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Abstract—This paper presents an integrated computational
modelling framework combining pedestrian dynamics and
infection spread models, to analyse the infectious disease
spread during the different stages of air-travel. While,
commercial air travel is central to the global mobility of goods
and people, it has also been identified as a leading factor in
the spread of several epidemic diseases including influenza,
SARS and Ebola. The mixing of susceptible and infectious
individuals in these high people density locations like airports
involves pedestrian movement which needs to be taken into
account in the modelling studies of disease dynamics. We
develop a Molecular Dynamics based social force modeling
approach for pedestrian dynamics and combine it with a
stochastic infection dynamics model to evaluate the spread of
viral infectious diseases in airplanes and airports. We apply
the multiscale model for various key components of air travel
and suggest strategies to reduce the number of contacts and
the spread of infectious diseases. We simulate pedestrian
movement during boarding and deplaning of some typical
commercial airplane models and movement of people through
security check areas. We found specific boarding strategies
that reduce the number of contacts. Further, we find that
smaller airplanes are more effective in reducing the number
of contacts compared to larger airplanes. We propose certain
queue configuration that reduces contacts between people and
mitigate disease spread.

1. Introduction

Air travel brings together people from different geographic
regions with different levels of vulnerability and
receptivity due to variations in immunity, ethnic
background, and intervention usage across geographic
areas [1]. Public transportation in general and air travel in
particular have been identified as leading factors in the
spread of several infectious diseases including influenza,
SARS, tuberculosis, measles and norovirus [2-8]. The high
economic and public perception costs on the transportation
sector due to epidemic events necessitate transportation
policy that addresses mitigation. Our goal is to produce a
science-based analysis of public policy options that can
lead to mitigating the spread of diseases without disrupting
air travel [9-13].

When investigating control strategies to suppress disease
propagation among a group or population, the contact
pattern between the interacting individuals should be
considered and mapped. Contact analysis provides a better
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insight on the interaction between individuals. We use a
new approach in which pedestrian dynamics modeling is
used to track the trajectories and evaluate the contacts that
could potentially arise among a crowd of infected and
susceptible individuals. Pedestrian Dynamics has been
addressed using several approaches such as cellular
automata [14], fluid flow [15], queuing [16] as well as
particle dynamics based approach called social force
models [17, 18]. Among these different approaches, social
force models have specific advantages for studying
passenger movement and contacts in airplanes as each
traveller is modelled individually and moves continuously.
This enables tracking the individuals’ trajectories and
estimation of the contacts between pedestrians. Social force
models of pedestrian movement are essentially based on
molecular dynamics (MD). Social force models extend the
concepts of molecular dynamics to pedestrian movement.
Here, the forces are a measure of the internal motivation of
individual pedestrians to move towards their destination in
presence of obstructions like other pedestrians and objects
(e.g. walls and chairs).

Social force models have been applied to crowd
simulations in panic situations [18], traffic dynamics [19],
evacuation [20] and animal herding [21]. Algorithmic
developments have included generation of force fields
using visual analysis of crowd flows [22], explicit collision
prediction[23], and collision avoidance [24]. Here, we
apply social force model in a mulitiscale framework to
study the pedestrian contact evolution and infectious
disease spread during various aspects of air travel.

Movement of pedestrians during air-travel is a special case
of a more general problem of pedestrian movement.
Several researchers have studied the pedestrian movement
at airports especially from the viewpoint of airport
operations and reduction of the turnaround time of
airplanes at terminals. For instance, Schultz et al. [25]
model the intuitive behavior of airport travelers under
emergency situation by a cellular automaton model. In this
model, the floor area is subdivided into small partitions
where pedestrians may switch positions with neighboring
spots based on a probabilistic distribution. Several other
investigators used agent-based models to model pedestrian
motion and passenger flow in airport terminals [26, 27].
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Other studies model the flow of pedestrians to their
destinations by optimizing the guiding signs [28].
Pedestrian movement in airports is peculiar because it
involves a series of nondiscretionary as well as
discretionary activities. For example, prior to their
scheduled flights, travellers fulfil the trip requirements
starting from check-in, security and boarding. Once these
processing steps are completed, they are often involved in
individual or collective discretionary activities such as
dining and shopping at the departure terminal [29, 30]. The
airport environment and building layout have a great
influence on the passengers’ movements, choice and
perception of activities preference over a set of alternatives
[28, 31]. This uncertainty creates additional challenges in
modeling the pedestrian motion at airports. Despite these
studies, no work has focused on the effect of pedestrian
movement on airborne disease propagation during air
travel.

We address this problem through a multiscale model that
combines pedestrian dynamics with stochastic infection
spread models. The purpose of the pedestrian dynamics
model is to generate the trajectories of motion and contacts
between infected and susceptible individuals in various
travel stages such as enplaning, deplaning and progressing
in winding queues for booking or security checking. We
incorporate this information into an individual based
stochastic infection dynamics model with infection
probability and contact radius as primary inputs. Through
this multiscale framework, we estimate the aggregate
numbers and probabilities of newly infected people during
boarding, deplaning and aligning in a security queue. This
generic model is applicable for several directly transmitted
diseases by varying the input parameters related to
infectivity and transmission mechanisms.

2. Modelling Methodology

Pedestrian Dynamics

We model the mobile pedestrians and stationary objects,
like walls as particles. The evolution of pedestrian particles
and their interaction with other pedestrians and stationary
particles are described by a molecular dynamics like social

force model [17]. The net force f; acting on i pedestrian

(or particle) can be defined as:
fi=2 (30 - 7(0) + L fy@® =m=t (D)

with pedestrian position at a given time obtained by
numerical integration as 7(t) = [ B'(t)dt. V. (¢) refers

to the desired velocity of pedestrian, and V' (¢) that of the

actual velocity. 71, is the particle’s mass and7 is the
evolution time constant. The momentum generated by a
pedestrian’s intention, denoted by % (W) — ﬁi(t)),
results in a self-propulsion force that is balanced by a
repulsion forcefy(;) to obstacles in the direction of motion.

In this study we use the Lennard —Jones type repulsion term
used earlier by Namilae et al. [9, 10].

While equation (1) describes the general motion of
pedestrians, we need to introduce modifications to this
equation to account for common occurrences observed in
crowded locations. One of the common features in places
like theme parks, entertainment venues, airport security
checkpoints etc., involves formation of slow moving
queues. Winding queues are often used to organize waiting
crowds in jammed locations, but these results in increased
proximate contacts especially if rope separators are used to
define the lines. Pedestrians in a queue move at the speed
of the nearest person ahead in the line. To model this
scenario, we introduce location dependence to the desired
velocity in the self-propulsion term as:
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Where § = {

e, is the desired direction of motion. v, and ¥V, are the

deterministic and stochastic components of the desired
velocity respectively. The values of walking speed terms (

v, and ¥,V;) can be varied to obtain a given distribution

of age groups and gender of travelers [32]. O is the cut-

off distance constant between the i and j* pedestrians at
which the desired velocity of the i pedestrian reduces to
zero velocity (stationary condition).

For accurate simulations that mimic the real life scenario,
we also account for the formation of groups of pedestrians.
The groups’ formation is controlled by adjusting the
distance (8) in equation (2). Our empirical observations on
a theme park queue reported elsewhere and comparisons
with literature [33], indicate that & separation values are
different between pedestrians belonging to a group (e.g.
family or friends in queue) and other pedestrians. Based on
this, an average distance of §; =0.46 m (18in) is chosen for
pedestrian particles within the same group, while this
distance between independent pedestrians is given a value
of §, =0.64 m (25 in).

Contact estimation and infection model

Consider a population of size N consisting of I(t) infected
and S(t) susceptibles at time t. A susceptible can become
infected when coming into direct contact with an infected.
Given the trajectory of pedestrians over time, the number
of contacts m; can be evaluated as:

mi(t) = Zrz.'/‘/?'i/’ where ﬂij =0 if
J
. 3
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ij
Here, 7, is the distance between i and j pedestrians and x is

a virus specific distance parameter. Pedestrian position



(r;(t)) evolves through pedestrian dynamics and is a
function of the age, sex and infection status.

The transmission distance (x) used to define the contact is
dependent on the type of pathogen and mechanisms for its
spread. For diseases like Ebola, studies indicate that
primary mode of transmission is through contact droplets
[34-36]. Consequently, a distance that enables direct touch
needs to be used for estimating contacts for such diseases.
Other infectious diseases like SARS are known to be
transmitted by both shorter and longer range airborne
mechanisms [37, 38]. Likewise, the influenza can be
transmitted through coarse droplets or microscale
bioaerosols being respired into the respiratory tract of a
susceptible individual [39]. Studies suggest that
transmission occurs when the virus particles are suspended
in air and inhaled by a susceptible individual or when that
individual touches a contaminated surface with deposited
droplets and then touches their eyes, nose or mouth [39].
The size of these particles can play an important role in
contagion dispersion. Small particles dispersed in aerosols
transmit over large distances. For example, experiments
indicate micrometer sized aerosol clouds generated during
cough traveling over 2 m [40, 41].

Consider that the infection spread initiates due to the
insertion of i2 infectives initially (t,= 0) at their “c” days
of infection, out of “d” incubation days. Denote by P, ¢ the
probability that a contact between a susceptible and an
infective (or contaminated surface) results in infection of
the susceptible. We divide this input parameter into two
components: a viral shedding probability distribution (P.)
which is a function of time since acquiring infection for
specific virus in question, and a pathogen spread
mechanism component (Py,). This includes contributions of
several independent mechanisms comprising (a) aerosol
exposure and inhalation probability (P,) common in
infections such as Norovirus [42] and Ebola [43], (b)
Coarse pathogen droplet inoculation (Py) common in
influenza and SARS [7]. Other mechanisms including
fomite mechanism, which involves contaminated surface-
to-hand transfer would contribute to the infection spread,
but such mechanisms do not involve human-to-human
contact in this context. The infection probability would

then be defined as:
P,=P.P,=P(P,+P) )

inf

Consider the viral shedding probability distribution (P,).
Studies indicate that the amount of viral shedding is
typically dependent on the days post symptom appearance
for the infected individual and the length of incubation
period. In a previous study [9, 10], we used CDC data on
amount of RNA (ribonucleic acid) virus copies in the blood
serum since the illness contraction to generate this
probability distribution for Ebola in Figure 1.a [44]. Similar
approach can be used for other diseases, for example, for
SARS pathogen (Figure 1.b), the viral gene expression of
the nucleocapsid (N) protein, detected at different rates
along the evolution of the virus from post onset of the
symptoms till convalescence is indicative of viral shedding
and can be used to generate the P. distribution [45]. For
influenza, nasal, oral or ocular shedding of HIN1 virus has
been detected by determining the relative equivalent unit

(REU) from viral RNA level [46]. Such data can be used to
generate the P, distribution (Figure 1.c). Figure 1 shows the
viral shedding distributions we generated based on viral
shedding for HIN1 influenza and SARS respectively.
While we consider maximum infectivity for calculating
term incorporates the differences in infectivity due to
variations in infectious individuals. The stochasticity in
individual’s susceptibility is accounted for via the binomial
or Poisson distribution.
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Figure 1 Infectivity probability distributions (Pc) (a)
along the days after clinical signs of Ebola infection,
(b) during viral shedding of SARS and (c¢) HIN1
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The distribution of the infective individuals in the crowd is
unidentified; any of these pedestrians can be probably
infective. We assume that the infectives can be in anywhere
among the crowd, so there are many possible permutation
patterns of infectives location within the crowd. Denote by
“Comb” the possible permutations of infectives which
depend on the assumed number of infectives and the total
number of the population. All these possible permutations
are run successively, and at each run the number of
susceptible individuals S;(t — 1) in contact with the



infectives is counted. Then, the number of newly infected
individuals is a binomial distribution of the number of
individuals in contact S;(t — 1) and probability of success
of viral transmission p;. Repeating the same process for all
the infectives with different days of infection ¢ and at
different locations in the crowd, further binomial
distributions are obtained. Denote by A the possible number
of newly infected pedestrians ranging from zero to the
maximum obtained number Niys (A= 0,...,4;,...,Ninf). Also
let w; be the frequency of obtaining the same A; in the runs.
In order to obtain the mean binomial distribution of the
number of people infected at time t by all of the infectives
with varying age of infection “c”, we combine the
probability plots and average them as given by:

1) ~ X2, 3¢ (Binomial [S;(t — ®)
1), P P P21 wy (4) /€

Where w; (4;) is the frequency of the mean A; repetition
during all the possible combinations “C” of infectives.
Note that the contacts are defined when pedestrians are
within a specific transmission distance which is dependent
on the transmission mechanism. Instead of using fixed
parameters for defining contact, we will treat contact
distance and contact definition as one of the parameters in
assessing epidemic spread and vary it over the parameter
space to mimic epidemic dispersion in different conditions,
within the various pedestrian dynamics configurations
associated with winding queues. Based on the above
discussion, we vary the contact distance between 2.1 m and
0.9 m which are representative of aerosol and coarse
droplet mechanisms respectively. Similarly, the infection
probability (P;,f) is varied as a parameter up to a value of
0.2 to represent various levels of infectivity.

The Binomial distribution is valid for a large crowd with
higher probability of infection. This applies to the winding
queues. However, in the situation where N is large and Pins
is very small (below 0.1), for instance during boarding and
deplaning, the Poisson distribution can be used to
approximate the binomial distribution. Here, I(t) is
distributed using the Poisson approximation:

I(t)~ X4, Zi:?:l{Poisson [S;(t — (6)

1), P P P2 wy (1) 1 C

3. RESULTS AND DISCUSSION

We evaluate the role of motion pattern in contact creation
between neighboring pedestrians, within a fixed control
area, for different stages in air travel including boarding,
deplaning and progressing in security check line for
different diseases. The passengers, seats and walls are all
modelled as particles. We consider the situation of a single
infective in the crowd. The infectious individual is
unidentifiable; his index in the crowd is not known apriori.
Therefore, all permutations of the infectious individual’s
position are simulated to determine the average number of
contacts for a given scenario. We apply these permutations
to different aircraft sizes and cabin configurations as well
as various security winding queue layouts. We also account
different transmission mechanism and probability of
pathogens. Airborne viral nuclei vary in size. Expelled fine

aerosols travel farther and remain suspended for a longer
period of time than coarse droplets. We account for coarse
droplets and aerosols transmission mechanisms by varying
the contact radius parameter between 0.9 and 2.1 meters
(36-84 inches). We vary the transmittance probability
between 0.025 and 0.2 to account for the vulnerability and
receptivity of the exposed infective to various infection

types.

Boarding from a waiting lounge

For boarding, the Airbus A320 carrier with 144 passenger
configuration is chosen. During the enplaning, the
trajectories of passengers, initially seated or standing in the
departure lounge, heading to the passenger boarding bridge
and finding their assigned onboard seats, are modelled. The
evolution of pedestrian trajectories has been displayed for
ingress from a gate in Figure 2. The instantaneous position
and speed of each walking individual are obtained by
solving equation (1) by means of a predictor-corrector
numerical method. Many qualitative features of pedestrian
movement are captured by the model. For instance, lane
formation is observed in the hallways, in addition to
reduced speed at bottlenecks where passengers from
different seating zones merge and head to the airplane

(Figure 2).

After obtaining the trajectories, the contact data and the
number of newly infected travellers are obtained for Ebola
and SARS diseases by means of the mathematical
epidemiological model. In real life the identity of infectious
individual is not known beforehand, therefore all the
possible permutations of a single infective are run to
estimate the mean of newly infected susceptibles denoted
by 4; where i ranges from 1 to the total passenger capacity
of the aircraft. Due to the stochastic nature of the problem,
we assume that the number of newly infected travellers by
a single infectious chosen randomly among the airplane
passengers is Poisson distributed with mean A; at every
simulation. After performing all the simulations in parallel,
the effective probability of means is calculated at peak day
of infection. Then, using the Bayes’ theorem the
probabilities are combined to generate the probability
distributions in Figures 3 and 4. These plots represent the
probabilistic distribution of infected passengers who were
closely exposed to Ebola and SARS viruses.

We consider an infectious passenger at his first day is
onboard among the susceptible population. Ebola and
HINI record a peak of 2 newly infected passengers
exposed to the virus, whereas this number increases to 5 for
SARS due to the wider range of infectivity. Shifting the
infectivity to its highest (day 3 for Ebola, day 5 for HIN1
and day 4 or 5 for SARS), the means of the Poisson
distribution increases by one unit for Ebola and SARS but
expands tremendously for HINI since the infectivity
reaches its peak of 30% at the fifth day of HIN1 infection
(Figure 4).



Figure 2. Simulation snapshot of an embarkation of an
Airbus A320 from a departure lounge. Green dots
represent pedestrian particles and blue dots represent
fixed seat and wall particles.
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Figure 3. Infection distribution profile for different
boarding strategies for an Airbus A320 capable of
seating 144 passengers at Ebola peak day of infection
(pint=0.098) and 1.2m contact radius.
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Figure 4. Infection profile at the first and peak days

during a random ingress from a lounge to an Airbus

A320-144 seats for Ebola, Influenza HIN1 and SARS
contagions.

Deplaning from an air carrier

We followed a similar approach for the deplaning strategies
and applied it this time for the 182-seat Boeing 757. We
found that deplaning had a smaller impact on infection
dynamics because of the lower number of new contacts and
lower time of exposure during the comparatively faster
process. In Figure 5, we show a comparison of different
deplaning strategies for the 182-seat Boeing 757 seating
configuration for Ebola disease at the peak day of infection.
The different deplaning strategies such as alternating
columns, alternating rows, zone-wise, and baseline (closest
to exit are out first) result in a similar number of mean
infective individuals. When we compare the probabilities,
alternate rows and baseline strategies are marginally better.
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Figure S. Infection distribution profile for different
deplaning strategies for a 182-seat Boeing 757 at Ebola
peak day of infection (pinr=0.098) and 1.2m contact
radius.

The effect of size of airplane on the number of contacts and
thereby infection spread is assessed. We model the seating
arrangements for five different airplanes. The seating
arrangement is as shown in Figure 6. Figure 7 shows the
number of contacts for transporting 1000 passengers using
the different airplane models considered. These numbers
include default boarding and deplaning methods on
multiple flights with a particular airplane model to
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transport 1000 passengers. Smaller airplanes are more
effective in reducing the number of contacts compared to
larger airplanes; however, the advantage of airplane size
reduces as airplane seating capacity increases.
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Figure 6. Airplane configurations considered in the
study (a) CRJ200 with 50 seats, (b) A320 with 144
seats (c) Boeing 757-200 with 182 seats, (d) Boeing 757-
200 with 201 seats and (e) Boeing 757-300 with 240
seats. Green dots represent pedestrian particles and
blue dots represent fixed seat particles.
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Figure 7. Number of contacts for transporting 1000
passengers in different airplanes boarding and
deplaning by default methods.

Infectious Disease Spread in an Airport Security Queue

Reports indicate that travellers are delayed for more than
an hour at screening checkpoints, causing significant
economic burden on airlines [48]. Screening procedure at
checkpoints only involves the passengers and their carry-
on baggage. However, no equipment is available for use to
detect viral contagions during an outbreak. Consequently,
security checkpoints with people congregated in winding
queues are a potential hotspot for infectious disease spread.

In investigating the relation between the layout shape and
the contact among pedestrians in queues, we simulate
different security line winding queues by changing the
aisles and zones layout based on actually observed queue

configurations in airports (Figure 8). With time evolution,
the pedestrians move forward in the sequence to reach the
exit. It is expected that the aisle’s length, direction and
structure within the control area, and the distribution of turn
corners have an effect on the contact between pedestrians.

We consider the case of pedestrians arranging in a
rectangular queue. At initial conditions, the pedestrians are
distributed in abreast (side-by-side) manner in the aisles.
The formation of groups (family members, group of
tourists, etc.) is taken into consideration by the close
abreast queues whereas individual travellers tend to form a
more spaced single line as mentioned in the formulation
section (Figure 8.b).
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Figure 8. Security check floor map (a) in an airport,
(b) from simulation.

Four different rectangular queue configurations of the same
area, as shown in Figure 9, are analyzed. The four
rectangular floor plans are either split vertically
(configurations (b) and (c)) or horizontally (configurations
(a) and (d)). Configurations (a) and (b) have one inlet and
one exit whereas configurations (c) and (d) have two inlets
and two exits due to the existence of separated zones. The
width of the pedestrian lanes remains 1 meter, which allows
some pedestrians belonging to the same group to form a
double line.
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Figure 9. Rectangular winding queue layouts: (a)
Config.1, (b) Config.2, (c) Config.3, (d) Config.4.

Instead of limiting the analysis to certain disease type or
mechanism, we generalize the study by sweeping the
infection parameters (infection probability and contact
radius) over their ranges of definition. We vary the contact
distance between 2.1 m and 0.9 m which are representative
of aerosol and coarse droplet mechanisms respectively.
Similarly, the infection probability (P;,f) is varied as a
parameter up to a value of 0.2 to represent various levels of
infectivity.

The mean number of newly infected pedestrians is then
obtained by combining the number of contacts within a
given contact radius, with the infection transmission
probability described earlier. The mean number of newly
infected is binomially distributed to account for the
demographic stochasticity in the immunity and receptivity
of the susceptible population. Under different infection
scenarios, the mean number of newly infected exposed
individuals is obtained. In the following, only the peak

dispersion of the disease (the mean of the binomial
distribution) among the susceptible population is plotted
over the parameters space of variation.

With the commonly used rope separators and at a
proximate, direct contact via coarse droplets (radius of
infection less than 1.2m), the infective has influence on
only the directly adjacent aisles on both sides. However,
infection also relies on the transmission probability. In
other words, not every contact will lead to infection. For a
defenceless (unimmunized) individual, the probability to
contract the disease alters between 2.5 and 20% depending
on the disease development time and its survival in the
ambient environment. Combining the contact data with the
infection model leads to the mean distribution of infection
over the probability range. Configurations 3 is the best
layout for all transmission probabilities, followed by
configuration 2 (Figure 10). In configuration 2, the vertical
aisles are short, which means less capacity of pedestrians.
Configuration 3 has the same aisle geometry as of
configuration 2. However, the pedestrian will exit the
queue earlier (half way) compared to that of configuration
2 which results in lower exposure time. Configurations 1
and 4 result in a higher mean number of infections. These
configurations have long open aisles compared to
configurations 2 and 3 with the lower aisle length.
Therefore, more pedestrians are involved and interaction
occurs more frequently with pedestrians from neighbouring
aisles in these two configurations. Configuration 1 is the
least favourable layout because diverse pedestrians from
both sides come into proximity more frequently than in
configuration 4 with comparatively shorter aisles.
Configuration 4 is worse than configuration 2 because at
the common corners between the left and right zones, the
infective comes into contact with additional pedestrians
from the neighbouring zones.

Figure 10 also shows the results of repeating the
transmission probability variation over the same range, but
assuming aerosol transmission mechanism with a longer
contact radius of 2.1 m. Configuration 3 still results in the
lowest number of contacts for both rope and wall
separators. For rope separator, we observe the same pattern
of results as with the coarse droplets transmission
mechanism, but with increased infection spread. The
similarity between the configurations increases especially
at low transmission probabilities. Therefore, the results of
configurations 2 and 3, as well as configurations 1 and 4
overlap. At 2.1 m radius, the dispersion of the fine viral
particles crosses the aisle boundaries to two adjacent aisles
on each side. Here, the findings of configurations 2 and 3
are nearly identical since the aisles are distributed in the
same manner except that configuration 3 has two separated
zones. When the transmission radius expands to many
neighbouring aisles, pedestrians of one zone in
configuration 3 come into contact not only with other
pedestrians within the same zone, but to others in the
adjacent zone. Accordingly, configurations 2 and 3 have
the same behavior. Here, the separation of these two groups
has no effective role in reducing contact. The same
principle applies to configurations 1 and 4; the offset
between the data of configurations 1 and 4 is reduced
compared to that of coarse droplet transmission mechanism



for the same reason. Configuration 1 remains the worst
layout, especially at higher probabilities, due to the
elongated, abundant contact between pedestrians from
adjacent aisles.
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Figure 10. Infection distribution profile for different
abreast queue configurations at contact radii of 1.2m
(coarse droplets) and 2.1m (fine aerosols).

We now explore the contacts generated between
pedestrians in the four configurations assuming different
infection mechanisms represented by the radius variation.
We suggest placing temporary walls between the aisles to
suppress the propagation of the outbreak among the waiting
crowd. For rope separators previously evaluated, contact
extends to pedestrians in the neighbouring aisles, whereas
for temporary walls, transmission due to contact is limited
only between the pedestrians within the same aisle.

Configurations 2 and 3 result in lower number of infections
for rope separators, across the range of infection radii from
0.9 to 2.1 m as shown in Figure J. As explained, for aisles
separated with ropes, shorter aisles lead to lower exposure
of an infective resulting in this behavior. For walls, the
combination of the radius of infection, as well as the
interaction time within the aisles and at the corners alter the
results (Figure 11). Each combination of contact radius and
queue layout generates a different number of newly
infected individuals. At low radii, short-aisle and low exit
time configurations are favourable. At higher radii,
configurations with less turning corners are better. The wall
separator has drastically reduced the number of infections
compared to the conventionally used rope stanchions.
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Figure 11. Contact distribution for different abreast
queue configurations. The contact radius is varied for
both wall and rope aisle separation scenarios.

4. CONCLUSIONS

A multiscale model combining social-force-based
pedestrian dynamics and the individual based stochastic
infection dynamics model has been formulated. The model
is used to study the dynamics of infectious disease spread
in airplanes and airports. Specific air-travel-related policies

that potentially mitigate diseases spread are identified. A
two-section boarding has an effect on reducing discase
propagation aboard an airplane. Deplaning has no effect
and all deplaning strategies generated a single infected
traveller. Small airplanes are more effective in reducing the
number of contacts during an outbreak. We find that the
layout of winding queues in airport security check
influences the number of new infections. The modeling
approach developed here is generic and can be readily
modified to other directly transmitted infectious diseases
and dense pedestrian spaces.
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