

1 Chemical and toxicological characterization of vaping
2 emission products from commonly used vape juice diluents

3 *Huanhuan Jiang ^{†‡}, C. M. Sabbir Ahmed [§], Thomas J. Martin [¶], Alexa Canchola [§], Iain W. H.*
4 *Oswald [¶], Jose An-dres Garcia [‡], Jin Y. Chen [§], Kevin A. Koby [¶], Anthony J. Buchanan [⊥], Zixu*
5 *Zhao [#], Haofei Zhang [#], Kunpeng Chen [†], and Ying-Hsuan Lin ^{†,§*}*

6

7 [†] Department of Environmental Sciences, University of California, Riverside, California 92521,
8 United States;

9 [‡] Department of Chemical & Environmental Engineering, University of California, Riverside,
10 California 92521, United States;

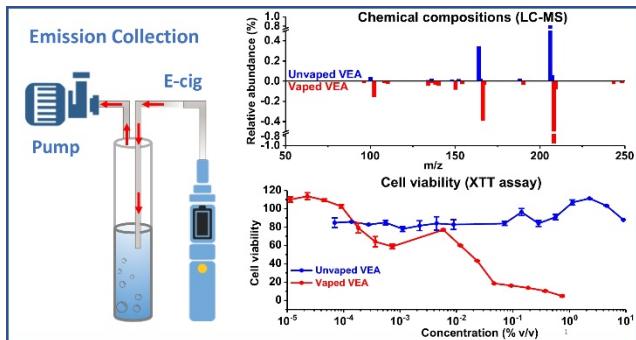
11 [§] Environmental Toxicology Graduate Program, University of California, Riverside, California
12 92521, United States;

13 [¶] Abstrax Tech, 15550 Rockfield Blvd, Suite B120, Irvine, California 92618, United States;

14 [⊥] SepSolve Analytical Ltd., 4 Swan Court, Forder Way, Peterborough Cambridgeshire, PE7 8GX,
15 United Kingdom;

16 [#] Department of Chemistry, University of California, Riverside, California 92521, United States;

17


18

19

20

21 KEYWORDS. e-cigarette, liquid diluents, viscosity enhancer, chemical composition, cellular
22 toxicity

23 Table of Contents

25

26 **ABSTRACT**

27 Recent reports have linked severe lung injuries and deaths to the use of e-cigarettes and vaping
28 products. Nevertheless, the causal relationship between exposure to vaping emissions and the
29 observed health outcomes remains to be elucidated. Through chemical and toxicological
30 characterization of vaping emission products, this study demonstrates that during vaping
31 processes, changes in chemical composition of several commonly used vape juice diluents (also
32 known as cutting agents) lead to the formation of toxic byproducts, including quinones, carbonyls,
33 esters and alkyl alcohols. The resulting vaping emission condensates cause inhibited cell
34 proliferation and enhanced cytotoxicity in human airway epithelial cells. Notably, substantial
35 formation of the duroquinone and durohydroquinone redox couple was observed in the vaping
36 emissions from vitamin E acetate, which may be linked to acute oxidative stress and lung injuries
37 reported by previous studies. These findings provide an improved molecular understanding and
38 highlight the significant role of toxic byproducts in vaping-associated health effects.

39 **1. INTRODUCTION**

40 Recent outbreaks of the mysterious vaping-related illness, also known as EVALI (e-cigarette
41 or vaping product use-associated lung injury) in users of e-cigarettes and vaping products have
42 raised serious public health concerns.¹⁻³ Within a few months since its description, the disease has
43 affected more than 2800 people (as of February 18, 2020), and resulted in an increasing number
44 of fatal cases in the United States.^{1, 2, 4} The substances responsible for the lung injury are still under
45 investigation.⁵ Though it appears that tetrahydrocannabinol (THC)-containing vaping products and
46 vitamin E acetate found in patients' lung fluids are strongly linked to the outbreak of lung injuries,⁶
47 the causal relationship remains unclear. Additionally, since vaping emissions constitute a complex,
48 dynamic and reactive mixture, there may be more than one factor leading to the vaping-related
49 lung injury.

50 THC-containing vaping products are generally sold either in pre-filled vape cartridges, or in
51 dropper bottles that allow users to refill vape pen cartridges themselves. THC vape cartridges are
52 usually cut with thickening agents, such as vitamin E acetate (VEA),^{6, 7} to enhance the viscosity
53 of THC oil and make it appear pure to consumers. Given that THC is lipophilic, it can be easily
54 mixed with organic solvents, but not water. Thus, commonly used vape juice diluents including
55 propylene glycol (PG), vegetable glycerin (VG), squalane oil (SQL) and coconut oil or medium-
56 chain triglyceride (MCT) oil are suitable to dilute the THC oil. Some of these liquid diluents and
57 viscosity enhancers are generally considered as safe additives for food via ingestion. However,
58 their safety has not been fully assessed for vaping inhalation, a process that can potentially
59 transform the liquid ingredients and produce reactive and toxic compounds.⁸⁻¹⁰ It has been reported
60 that reactive carbonyls including acrolein, formaldehyde and acetaldehyde can be emitted from the
61 thermal decomposition of e-liquids through the heating process during vaping.¹¹⁻¹⁴ The emission

62 rates of aldehydes can be influenced by several factors including e-liquid composition, power
63 supply, device model, coil material and vaping topography.¹¹⁻¹⁴

64 While the chemical and toxicological properties of vaping emission products from PG and VG
65 have been widely studied,^{11, 15-18} little is known about the vaping emission products from other
66 commonly used liquid diluents. In this study, we examined seven commonly used vape juice
67 diluents in THC-infused e-cigarette cartridges, including PG, VG, MCT oil, SQL, vitamin E (VE),
68 VEA and triethyl citrate (TEC) (Table 1). The chemical composition of unvaped liquid diluents
69 and collected vaping emission condensates were analyzed by gas chromatography/electron
70 ionization-mass spectrometry (GC/EI-MS) and electrospray ionization quadrupole-time of flight-
71 mass spectrometry (ESI-Q-TOF-MS) techniques. BEAS-2B cells were exposed to emission
72 samples collected in the LHC-9 cell medium. Cell viability and cytotoxicity were examined by the
73 XTT assay to determine the metabolic activity and the LDH assay to measure of the cell membrane
74 integrity after exposure. We hypothesize that chemical composition of vaping emission products
75 is an important determinant of vaping-induced toxicity. Changes in chemical composition of liquid
76 diluents through thermal decomposition or oxidation during vaping can result in differential
77 cellular toxicity compared to their unvaped precursors.

78 **2. METHODS.**

79 **2.1. Materials.** Samples of vape liquid diluents were purchased to emulate those used in vaping
80 as closely as possible and used as received. Triethyl citrate (TEC) was purchased from Sigma-
81 Aldrich (>99%), Vitamin E acetate (VEA) was purchased from Whole Foods (JASON brand),
82 Vitamin E (VE) and MCT oil were purchased from Jedwards International Inc, Propylene glycol
83 (PG) was purchased from Spectrum Chemical (99.5%), vegetable glycerin (VG) was purchase
84 from Spectrum Chemical (99%) , and squalane (SQL) was purchased from Jedwards International

85 Inc. Products were inventoried and stored at room temperature. N,O-
86 bis(trimethylsilyl)trifluoroacetamide with trimethylchlorosilane (BSTFA + TMCS, 99:1) was
87 purchased from SUPELCO. Anhydrous pyridine ($\geq 99\%$) was purchased from EMD Millipore
88 Corporation. Isopropyl alcohol (IPA, 99.5%) was purchased from VWR Analytical. Methanol
89 (99.9%) and acetonitrile (ACN, 99.95%) were purchased from Fisher Scientific. O-(2,3,4,5,6-
90 pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA, $\geq 98\%$) was purchased from Sigma
91 Aldrich.

92 **2.2. Sample collection for chemical analysis.** The vape pen (Max Battery) was connected to an
93 authentic CCell cartridge (510 thread, 0.5 mL, TH205, $1.4\ \Omega$) filled with individual liquid diluents
94 and operated under 3.6 V (i.e., 9.26 watt). The cartridge is equipped with a wick that has a ceramic
95 core with a nichrome wire to activate the core. The cartridge has a ceramic mouthpiece and
96 transparent glass window. Before each collection, the vape pen was pre-conditioned by taking
97 three puffs. Gases and aerosols produced from different liquid diluents were collected at room
98 temperature in a 30 mL impinger, each containing 15 mL of isopropyl alcohol (IPA), acetonitrile
99 (ACN), or o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) aqueous
100 solution (4 mg/mL). One puff was 4 s followed by 60 s rest time to avoid overheating the pen.
101 Total 10 puffs were collected for chemical analysis. The flow rate was controlled by a 0.18 lpm
102 critical orifice connected to a mini diaphragm pump (YW02-DC24, Changzhou Yuanwang
103 Technology). The chemical composition of unvaped liquid diluents and collected vaping emission
104 condensates were analyzed by GC/EI-MS and ESI-Q-TOF-MS. Samples collected in IPA and
105 ACN were directly injected to GC/EI-MS and Q-TOF-MS, respectively. A fraction of vaping
106 emission samples collected in ACN were derivatized with N,O-
107 bis(trimethylsilyl)trifluoroacetamide (BSTFA) prior to GC/EI-MS analysis to identify products

108 containing hydroxyl functional groups.¹⁹ Samples collected in aqueous PFBHA solutions were
109 extracted by hexane before GC/EI-MS analysis to identify carbonyl-containing compound.²⁰
110 Details of derivatization and GC/EI-MS analysis are given in the Sections 2.4-2.6. To determine
111 the collection efficiency of the impinger, two impingers were connected in tandem to determine
112 the breakthrough of samples. 10 μ L 4-fluorobenzaldehyde (2 μ g/ μ L) was added as an internal
113 standard to each impinger before collection. Note that 4-fluorobenzaldehyde can be detected
114 directly by GC/EI-MS without derivatization with fragments of *m/z* 51, 75, 95, 123, and 124. The
115 overall collection efficiency of impinger was estimated to be 98.9%-100% by comparing the
116 normalized peak areas of several target analytes in the front and back impinger samples (Table S1).
117 Peak areas of impingers samples were normalized by that of 4-fluorobenzaldehyde. The aerosol
118 collection efficiency was determined to be ~80% by comparing the particle size and volume
119 distribution in the inflow and outflow of the impinger collection system (Figure S1).

120 **2.3. Sample collection for cell exposure.** Before each collection, the vape pen was preconditioned
121 by taking three puffs. For the cell viability and cytotoxicity assays, 100 puffs of vaping emissions
122 were collected into an impinger filled with 15 mL of LHC-9 media (Gibco, Invitrogen). The total
123 consumption of liquid diluents for 100 puffs were shown in Table 1.

124 **2.4. BSTFA derivatization.** 50-100 μ L of impinger samples collected with ACN were reacted
125 with 50 μ L BSTFA and 50 μ L pyridine at 70 °C for one hour. The reaction mixtures were
126 subsequently analyzed by GC/EI-MS.

127 **2.5. PFBHA derivatization.** The PFBHA derivatization procedures were modified from those
128 published by Yu et al.²⁰ As mentioned earlier, 4-fluorobenzaldehyde (10 μ L of 2 μ g/ μ L solution)
129 was added as an internal standard to the impinger before the sample collection. The samples were
130 allowed to react with PFBHA for 24 h before the addition of 0.3 mL 6N HCl. Then, 3 mL of

131 hexane was added to extract the pentfluorobenzyl oxime derivatives from reaction of carbonyls
132 with PFBHA, followed by the addition of about 50 mg of Na₂SO₄ to remove water. Then, samples
133 were transferred to GC vials and analyzed by GC/EI-MS.

134 **2.6. GC/EI-MS analysis.** The detailed procedures for GC/EI-MS analysis have been reported in
135 our previous studies.²¹ The impinger samples were analyzed by an Agilent 6890N GC coupled
136 with 5975 MSD using electron ionization (EI) technique. 5 μ L of each sample was programmed
137 to be injected to a separation column (J&W Scientific DB-5, 30 m \times 0.25 mm i.d., 0.25 μ m film).
138 The same GC temperature profile was used for both PCI and EI analysis. The temperature of GC
139 was set at 60 °C for 1 min, ramped up to 200 °C with a rate of 3 °C min⁻¹, held at 200 °C for 2 min,
140 ramped up to 310 °C with a rate of 20 °C min⁻¹, and finally held at 310 °C for 10 min. The solvent
141 delay time was tuned for different solvent, i.e., 10.5 min for samples containing BSTFA and 4 min
142 for other solvents. Compound identification was performed using the NIST 2014 mass spectral
143 database. Compounds with a matching rate larger than 40% were reported in Table S2-8.

144 For VE and VEA samples, three replicates were conducted for each diluent. Also, 10 μ L of 1
145 μ g/ μ L acenaphthene-d10 was added as an internal standard to each sample before collection. The
146 concentrations of duroquinone and durohydroquinone were calibrated using corresponding
147 standards. Note that both duroquinone and durohydroquinone can be detected by GC/EI-MS
148 without derivatization, but GC/EI-MS has much higher sensitivity for duroquinone than
149 durohydroquinone. As shown in Figure S2, duroquinone was identified with EI fragment of m/z
150 54, 93, 121, 136, and 164. Durohydroquinone was identified with fragments of m/z 123, 151, and
151 166.

152 **2.7. ESI-Q-TOF-MS analysis.** Impinger samples collected with ACN were directly introduced to
153 the quadrupole-time of flight-mass spectrometer (Q-TOF-MS, Agilent 6545) using a syringe pump.

154 The flow rate of the syringe pump was 0.2 mL/min. The obtained data files were analyzed using
155 the Agilent MassHunter Qualitative Analysis software. Compounds with relative abundance >5%
156 and measured *m/z* difference from theoretical *m/z* < 2 mDa from were reported in Table S9-15.

157 **2.8. Cell culture.** Human bronchial epithelial cells (BEAS-2B) were obtained from the American
158 Type Culture Collection (ATCC). The BEAS-2B cell line was derived from normal bronchial
159 epithelium obtained from autopsy of non-cancerous individuals and immortalized using a
160 replication-defective SV40/adenovirus 12 hybrid.²² Cells were cultured in LHC-9 medium and
161 grown at 37°C and 5% CO₂ in a humidified incubator. Cells were cultured in T-75 flasks at a
162 density of 3×10⁵ cells/flask. The cell medium was replaced every other day. Upon 80-90%
163 confluence, cells were harvested using phosphate-buffered saline (PBS) for washing and incubated
164 with 4 mL of 0.25% trypsin EDTA/PBS for 3 min at 37 °C to allow detachment. Cells were seeded
165 in 96-well plates at a density of 5 × 10³ cells per well in 100 µL of LHC-9 medium for 24 hours
166 prior to exposure. At the time of exposure, cells reached a 60–70% confluence. Cells were washed
167 with PBS and then exposed to unvaped liquid diluents and vaping emission samples for 48 hours.²²,
168 ²³ The stock solution of unvaped oil solutions were prepared directly in LHC-9 medium. For SQL,
169 VE, VEA and MCT, 1% v/v DMSO was added to the stock solution increase the solubility. The
170 stock solutions were then diluted using LHC-9 medium into 18 different concentrations with 2-
171 fold dilution. The vaping emission samples collected by the impinger were also diluted into 18
172 different concentrations before applied to the cell exposure. Cells exposed to only media were
173 included as negative controls. 1% v/v DMSO was used as the vehicle control and no significant
174 cytotoxicity was observed.

175 **2.9. Cell Viability (XTT) and Cytotoxicity (LDH) Assays.** The cellular toxicity of unvaped
176 liquid diluents and their vaping emissions was determined using 3-bis-(2-methoxy-4-nitro-5-

177 sulphenyl)-(2H)-tetrazolium-5-carboxanilide (XTT) and lactate dehydrogenase (LDH) assays.
178 Treatments were performed with serial two-fold dilutions in 96-well plates. Unexposed cells were
179 included as negative controls. The highest concentration contained 10 μ L-consumed oil/ μ L-cell
180 media for unvaped liquid diluents and 100 puffs/15 mL solutions of collected the vaping emission
181 samples (Table 1). Cells were exposed for 48 h before the XTT and LDH assays were performed.
182 The XTT assay is based on the conversion of the water-soluble XTT reagent to an orange formazan
183 product by metabolically active cells. The fluorometric LDH assay was performed to assess the
184 cell membrane integrity and cytotoxicity of cells, following the CytoTox-ONE™ homogeneous
185 membrane integrity assay protocol (Promega). Triton X-100 (0.1%) was used as a positive control
186 to simulate 100% cell death. The absorbance for XTT assay was measured using a TECAN
187 SpectraFluor Plus microplate reader at 490 nm, with a reference wavelength at 620 nm. The
188 fluorescence for LDH assay (excitation 560/emission 590 nm) was also measured with the same
189 plate reader.

190 **3. RESULTS AND DISCUSSIONS.**

191 Overall, the results revealed significant changes in chemical composition and a shift of cellular
192 toxicity in cells exposed to vaping emission condensates compared to the unvaped liquid diluents,
193 supporting our hypothesis that toxic byproducts formed during the vaping process are important
194 to induce vaping-associated health effects. Combining information from Figure 1, Table S2-8
195 (GC/EI-MS) and Table S9-15 (ESI-Q-TOF-MS), the chemical compositions of vaping emission
196 products are very different from their parent liquid diluents, showing formation of new products
197 in vaping emissions. The detected new products include carbonyls, alkyl alcohols, esters,
198 carboxylic acids and short chain alkanes, likely resulting from thermal decomposition and
199 oxidation of liquid diluents. Along with changes in chemical composition, a large decrease of cell

200 viability measured by the XTT assay was observed for most vaping emissions compared to
201 unvaped liquid diluents (Figure 2A), except for TEC that showed similar cellular response to both
202 vaping emissions and its unvaped precursor. An increase of LDH release that acts as an indicator
203 of damaged cell membrane integrity was observed for cells exposed to MCT, SQL, and VE vaping
204 emission products.

205 **3.1. PG and VG.** The chemical compositions of PG and VG oil changed significantly after vaping.
206 We observed a series of oligomers in unvaped PG oil but only C₆H₁₄O₃ in its vaping emissions
207 (Figure 1). A dimer C₆H₁₂O₄ was detected in both unvaped and vaped VG. Oligomers were also
208 reported in particles emitted from PG and VG vaping previously by Escobar et al.²⁴ Various
209 carbonyls were generated from the vaping emissions of PG, including acetaldehyde, acetone,
210 propionaldehyde, 1,3-dihydroxypropanone, and 2-oxopropanal (Table S2). Seven different
211 carbonyls were detected from vaping emissions of VG, including formaldehyde, acetaldehyde,
212 acetone, 1,2-dihydroxypropanone, oxalaldehyde, 2-oxopropanal, and pentane-2,4-dione (Table
213 S3). The production of carbonyls from the vaping of PG and VG may contribute to the increased
214 cellular toxicity (i.e., left-shift in the concentration-response curve) as measured by the XTT assay
215 (Figure 2A). Note that VG has higher viscosity, which causes thicker cloud production during
216 vaping.¹⁸ The fluid starvation in the wick may lead to the “dry puff” conditions (i.e., overheating
217 of the coil) and result in increased production of carbonyls.⁸ Thus, the vaping emission products
218 from neat (100%) VG may not represent the vaping scenarios when blends of PG and VG mixture
219 are used as vaping liquids.

220 **3.2. MCT oil and SQL.** For MCT oil that contains mostly glycerol tricaprylate, dinonaoiin
221 monocaprylin, and 1,2,3-propanetriyl ester decanoic acid, and SQL that has a long alkyl chain (not
222 detectable in Figure 1 because it cannot be ionized efficiently within the ESI), these unvaped oils

223 did not induce obvious loss of cell viability or lead to damaged cell membrane integrity. However,
224 the liquid diluents transformed substantially after vaping. Short chains esters (e.g., n-octanoic acid
225 isopropyl ester, methyl ester decanoic acid, and i-propyl decanoate) and short chains alkanes (e.g.,
226 e-theyl-octane, 2,6,10- trimethyl-dodecane and 2,6,10,15-tetramethyl heptadecane) were produced
227 from the vaping of MCT oil (Table S4) and SQL (Table S5), respectively. Also, short chain
228 carbonyls were found in both MCT (e.g., formaldehyde, 2-butanone, 2-pentanone, and n-heptanal)
229 and SQL (e.g., 3-methylpentanal and n-nonanal) vaping emissions. Notably, alkyl alcohols were
230 also observed, 2-tridecan-1-ol in vaping emissions of MCT oil and 6,10,14-trimethyl-pentadecan-
231 2-ol in vaping emissions of SQL. These alcohols are surfactant-like, with a nonpolar hydrophobic
232 tail (i.e., the alkyl group) and a polar hydrophilic head (i.e., the hydroxyl group). It has been
233 reported that alkyl alcohols can elicit a number of cellular responses that are potentially cytotoxic
234 and can affect membrane structure and compromise cell function.²⁵ The production of oxygenated
235 products (e.g., esters and carbonyls) from vaping of MCT oil and SQL may contribute to the
236 observed decrease in cell viability compared to the parent compounds (Figure 2A). The production
237 of alkyl alcohols in vaping emissions of MCT oil and SQL may explain the elevated LDH release
238 shown in Figure 2B when cells were exposed to vaping emission samples with concentrations \geq
239 6.9×10^{-2} % v/v for SQL and $\geq 2.8 \times 10^{-4}$ % v/v for MCT oil vaping emission samples, respectively.

240 **3.3. VE and VEA.** Unvaped VE and VEA also did not show notable cell death. However, a sharp
241 decrease in cell viability was seen after vaping (Figure 2A). We detected oligomers in unvaped
242 VE oil (Figure 1) but not in the VE vaping emission samples. Degradation and oxidation
243 compounds such as acetone and 3,7,11-trimethyl-1-dodecanol were observed in vaping emissions
244 from VE and VEA. It has been reported that exposure to acetone can lead to irritation to respiratory
245 tract and oxidative stress.²⁶ As a long chain alcohol, 3,7,11-trimethyl-1-dodecanol could increase

246 cell membrane permeability and cytotoxicity of vaping emissions, which may explain the slight
247 increase of LDH release from cells exposed to vaping samples (Figure 2B).

248 Most importantly, we observed quinone-like compounds from the vaping of VE and VEA
249 (Figure 3, Table S6-7, and Figure S2), with 0.89 ± 0.09 $\mu\text{g}/\text{mg}$ -diluent of duroquinone (DQ) from
250 VE vaping, and 2.45 ± 0.23 $\mu\text{g}/\text{mg}$ -diluent of DQ and 12.00 ± 1.10 $\mu\text{g}/\text{mg}$ -diluent of
251 durohydroquinone (DHQ) from VEA vaping. Since quinone-like compounds are significant
252 contributors to the generation of reactive oxygen species through redox reaction,²⁷ they might
253 explain the significant increase of cytotoxicity of VE and VEA vaping samples, acute oxidative
254 stress and the reported EVALI cases.^{3, 6, 7} The presence of DQ and DHQ has been reported in
255 previous studies,^{28, 29} but as far as we know, this is the first study to quantify the yield of DQ and
256 DHQ from vaping of VE and VEA. Future studies are warranted to further investigate the role of
257 DQ and DHQ redox couple in cellular oxidative stress and EVALI.

258 **3.4. TEC.** For TEC, we observed decomposition of the parent compound. Smaller esters were
259 detected in the vaping emissions of TEC, including diethyl ester propanedioic acid, malonic acid
260 diisopropyl ester, diethyl ester propanedioic acid, and o-acetylcitric acid triethyl ester. (Table S8)
261 These products might be formed from thermal degradation of TEC. Notably, both unvaped TEC
262 and its vaping emissions showed decreased cell viability in a concentration-dependent manner,
263 while no significant LDH release (damage to cell membrane integrity) was found for cells exposed
264 to this liquid diluent (Figure 2 A-B). We also observe a decrease of cell viability for TEC vaping
265 samples compared to unvaped TEC, but the difference was not as significant as other oils.

266 **3.5. Potential limitations.** While the study provides an improve molecular understanding
267 regarding chemical composition change after vaping and cellular toxicity, cautions should be taken
268 when interpreting these results in real-world vaping conditions. (1) The vaping topography applied

269 in the current study was not intended to mimic the real vaping scenarios, but rather to ensure high
270 collection efficiency of vaping emissions in impinger samples. This study applied a small puff
271 volume (12 ml) and a low puff frequency (1 puff/min). The puff patterns may change the chemical
272 composition of vaping emissions.^{12, 30, 31} According to the study by Beauval et al.,¹² among 6
273 measured aldehydes (formaldehyde, acrolein, acetaldehyde, propionaldehyde, acetone, and
274 methylglyoxal), the production of acrolein (ng-aldehyde/mg-consumed e-liquid) showed a
275 significant decrease with a decreased puff volume, and the generation of all these aldehydes
276 showed either a slight decrease or no significant change with the decrease of puff frequency. Thus,
277 a more realistic puff pattern should be considered for future studies to provide a more
278 representative profile of the vaping emission products. (2) In this study, the liquid diluents were
279 studied individually in an isolated system to examine the formation of new compounds from the
280 precursor. However, vaping liquids often contain various ratios of blends (e.g., PG/VG) and also
281 mixed with flavoring compounds. The emissions products from a mixture of various precursor
282 compounds will further increase the complexity when interpreting the chemical and toxicological
283 properties of vaping emissions. For example, Conklin et al. reported that with the increased of VG
284 or the decrease of PG/VG ratio, formaldehyde and acrolein in aerosols increased but acetaldehyde
285 in aerosols decreased.³² The study by Khlystov et al. reported that the flavoring compounds in e-
286 liquids dominated the production of aldehydes.¹⁰ Therefore, in future studies the mixture effects
287 of diluents and flavoring compounds in e-liquids need to be considered when comparing the
288 chemical and toxicological properties of unvaped e-liquid and vaped emissions. (3) The current
289 study only examined the acute cytotoxic effects of vaping emissions from commonly used liquid
290 diluents. The chronic effects of vaping and detailed toxicity mechanisms require further
291 investigations. (4) The emission samples collected by the impinger method included both gas and

292 aerosol phase products. The collection efficiency of impinger was only 80% for aerosols. Given
293 the high proportion of particulate toxic compounds reported by recent research,³³ further studies
294 are warranted to optimize the sample collection method for aerosol phase vaping products to more
295 accurately estimate the exposure-induced health effects.

296 **4. CONCLUSION.**

297 In summary, this study provides evidence that changes in chemical composition of liquid
298 diluents during vaping may modulate the cellular toxicity in human airway epithelial cells. In
299 particular, formation of the thermally transformed toxic byproducts (e.g., carbonyls, esters, alkyl
300 alcohols and quiones), many of which are known toxicants and carcinogens, is quite concerning.³⁴,
301 ³⁵ Given that the mechanistic understanding of vaping-related illness is still incomplete, these
302 findings highlight the urgent need to further understand the underlying molecular basis of EVALI.
303 More extensive research is warranted to evaluate sublethal toxicological endpoints to provide
304 better insights into vaping-induced long-term health effects.

305

306 **ASSOCIATED CONTENT**

307 **Supporting Information.**

308 The data used to calculate impinger collection efficiency (Table S1); The identified vaping
309 emission products from liquid diluents using GC/EI-MS analysis (Table S2-S8); The identified
310 vaping products (with relative abundance larger than 5%) from liquid diluents using ESI-Q-TOF-
311 MS analysis (Table 9-15); The particle size and volume distribution in the mainstream before and
312 after the tandem impinger collection (Figure S1); The experimental and NIST library spectrum of
313 duroquinone and durohydroquinone (Figure S2).

314

315 **ACKNOWLEDGMENTS**

316 Huanhuan Jiang is supported by the University of California, Riverside (UCR) Chancellor's
317 Postdoctoral Fellowship. Ying-Hsuan Lin gratefully acknowledges support from the UCR Faculty
318 Development Award for this research. We would like to thank Dr. Jie Zhou from UCR Department
319 of Chemistry for his assistance with the Q-TOF-MS analyses supported by NSF CHE-1828782.

320

321 **ABBREVIATIONS**

322 PFBHA: o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride; BSTFA: N,O-
323 bis(trimethylsilyl)trifluoroacetamide; PG: propylene alcohol; VG: vegetable glycerin; MCT:
324 medium-chain triglyceride oil; SQL: squalene; TEC: triethyl citrate; VE: vitamin E; VEA: vit-
325 amin E acetate.

326 **References.**

327 (1) Benowitz, N. L. (2020) Seizures After Vaping Nicotine in Youth: A Canary or a Red
328 Herring? *J. Adolesc. Health* 66, 1-2.

329 (2) (2020) Outbreak of Lung Injury Associated with the Use of E-Cigarette, or Vaping,
330 Products, In *MMWR Morb Mortal Wkly Rep*, Centers for Disease Control and Prevention.

331 (3) King, B. A., Jones, C. M., Baldwin, G. T., and Briss, P. A. (2020) The EVALI and Youth
332 Vaping Epidemics — Implications for Public Health. *N. Engl. J. Med.* 382, 689-691.

333 (4) Davidson, K., Brancato, A., Heetderks, P., Mansour, W., Mattheis, E., Nario, M.,
334 Rajagopalan, S., Underhill, B., Wninger, J., and Fox, D. (2019) Outbreak of Electronic-
335 Cigarette-Associated Acute Lipoid Pneumonia - North Carolina, July-August 2019.
336 *MMWR Morb Mortal Wkly Rep* 68, 784-786.

337 (5) Lewis, N., McCaffrey, K., Sage, K., Cheng, C.-J., Green, J., Goldstein, L., Campbell, H.,
338 Ferrell, D., Malan, N., LaCross, N., Maldonado, A., Board, A., Hanchey, A., Harris, D.,
339 Callahan, S., Aberegg, S., Risk, I., Willardson, S., Carter, A., Nakashima, A., Duncan, J.,
340 Burnett, C., Atkinson-Dunn, R., and Dunn, A. (2019) E-Cigarette Use, or Vaping,
341 Practices and Characteristics Among Persons with Associated Lung Injury - Utah, April-
342 October 2019. *MMWR Morb Mortal Wkly Rep* 68, 953-956.

343 (6) Blount, B. C., Karwowski, M. P., Shields, P. G., Morel-Espinosa, M., Valentin-Blasini,
344 L., Gardner, M., Braselton, M., Brosius, C. R., Caron, K. T., Chambers, D., Corstvet, J.,
345 Cowan, E., De Jesús, V. R., Espinosa, P., Fernandez, C., Holder, C., Kuklenyik, Z.,
346 Kusovschi, J. D., Newman, C., Reis, G. B., Rees, J., Reese, C., Silva, L., Seyler, T.,
347 Song, M.-A., Sosnoff, C., Spitzer, C. R., Tevis, D., Wang, L., Watson, C., Wewers, M.
348 D., Xia, B., Heitkemper, D. T., Ghinai, I., Layden, J., Briss, P., King, B. A., Delaney, L.

349 J., Jones, C. M., Baldwin, G. T., Patel, A., Meaney-Delman, D., Rose, D., Krishnasamy,
350 V., Barr, J. R., Thomas, J., and Pirkle, J. L. (2020) Vitamin E Acetate in
351 Bronchoalveolar-Lavage Fluid Associated with EVALI. *N. Engl. J. Med.* 382, 697-705.

352 (7) Christiani, D. C. (2020) Vaping-Induced Acute Lung Injury. *N. Engl. J. Med.* 382, 960-
353 962.

354 (8) Farsalinos, K. E., Voudris, V., and Poulas, K. (2015) E-Cigarettes Generate High Levels
355 of Aldehydes Only in 'Dry Puff' Conditions. *Addiction* 110, 1352-1356.

356 (9) Samburova, V., Bhattacharai, C., Strickland, M., Darrow, L., Angermann, J., Son, Y., and
357 Khlystov, A. (2018) Aldehydes in Exhaled Breath during E-Cigarette Vaping: Pilot Study
358 Results. *Toxics* 6, 46.

359 (10) Khlystov, A., and Samburova, V. (2016) Flavoring Compounds Dominate Toxic
360 Aldehyde Production during E-Cigarette Vaping. *Environ. Sci. Technol.* 50, 13080-
361 13085.

362 (11) Qu, Y., Szulejko, J. E., Kim, K.-H., and Jo, S.-H. (2019) The Effect of Varying Battery
363 Voltage Output on the Emission Rate of Carbonyls Released from E-Cigarette Smoke.
364 *Microchem. J.* 145, 47-54.

365 (12) Beauval, N., Verrièle, M., Garat, A., Fronval, I., Dusautoir, R., Anthérieu, S., Garçon, G.,
366 Lo-Guidice, J.-M., Allorge, D., and Locoge, N. (2019) Influence of Puffing Conditions
367 on the Carbonyl Composition of E-Cigarette Aerosols. *Int. J. Hyg. Envir. Heal.* 222, 136-
368 146.

369 (13) Son, Y., Wackowski, O., Weisel, C., Schwander, S., Mainelis, G., Delnevo, C., and
370 Meng, Q. (2018) Evaluation of E-Vapor Nicotine and Nicotyrine Concentrations under

371 Various E-Liquid Compositions, Device Settings, and Vaping Topographies. *Chem. Res.*
372 *Toxicol.* 31, 861-868.

373 (14) Saliba, N. A., El Hellani, A., Honein, E., Salman, R., Talih, S., Zeaiter, J., and Shihadeh,
374 A. (2018) Surface Chemistry of Electronic Cigarette Electrical Heating Coils: Effects of
375 Metal Type on Propylene glycol Thermal Decomposition. *J. Anal. Appl. Pyrolysis.* 134,
376 520-525.

377 (15) Clapp, P. W., and Jaspers, I. (2017) Electronic Cigarettes: Their Constituents and
378 Potential Links to Asthma. *Curr. Allergy Asthma. R.* 17, 79.

379 (16) Lerner, C. A., Sundar, I. K., Yao, H., Gerloff, J., Ossip, D. J., McIntosh, S., Robinson, R.,
380 and Rahman, I. (2015) Vapors Produced by Electronic Cigarettes and E-Juices with
381 Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung
382 Epithelial Cells and in Mouse Lung. *PLOS ONE* 10, e0116732.

383 (17) Orellana-Barrios, M. A., Payne, D., Mulkey, Z., and Nugent, K. (2015) Electronic
384 Cigarettes—A Narrative Review for Clinicians. *Am. J. Med.* 128, 674-681.

385 (18) Li, Q., Zhan, Y., Wang, L., Leischow, S. J., and Zeng, D. D. (2016) Analysis of
386 Symptoms and Their Potential Associations with E-liquids' Components: A Social Media
387 Study. *BMC Public Health* 16, 674.

388 (19) Jiang, H., Frie, A. L., Lavi, A., Chen, J. Y., Zhang, H., Bahreini, R., and Lin, Y.-H.
389 (2019) Brown Carbon Formation from Nighttime Chemistry of Unsaturated Heterocyclic
390 Volatile Organic Compounds. *Environ. Sci. Technol. Lett.* 6, 184-190.

391 (20) Yu, J., Jeffries, H. E., and Le Lacheur, R. M. (1995) Identifying Airborne Carbonyl
392 Compounds in Isoprene Atmospheric Photooxidation Products by Their PFBHA Oximes

393 Using Gas Chromatography/Ion Trap Mass Spectrometry. *Environ. Sci. Technol.* 29,
394 1923-1932.

395 (21) Chen, J. Y., Jiang, H., Chen, S. J., Cullen, C., Ahmed, C. M. S., and Lin, Y.-H. (2019)
396 Characterization of Electrophilicity and Oxidative Potential of Atmospheric Carbonyls.
397 *Environ. Sci. Processes Impacts* 21, 856-866.

398 (22) Reddel, R. R., Ke, Y., Gerwin, B. I., McMenamin, M. G., Lechner, J. F., Su, R. T., Brash,
399 D. E., Park, J.-B., Rhim, J. S., and Harris, C. C. (1988) Transformation of Human
400 Bronchial Epithelial Cells by Infection with SV40 or Adenovirus-12 SV40 Hybrid Virus,
401 or Transfection via Strontium Phosphate Coprecipitation with a Plasmid Containing
402 SV40 Early Region Genes. *Cancer Res.* 48, 1904-1909.

403 (23) Ahmed, C. M. S., Yang, J., Chen, J. Y., Jiang, H., Cullen, C., Karavalakis, G., and Lin,
404 Y.-H. (2020) Toxicological Responses in Human Airway Epithelial Cells (BEAS-2B)
405 Exposed to Particulate Matter Emissions from Gasoline Fuels with Varying Aromatic and
406 Ethanol Levels. *Sci. Total Environ.* 706, 135732.

407 (24) Escobar, Y.-N. H., Nipp, G., Cui, T., Petters, S. S., Surratt, J. D., and Jaspers, I. (2020) In
408 Vitro Toxicity and Chemical Characterization of Aerosol Derived from Electronic
409 Cigarette Humectants Using a Newly Developed Exposure System. *Chem. Res. Toxicol.*
410 (25) Baker, R. C., and Kramer, R. E. (1999) Cytotoxicity of Short-Chain Alcohols. *Annu. Rev.*
411 *Pharmacol. Toxicol.* 39, 127-150.

412 (26) Dalton, P., Wysocki, C. J., Brody, M. J., and Lawley, H. J. (1997) Perceived Odor,
413 Irritation, and Health Symptoms Following Short-term Exposure to Acetone. *Am. J. Ind.*
414 *Med.* 31, 558-569.

415 (27) Linhartova, P., Gazo, I., Shaliutina, A., and Hulak, M. (2013) The In Vitro Effect of
416 Duroquinone on Functional Competence, Genomic Integrity, and Oxidative Stress
417 Indices of Sterlet (*Acipenser Ruthenus*) Spermatozoa. *Toxicol. in Vitro* 27, 1612-1619.

418 (28) Duffy, B., Li, L., Lu, S., Durocher, L., Dittmar, M., Delaney-Baldwin, E., Panawennage,
419 D., LeMaster, D., Navarette, K., and Spink, D. (2020) Analysis of Cannabinoid-
420 Containing Fluids in Illicit Vaping Cartridges Recovered from Pulmonary Injury Patients:
421 Identification of Vitamin E Acetate as a Major Diluent. *Toxics* 8, 8.

422 (29) Wu, D., and O'Shea, D. F. (2020) Potential for Release of Pulmonary Toxic Ketene from
423 Vaping Pyrolysis of Vitamin E Acetate. *Proc. Natl. Acad. Sci.* 117, 6349-6355.

424 (30) Zhao, J., Nelson, J., Dada, O., Pyrgiotakis, G., Kavouras, I. G., and Demokritou, P.
425 (2018) Assessing Electronic Cigarette Emissions: Linking Physico-chemical Properties to
426 Product Brand, E-liquid Flavoring Additives, Operational Voltage and User Puffing
427 Patterns. *Inhal. Toxicol.* 30, 78-88.

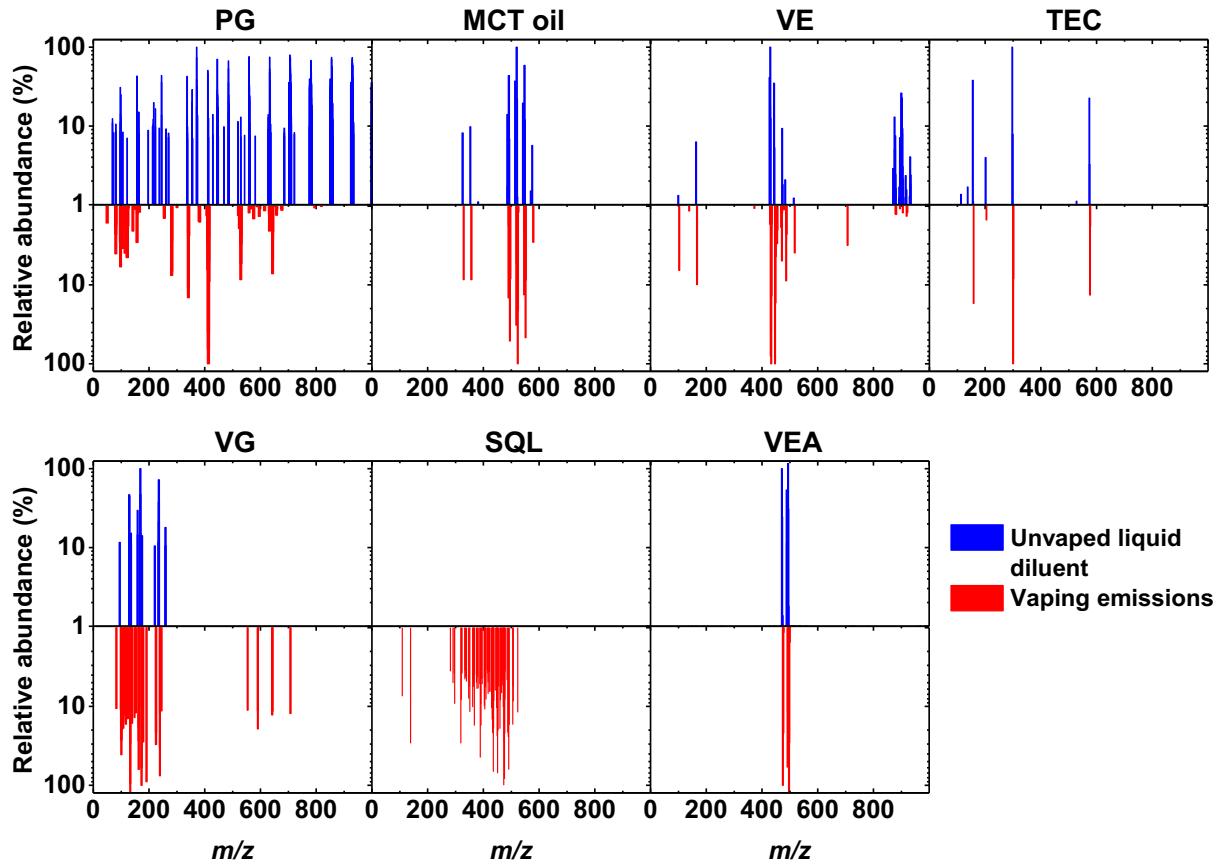
428 (31) McClure, E. A., Stitzer, M. L., and Vandrey, R. (2012) Characterizing Smoking
429 Topography of Cannabis in Heavy Users. *Psychopharmacology* 220, 309-318.

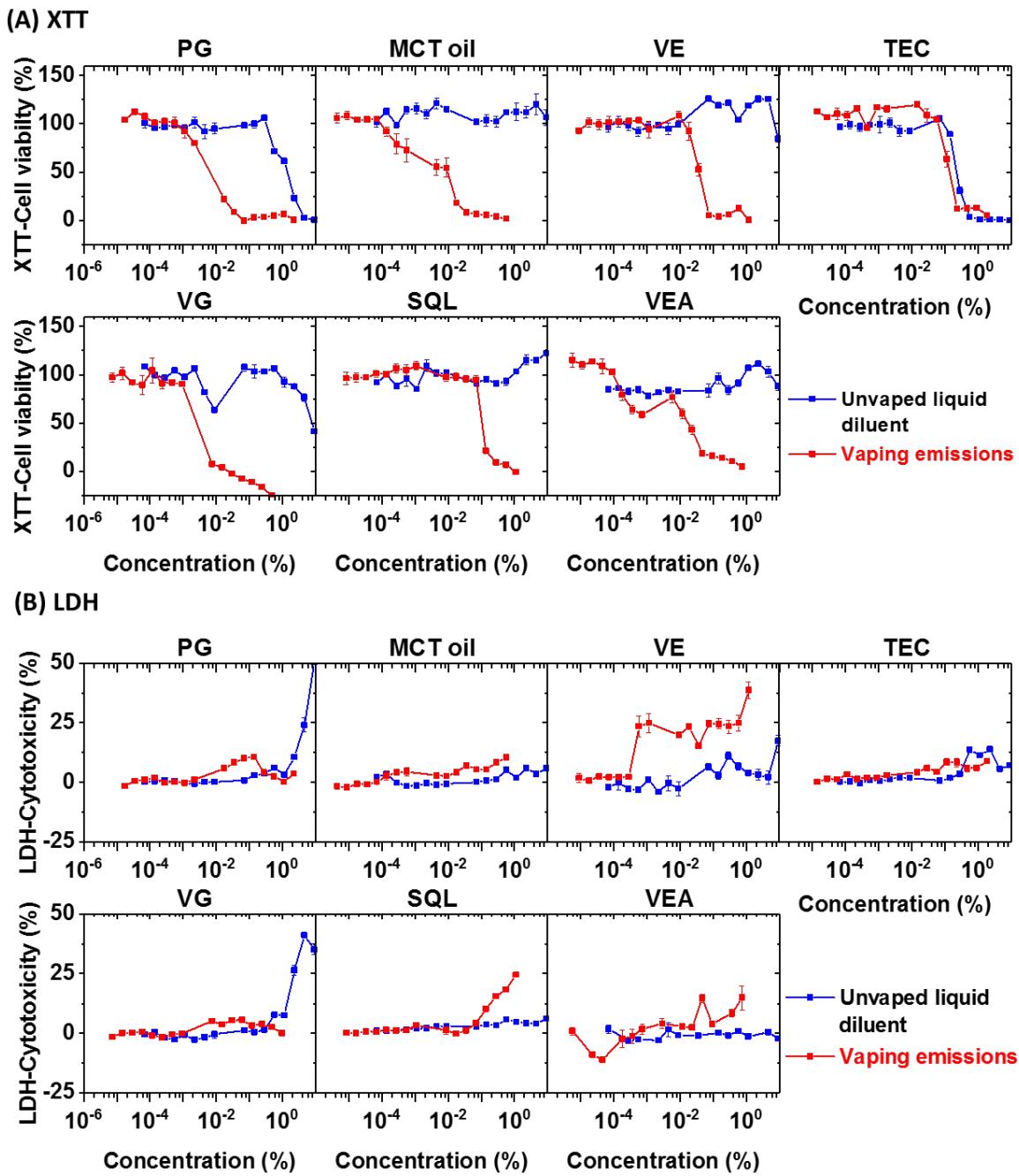
430 (32) Conklin, D. J., Ogunwale, M. A., Chen, Y., Theis, W. S., Nantz, M. H., Fu, X.-A., Chen,
431 L.-C., Riggs, D. W., Lorkiewicz, P., Bhatnagar, A., and Srivastava, S. (2018) Electronic
432 cigarette-generated aldehydes: The contribution of e-liquid components to their formation
433 and the use of urinary aldehyde metabolites as biomarkers of exposure. *Aerosol Sci
434 Technol* 52, 1219-1232.

435 (33) Uchiyama, S., Noguchi, M., Sato, A., Ishitsuka, M., Inaba, Y., and Kunugita, N. (2020)
436 Determination of Thermal Decomposition Products Generated from E-Cigarettes. *Chemi.
437 Res. Toxicol.* 33, 576-583.

438 (34) Feron, V. J., Til, H. P., de Vrijer, F., Woutersen, R. A., Cassee, F. R., and van Bladeren,
439 P. J. (1991) Aldehydes: Occurrence, Carcinogenic Potential, Mechanism of Action and
440 Risk Assessment. *Mutat. Res. Genet. Toxicol.* 259, 363-385.

441 (35) Grafström, R. C. (1990) In Vitro Studies of Aldehyde Effects Related to Human
442 Respiratory Carcinogenesis. *Mutat. Res. Rev. Genet. Toxicol.* 238, 175-184.


443

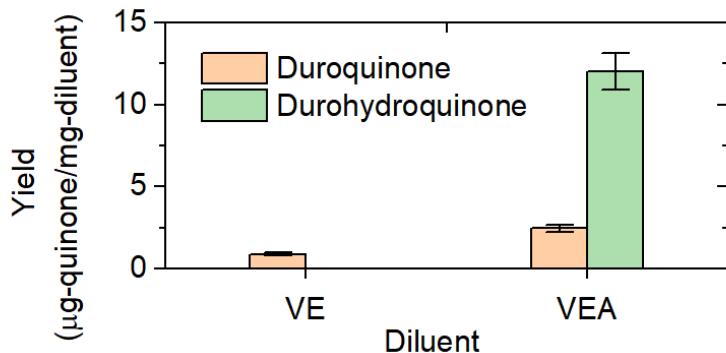

444
445**Table 1.** Details of vaped sample collection for cell exposure

Oil	Structure	Puff numbers	Total volume of oil consumed (μL)	The highest equivalent concentration of liquid diluents in cell media ($\mu\text{L}\text{-consumed oil}/\mu\text{L}\text{-media}$)
PG		100	346	2.3 %
VG		100	146	1.0 %
MCT *		100	88	0.6 %
SQL		100	169	1.1 %
VE		100	179	1.2 %
VEA		100	113	0.7 %
TEC		100	282	1.8 %

446

* One of three major compounds present in the mixture of MCT oil. Detailed information can be found in Table S4.

451


452 **Figure 2.** Cell viability and cytotoxicity curves for BEAS-2B cells treated with unvaped liquid

453 diluents and viscosity enhancers and vaping emissions measured with (A) XTT assay and (B) LDH

454 assay. The y axis shows the cell viability as a percentage of the untreated control (negative control).

455 Each point is denoted as the mean \pm standard error of the mean (SEM) from triplicate

456 measurements.

458 **Figure 3.** The production of duroquinone and durohydroquinone from the vaping of vitamin E and
459 vitamin E acetate. The consumption of oil (mg) is the total mass decrease of cartridge after vaping.
460 The error bar is the standard error of the mean (SEM) from measurements in triplicate.

Supporting Information

Chemical and toxicological characterization of vaping emission products from commonly used vape juice diluents

Huanhuan Jiang ^{†‡}, C. M. Sabbir Ahmed [§], Thomas J. Martin [¶], Alexa Canchola [§], Iain W. H. Oswald [¶], Jose Andres Garcia [‡], Jin Y. Chen [§], Kevin A. Koby [¶], Anthony J. Buchanan [⊥], Zixu Zhao [#], Haofei Zhang [#], Kunpeng Chen [†], and Ying-Hsuan Lin ^{†§*}

[†] Department of Environmental Sciences, University of California, Riverside, California 92521, United States

[‡] Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States

[§] Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States

[¶] Abstrax Tech, 15550 Rockfield Blvd, Suite B120, Irvine, California 92618, United States

[⊥] SepSolve Analytical Ltd., 4 Swan Court, Forder Way, Peterborough Cambridgeshire, PE7 8GX, United Kingdom

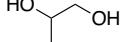
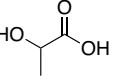
[#] Department of Chemistry, University of California, Riverside, California 92521, United States

* Phone: +1-951-827-3785, Email: ying-hsuan.lin@ucr.edu

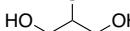
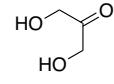
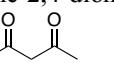
Number of pages: 19

Number of tables: 15

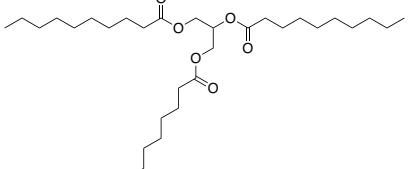
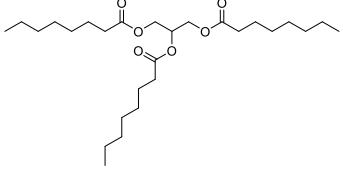
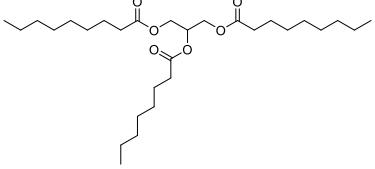
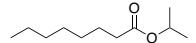
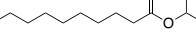
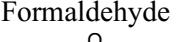
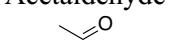
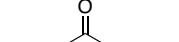
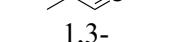
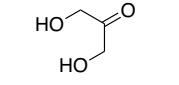
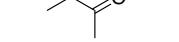
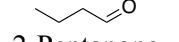
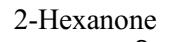
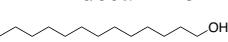
Number of figures: 2



Table S1. The peak areas of selected compounds normalized to the peak area of 4-fluorobenzaldehyde (as an internal standard) in the front and back impingers.

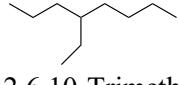
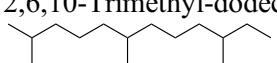
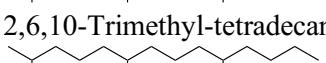
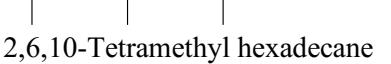
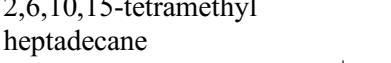
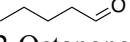
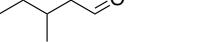
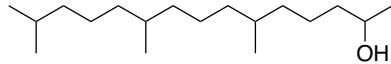
	Selected m/z for EIC*	Front impinger	Back impinger	Collection efficiency
Duroquinone	121	1.7	Below detection limit	100%
Diethyl ester propanedioic acid	133	19.2	Below detection limit	100%
Vitamin E	430	476.5	2.5	99.5%
Formaldehyde	181	722.0	7.7	98.9%




*EIC: extracted ion chromatogram

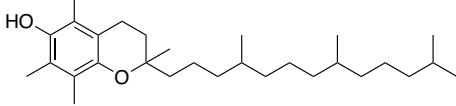
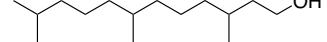
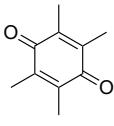
Note: The m/z =123 (without derivatization) or 319 (with PFBHA derivatization) was selected to determine the peak area of 4-fluorobenzaldehyde.















Table S2. Identified vaping emission products from PG using GC/EI-MS analysis

Liquid Diluent	Carbonyls	Products with hydroxyl groups
Propylene glycol 	Acetaldehyde Acetone Propionaldehyde 1,3-Dihydroxypropanone 2-oxopropanal 	Propanoic acid









Table S3. Identified vaping emission products from VG using GC/EI-MS analysis

Liquid Diluent	Carbonyls	Products with hydroxyl groups
Vegetable glycerin 	<p>Formaldehyde </p> <p>Acetaldehyde </p> <p>Acetone </p> <p>1,3-Dihydroxypropanone </p> <p>oxalaldehyde </p> <p>2-oxopropanal </p> <p>pentane-2,4-dione </p>	Not detectable except the parent compound.




Table S4. Identified vaping emission products from MCT oil using GC/EI-MS analysis

Liquid Diluent	Esters	Carbonyls	Products with hydroxyl groups
MCT oil Propanetriyl-1,2,3-triyl tris (decanoate) Glycerol tricaprylate Dinonanoin monocaprylin 	n-Octanoic acid isopropyl ester Methyl ester decanoic acid i-Propyl decanoate 	Formaldehyde Acetaldehyde Acetone Propionaldehyde 1,3-Dihydroxypropanone 2-Butanone n-Butanal 2-Pentanone n-Pentanal n-Hexanal 2-Hexanone 2-Heptanone n-Heptanal 	n-Tridecan-1-ol

Table S5. Identified vaping emission products from SQL using GC/EI-MS analysis

Liquid Diluent	Alkanes	Carbonyls
Squalane	4-ethyl-octane 2,6,10-Trimethyl-dodecane 2,6,10-Trimethyl-tetradecane 2,6,10-Tetramethyl hexadecane 2,6,10,15-tetramethyl heptadecane 	Acetaldehyde Acetone n-Pentanal 2-Octanone 3-Methylpentanal n-Nonanal 5-Methoxy-2-pentanone
	Products with hydroxyl groups	
	6,10,14-Trimethyl-pentadecan-2-ol 	

Table S6. Identified vaping emission products from VE using GC/EI-MS analysis

Liquid Diluent	Carbonyls	Products with hydroxyl groups
Vitamin E	Acetone	3,7,11-Trimethyl-1-dodecanol
	Quinone-like products	
	Duroquinone	

Table S7. Identified vaping emission products from VEA using GC/EI-MS analysis

Liquid Diluent	Carbonyls	Products with hydroxyl groups
Vitamin E acetate 	Acetone 	Vitamin E
Quinone-like products		
	Duroquinone 	Durohydroquinone

Table S8. Identified vaping emission products from TEC using GC/EI-MS analysis

Liquid Diluent	Esters
Triethyl citrate 	<p>Diethyl ester Propanedioic acid </p> <p>Malonic acid diisopropyl ester </p> <p>Diethyl ester Propanedioic acid </p> <p><i>o</i>-Acetylcitric acid triethyl ester </p>

Table S9. Identified vaping products (with relative abundance larger than 5%) from PG ($C_3H_8O_2$) using ESI-Q-TOF-MS analysis

Unvaped PG						Vaped PG					
Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE	Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE
$C_6H_{14}O_3$	$(M+Na)^+$	157.0838	157.0835	-0.29	0	$C_6H_{14}O_3$	$(M+Na)^+$	157.0836	157.0835	-0.12	0
$C_9H_6O_3$	$(M+H)^+$	163.038	163.039	0.93	7	$C_{23}H_{16}O_3$	$(M+H)^+$	341.118	341.1172	-0.74	16
$C_6H_{10}O_5$	$(M+H)^+$	163.0601	163.0601	-0.03	2	$C_{17}H_{26}O_{10}$	$(M+Na)^+$	413.1404	413.1418	1.38	5
$C_8H_{18}O_5$	$(M+Na)^+$	217.1042	217.1046	0.44	0						
$C_{12}H_{14}O_4$	$(M+Na)^+$	245.0771	245.0784	1.28	6						
$C_{10}H_{18}O_{11}$	$(M+Na)^+$	337.0741	337.0741	0.05	2						
$C_{16}H_{18}O_{10}$	$(M+H)^+$	372.0998	372.1007	0.89	8						
$C_{18}H_{18}O_{11}$	$(M+H)^+$	411.0921	411.0922	0.06	10						
$C_{12}H_{22}O_{14}$	$(M+Na)^+$	413.0902	413.0902	-0.02	2						
$C_{30}H_{14}O_2$	$(M+Na)^+$	429.089	429.0886	-0.35	24						
$C_{31}H_{28}O_8$	$(M+H)^+$	529.1854	529.1857	0.26	18						
$C_{19}H_{28}O_{19}$	$(M+H)^+$	561.1287	561.1298	1.10	6						
$C_{41}H_{24}O_6$	$(M+Na)^+$	635.1462	635.1465	0.32	30						
$C_{22}H_{38}O_{24}$	$(M+Na)^+$	709.1653	709.1645	-0.80	4						
$C_{55}H_{26}O_6$	$(M+H)^+$	784.1824	784.1836	1.17	43						
$C_{54}H_{32}O_{11}$	$(M+H)^+$	857.203	857.2017	-1.24	39						
$C_{35}H_{46}O_{29}$	$(M+H)^+$	931.2207	931.2198	-0.99	13						

Table S10. Identified vaping products (with relative abundance larger than 5%) from VG using ESI-Q-TOF-MS analysis

Unvaped VG						Vaped VG					
Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE	Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE
C ₆ H ₁₂ O ₄	(M+Na) ⁺	171.0615	171.0628	1.32	1	C ₆ H ₁₂ O ₄	(M+Na) ⁺	171.0618	171.0628	1.00	1
						C ₁₄ H ₆ O ₅	(M+H) ⁺	135.0295	135.0288	-0.70	2
						C ₅ H ₂ O ₁₀	(M+H) ⁺	222.9713	222.9721	0.79	5
						C ₁₃ H ₁₀ O ₃	(M+Na) ⁺	237.0516	237.0522	0.66	9
						C ₂₃ H ₂₈ O ₁₂	(M+H) ⁺	497.1648	497.1654	0.56	10
						C ₃₃ H ₃₂ O ₉	(M+Na) ⁺	595.194	595.1939	-0.17	18
						C ₄₀ H ₄ O ₇	(M+H) ⁺	597.0022	597.0030	0.82	39
						C ₃₀ H ₃₂ O ₁₃	(M+Na) ⁺	623.1740	623.1735	-0.49	15
						C ₄₀ H ₇₈ O ₃	(M+Na) ⁺	629.5833	629.5843	1.03	2
						C ₃₉ H ₅₄ O ₉	(M+H) ⁺	667.3857	667.3841	-1.65	13
						C ₃₆ H ₃₆ O ₁₄	(M+H) ⁺	693.2177	693.2178	0.04	19
						C ₅₀ H ₃₄ O ₅	(M+Na) ⁺	737.2296	737.2298	0.24	34
						C ₆₀ H ₉₆ O ₈	(M+Na) ⁺	967.6983	967.6997	1.48	13

Table S11. Identified vaping products (with relative abundance larger than 5%) from MCT using ESI-Q-TOF-MS analysis

Unvaped MCT						Vaped MCT					
Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE	Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE
C ₁₉ H ₃₄ O ₄	(M+H) ⁺	327.2529	327.2530	0.13	3	C ₁₉ H ₃₄ O ₄	(M+H) ⁺	327.2528	327.2530	0.14	3
C ₂₇ H ₅₀ O ₆	(M+Na) ⁺	494.3535	494.3534	-0.11	3	C ₂₇ H ₅₀ O ₆	(M+Na) ⁺	494.3536	494.3534	-0.21	3
C ₂₉ H ₅₄ O ₆	(M+Na) ⁺	522.3853	522.3847	-0.63	3	C ₂₉ H ₅₄ O ₆	(M+Na) ⁺	522.3853	522.3847	-0.62	3
C ₃₁ H ₅₈ O ₆	(M+Na) ⁺	550.4164	550.4160	-0.46	3						

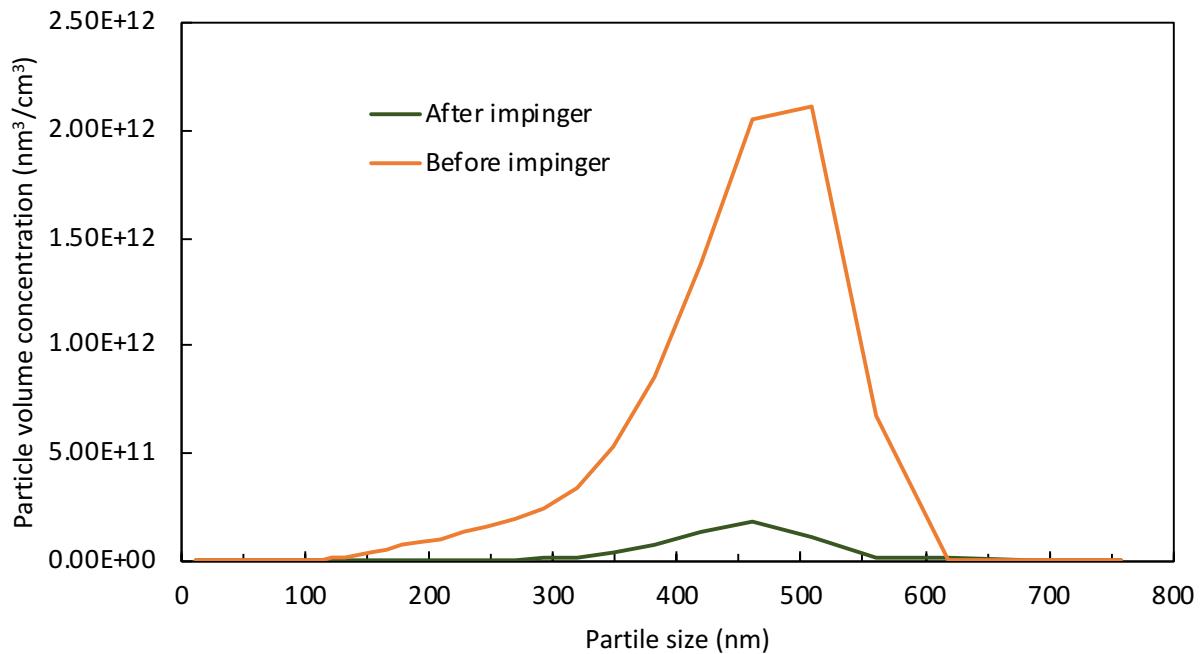
Table S12. Identified vaping products (with abundance larger than 5%) from SQL using ESI-Q-TOF-MS analysis

Unvaped SQL					Vaped SQL						
Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE	Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE
						C ₁₉ H ₃₆ O ₂	(M+H) ⁺	297.2769	297.2788	1.95	2
							(M+Na) ⁺	319.2603	319.2068	0.46	2
						C ₁₉ H ₃₄ O ₃	(M+Na) ⁺	333.2382	333.2400	1.81	3
						C ₁₉ H ₃₆ O ₃	(M+Na) ⁺	335.2550	335.2557	0.67	2
						C ₂₁ H ₄₀ O ₃	(M+Na) ⁺	363.2877	363.2870	-0.72	2
						C ₂₂ H ₄₀ O ₃	(M+Na) ⁺	375.2873	375.2870	-0.35	3
						C ₂₂ H ₄₂ O ₂	(M+H) ⁺	339.3241	339.3258	1.61	2
						C ₂₂ H ₄₄ O ₃	(M+Na) ⁺	379.3176	379.3183	0.67	1
						C ₂₂ H ₄₆ O ₂	(M+Na) ⁺	365.3388	365.3390	0.21	0
						C ₂₄ H ₄₀ O ₃	(M+H) ⁺	377.3048	377.3050	0.21	5
						C ₂₄ H ₄₆ O ₂	(M+H) ⁺	367.3555	367.3571	1.53	2
							(M+Na) ⁺	390.3423	290.3424	0.11	2
						C ₂₄ H ₄₄ O	(M+H) ⁺	349.3477	349.3465	-1.17	3
							(M+H) ⁺	409.4041	409.4040	-0.13	2
						C ₂₇ H ₅₂ O ₂	(M+Na) ⁺	431.3855	431.3860	0.50	2
						C ₂₄ H ₄₄ O ₃	(M+Na) ⁺	403.3166	403.3188	1.68	3
						C ₂₄ H ₄₆ O	(M+H) ⁺	351.3621	351.3621	0	2
						C ₂₇ H ₅₂ O ₂	(M+Na) ⁺	391.3537	391.3547	0.92	1
						C ₂₅ H ₄₈ O ₂	(M+H) ⁺	381.3708	381.3727	1.95	2
						C ₂₅ H ₅₀ O ₂	(M+Na) ⁺	405.3689	405.3703	1.42	1
						C ₂₅ H ₅₂ O ₂	(M+Na) ⁺	407.3851	407.2860	0.88	0
						C ₂₆ H ₅₀ O ₃	(M+Na) ⁺	433.3633	433.3652	1.88	2
						C ₂₇ H ₅₂ O ₃	(M+Na) ⁺	447.3798	447.3809	1.12	2
						C ₂₇ H ₅₄ O ₂	(M+Na) ⁺	433.4008	433.4016	0.79	1
						C ₂₇ H ₅₄ O ₃	(M+Na) ⁺	449.3955	449.3965	1.03	1
						C ₂₈ H ₅₂ O	(M+Na) ⁺	427.3921	427.3910	-1.08	3
						C ₂₈ H ₅₆ O	(M+Na) ⁺	431.4232	431.4223	-0.86	1
						C ₂₈ H ₅₆ O ₃	(M+Na) ⁺	463.4117	463.4122	0.45	1
						C ₂₈ H ₅₈	(M+Na) ⁺	417.4422	417.4431	0.87	0
						C ₂₈ H ₅₈ O	(M+Na) ⁺	433.4391	433.4380	-1.11	0
						C ₂₈ H ₅₈ O ₂	(M+Na) ⁺	449.4333	449.4329	-0.4	0
						C ₂₈ H ₅₈ O ₃	(M+Na) ⁺	465.4279	465.4278	-0.07	0
						C ₂₉ H ₅₄ O ₃	(M+Na) ⁺	473.3969	473.3965	-0.39	3
						C ₂₉ H ₅₆ O	(M+H) ⁺	421.4390	421.4404	1.37	2
						C ₂₉ H ₅₆ O ₂	(M+Na) ⁺	459.4155	459.4173	1.73	2

C ₃₀ H ₅₂ O	(M+H)+	429.4099	429.4091	-0.85	5
C ₃₀ H ₅₂ O ₂	(M+Na)+	467.3839	467.3860	2.00	5
C ₃₀ H ₅₆ O ₂	(M+Na)+	472.4189	472.4207	1.77	3
C ₃₀ H ₅₈ O	(M+H)+	436.4585	436.4595	0.99	2
C ₃₀ H ₅₄ O ₂	(M+H)+	447.4186	447.4197	1.06	4
	(M+Na)+	469.3999	469.4016	1.72	4
C ₃₀ H ₅₈ O ₂	(M+H)+	451.4497	451.4510	1.24	2
C ₃₀ H ₅₈ O ₃	(M+H)+	467.4442	467.4459	1.72	2
C ₃₀ H ₆₀ O ₂	(M+Na)+	476.4502	476.4520	1.78	1
C ₃₀ H ₆₀ O ₃	(M+Na)+	492.4456	492.4469	1.32	1

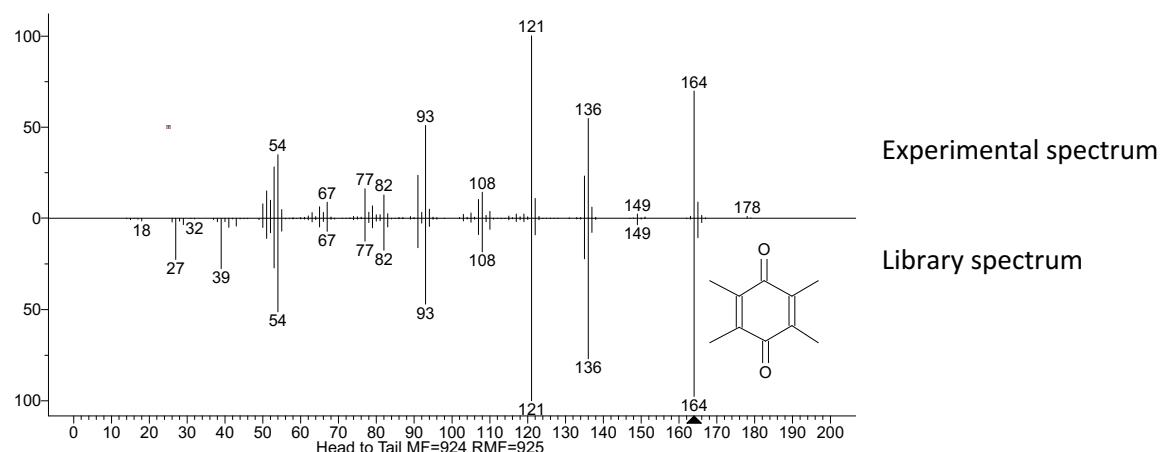
Table S13. Identified vaping products (with relative abundance larger than 5%) from VE using ESI-Q-TOF-MS analysis

Unvaped VE						Vaped VE					
Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE	Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE
C ₂₉ H ₄₈ O ₂	(M+H) ⁺	429.3723	429.3727	0.45	6	C ₆ H ₁₂ O	(M+H) ⁺	101.0955	101.0961	0.55	1
C ₂₉ H ₅₀ O ₂	(M+H) ⁺	430.3803	430.3811	-0.80	5	C ₂₉ H ₅₀ O ₂	(M+H) ⁺	430.3801	430.3811	-0.93	5
C ₂₇ H ₅₀ O ₃	(M+Na) ⁺	446.3700	446.3686	-1.39	3	C ₂₇ H ₅₀ O ₃	(M+Na) ⁺	446.3700	446.3686	-1.40	3
						C ₂₉ H ₅₀ O ₄	(M+Na) ⁺	485.3590	485.3601	1.11	5


Table S14. Identified vaping products (with relative abundance larger than 5%) from VEA using ESI-Q-TOF-MS analysis

Unvaped VEA					Vaped VEA						
Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE	Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE
C ₃₁ H ₅₂ O ₃	(M+H) ⁺	474.4027	474.4023	-0.41	6	C ₃₁ H ₅₂ O ₃	(M+H) ⁺	474.4028	474.4023	-0.48	6
	(M+Na) ⁺	496.3847	496.3843	-0.46	6		(M+Na) ⁺	496.3848	496.3843	-0.57	6

Table S15. Identified vaping products (with relative abundance larger than 5%) from TEC using ESI-Q-TOF-MS analysis


Unvaped TEC					Vaped TEC						
Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE	Proposed formula	Ion	Measured m/z	Theoretical m/z	Diff (mDa)	DBE
C ₇ H ₈ O ₄	(M+H) ⁺	157.0496	157.0495	-0.09	4	C ₇ H ₈ O ₄	(M+H) ⁺	157.0496	157.0495	-0.09	4
C ₁₂ H ₂₀ O ₇	(M+Na) ⁺	300.1132	300.1135	0.38	3	C ₁₂ H ₂₀ O ₇	(M+Na) ⁺	300.1132	300.1135	0.38	3
C ₂₄ H ₄₀ O ₁₄	(M+Na) ⁺	575.2316	575.2310	-0.61	5	C ₂₄ H ₄₀ O ₁₄	(M+Na) ⁺	575.2316	575.2310	-0.61	5

Particle size and volume distribution

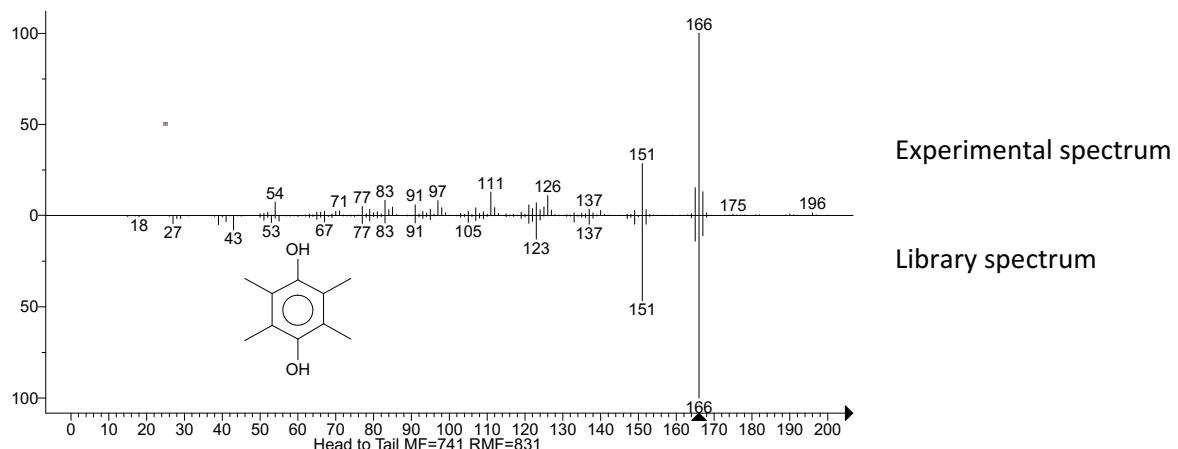


Figure S1. The particle size and volume distribution in the mainstream before and after the tandem impinger collection. Note that only 1 puff was collected when connecting a scanning electron mobility spectrometer (SEMS, Brechtel Manufacturing Inc.) to the inflow vaping plume, while a puffing patter of 4s e-cigarette on and 30 s rest time (1 puff cycle = 35 s) was applied when connecting SEMS to the outflow of the impinger collection. The particle volume concentration of 1 puff in one SEMS sampling cycle (3 min) was $9.09 \times 10^{12} \text{ nm}^3/\text{cm}^3$. The particle volume concentration outflow of impinger was $3.77 \times 10^9 \text{ nm}^3/\text{cm}^3$. Assuming the aerosol collection efficiency was η , then $\eta + \eta(1-\eta) = 1 - 3.77 \times 10^{11} / 9.09 \times 10^{12} = 0.96$ and $\eta = 80\%$.

(A) Duroquinone

(B) Durohydroquinone

Figure S2. The experimental and NIST library spectrum of (A) duroquinone (match rate = 84.0%) and durohydroquinone (match rate = 49.9%).

Reference

- (1) Jiang, H., Frie, A. L., Lavi, A., Chen, J. Y., Zhang, H., Bahreini, R., and Lin, Y.-H. (2019) Brown carbon formation from nighttime chemistry of unsaturated heterocyclic volatile organic compounds. *Environ. Sci. Technol. Lett.* 6, 184-190.
- (2) Yu, J., Jeffries, H. E., and Le Lacheur, R. M. (1995) Identifying airborne carbonyl compounds in isoprene atmospheric photooxidation products by their pfbha oximes using gas chromatography/ion trap mass spectrometry. *Environ. Sci. Technol.* 29, 1923-1932.
- (3) Chen, J. Y., Jiang, H., Chen, S. J., Cullen, C., Ahmed, C. M. S., and Lin, Y.-H. (2019) Characterization of electrophilicity and oxidative potential of atmospheric carbonyls. *Environ. Sci. Processes Impacts* 21, 856-866.
- (4) Reddel, R. R., Ke, Y., Gerwin, B. I., McMenamin, M. G., Lechner, J. F., Su, R. T., Brash, D. E., Park, J.-B., Rhim, J. S., and Harris, C. C. (1988) Transformation of human bronchial epithelial cells by infection with sv40 or adenovirus-12 sv40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing sv40 early region genes. *Cancer Res.* 48, 1904-1909.