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Seeing Through the Clouds With DeepWaterMap
Leo F. Isikdogan , Alan Bovik, and Paola Passalacqua

Abstract— We present our next-generation surface water
mapping model, DeepWaterMapV2, which uses improved model
architecture, data set, and a training setup to create surface
water maps at lower cost, with higher precision and recall.
We designed DeepWaterMapV2 to be memory efficient for large
inputs. Unlike earlier models, our new model is able to process
a full Landsat scene in one-shot and without dividing the input
into tiles. DeepWaterMapV2 is robust against a variety of natural
and artificial perturbations in the input, such as noise, different
sensor characteristics, and small clouds. Our model can even
“see” through the clouds without relying on any active sensor
data, in cases where the clouds do not fully obstruct the scene.
Although we trained the model on Landsat-8 images only, it also
supports data from a variety of other Earth observing satellites,
including Landsat-5, Landsat-7, and Sentinel-2, without any
further training or calibration. Our code and trained model are
available at https://github.com/isikdogan/deepwatermap.

Index Terms— Computer vision, image processing, machine
learning, oceans, remote sensing, water resources.

I. INTRODUCTION

ACCURATE surface water maps are needed for many
aspects of Earth science, such as monitoring changes

in wetlands and rivers in response to climate change and
anthropogenic modifications. There has long been a deep
interest in mapping surface water [1] using satellite imagery.
However, the ability to generate surface water maps quickly,
accurately, and fully automatically over any specified period of
time, without requiring a plethora of data sets, remains a highly
desirable but unreached goal. In particular, creating detailed
records of changes in surface water over time and space require
fast and robust models that can operate on easy-to-obtain,
uncalibrated, and possibly incomplete data.

In response to those needs, earlier, we created a fully
automatic, deep learning-based surface water segmentation
model, named DeepWaterMap [2]. Our model was able to
learn both spatial and spectral characteristics of water bodies
on Landsat-7 imagery using data having relatively noisy labels.
The training data set for DeepWaterMap was created by
matching the Landsat-7 images in the GLS2000 collection [3]
with surface water maps in the GLCF inland water data set [4].
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Fig. 1. Comparison of surface water detection results in a scene that is
partially occluded by clouds. Higher pixel intensity denotes the higher proba-
bility of water. Although (a) former model (DeepWaterMap) is correct about
cloud pixels not being water, (b) cloud-tolerant model (DeepWaterMapV2),
which classifies cloud pixels as either water or land depending on the context,
is more practical in many cases.

Although the model learned to generalize well, its accu-
racy was limited by the accuracy of the labels in the
training set. Furthermore, the model expected only Landsat-7
ETM+ images as input and needed to be fine-tuned to work
on data from other sensors.

In this letter, we propose DeepWaterMapV2, our
next-generation surface water mapping model. Our new model
significantly improves upon its predecessor, DeepWaterMap,
in terms of efficiency, robustness, and accuracy.

We carefully redesigned the network architecture of
DeepWaterMap to further reduce the memory footprint needed
during inference while improving the accuracy. The macroar-
chitecture of our model (see Fig. 2) resembles well-known
image segmentation models, such as fully convolutional
networks [5] and U-Net [6] architectures. However, it has
several key differences that adapt our model to the targeted
application, including a greatly reduced memory footprint for
very large input images. Earlier, to compute water maps on
a full-sized Landsat scene, we needed to divide it into tiles,
run inference on each tile separately, and stitch the resulting
maps. This process resulted in some stitching artifacts when
nonoverlapping tiles were used. Although using overlapping
tiles reduced those artifacts, it increased the total number
of pixels that needed to be processed, which slowed down
the process. DeepWaterMapV2 is designed to use constant
memory throughout the network; therefore, increasing the
input size does not disproportionally increase the memory
consumption. As a result, our new model can run inference on
a full Landsat image (∼7500 × 7500 × 6 pixels) in one-shot
on a typical workstation having over ∼10 GB of available
memory, in less than a minute.

To train DeepWaterMapV2, we created a new global-scale
data set that contains more challenging samples having higher
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Fig. 2. Network topology of DeepWaterMapV2 consists of three primary building blocks: downscaling units, a bottleneck unit, and upscaling units.
The downscaling unit uses striding to spatially downscale the input. The bottleneck unit outputs a feature map that has the same dimensions as its input.
The upscaling unit uses a depth-to-space transformation followed by convolutions to upsample the input. All three types of units preserve the size of the
feature maps throughout the network.

quality labels compared to the data used in the previous
version. This new data set and our improved training setup
helped DeepWaterMapV2 better utilize its capacity and
achieve higher accuracy at a lower cost. Using massive
amounts of high quality, well-balanced data in our data set
helped the model learn more granular characteristics of water
bodies in context across the globe. These shape, texture, and
spectral characteristics helped distinguish water from nonwater
pixels, without the need for any ancillary data, human inter-
vention, or calibration.

We trained DeepWaterMapV2 to be robust against changes
in the input using a set of data preprocessing and augmentation
methods. The model tolerates both spectral and spatial pertur-
bances caused by different sensors and atmospheric conditions.
For example, it classifies a cloud pixel either as water or
nonwater depending on the context. A cloud surrounded by
water would be likely classified as water (see Fig. 1).

Once the model is trained, it runs out-of-the-box on
input images having different characteristics. For example,
DeepWaterMapV2 accepts both raw and radiometrically
calibrated images as inputs and can segment water on images
collected from different sensors, having overlapping but not
identical spectral bands. Although the model is trained using
Landsat-8 images only, it also supports images acquired
by Landsat-5, Landsat-7, Sentinel-2, and possibly other
Earth-observing missions. This capability allows for using the
same model for a variety of images without collecting separate
training sets for each use case and further training the model
for calibration.

Like its predecessor, DeepWaterMapV2 is able to automati-
cally produce high-quality maps of surface water, independent
of the geographic region being imaged and the atmospheric
conditions. The model is straightforward to implement and is
fast in application. As we show, the trained model delivers
remarkable water mapping results. Our code, trained model,
and scripts to obtain the training data are publicly available
on our project repository.

II. MODEL

General-purpose pixelwise prediction models work well for
a wide variety of applications, such as semantic [5], [7] and
biomedical [6] image segmentation. However, remotely sensed
images are typically much larger than what those models use.
For example, a Landsat scene can be orders of magnitude
larger (over 300 million pixels in one image) than the images
in semantic segmentation data sets.

In DeepWaterMapV2, we made several design choices to
create a model that can process very large input images. As the
input sizes grow, the impact of the size of the intermediate
feature maps on memory becomes much larger compared to
the number of parameters. Therefore, we decreased the number
of output channels in the first layers and moved most of the
trainable parameters to the layers that process lower resolution
feature maps. It is a common practice to increase the number
of channels in the feature maps in many convolutional neural
network architectures. However, early layer feature maps still
make up a large portion of the memory footprint. For example,
the first layer feature maps in U-Net [6] are twice as large as
the activations of the layer after first downscaling.

We designed DeepWaterMapV2 to have a constant feature
map size throughout the network. For example, the first layer
in our model has a feature map of W × H × 4, whereas the
bottleneck layer has a feature map of W/16 × H/16 × 1024,
both having the same pixel count. We also replaced all chan-
nelwise feature concatenations with residual sums to avoid
increasing the dimensionality of the intermediate feature maps.

Our new network topology consists of three primary
building blocks (see Fig. 2): downscaling units, a bottle-
neck unit, and upscaling units. The downscaling unit uses
a 5 × 5 convolutional layer with a stride of two followed
by a 3 × 3 residual convolutional layer. The first layer in
each downscaling unit outputs four times as many channels
as the input channels to preserve the total feature map size.
Using striding instead of max pooling to spatially downscale
the input further saves memory. The bottleneck unit consists
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Fig. 3. Our data set includes tiles of 0.2° height and width that has at least 1% water presence by pixel area. We excluded those tiles where more than 99%
of the pixels had the same class label to create a more balanced data set. The tiles that are included in our data set are shown in blue regions.

of two residually connected 3 × 3 convolutional layers that
do not change the spatial resolution. The upscaling unit uses
a depth-to-space transformation to rearrange its input pixels
from W × H × C to 2W × 2H × C/4. This transformation
is followed by two 3 × 3 residual convolutional layers that
act as subpixel convolutions. This type of upscaling has been
shown to be effective for super-resolution applications [8].

All convolutional layers are followed by batch normaliza-
tion [9] and use ReLU activation except the first and last
layers. The input layer is a 1 × 1 convolutional layer that acts
as a linear channelwise compression layer. Not using a ReLU
at the end of this layer prevents too much information loss
due to the reduced number of channels early in the network.
The output layer is also a 1 × 1 convolutional layer but has a
sigmoid activation that outputs values that correspond to the
probabilities of each pixel in the input being a water pixel.

DeepWaterMapV2 has a much larger capacity than its
previous version despite being computationally cheaper and
more memory efficient to compute. DeepWaterMapV2 has
over 37M trainable parameters, whereas the largest
variant of DeepWaterMap had 1.5M. Despite having over
24× parameters, DeepWaterMapV2 uses 60% less memory
than its predecessor for an input size of 512 × 512 pixels.
The memory savings go up to 83% for full-sized Landsat
images and approach 84% as the input size grows further.

III. DATA PREPARATION AND TRAINING

We curated a data set that consists of multispectral image
tiles and their corresponding pixelwise labels, covering the
entire globe, using the Google Earth Engine [10] platform.
We used Landsat-8 composites as inputs and the water labels
in the Global Surface Water data set [1] as ground-truth
outputs. We generated the composites by merely computing
the pixelwise median of the images in the collection over the
same time period as the ground-truth labels. We deliberately
did not mask the clouds before computing the median images
so that a model trained using the data set can learn to handle
the clouds. Therefore, the composites in our data set are
not completely cloud-free although computing the temporal
median filtered out some of the sporadic clouds.

To maximize cross-sensor compatibility, we excluded those
bands not commonly provided by satellites other than
Landsat-8. Namely, we used the Landsat-8 bands 2, 3, 4, 5, 6,
and 7 as inputs that have their equivalents in images acquired
by Sentinel-2 and earlier Landsat missions.

A large portion of images in the Landsat collection consists
of samples that are “not interesting” from a machine learning
perspective. Many samples consist of nearly completely land
or water. Labels in those samples are very easy to learn
for a machine learning model, even using only linear or
almost-linear transformations. Models that are trained on such
samples are likely to learn a shortcut for easy cases but fail
in more challenging cases. To balance the distribution of easy
and hard examples in the data set, we excluded the tiles where
less than 1% of the pixels were labeled as water or land.

The resulting data set contained over 140 000 labeled
tiles of 0.2° height and width (see Fig. 3). We randomly
selected 2500 of those tiles for validation, 2500 for test, and
used the rest for training. We also used a separate test set
that consists of Landsat-7 images to evaluate the cross-data
set generalization of our model and to rule out the possibility
of any information leakage from the validation set.

To improve the cross-data set performance of our model,
we perturbed and normalized the images in our data set
on the fly during training. First, we randomly cropped
a 512 × 512 patch from each sample in a given batch. Then,
to emulate spectral responses of sensors on different satellite
missions, we “leaked” information between consecutive bands
in random amounts by multiplying the bands of the patches
with smoothed identity matrices as X512×512×6 · g1×3(I6),
where X is the input and g is a Gaussian filter. We also
distorted those patches with additive Gaussian noise in ran-
dom magnitude. Finally, we applied min–max scaling to the
inputs as X � = (X − min(X))/max(max(X) − min(X), 1).
Defining a lower bound for the denominator as 1 stabilized
the normalization for uniform inputs, such as all-water scenes.
Those preprocessing steps helped make our model robust
against differences between sensors, atmospheric conditions,
and calibration methods.

Our training set has labels only for water and nonwater
pixels. Therefore, certain types of pixels, such as snow, ice,
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Fig. 4. Comparison of surface water probability maps generated by (Bottom Row) DeepWaterMapV2 against (Top Row) MNDWI and (Center Row)
DeepWaterMap on Landsat-7 scenes from Global Land Survey 2000 [3]. Overall, the maps generated by both versions of DeepWaterMap accurately captured
water bodies, where the newer version handled the clouds better. Images are contrast stretched for visualization.

shadow, and clouds, are harder to classify than others. Those
pixels are classified either as water or nonwater depending on
their context. For example, cloud pixels should be classified
as water when they are surrounded by water pixels and as
nonwater otherwise. It is hard for a model to learn such com-
plex cases using a loss function that treats those harder-to-learn
pixels the same as the easier ones. We used a combination of a
max-pooled adaptive loss [11] and focal loss [12] functions to
assign a higher cost to harder-to-learn pixels. The max-pooled
loss spatially shifts the attention toward those pixels having
the highest loss, whereas the focal loss acts as a pointwise
weighting scheme that places the focus on harder examples.

We optimized the parameters of our model using stochastic
gradient descent (SGD) with momentum algorithm. Although
adaptive gradient methods, such as Adam, usually converge
faster, we were able to achieve better results with SGD,
confirming the results in [13].

IV. RESULTS

We validated DeepWaterMapV2 both quantitatively and
qualitatively on two different test sets. The first set consisted

TABLE I

COMPARISON OF DEEPWATERMAPV2 TO EARLIER
SURFACE WATER CLASSIFICATION METHODS

of randomly selected Landsat-8 tiles and their corresponding
labels from the Global Surface Water data set. We used
this test set to quantitatively evaluate DeepWaterMapV2
using precision, recall, and F1-score as performance metrics.
We compared DeepWaterMapV2 against its predecessor
DeepWaterMap and two other benchmark methods: a thresh-
olded modified normalized difference water index (MNDWI)
classifier [14] and a traditional multilayer perceptron [2].
DeepWaterMapV2 outperformed the other methods in all three
metrics, except that the simple MNDWI classifier had a higher
recall rate. However, MNDWI thresholding yielded many false
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Fig. 5. DeepWaterMapV2 on Sentinel-2 images. The input mosaic is
created by stitching Sentinel-2 images near the Ganges river delta. The
figure compares (Bottom) DeepWaterMapV2 water probability map to (Top)
MNDWI response.

positives whereas DeepWaterMapV2 delivered significantly
better overall performance in F1-score (see Table I).

The second set consisted of Landsat-7 images without
ground-truth labels. We used this image set to compare the
results visually over regions that were previously used to
validate DeepWaterMap [2]. To evaluate the cross-data
set generalization of our model, we used the trained
DeepWaterMapV2 model as is without any further training
or fine-tuning. The input images in the test set were
top-of-atmosphere calibrated Landsat-7 images, whereas the
DeepWaterMapV2 was trained using raw Landsat-8 images.
Despite being trained on different data sets, both versions of
DeepWaterMap produced visually similar results (see Fig. 4).
Overall, DeepWaterMapV2 handled the clouds better by mak-
ing an educated guess about what might be behind the clouds,
given their surroundings. Although we have not systemati-
cally evaluated our model on other sensors, our preliminary
results on Sentinel-2 images (see Fig. 5) showed that the
cross-sensor generalization capabilities of DeepWaterMapV2
extend beyond Landsat sensors.

V. CONCLUSION

We described a memory-efficient convolutional neural
network topology that is tailored for segmenting large,
remotely sensed images. The model has a larger capacity and
smaller memory footprint than its predecessor.

We derived a global-scale surface water data set from pub-
licly available data sets to train an accurate water segmentation
model. We presented a data preprocessing and training scheme
that allowed for training a model that can process inputs from
different sensors as is.

Using the presented model, data set, and the training setup,
we built the DeepWaterMapV2, our next-generation surface
water mapping model. Our new model is robust against
clouds, noise, and changes in the input sensor characteristics.
Although DeepWaterMapV2 cannot actually see through the
clouds since that information is not available in the input,
it filters out small clouds as a form of inpainting.

Our model opens up new possibilities for a variety of
hydrography applications. It is technically possible to create a
high-resolution surface water map of the entire Earth every
eight days, as soon as new Earth imaging data from the
Landsat 8 mission become available. Those surface maps
created by our model can be used as inputs to the task-specific
models for further analysis. For example, DeepWaterMapV2
can be used as a drop-in replacement for a water index
in RivaMap [15] to automatically derive river networks from
the given surface water maps.
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