0, a, ], where a,, = O (n_wl*”_ﬁ) for any
B>
then, User 1 has no privacy at time k.

Discussion 7: It is insightful to compare this result to [35,
Theorem 2]. We can see that when users’ traces are dependent,
the required level of obfuscation and anonymization to achieve
privacy is significantly higher. Therefore, we see that depen-
dency can significantly reduce the privacy of users. However,
note that the asymptotic noise level is still zero in this case.
Specifically, if A,,(u) = w then as n — oo,

m

E[A, ()] = E[Ap] = O (n‘ﬁ‘ﬁ) 0.

Proof of Theorem 3:

Proof. The proof of Theorem 3 is similar to the proof of
Theorem 1 and consists of three parts:

« First step: Showing the adversary can reconstruct the as-
sociation graph of the obfuscated and anonymized version
of the data with an arbitrarily small error probability.

« Second step: Showing the adversary can uniquely iden-
tify Group 1 with an arbitrarily small error probability.

o Third step: Showing the adversary can successfully
identify all of the members of Group 1 with an arbitrarily
small error probability.

First step: Reconstruction of the association graph: In
Lemma 1, we show that for the case of anonymization, the
adversary can reconstruct the entire association graph of the
anonymized data with an arbitrarily small error probability
if the number of the adversary’s observations per user (m)
is bigger than (logn)3. Since obfuscation is done indepen-
dently (from other users’ obfuscation and from users’ data),
it does not change the association graph. Therefore, since
nﬁ > (logn)?, we can use Lemma 1 to show the adversary
can reconstruct the association graph of the obfuscated and
anonymized data with an arbitrarily small error probability.

14

Second step: Identifying Group 1 among all of the groups:
Now, assume the size of Group 1 is s. Without loss of gener-
ality, suppose the members of Group 1 are users {1,2,---, s},
so there are at most % groups of size s. We call these Groups
1,2,---, % The adversary needs to first identify the Group 1
among all of these groups.

As in Section III-A, X is defined as the set of all per-
mutation on s elements, PY is a vector which contains ‘the

probability distributions of users belong to Group [, and Pl(.f)
is a vector which contains the estimate of the adversary about
the probability distribution of users belonging to Group I. For
example, For Group 1, we have

PV =[p, p, ..

and
1 P
Py = [Png) Py

. —ta
We claim for m = ¢nst-0"%, a, =
enough n,

. P(D (P“),PQ)) < An) 1,

- P|U {D (P“),Pf{)) < An}) -0,
=2
where A, = n_»‘<rl*1>_%. As in Section III-A,
1 S
7 = (x1 %, %) € (RO

max{|x, —p,|} <Anu=12,--
u

75}7

N
7{(”) :{(X15X27"' 7XS) € (R(ril)) .
max{(x, — I} < 285 = 1.2, s},
u
In the first step, we prove, for large enough n,

IP’(D (p<1>,pg>) < A,,) -1

Note that for all u € {1,2,--- ,n} and alli € {1,2,--- ,r—1},
the adversary computes p, (i) as follows:

Pali) = W
m

(26)
and as a result,

— Hk:Zy() =i} ML)
Priw) (i) = = ,
m m

27)

where ML,(i) = |k:Z,(k)=i}. Now, for all u €
{1,2,---,n} and all i € {0, 1,--- ,r — 1}, we have

P(Mu(z') SA”)

m
M (i)

= pu(i)

=P(pu(i)_An < Spu(i)"‘An)

M@
m

= P(pu(i) - Ay —qu(i) <

<pu(D)+A, - CIu(i))-
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Note that according to (25), for all u € {1,2,---,n} and all 5 1 )
<
i€{0,1,---,r—1}, we have In the next step, we prove I 192 DP-Pr | < Bap )=
) ) ) 0. For all groups other than Group 1, we have
1Pu(i) = qu(@| =1 =2pu(D)|Ry
< Ry <ay, (48,)°" Vs, <P (P<l> c 7{'<">) < (4A,)° V6,
so, we can conclude for all u € {1,2,---,n} and all i €
and as a result,
{0319"' s r— 1}»
WG P (P”) c w<">) < 5y(4A,)° D
p(|MeD )] <,
m gasrn L
< - A=)
M (i) .
>P|-A,+a, < —qu(i) < —an+A, .
m Similarly, for any o € X,
Mu ] ’ r—
- ]P( D _ il <a, —an) . (28) P (Pﬁi) eH (")) < 62(4A,)* 7D
=5 4s(r—1);
By employing a Chernoff bound, we have 2 pltgsr-1°
p Mu(i) el <Ay —an] 21— 2exp _m(An —.an)2 and since |X;| = s!, by a union bound,
m 3q.(i) n n
2 ° n Y n
A - LU P9 e}l <D0 3 p(p0 )
>21-2exp|—3 (C”S("") ) o i 1=2 \oex, 1=2 oexg
3 nsentE e P . |
w s(r-1) -
(29) < Ss!524 TG
Now from (28) and (29), we can conclude for all u € = (s = 14D g, Fs0-D),
{1,2,---,n}and all i € {0, 1,--- ,r — 1}, (32)
P ‘M‘_‘(l) —pu)| <A, The right-side of (32) goes to 0 as n — oo. Thus, all P!)s
m are outside of " with high probability.
| , | o 2 Now, we claim that given all PY°s are outside of H ™ R
>1-2 —-( ﬁ*“) - , 3 = o
exp 3 o nﬁ“z’ nﬁw P IL—Jz D P(l),Pg) <A, is arbitrarily small. In other
and words, by using a Chernoff bound, it is shown PO’s are
1\7 . close to P¥’s, and they will be outside of F ™ Thus, for
P u (D) —pu()| = A, all u € Group [ and all i € {1,2,---,r — 1}, (30) and the
m union bound yield
2
< 2ex —l(cnﬁm) L M p0 o p0
= 2EPLT3 s s ) | F\P(R P S An | =BID(PTLPY 2 A

(30) s r=1
< ZP > A,

Now, for all u € Group 1, all i € {1,2,--- ,r — 1} and any gy e

B> %, (30) and the union bound yield | | , 2

2 c
— __ m“’) _
<2s(r—1)exp 3 (cn I ( 1 +B) .
> A,

(1) TB LS Mu(l) ; nﬁ-'-% ns(r—l)
o) S

’M — pu(®)
m

u=1 i=1 . . .
Now, by using a union bound again, we can conclude that, for

2
1 _2 1 ! a
<2s(r—1)exp|—= (cnwzfﬂm) — - IC C B>
3 ns(r—l)+I ns(r—l)+ﬁ n n
31 D pl) n pl)
GL p U{D (P(),PI(T)) > An} < ZP(D (P<>,P§,)) > A,,)
The right-side of (31) goes to 0 as n — co. As a result, =2 =2
2
— 1 _2 1 !
IP(D (P(”,Pf{)) < An) S, <2n(r=1)exp| -3 (cns<r21>+“)( — - < +ﬁ) .
ns(r—l) 4 ns(r—])
as n — oo, (33)
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The right-side of (33) goes to 0 as n_— oo. Thus, we have
shown that for all / € {1,2,---,2}, P()’s are close to PO,
which are outside of set F. As a result, as n — oo,

n
s

P U{D (P“),Pg)) sA,,} —0.

=2

Third step: Identifying User 1 among all of the members of
Group 1: In this step, we need to prove that after identifying
Group 1, the adversary can correctly identify each member. In
other words, the adversary should identify the permutation of
Group 1.

From (26) and (27), for all u € {1,2,---,s} and all i €
{1,2,---,r — 1}, we have

[{k - Y (k) = i}|
- ,

puli) =
and as a result,

[k 2 Zu () = i} _ M)

m m

Pl (u) (l) =

where M (i) = |{k : Z.(k) = i}|.
As in Section III-A, we define sets 87 and C™ as

8 ={(x1 2.+ xm) € Re i = pi(D)] < A

i=1,2,---,r—1},

c =:(x],x2,-~~ JXr-1) €Rp : xi — pr(i)] < 24,
i:l,z,---,r—l},

1 _a . _2
where A,, = n~ 500 4. We claim that for m = cn57-0* and
1
Y )
ap=c'n <°("” # ,

D P (g € 87) > 1,

2) P(CJ {Pricmy € B(")}) -0,
u=2

as n — oco. Thus, the adversary can identify T1(1) by examin-
ing p,,’s and choosing the only one that belongs to 8.
In the first step, we show that as n goes to infinity,

According to (30) and the union bound, for all # € Group 1

and all i € {1,2,--- ,r — 1}, we have

r=1 X s

_ n M (i) .

S N L

i=1

2

1 Erta 1 c’

<(r—1)(2exp -3 (cnw-> ) T —
nsr-n"4 nsr-1

The right-side of the above equation goes to 1 as n — oo,
thus we can conclude,

P (P € 8) > 1. (34)

16

Now, in the next step, we need to show that as n goes to

infinity,
S
P (U {Prics € 8} | - 0.
u=2
We show that as n goes to infinity,
— 0.

P(O {p,ec™

u=2

Note for all u € {2,3,---,s},
4451 <P(p, eC’™) <480 52

and according to the union bound,

#(fo )

< ZP(pu € C("))

u=2 u=2
< 4s (An)r_1 02
1
1 elr=l)
ns 4

The right-side of (35) goes to 0 as n — co. Thus, all p,’s are
outside of C" with high probability.

Now, we claim that given all p,’s are outside of C (m)
P(m e 8 ) is arbitrarily small. Note that for all u €
{2,3,---,s}and all i € {1,2,---,r — 1}, (30) and the union
bounds yield

P(m € B(")) < P(|m —pu| > An)

S (P ® = puti
i=1

2
1 1 !
<2(r—1)exp -3 (cn5<r2*1>+a) ( — — ¢ ) )

> A,,)

1 1
ns(r—l)+1 ns(r—])+ﬁ

As a result, by using a union bound again,

P(U (o -l > An})

2
1 1 !
<2s(r—1)exp 3 (cnﬁ“’) ( — — ¢ ) .

1 1
nsemtT 5ot

(36)

Now, the right-side of (36) goes to 0 as n — oo. Thus, for all
ue {2,3,---,s}, pn(u)’s are close to p,’s, so they will be
outside of 8. Now, we can conclude as n — oo:

U ffrw < 5}

u=2

P

— 0.

Hence, the adversary can successfully recover Z;(k). Since
Z1(k) = X1 (k) with probability 1-R,, = 1-0(1), the adversary
can recover X (k) with vanishing error probability. O
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B. r-State Markov Chain Model

In this section, users’ data patterns are modeled using
Markov chains and there are r possibilities for users’ data
samples. Similar to Section III-B, we assume p,(i)’s are
drawn independently from some continuous density function,
fe(p,). on the (0, 1)!E=" hypercube, and p,,, fp(p,). and Rp
are defined as in Section III-B.

By using the general idea stated in Section III-B, we can
now repeat similar reasoning as in the proof of Theorem 3 to
show the following theorem.

Theorem 4. For an irreducible, aperiodic Markov chain
model, if Z is the obfuscated version of X, and Y is the
anonymized version of Z as defined above, the size of the
group including User 1 is s, and

em=Q (ns(\b‘z\*rﬁa) for any a > 0;
e R, ~ Uniform|[0,a,], where a, = O (n“ﬁElH) 7ﬁ) for

any S8 > %;
then, User 1 has no privacy at time k.

V. MORE GENERAL SETTING FOR THE ASSOCIATION
GRAPH

The association graph structure that we have studied so far
was general except for one aspect: we assumed that people
in a group have dependency but that they are completely
independent from members of other groups. But, in practice
there could be weak dependency between members of each
group and outside members. Here we discuss how to apply
our results to this more general setting.

Similar to [72]-[81], we consider a community structure
with strong intra-community connections and weak inter-
community connections. In the community structure, the nodes
of the network can be grouped into sets of users such that
each set of users is densely connected internally as shown
in Figure 7a. Here, we also assume that the adversary has
some knowledge about the correlation between users in ad-
dition to the marginal probability distributions: the adversary
know whether the value of each correlation is less than or
higher than a specific threshold. We show that the adversary
can reliably reconstruct the entire association graph for the
anonymized version of the data (i.e., the observed data traces)
with relatively few observations.

Let G(V, F) denote the association graph with set of nodes
V, (V] = n), and set of edges F. In this case, we use an
association graph based on a threshold as follows: we assume
two vertices (users) are connected if their data sets are strongly
correlated, and are not connected if their data sets are weakly
correlated. More specifically,

o (u,u’) ¢ F if and only if Cov (X,,(k); X, (k)) < €1,

e (u,u’) € F if and only if Cov (X, (k); X,v(k)) > e,
where Cov (X, (k); X, (k)) is the covariance between the k*"
data point of user u and user u’.

Lemma 2. Consider a general association graph, G(V, F),
based on the threshold as described above. If the adversary
obtains m = (logn)® anonymized observations per user, they
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can construct G = 6(‘9, f), where V = {II(u) : u € V} =
vV, such that with high probability, for all u,u’ € V; (u,u’) €
F if and only if (TI(u),II(u")) € F. We write this statement
as P(G =~ G) — 1.

Proof. Note that for u,u’ € {1,2,---,n}, we write v = IT(u)
and v/ = II(u"). We provide an algorithm for the adversary
that with high probability obtains all edges of F correctly.
For each pair w and w’, the adversary computes Cov,,  as
follows:

r=lr-1  _ r—=1 _ r=1 _
X XMy (L) Y iM, (i) Y My (i)
i=1 j=1 _ =l i=1

Cov,, =
m m
37
where
My (i, j) = |{k : Yy (k) =i, Y, (k) = j}.
M, (i) = [{k : Y, (k) = i}.
My (j) = [{k : Yy (k) = j}|.
After observing m = (logn)® data points per user and

computing the above expressions, the adversary constructs G
in the following way:

o If [Covyy| < €1, then (v,v") ¢ F.

e If |Covyy/| 2 €, then (v,v') € F.

We show the above method yields P(é ~G) > lasn— oo,
as follows. Note

M,y (i, j) ~ Binomial (m, wy. (i, /)),
M, (i) ~ Binomial(m, w, (7)),
M, (i) ~ Binomial(m, w,- (7)),
where wy\(i,j) = PXu(k) =Y (k)=j), wy(i) =
P (Y, (k) =i), and w,/(i) = P (Y, (k) =i). From the proof of
Lemma 1, by using (4), for all v,v’ € {1,2,---,n} and all
i,j€{0,1,---,r—1}, we have

0 <mwyy (i, ) - m% < Mvv'(iaj) <mwyy (i, J) +m%'

(38)
0 < mwy (i) —mi < My (i) < mwy (i) +m?. (39)
0 <mw, (i) - mi < M, (i) < mw, (i) +mi. (40)

A, (i, j) is defined as the event that (38), (39), and (40) are
all valid; thus, based on proof of Lemma 1, we have
1 r-1

P ﬁ ﬁ ﬂ{Avv’(i’j)} - 1’

r—
v=1v’=1i=0 j=0

(41)
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(a) A sketch of a small network displaying community structure.

Fig. 7: The adversary uses their prior knowledge to break inter-community edges.

r—=1r-1
as n — oo, Let us define Cy,,v = () () {4y (i, 7)}. Now, if
i=0 j=0
C,, is true for some v,v’ € {1,2,---,n}, according to (37),
we have
(e e N ! BIPUR
2 2 ijMyy (@) Y iM, () Y iM, (i)
i=l j=1 i=1 i=1
Cov, = -

m m m

r—1r-1 3
3OS i) (mww,(i,j) +mz)

i=1 j=1

m

)y i(mwv(i) - m%) jg i (mwvr(i) - m%)

r—1r-1

2

m
r—1 r—1
W (6 ) = D iwy (D) ) iwyr (i)
i=1 j=1 i=1 i=1

r2(r - l)2
4

B r2(r - l)2
4

r2(r— 1)2
< Covyyr + Tm

1or(r=1) = . N
m s + T Zl(wv(l) + Wv/(l))m 4
i=1

1
m 2

Sl

r—1
+—r(r2_1) ;i(wv(i)+wv»(i))m_ +—r2(r4_1)2m_ ,

(42)

sl—
=

r—1r-1 . o r—1 . . r—1 . .
where Covyy = 3 X ijwyy (i, j) = X iwy (i) X iwy(0).
i=1 j=1 i=1 i=1

i=1
Similarly,

L ! U e (PN
_21 Z] My (i, 7)Y iMw(i) Y, iM, (i)
i=1 j= i=1 i=1

Covy, =
m m m

r=1 3
2 (vav’(i) - mZ)
i=1

m

ril [ (mwv(i) + m%) rgll [ (mwvr(i) + m%)

_ =l

>

m m
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G3
Gy
G,
(b) The association graph consists of disjoint subgraphs.
2 2
r<(r—1 1
= Covyy — =17
4
-l 2 2
r(r=1) % 1 re(r—1 1
-l D iwy (i) + wr (D)mF r=b 4,
2 P 4
(43)

Now, by using (42) and (43), for some v,v’ € {1,2,---,n},
we have

Covy, —Cov,

2 2 r—1
re(r=1)° 1 r(r=1) . . a1
S—m i+ — ;z(wv(z) +w,y(i))m™4
20, 1)2
PGl

4
Let us define event D,,,. as the event that (44) is valid; thus,
we have shown, for any v,v’ € {1,2,--- ,n}, C,,v C D,
and consequently,

(44)

1
m 2.

< ﬁ ﬁ {va/}

v=lv'=1

n

{va’} .

n
zpﬂ

v=lv’=1

Thus, by using (41), we have

P ﬁﬁ{DV\/} - 1,
v=lv’'=

as n — oo. Hence, with high probability, (44) is simultaneously
valid for all v,v’ € {1,2,--- ,n}. Thus, we can conclude, with
high probability, for all v,v' € {1,2,---,n}, Cov,,/’s are
close to Cov,’s.

Now, if (u,u’) is an inter-community edge, the adversary
knows Cov,,s < €, and as a result, Cov,, < €; thus, the
adversary removes that edge. Now, we can conclude (v,v’) ¢
F, and in other words, (IT1(x),I1(«’)) ¢ F. This is true with
high probability, simultaneously for all u,u’ € {1,2,---,n}
where (u,u’) is an inter-community edge.
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In addition, if (u,u’) is an intra-community edge, the
adversary knows Cov,, > €, and as a result, Cov,, > €.
Now, we can conclude (v,v’) € F , and in other words,
(I(u), (') € F. This is true with high probability, simul-
taneously for all u,u’ € {1,2,--- ,n} where (u,u’) is an intra-
community edge.

As a result, for large enough n, we have P (5 ~ G) — 1,
so the adversary can reconstruct the association graph of the
anonymized version of the data which is based on a threshold
with an arbitrarily small error probability. m}

Now, the adversary has observed the graph structure shown
in Figure 7b, where subgraph G| is a connected graph with s
vertices which is disjoint from the remainder of the association
graph (G’ = G — Gy). In other words,

G=G UG

Now, we can repeat the same reasoning as that in the proof
of Theorem 1, Theorem 2, Theorem 3, and Theorem 4 to
obtain the same results for this case.

Discussion 8: The stochastic block model is a generative model

for random graphs [98]-[104]. Note that there are two key
differences between the stochastic block model and the work
here. First, in the stochastic block model, the edge set is
sampled at random and the probability distributions of edges
are the key part of the work, while here the analysis is based
on the users’ data traces, and the statistical knowledge of
the adversary is a key part. Second, in the stochastic block
model, nodes within a community connect to nodes in other
communities in an equivalent way. In other words, any two
vertices u € C; and v € C; are connected by an edge with
probability p;;, where C; and C; are different blocks, so all
edges between two communities have the same weights or
strengths. Here, as shown in Figure 7a, there is no need that
an inter-community edge corresponding to the correlation of
nodes in separate communities, has the same value as others;
in other words, there is no need for the nodes in a community
to connect to the nodes in other communities in an equivalent
way. In our work, for each of the intra-community edges,
Cov,,y > €, and for each of the inter-community edges,
Covy,y < €1; thus, edges can have different weights.

VI. IMPROVING PRIVACY IN THE PRESENCE OF
DEPENDENCY

In the previous parts of this paper, we argued and demon-
strated that inter-user dependency degrades the privacy pro-
vided by standard privacy-preserving mechanisms (PPMs). In
this section, we discuss how to design PPMs considering inter-
user dependency in order to better preserve privacy. First,
note that independent obfuscation alone cannot be sufficient
even at a high noise level, because it does not change the
association graph, and thus, the adversary can still reconstruct
the association graph with a small number of observations. To
mitigate this issue, we suggest that associated users collaborate
in applying the noise when deploying a PPM.

For clarity, we focus on the two-state i.i.d. case (r = 2). In
the first part, we also focus on the case when the association
graph consists of subgraphs with the size of each of them less
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than or equal to 2 (s; < 2). Thus, as shown in Figure 8, there
are some connected users and there are also some isolated
users. First, we state the following lemma.

1 2

[ X}

N J

Fig. 8: Graph G consists of some subgraphs (G;) with s; < 2.

Lemma 3. Let X,(k) ~ Bernoulli(p,) and X, (k) ~
Bernoulli(p,/); then, there exists an obfuscation technique
with a noise level equal to

Cov(X, (k), X, (k))
max{pu, puw, 1 — pu,l — puw}’

a(u,u’) =

for the dataset of user u and user u’ such that Z,(k) and
Z, (k) are independent from each other. Note Z,(k) and
Z. (k) are the k' (reported) data point of user u and u’,
respectively, after applying obfuscation with the noise level
equal to d(u,u’).

Proof. Let X,(k) ~ Bernoulli(p,) and X, (k) ~
Bernoulli (p,). Then, to make these two sequences indepen-
dent, it suffices if Z, (k)|Z, (k) = 0 has the same distributions
as Zy(k)|Z,(k) = 1. We provide the proof for the case
max{p,, puw>1 — pu,1 — pw} = 1 — py; the proofs of the
other cases are similar. Now, If X,(k) = 1 and X,/ (k) = 1,
we pass X, (k) through a BSC(Y) in order to obtain Z, (k).
Thus,

P(Xu(k) =1, X, (k) =0) _ P (X, (k) =1,X (k) =1) (1Y)

1= pw Puw
and Y can be calculated as
v P(X,(k)=1,X,(k)=0
Yo Pw BXu(K) = 1 X (k) = 0)

1= puw P(Xu(k) =1, X (k) = 1).

Now, we can conclude,

a(u,u’) =YP (X, (k) =1,X, (k) =1)
 pe PR = 1, X (K) = 0)
1= puw P(Xu(k) =1,X,(k)=1)
P (Xu(k) =1, X0 (k) =1)
=P (Xu(k) =1, X (k) =1)

Pw_p (X, (k) =1, X, (k) = 0)

1 — Pw
P(Xu(k) =1, Xuw (k) =1) = pupw

1-pw
Cov(Xy(k), X, (k))

max{py, puw,1 = pu,1 = puw} )
Next, we explain the idea behind this lemma by an example.

=11

Example 1. Let X, (k) ~ Bernoulli(%) and X, (k) ~

Bernoulli (g) with the joint probability mass function of
X, (k) and X, (k) as given in Table I
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TABLE I: Joint probability mass function of X, (k) and
X (k).

X, (k)
w( 0 |
Xy (k)
7 1
0 2 | 2
9
1 20 20

TABLE II: The expected results of X, (k) and X, (k) accord-
ing to Table I after observing 2000 bits of data.

X, (k)
w ( 0 .

Xy (k)

0 700 | 100

1 900 | 300

TABLE III: The desired results to make Z, (k) and Z, (k)
independent from each other after observing 2000 bits of data.

Zw (k
w (k) 0 :
Zy (k)
0 700 175
1 900 | 225

If we observe 2000 bits of data, Table II shows the expected
results according to Table L.

Then, to make Z, (k) and Z, (k) independent, it is suffi-
cient for Z,(k)|Z, (k) = 0 to have the same distribution as
Z.(k)|Z, (k) = 1. This means we should have

P (Zy(k) = 1,Zy (k) =1) P (Z,(k) =1,Z,(k) =0)
P (Zw (k) = 1) - P (Zy (k) = 0) ’

thus, according to Table III,

300(1 = Y) 900 1
= —_ Y = -,
100+300 700 +900 4

where Y is the portion of data points X, (k) that need to
be changed in the fourth region of Table II (i.e., the region
X, (k) =1,X, (k) =1). Now, we need to change % -300 =175
of the data bits. As a result, if X,,(k) =1 and X,,-(k) = 1, then
we pass X, (k) through a BSC(A—Il), and obtain Z, (k). Hence,
the asymptotic noise level is equal to

3 1
d(u,u’) = Z) . Z = 3.75%.

It is easy to check that the asymptotic noise level will be
given by the equation in Lemma 3. Specifically, for the above
example,

Cov(X, (k), X (k)) = P(X,, (k) =1, X, (k) = 1)

- P(Xu(k) = DP(Xw (k) = 1)
3 31 3
2055 100 @

20

and we have
Cov(X, (k), X, (k)) 1

a(u,u’) = =
max{pus Puw> 1 — Pus 1- pu’}

ER

0~ 3.75%.

SIS

]

Lemma 3 provides a method to convert correlated data to
independent traces. The remaining task is to show that we
can achieve perfect privacy after applying such a method. As
shown in Figure 9, two stages of obfuscation and one stage
of anonymization are employed to achieve perfect privacy
for users. Note that the first stage of obfuscation is due
to Lemma 3 and the second stage (as will be explained
in Theorem 5) is the same obfuscation technique given in
Theorem 1 of [35]. In Figure 9, Z.(k) shows the (reported)
data point of user u at time k after applying the first stage of
obfuscation with the noise level equal to

. no_ Cov (X, (k), X, (k))
d(u,u’) =
max{pu, pus 1 = pu> 1 = pu}
for the dataset of user u and user u’, Z,(k) shows the

(reported) data point of user u# at time k after applying the
second stage of obfuscation with the noise level equal to

a, = C'nf(éfﬁ),

and Y, (k) shows the (reported) data point of user u at time k
after applying anonymization.

Obfuscation

5 i Second
> Zu(k) ’ Stage

First
Xul Suge

Z, (k) — Anonymization |— Y, (k)

Fig. 9: Applying obfuscation and anonymization techniques to
the users’ data points.

Consider G(V, F), where s; < 2. We have the same model
for p, as in the previous sections: p, is chosen from some
density fp(p,) such that, for 61,6, > 0:

01 < fp(pu) <02, pu€(0,1).

fP(pu) =0, Pu ¢ 0,1).
Also, if (u,u’) € F, pur 1is chosen according
to some density fp(ouwl|pu,pw) Wwith range of
[o, min{\/ pullopey [Pell=Pul il The following theorem

states that we can indeed achieve perfect privacy if we allow
collaboration between users.

Theorem 5. For the two-state model, if Z is the obfuscated
version of X, Y is the anonymized version of Z, and the size
of all subgraphs are less than or equal to 2, there exists an
anonymization/obfuscation scheme such that for all (u,u’) €
F, the asymptotic noise level for users u# and u’ is at most

Cov(X, (k), X,w(k))
maX{pu,pu” I-pu,1- pu’}’

to achieve perfect privacy for all users. The anonymization
parameter m = m(n) can be made arbitrarily large.

a(u,u’) =

Proof. There are two main steps.
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Step 1: De-correlate based on Lemma 3. In particular, note
that for at least half of the users, no noise is added in this
step. More specifically, define

U = Set of unaffected users

= {u : no noise is added to user u in this step}.

Then after step 1, we have Z, (k) ~ Bernoulli(§,). As a result,

e Foru e U; Z,(k) = X, (k) and §,, = p..

e Forue{l1,2,---,n} —U; Z,(k) # X, (k) and ¢, # pu.
Note |U| > 5,
with §5; < 2.

Step 2: Assume ¢,,’s are known to the adversary. The setup
is now very similar to Theorem 1 in [35], where perfect
privacy is proved for the i.i.d. data. But there is a difference
here. Specifically, although the users’ data Z, (k) are now
independent, the distribution of ¢,’s are not, since they are
the result of the data-dependent obfuscation technique of
Lemma 3. Luckily, this issue can be easily resolved so that we
can show perfect privacy for User 1. The main idea is to use
the fact that, as stated above, at least % of the users are not
impacted by the de-correlation step. As we see below, these
users will be sufficient to ensure perfect privacy for User 1
(which may or may not be in the set U).

Let’s explore the distributions of Qu = ¢, for users in the set
U. For any correlated pair of users, the method of Lemma 3
leaves the one whose p,, is farthest from % intact. Since p,,’s
are chosen independently from each other and each user is
correlated with only one user, it is easy to see that for users
in the set U, the ¢,,’s are i.i.d. with the following probability
density function

because the main graph consists of subgraphs

max(Gy,1—gu)
Fodn) =24 | fr(x)dr.

min(Gu, 1-Gu)
Therefore, the setup is the same as Theorem 1 in [35] where
we want to prove perfect privacy for User 1, and we have 5
users who are independent from User 1 and their parameter
gy is chosen i.i.d. according to a density function. However,
we need to check that the density function va(cj) satisfies
the condition §; < fé(qu) < &, for some &; and &, on a
neighborhood ¢, € [p, — €', p, + €’]. First, note that

max (G »1—qu)

fQ(Ciu) =2fp(qu) fp(x)dx.

miﬂ(‘fu s 1—%)
<262 =4,.

Next,

max (Gu,1-qu)

odn) =24rd) [ fr ().

min(éu, lfqvu)
> 2621 — 24, = 6.

Thus, as long as p,, # %, the condition is satisfied 3. Therefore,
we can show perfect privacy for User 1. Note that here, in the
second step, we need to apply a second stage of obfuscation

3The case p,, = % has zero probability, and thus need not be considered.
Nevertheless, the result can be shown for p, = %, as all we require is a
number of users proportional to the length of the interval in the vicinity of
Pu-

21

and apply anonymization according to Theorem 1 in [35].
Nevertheless, since the noise level a,, — 0 for this second
stage, the asymptotic noise level will stay the same as that for
step 1, i.e.

|Cov (X, (k), Xu (k)|
max{py, pu>1 = pu,1 = puw} ’

a(u,u’) = d(u,u’) =
(]

Now, the above method can be readily extended to the case
where s; > 2. Consider s; = 3. From Figure 10, there are two
different situations in this case:

1) Case 1: As shown in Figure 10b, User 1 and user 2
are correlated, and user 2 and user 3 are correlated. In
the first step, we de-correlate user 2 and user 3 based on
Lemma 3. Now, we face a similar situation as that in the
case s; = 2 (as shown in Figure 10a), and we de-correlate
them based on Lemma 3. Hence, we can make all of the
users independent from each other and then, according
to Theorem 5, we can achieve perfect privacy for all of
them.

2) Case 2: As shown in Figure 10c, all three users are
correlated to each other. In the first step, we use Lemma 3
to make User 1 and user 3 uncorrelated. Now, we have
a similar situation as case 1, so we can make all the
users independent from each other and then, according
to Theorem 5, we can achieve perfect privacy for all of
them.

Discussion 9: Note that obfuscating data by adding non-zero
asymptotic noise may degrade utility significantly. Therefore,
in practice, it is usually not possible to de-correlate all depen-
dent users without imposing substantial utility degradation. In
addition, in order to convert correlated data to independent
data, users should collaborate together and disclose their
private data to each other, which degrades privacy unless users
trust each other. In such a setting, a possible approach in
applying our technique is to only add de-correlation noise to
the data of highly-dependent users (e.g., spouses and close
friends), and leave data of less-dependent users (e.g., co-
workers) unchanged.
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VIII. CONCLUSION

Resourceful adversaries can leverage statistical matching
based on the prior behavior of users in order to break the
privacy provided by PPMs. Our previous work has consid-
ered the requirements on anonymization and obfuscation for
“perfect” user privacy when traces are independent between
users. However, in practice users have correlated data traces,
as relationships between users establish dependence in their
behavior. In this paper, we demonstrated that such dependency
degrades the privacy of PPMs, as the anonymization employed
must be significantly increased to preserve perfect privacy,
and often no degree of independent obfuscation of the traces
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Fig. 10: Three different ways which 3 users can be correlated to each other.

TABLE IV: Conditions on the number of adversary’s observations per user (m) for “no privacy” in the case the anonymization
is employed as a PPM. Here, s is the size of group of users whose data traces are dependent, r is the number of possible
values for each user’s data point, |E| is the size of set of edges in the Markov chain, and the results hold for any « > 0.

Independent users [34] | Dependent users
Users’ data model
m m
Two-state i.i.d. model Q (nz“l) Q (n%“’)
2 2
r-state i.i.d. model Q nﬁ“’) Q (nS“-l)Hz)
. 2 i JRE——
r-state Markov chain model Q (n IE|-r ) Q (n~‘<|E\—r> )

TABLE V: Conditions on the number of adversary’s observations per user (m) and the amount of noise level (a,) for “no
privacy” in the case both obfuscation and anonymization are combined to be employed as a PPM. Here, s is the size of group
of users whose data traces are dependent, r is the number of possible values for each user’s data point, |E| is the size of set
of edges in the Markov chain, and the results hold for any @ > 0.

Independent users [35] Dependent users
Users’ data model
m an m an
Two-state i.i.d. model Q (nz"") o (n‘l‘ﬁ) Q (n%“’) o (n‘é‘ﬁ)
2 1 2 -1
r-state i.i.d. model Q (nﬁ*") o) (n’ﬁ’ ) Q (n s(r—l)“') o (n S0 ﬁ)
p) 1 _ 2 R
r-state Markov chain model | Q (nlElff +a) o (n [ET-r B) Q (n S(\E\*’)ﬂl) o (n s(IET-r) ﬁ)

can be effective. The summary of the results is shown in
Tables IV and V. We have also presented preliminary results
on dependent obfuscation to improve users’ privacy.
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