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Fig. 1. Anisotropic Feast. (Left) We tear raw meat to reveal intricate guided fracture along its grain. (Top R.) An orange slice is torn to illustrate the the
beautiful radial anisotropy of the fruit. (Bot. R.) A cheese stick is peeled apart to demonstrate the underlying stringy fiber structures intrinsic to mozzarella.

Dynamic fracture surrounds us in our day-to-day lives, but animating
this phenomenon is notoriously difficult and only further complicated by
anisotropic materials—those with underlying structures that dictate pre-
ferred fracture directions. Thus, we present AnisoMPM: a robust and gen-
eral approach for animating the dynamic fracture of isotropic, transversely
isotropic, and orthotropic materials. AnisoMPM has three core components:
a technique for anisotropic damage evolution, methods for anisotropic elas-
tic response, and a coupling approach. For anisotropic damage, we adopt
a non-local continuum damage mechanics (CDM) geometric approach to
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crack modeling and augment this with structural tensors to encode material
anisotropy. Furthermore, we discretize our damage evolution with explicit
and implicit integration, giving a high degree of computational efficiency and
flexibility. We also utilize a QR-decomposition based anisotropic constitutive
model that is inversion safe, more efficient than SVD models, easy to imple-
ment, robust to extreme deformations, and that captures all aforementioned
modes of anisotropy. Our elasto-damage coupling is enforced through an
additive decomposition of our hyperelasticity into a tensile and compressive
component in which damage is used to degrade the tensile contribution
to allow for material separation. For extremely stiff fibered materials, we
further introduce a novel Galerkin weak form discretization that enables
embedded directional inextensibility. We present this as a hard-constrained
grid velocity solve that poses an alternative to our anisotropic elasticity that
is locking-free and can model very stiff materials.
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1 INTRODUCTION
Fracture follows us through our everyday lives, but not all materials
break in the same way; this anisotropy arises due to the presence of
underlying fibrous structures that govern a material’s directional
preference for failure. We see examples of this material anisotropy
everywhere: strong, stretchy fibers in a steak influence the direction
the meat cuts and tears, while a succulent cube of pork belly has
decadent layers that peel apart in sheets. Pulling a cheese stick
apart is a fun excuse to play with your food but also reveals the
underlying stringy fibers that makemozzarella unique, while tearing
an orange slice separates and tears the juicy jewels that give it a
radial structure.
Fracture is a notoriously difficult phenomenon to model, and

naturally, material anisotropy complicates this further. In computer
graphics, dynamic anisotropic fracture animation requires methods
for large-scale topological deformations, robust schemes for track-
ing the branching and evolving crack fronts, and a generalizable way
to encode and incorporate material anisotropy. There already exist
many approaches to animating isotropic fracture in graphics, each
with varying degrees of success, but we focus only on those seeking
to model the underlying physics of fracture. These physically-based
methods have utilized many discretizations: finite element methods
(FEMs) paved the way for isotropic brittle and ductile fracture and
have seen much exploration since [O’Brien et al. 2002; O’Brien and
Hodgins 1999], boundary element methods (BEMs) have recently
shown great success for brittle fracture [Da et al. 2016; Hahn and
Wojtan 2015, 2016; Zhu et al. 2015], and finally, meshless methods
have significantly grown in popularity for material effects like frac-
ture [Pauly et al. 2005; Wolper et al. 2019]. Unfortunately, meshed
methods like FEM and BEM require complex and computationally
intensive remeshing and node management routines to represent
the evolving crack fronts [Molino et al. 2005; Sukumar et al. 2000].
Furthermore, existing approaches to animating anisotropic frac-

ture are limited: Pfaff et al. [2014] achieve anisotropic cracking
effects using FEM for thin sheets, but rely on intensive mesh treat-
ments and lack a method for volumetric materials; Hahn andWojtan
[2015] present brittle fractures with anisotropic patterns by spatially
modifying material parameters, but BEM lacks ductile fracture and
this approach requires the material anisotropy to be explicitly user-
defined; most recently, Schrek et al. [2020] present Material Point
Method (MPM) based simulation of anisotropic materials composed
of macroscopic grains through mapping the anisotropic problem
onto an isotropic space for simulation, and while this is an exciting
new meshless direction for fracture, it focuses more on anisotropic
granular flow and does not seek to model damage. However, from
this success we posit that the Material Point Method (MPM) [Sulsky
et al. 1995] presents an extremely strong approach for animating
anisotropic fracture due to its natural support for arbitrarily large
topological deformations, its intrinsic collision handling, and its
ever-growing showcase of successfully-animated physical effects.
Though most existing approaches to fracture in graphics focus

on fracture mechanics (FM) due to the natural pairing with meshed
methods, this requires explicit modeling of crack topology and

Fig. 2. Tube Pull.We stretch a 45 degree fibered tube and show its material
space for (a) anisotropic damage and anisotropic elasticity, (b) isotropic dam-
age and isotropic elasticity, (c) anisotropic damage and isotropic elasticity,
and (d) no damage and anisotropic elasticity. This illustrates the strength of
coupling anisotropic damage with anisotropic elasticity, as only one or the
other method leads to weakly guided fracture (c) or numerical fracture (d).
Note that (d) does eventually fracture, but it is uncontrollable and numerical.

causes myriad computational challenges. We instead propose to
focus on continuum damage mechanics (CDM), characterized by its
smeared crack approach to modeling fracture. In particular, cracks
are represented as continuous fields of evolving damage variables
while thematerial is still considered intact inmaterial space. Inworld
space, the material is weakened based on the damage variables to
allow for separation (an approach known as elasticity degradation).
Recent works in combining CDM with MPM focus on a non-local
CDM technique that utilizes a variational phase-field approach to
the diffuse crack problem to animate isotropic fracture [Kakouris
and Triantafyllou 2017; Wolper et al. 2019]. Although this approach
to fracture has been expanded to include anisotropy [Kakouris and
Triantafyllou 2018], this requires the incorporation of higher-order
damage evolution terms; we deem this excessive for successfully
animating anisotropic fracture in graphics. Instead, we propose the
exploration of a non-local CDM geometric approach to the diffuse
crack problem rooted instead in Γ-convergence regularizations of
the material discontinuity caused by cracks [Ambrosio and Tor-
torelli 1990; Miehe et al. 2010b]. This underlying theory led to the
derivation of local crack density functions that have seen great suc-
cess for simulating anisotropic fracture in mechanics [Raina and
Miehe 2016; Teichtmeister et al. 2017], and as such, we find it a key
tool for anisotropic MPM fracture.

Although MPM clearly stands as a natural choice of discretization
for modeling anisotropic fracture, it has a well-known issue repre-
sentingmaterial discontinuities. This has spawnedmany approaches
seeking to overcome this problem, namely the compatible particle
in cell algorithm (CPIC) for material cutting [Hu et al. 2018a], and
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Fig. 3. Tube Compress. We compress a vertically fibered tapered tube (a)
using (b) anisotropic damage and elasticity, (c) isotropic damage and elastic-
ity, and (d) only anisotropic elasticity. This illustrates successful compressive
fracture within AnisoMPM (b,c) and the inability of anisotropic elasticity
alone to produce non-numerical fracture (d).

CD-MPM for augmenting MPM with isotropic continuum damage
mechanics [Wolper et al. 2019]. Both of these methods lack any
semblance of directionality to the producible fractures, thus leav-
ing a wide gap in the literature for the development of a robust
and general anisotropic MPM: AnisoMPM. Such an MPM requires
three core components to model anisotropic damage mechanics: 1)
anisotropic damage state evolution, 2) anisotropic elastic response,
and 3) anisotropic mechanical degradation. Fig. 2 and Fig. 3 demon-
strate that each of these components struggles to succeed alone.
In mechanics, there exist many approaches to modeling dam-

age in a way that also encodes material anisotropy, including the
aforementioned higher order phase field approach. However, we
instead focus on what we find to be a simple and highly generaliz-
able way to add anisotropy into our geometric damage model: the
structural tensor [Steinmann et al. 1994]. Structural tensors, paired
with this geometric approach to fracture, have shown great success
for simulating quasistatic anisotropic material failure [Raina and
Miehe 2016; Teichtmeister et al. 2017], and as such, we adopt this
mechanics theory for AnisoMPM (see §3). Additionally, recall that,
in CDM, we represent cracks as a damage gradient in the material
space, and this manifests as real discontinuities in world space. How-
ever, approaches like CD-MPM struggled greatly with representing
these world space cracks due to the particle-based nature of the
results. We alleviate this concern by adopting a recently developed
MPM meshing algorithm to finely model the cracks produced by
AnisoMPM [Wang et al. 2019].

Many works in graphics have sought to model anisotropic elas-
ticity responses in a variety of ways, but we are most inspired by
approaches rooted in QR-decomposition due to their robustness and
speed [Jiang et al. 2017]. We adapt existing constitutive models to
ensure we keep all the desired qualities like inversion safety and
robustness, but additionally add terms related to anisotropy that
allow us to successfully model isotropy, transverse isotropy, and or-
thotropy (see §5). This approach also affords us a unique opportunity
for elasticity degradation. In particular, the additive decomposition
of our hyperelasticity into a tension component and a compression
component allows the selective degradation of the tension elasticity,
allowing for material separation when damaged. This elasto-damage
coupling is key for anisotropic fracture and is enforced through a
staggered integration scheme in which damage is evolved and then

used to compute grid forces for the grid velocity update. We also
present an orthogonal and mutually-exclusive approach to modeling
anisotropic elastic response: directional inextensibility. For mate-
rials requiring extreme stiffness, it is computationally inefficient
to simply rely on the constitutive model to enforce stiffness due
to the CFL condition requiring extremely small time steps. Instead,
we introduce a locking-free hard-constraint-based inextensibility
solver that is incorporated into AnisoMPM as a hard-constrained
grid velocity solve, instead of through a constitutive model (see §6).

1.1 Contributions
Our core contribution is the development of AnisoMPM, a robust
and general material point method for animating the dynamic frac-
ture of isotropic, transversely isotropic, and orthotropic materials.
We evolve damage using a non-local CDM geometric approach
paired with structural tensors to encode material anisotropy. Dam-
age is integrated using both explicit and implicit integration for ease
of implementation, high efficiency, and computational flexibility.
Additionally, since AnisoMPM is an augmentation of traditional
MPM it is easy to implement in existing solvers, supports arbitrary
constitutive models, and benefits from MPM’s natural advantages.
AnisoMPM allows a significant level of artistic control through its
underlying parameters and clearly has great potential for VFX.
As part of AnisoMPM we use an adapted anisotropic hyperelas-

ticity formulation based on QR-decomposition that not only models
all modes of anisotropy, but is also inversion safe, much more ef-
ficient than SVD models, simple to implement, and robust under
extreme deformations. However, this model lacks robust treatments
for materials with extremely stiff fibers and, as such, we develop a
novel Galerkin weak form discretization for embedded directional
inextensibility that is not only locking-free but also successfully
pairs with our damage.

2 RELATED WORK

2.1 Physically Modeling Fracture
For over thirty years, graphics research has grappledwith the unique
difficulties associated with simulating material fracture [Terzopou-
los and Fleischer 1988], leading to a breadth of approaches with
varying degrees of success. One of the earliest methods, mass-spring
models, represents continuum materials as point masses connected
by springs, each with a stress-based yield criterion for fracture [Aoki
et al. 2004; Hirota et al. 1998, 2000; Norton et al. 1991]; unfortunately,
the resulting fractures suffer from significant artifacts. In [1999],
O’Brien and Hodgins successfully modeled brittle fracture using
finite element methods (FEMs) and, since then, FEM has proven
a promising direction for simulating both brittle and ductile frac-
ture as well as thin shell fracture [Bao et al. 2007; Busaryev et al.
2013; Li et al. 2018; Müller and Gross 2004; O’Brien et al. 2002].
However, these meshed methods require complex mesh treatments
to represent the crack topology, including the virtual node algo-
rithm [Molino et al. 2005; Sifakis et al. 2007; Wang et al. 2014],
the eXtended finite element method (XFEM) [Koschier et al. 2017;
Sukumar et al. 2000], and additional FEM augmentations like Dis-
continuous Galerkin FEM (DGFEM) [Kaufmann et al. 2008] and
level set approaches [Hegemann et al. 2013]. While FEMs focus on
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Fig. 4. Dongpo Pork. We simulate peeling the top layer of pork belly using three fiber scenarios to demonstrate the unique material effects possible through
the defined anisotropy. (Left) We use orthotropic damage and orthotropic elasticity (see §5) to peel away the top layer with damage visualized above. (Middle)
We use transverse isotropic fibers to peel away a strip of the top layer. (Right) We show that isotropic damage simply pulls away a small piece of the top layer.

discretizing continuum materials as volume elements, boundary
element methods (BEMs) instead focus on modeling the material
surfaces and have produced very convincing brittle fracture [Hahn
andWojtan 2015, 2016; James and Pai 1999; Zhu et al. 2015]. Alterna-
tively, some of the most recent approaches obviate meshes entirely,
such as element-free Galerkin (EFG) [Belytschko et al. 1995; Lu et al.
1995; Sukumar et al. 1997], clustered shape matching [Jones et al.
2016], and material point method (MPM) [Sulsky et al. 1995]. MPM
in particular has proven a successful approach to fracture model-
ing through augmentations like CRAMP [Nairn 2003], pre-fracture
paired with massless particle constraints [Wretborn et al. 2017],
focusing on viscoplasticity to facilitate fracture [Pradhana et al.
2017; Stomakhin et al. 2013; Yue et al. 2015], and through material
cutting approaches [Hu et al. 2018a]. Most recently, Wolper et al.
[2019] combined MPM with continuum damage mechanics (CDM)
to model fracture using a non-local phase-field fracture approach.
Though all stem from the same set of seminal fracture theories

[Barenblatt 1962; Griffith and Eng 1921; Irwin 1957], most frac-
ture works in graphics focus on fracture mechanics (FM); however,
CDM has recently seen more interest in graphics and instead poses
a smeared crack representation of fracture. Specifically, material
discontinuity is tracked in the continuous material (instead of ex-
plicitly adding crack geometry) and the material weakens at cracks
through elasto-damage coupling [Kachanov 1999]. Within CDM,
two core approaches developed in parallel: peridynamics (PD) [He
et al. 2018; Levine et al. 2014; Silling 2000; Silling and Askari 2005],
and phase-field fracture (PFF) [Aranson et al. 2000; Bourdin et al.
2000; Francfort and Marigo 1998; Miehe et al. 2010b]. PDs seek to
avoid the need for derivatives by replacing differential equations
with integral ones, and PFFs evolve a field of damage variables over
time to model cracks. PFFs in particular have proven successful
through their variational approach to diffuse crack modeling, and
typically perform elasto-damage coupling through elasticity degra-
dation, an approach in which the elastic potential can be additively
split into a tension and a compression component with the ten-
sion term degraded using the tracked damage variables to allow for
material separation [Ambati et al. 2016; Borden et al. 2016; Miehe
et al. 2015]. As opposed to the recently-used variational approach to
approximating the phase-field surface integral [Bourdin et al. 2008;
Wolper et al. 2019], we focus on a geometric approach rooted in

Γ-convergence regularizations of free discontinuity problems [Am-
brosio and Tortorelli 1990; Miehe et al. 2010b]. These methods are
characterized by the introduction of crack surface density functions
that measure spatially regularized crack surfaces and have been
used at length for phase-field fracture in mechanics [Miehe et al.
2015; Raina and Miehe 2016; Teichtmeister et al. 2017].

2.2 Anisotropic Damage
Within CDM, there exist many approaches to modeling anisotropic
damage, each having application-specific considerations. While vir-
tually every method focuses on damage through elasto-damage
coupling, each has a unique means of tracking and evolving damage.
Multi-damage variable approaches track more than a single variable
to represent different types of material damage: one approach mod-
els damage variables for the material matrix and fibers separately
[Calvo et al. 2007], while a longitudinal/transverse damage model
tracks two orthogonal components of damage to model orthotropy
[Bleyer and Alessi 2018]. Conversely, some models forgo damage
variables entirely in favor of an evolving second order damage ten-
sor to encode anisotropic damage [Fassin et al. 2018; Ito et al. 2010;
Nairn et al. 2017]. Other approaches are more biologically inspired
and focus on damaged fiber density to compute damage [Natali et al.
2005], while others focus on the multiplicative decomposition of
the deformation gradient into a plastic part, an elastic part, and
a damage part that evolves over time [Shanthraj et al. 2017]. Re-
cently, global-local approaches were developed to locally evolve a
phase-field and then solve a linear elastic problem globally to evolve
damage, but these require adaptive domain decomposition routines
that present lengthy overhead [Gerasimov et al. 2018; Noii et al.
2019]. Finally, it has been shown that anisotropic plasticity can be a
successful approach to modeling anisotropic damage, particularly
through the anisotropic Tsai-Hill yield surface [Korenczuk et al.
2017], and modeling the granular flow of anisotropic grains using
anisotropic Drucker-Prager [Daviet and Bertails-Descoubes 2016].

Pairing CDM with MPM has seen exploration in mechanics, par-
ticularly in approaches such as damage gradient partitioning (DGP)
to define crack paths [Homel and Herbold 2017; Moutsanidis et al.
2019]; however, this requires currently undeveloped treatments to
align the failure planes in the material and the damage gradient.
Conversely, anisotropic damage within MPM has been successfully
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Fig. 5. Orange Tear.We pull apart a multi-material orange slice simulated
with radial fibers for anisotropic damage. This demonstrates a material
where anisotropic damage alone produces photo-real results.

modeled in the quasistatic setting for brittle fracture by employ-
ing a fourth-order phase-field evolution equation [Borden et al.
2014; Kakouris and Triantafyllou 2018]. Unfortunately, this not only
poses extremely expensive computational overhead for updating the
phase-field, but also focuses only on modeling the anisotropy of the
fracture energy, rather than presenting a mechanically rigorous and
unified model of material anisotropy [Bleyer and Alessi 2018]. Alter-
natively, methods derived from the aforementioned crack density
functions typically evolve a field of damage variables by adopting a
second-order structural tensor that can be easily incorporated into
a damage driving function [Dhas et al. 2018; Raina and Miehe 2016;
Steinmann et al. 1994; Teichtmeister et al. 2017]. These structural
tensors are easy to implement, robust, and highly generalizable in
that they can capture isotropy, transverse isotropy, orthotropy, and
even cubic symmetry [Teichtmeister et al. 2017]. For this reason, we
choose to explore anisotropic damage by pairing structural tensors
with a second order crack density function (higher orders exist, but
are qualitatively unnecessary) [Raina and Miehe 2016].

2.3 Anisotropic Elasticity
Elasticity is a key component inmodelingmaterial responses. Isotropic
constitutive models have seen extensive study in graphics [Bouaziz
et al. 2014; Smith et al. 2018; Stomakhin et al. 2012]. However, since
manymaterials are inherently direction-dependent, anisotropymust
be incorporated for the realistic simulation of these materials, includ-
ing cloth [Jiang et al. 2017], plants [Wang et al. 2017], and biological
tissues [Chagnon et al. 2015; Raina and Miehe 2016; Teran et al.
2003]. In recent years, many anisotropic elasticity models have been
designed in graphics to model different cases of anisotropic behav-
iors. This includes transverse isotropic elasticity [Kim et al. 2019], in
which a single fiber direction is stiffened per quadrature, as well as
orthotropic elasticity [Li and Barbič 2015] where material properties
can differ along all three orthogonal axes. A variety of approaches
have been proposed by researchers in modeling anisotropy. For ex-
ample, Garcia-Gonzalez et al. [2018] use structural tensors to derive
anisotropic elasticity, while Chen et al. [2018] use shape function
modifications to model elasticity. Alternatively, Jiang et al. [2017]
propose a model based on the QR-decomposition of strain that is
specifically designed for co-dimensional objects with explicit time

integration. We generalize this QR-based design to arbitrary volu-
metric models which can be reduced to stable Neo-Hookean [Smith
et al. 2018], and potentially any arbitrary anisotropic elasticity.

2.4 Inextensibility
In mechanics, inextensiblity theory has been developed to serve
as a hard constraint approach to modeling anisotropic materials
that have high stiffness in specific directions [O’Bradaigh and Pipes
1991]. As noted by [Babuška and Suri 1992], numerical methods
like FEM cannot solve extreme constraints by fulfilling them ap-
proximately (such as through using a penalty method); this can
lead to the classic locking phenomenon. Thus, for these materials,
inextensibility theory with hard constraints is preferred. In recent
years, new approaches have arisen to overcome this difficulty. Solv-
ing the locking problem has seen much exploration: Wriggers et
al. [2016] developed a locking-free finite element theory for large
strain anisotropic behavior using the Lagrange multiplier method,
and recently, Chen et al. [2019] introduced a set of simple meshless
isometry constraints to avoid the locking problem in simulating
inextensible thin-plate materials. Inextensibility has also attracted
attention in graphics, since many materials have underlying fiber
structures. Some theories have proven successful for simulating in-
extensible materials like cloth [Goldenthal et al. 2007; Harmon et al.
2009] and hair [Bertails et al. 2006; Müller et al. 2012]. Additionally,
Tournier et al. [2015] explored inextensibility with stable constraint
dynamics using geometric stiffness.

2.5 Material Point Method
Since its inception [Sulsky et al. 1994, 1995], MPM has shown to be
an extremely robust and widely-applicable approach for simulating
a breadth of both solid and fluid physical phenomena. Though orig-
inally formulated for computational fluid dynamics [Brackbill and
Ruppel 1986; Zhu and Bridson 2005], MPM has been generalized to
solid mechanics in a way that has cemented it as one of the most
widely-used choices of discretization for physically-based anima-
tion. Successful effects include sand [Daviet and Bertails-Descoubes
2016; Klár et al. 2016; Yue et al. 2018], snow [Stomakhin et al. 2013],
foam [Ram et al. 2015; Yue et al. 2015], cloth [Fei et al. 2018; Guo
et al. 2018; Jiang et al. 2017], solid-fluid sediment mixtures [Gao
et al. 2018a; Pradhana et al. 2017], phase change [Stomakhin et al.
2014], viscoelastic materials [Fang et al. 2019], and, most recently,
isotropic fracture [Wolper et al. 2019].

Fig. 6. Fish Skinning. We simulate skinning a fish in AnisoMPM using
flow-generated fibers for anisotropic damage and anisotropic elasticity.
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Fig. 7. String Cheese.We use transverse isotropic damage and elasticity to peel a mozzarella cheese stick eight ways to reveal the underlying stretchy fibers.

3 ANISOTROPIC DAMAGE

3.1 Geometric Crack Modeling
We begin by defining an elastic body with material space Ω0 and
deformed space Ωt using the deformation map x = ϕ(X , t) with x
and X being world and material coordinates respectively. For later
use we also denote the material deformation gradient as F = ∂ϕ

∂X .
We additionally define the crack phase-field as a set of damage
variables d ∈ [0, 1] such that d = 0 for unbroken material, and d = 1
for fully broken material. Further, to describe the material cracks we
are inspired by the geometric approach to diffuse crack modeling
outlined in [Miehe et al. 2010b] and adopt the notion of a spatially
regularized crack surface functional, Γl0 (d), such that:

Γl0 (d) =

∫
Ω0

γl0 (d,∇d)dV, (1)

where l0 is a length scale parameter used to regularize the diffuse
crack, and γl0 is a crack surface density function that defines the
crack density per unit volume and has the form:

γl0 (d,∇d) =
d2

2l0
+
l0
2
|∇d |2dV. (2)

This crack surface density function is the key to modeling crack
propagation; specifically, the minimization principle of diffuse crack
topology gives an expression for the regularized crack phase field
as follows:

d(X , t) = arg{ inf
d ∈WΓ

Γl0 (d)}, (3)

whereWΓ = {d | d(X , t) = 1 at X ∈ Γ(t)} is a constraining Dirichlet
condition on the damage that ensures damage is maximized on the
crack surface. Although higher order crack surface density functions
exist, Eqn. 2 has shown success for anisotropic fracture [Raina and
Miehe 2016], and was developed by Miehe et al. [2010b] to model
the exponential function exp(−|x |/l0) as the solution to Eqn. 3 (see
Fig. 8 for intuition on why this expression is useful for describing a
diffuse crack). This density function assumes that the exact crack, Γ,
exists at x = 0, and notice in Fig. 8 that changing the regularization
parameter changes the spread of the diffuse crack representation.
In MPM, this regularization parameter must not exceed the grid
resolution, and as such we set it exclusively to be l0 = ∆x/2 to
ensure it never causes the diffuse crack to spread further than one
cell; in the interest of keeping the parameter space tractable, we did
not explore this parameter further.

The evolution of the damage field can be formulated as a function
of the damage, its gradient, and a local crack driving force field, H̃ ,
that is dependent on the entire history of the material. Specifically,

we use the resulting local damage evolution equation that arises
from the minimization principle of diffuse crack topology [Miehe
et al. 2015]:

η Ûd = (1 − d)H̃ − Dc . (4)

Here, η is a mobility constant that physically controls the viscosity
of the crack evolution. The first term on the right is the local crack
driving force and the second term is a geometric crack resistance,
Dc ; thus, the evolution of the damage field is a balance between a
driving force, (1−d)H̃ , and a geometric resistance,Dc , with damage
only occurring when the former exceeds the latter. By taking the
variational derivative of Eqn. 2 we further attain a function for the
geometric crack resistance,Dc = d−l

2
0∆d , where ∆d is the Laplacian

of d (we use ∆ = ∇2).
As cracks evolve and propagate in the material we must also

ensure that the cracks are irreversible (cracks never heal) or more
specifically, ÛΓl0 (d) ≥ 0. This is achieved through three constraints:
bounding the phase field d ∈ [0, 1], ensuring local crack growth
Ûd ≥ 0, and enforcing a positive driving force H̃ ≥ 0. By consider-
ing a rate independent crack evolution (η = 0) with homogeneous
damage (∇d = 0) we can manipulate Eqn. 4 and get the following
relationships: for d = 0 (healthy state) H̃ = 0, for d = 1 (maximum
damage) H̃ = ∞, and Û̃

H ≥ 0. Thus, H̃ must be a positive, mono-
tonically growing function. We satisfy the third condition through
defining H̃ as the history dependent maximum of a generalized
crack driving state function, D̃ like so:

H(X , t) = max
s ∈[0,t ]

D̃(state(X , s)) ≥ 0. (5)

Fig. 8. Effect of Regularization Parameter on Damage Field. Here we
plot four diffuse cracks at x = 0 to illustrate that the diffuse crack rep-
resentation widens as l0 increases. These damage plots are of the form
exp(−|x |/l0) and result from the minimization principle of diffuse crack
topology (solving Eqn. 3 using Eqn. 1).
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Fig. 9. Armadillo Lance. We pierce a soft toy armadillo with a lance using flow-generated fibers to direct (a) anisotropic damage and anisotropic elasticity
for the ropes, (b) isotropic damage and anisotropic elasticity ropes, and (c) anisotropic damage and inextensible ropes. This illustrates the clean, bisecting
fracture achievable only with anisotropic damage as well as the successful pairing of our damage model with inextensibility.

Here, s is some time in the interval [0, t] with t being the current
time. The state function is used to indicate the modularity of this
expression: H̃ is simply defined to be the maximum value of D̃
over all material states during the simulation history. In this way,
we can design any crack driving force D̃ as long as it satisfies the
aforementioned constraints. The third constraint is already fulfilled
by taking the maximum over the material history, but the first and
second constraints also require that D̃ = 0 for an unbroken state,
and D̃ = ∞ for a broken state. Ultimately this leads to our final local
damage evolution equation:

Ûd =
1
η

〈
(1 − d)D̃ − (d − l20∆d)

〉
, (6)

with ⟨x⟩ := (x + |x |)/2 as the Macauley bracket, further enforcing
the irreversibility of the crack evolution. Now all that is missing is
a function for our crack driving force D̃.

3.2 Anisotropic Crack Driving Force
We add anisotropy to our damage model through the introduction
of an anisotropic crack driving state function, D̃, that is dependent
on the tensile portion of the Cauchy stress, σ+, as derived by [Raina
and Miehe 2016]:

D̃ = ζ
〈
Φ(σ+) − 1

〉
with σ+ =

3∑
i=1

⟨σi ⟩ni ⊗ ni (7)

Fig. 10. Effect of σc and η. Tearing a diagonally fibered block shows that
σc controls the material’s resistance to cracking while η dictates the crack
propagation speed. For the top row,η = 0.1, and for the bottom row,σc = 25.

This ζ controls the slope of the driving force, but we keep it equal to
1 for all explorations to reduce the parameter space. As for Φ(σ+),
we are inspired by the approach of [Raina and Miehe 2016] and
derive a highly generalizable expression for adding various forms
of anisotropy to our crack driving force:

Φ(σ+) =
1
σ 2
c
(Aσ+ : σ+A). (8)

Here, we introduce σc , a critical stress threshold that dictates how
much stress a material can withstand before fracturing (see Fig. 10
to visualize the fracture effects attainable simply through changing
σc and η). We also introduceA, a second order structural tensor that
encodes the material’s fiber directions. If we let a1 be the principal
fiber direction, and a2 be the secondary fiber direction (in the case
of orthotropy) we define A as:

A = I + α1(a1 ⊗ a1) + α2(a2 ⊗ a2), (9)

where I is the identity matrix, α1 is a variable controlling the
strength of the principal fiber direction’s influence on fracture, and
α2 the same for the secondary fiber direction. These α parameters
weight the influence of each material direction and dictate the na-
ture of the anisotropy. Through this general form we can define
structural tensors for isotropic materials (α1 = α2 = 0), transversely
isotropic materials (α1 , 0,α2 = 0), and orthotropic materials
(α1 , 0,α2 , 0). See Fig. 4 to visualize how these three types of ma-
terials respond to dynamic fracture. We do not explore the material
effects achievable through tuning these scalars (to reduce param-
eter space); we instead consider them to have values αi ∈ {−1, 0}
where a value of -1 indicates the fiber has the strongest possible
control over the fracture direction and 0 indicates the fiber has no
influence whatsoever. Finally, see Fig. 11 for a visualization of the
crack driving force, D̃, using a variety of fiber directions and Fig. 12
to see the various material effects possible simply through changing
the material fiber direction.

3.3 Elasticity Degradation
We couple our anisotropic damagewith anisotropic elasticity through
degrading relevant terms in the anisotropic energy density, Ψ(F ),
using a monotonically decreasing function of the damage, д(d); this
is a common approach shared by many phase-field methods [Am-
bati et al. 2016; Borden et al. 2016; Miehe et al. 2010a,b; Wolper
et al. 2019]. Specifically, we degrade only the tensile portion of the
isotropic elasticity associated with the material’s isotropic matrix:
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Fig. 11. Effect of Fiber Direction on D̃ .We plot in Cauchy stress space
the crack driving state function, D̃ , for four fiber directions to show the
directional effect on D̃ . This function has directionality for a fibered material
(a,b,c) while isotropic materials have the same D̃ in all directions (d).

Ψ+. We do not degrade the compressive portion of the matrix en-
ergy, Ψ−, nor the fiber energy, Ψf . This gives an expression for the
degraded energy density, Ψ̂(F ), as:

Ψ̂(F ) = д(d)Ψ+(F ) + Ψ−(F ) + Ψf (F ), (10)

with д(d) = ((1 − d)2(1 − r )) + r including the residual stress, r ,
to ensure a small tensile stress even in regions of full damage and
prevent degenerate deformation gradients. This quadratic degra-
dation function is used by many CDM approaches to fracture due
to its simplicity, its monotonically decreasing nature, and its cor-
rect scaling for both a fully damaged (д(1) = r ) and a fully healthy
(д(0) = 1 + r ) material [Miehe et al. 2015; Wolper et al. 2019]. See §5
for more details on our anisotropic elasticity and refer to Fig. 20 to
visualize this concept of elasticity degradation.

4 ANISOMPM SPATIAL DISCRETIZATION

4.1 Traditional MPM
MPM is a hybrid method comprised of meshless quadrature points
that carry Lagrangian physical quantities (traditionally, quantities
like m, x , v , and F , but, for AnisoMPM, we also have damage d ,
fiber directions {a}, and fiber magnitudes {α }) in conjunction with
a background grid that is used to compute spatial derivatives. Here,
we present the traditional MPM pipeline (see [Jiang et al. 2016] for
details) to both elucidate the basic data flow as well as highlight the
augmentations that make up AnisoMPM.

First, we transfermass andmomentum from particles to grid using
APIC [Jiang et al. 2015]. Second, we use our anisotropic elasticity
and user defined boundary conditions to compute forces and update
grid velocity. We then transfer information back from the grid,
update particle velocities, and advect particle positions. Finally, we
update the deformation gradients and process them with return
mapping for plasticity (see Fig. 14). To enable anisotropy, the core
augmentation we need is in the grid velocity update, in which we
employ elasto-damage coupling to update grid velocity and perform
our inextensibility solve if desired (see Fig. 13).

4.2 AnisoMPM Data Flow
Instead of coupling damage with momentum in a prohibitively long
monolithic solve we choose to adopt a staggered integration scheme
in which damage is updated first, and then, the new damage is used
to update grid velocities to resolve momentum. This scheme has
recently shown great success for fracture in graphics and mechanics
[Amor et al. 2009; Miehe et al. 2015; Wolper et al. 2019] and in prac-
tice, we find it typically requires only a single staggered iteration

to adequately converge and produce visually striking results. In
Fig. 13, we present the entirety of our AnisoMPM data flow, seeking
to highlight the core differences from traditional MPM (the damage
pipeline, elasto-damage coupling, and inextensibility). The damage
pipeline always begins with transferring damage from the particles
to the grid but branches into two paths, depending on whether we
want to solve damage using explicit or implicit integration. Both of
these branches end with our damage updated to dn+1, and we pair
this damage with our anisotropic constitutive model (using elastic-
ity degradation) to compute forces on the grid that are then used
for updating grid velocity; this can be seen as replacing ∂Ψ

∂F (Fnp )

with ∂Ψ
∂F (Fnp ,d

n+1) in the grid update step of MPM (see §5 for more
details on elasto-damage coupling). Finally, inextensibility is incor-
porated into AnisoMPM as a hard-constrained grid velocity solve,
and note that this can be easily turned on or off as it is completely
modular within the data flow. Note that anisotropic elasticity does
not explicitly appear in the data flow, but is instead encoded in the
grid velocity update as our constitutive energy density function,
Ψ(F ). Plasticity is also easily added to this pipeline through return
mapping our updated Fp , as demonstrated in Fig. 14.

4.3 Damage Evolution
We track our phase-field damage variables, d , on the particles and
transfer them to and from the grid similarly to momentum. In this
way, we represent continuum cracks by tracking particle damage in
world space and evolving it using grid computations (see Fig. 15).

We develop novel MPM-based discretizations of Eqn. (6) using
both explicit and implicit time integration, each bringing unique nu-
merical benefits. Implicit damage has the advantage of taking much
larger time steps, encoded in our damage model through the crack
mobility constant η; thus, implicit damage is capable of producing
extremely fast cracks through its ability to use significantly smaller
η values, as evidenced in Fig. 16. However, in practice, our explicit

Fig. 12. Disk Shoot.A sphere pushes through disks initializedwith a variety
of fiber directions, illustrating the wide variety of material affects achievable.
Note the color denotes the damage variable, d ∈ [0, 1], with blue being
healthy material and red being fully damaged material; the color bar is
to give an idea of the range of colors, but the particle colors come from
ramping damage values. Note that the bottom right shows radial fibers.
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Fig. 13. AnisoMPM Data Flow. We illustrate the AnisoMPM data flow including both explicit and implicit damage. Additionally note the blue arrows show
that we need to use Fnp to update damage regardless of method, and the red arrow shows that we must solve for damage before the dynamics because we
need the damage to compute forces for our grid velocity update. Finally, note that inextensibility is a post process on grid velocity that can be turned on or off.

damage integration benefits not only from its comparative ease of
implementation, but also achieves better computational speeds due
to the lack of lengthy system solves (despite smaller time steps),
avoids numerical damping, and produces qualitatively similar re-
sults. Note that the material fiber directions, {ai }p are constant
per particle during simulation; thus, we use the rotation, Rnp , of
Fnp = RnpS

n
p to update the rotation of these fibers, leading to the

following updated construction rule for our structural directors:

An
p = I + α1(R

n
pa1 ⊗ Rnpa1) + α2(R

n
pa2 ⊗ Rnpa2).

See our supplemental document [Wolper et al. 2020] for thorough
pseudocode for both explicit and implicit damage evolution.

4.3.1 Explicit Integration. We discretize Eqn. (6) with explicit time
integration to produce the following local damage evolution rule:

dn+1p = min
(
1,dnp +

∆t

η
⟨(1 − dnp )D̃

n
p − (dnp − l20∆d

n
p )⟩

)
, (11)

where we take the min with 1 to enforce d ∈ [0, 1], and where D̃n
p is

the maximum value in the history of particle p’s driving force, D̃H
p ,

Fig. 14. Broken Heart.We break a soft flow-fibered plastic heart with von
Mises plasticity (above, τ = 4) both to show the natural coupling between
AnisoMPM and plasticity as well as to compare with a purely elastic run
(below) to highlight the plastic deformation only possible with the former.

such that D̃n
p = max(D̃H

p , ζ ⟨Φ(σ
+
p
n
)−1⟩). Computing the Laplacian,

∆dnp , requires that we transfer the damage to the grid:

∆dnp =
∑
i
dni ∆N

n
i with dni =

∑
p w

n
ipd

n
p∑

p w
n
ip
,

and∆Nn
i = N ′′

i (x)Ni (y)Ni (z)+Ni (x)N
′′
i (y)Ni (z)+Ni (x)Ni (y)N

′′
i (z)

where Ni (xp ) is the interpolation function used for transfer. Note
that this computation requires the second derivative, mandating
that we use at least cubic Ni (xp ). Additionally, we choose FLIP to
transfer damage to avoid the numerical diffusion inherent to PIC,
and the need for additional resources dictated by APIC.

4.3.2 Implicit Integration. Now we discretize Eqn. (6) with implicit
time integration to produce an implicit damage evolution rule:(

1 +
∆t

η
(D̃n + 1)

)
dn+1 −

(
∆t

η
l20

)
∆dn+1 =

∆t

η
D̃n + dn . (12)

Note that this requires updating D̃ first to enforce the crack irre-
versibility. We further discretize Eqn. (12) by writing a weak form
of the PDE and then using the MLS shape function [Hu et al. 2018a],
Θi (x), and its gradient, ∇Θi (xp ) = M−1

p wn
ip (xi − xnp ) to get a posi-

tive semi definite linear system for the unknown dn+1i (see [Wolper
et al. 2020]):

(A + B)d = c, (13)

Fig. 15. Damage Discretization.We tear a disk to show our damage dis-
cretization. (Left) In material space, each particle carries a damage variable,
d ∈ [0, 1]. (Middle)We visualize∆d ’s influence on damage evolution. (Right)
In world space the crack propagates as highly damaged particles separate.
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Fig. 16. Implicit vs. Explicit Damage.We use a very small mobility con-
stant (η = 1 × 10−9) to produce a very fast crack front and compare the
results using (a) implicit damage and (b) explicit damage. This illustrates
that explicit damage is incapable of resolving extremely fast cracks without
making the time step prohibitively small while implicit damage can.

where d is the vector of unknowns, dn+1i , and with:

A = [Aii ] =
∑
p

V n
p

(
1 +

∆t

η
(D̃n

p + 1)
)
wn
ip

B =
[
Bi j

]
=
∑
p

V n
p

(
∆t

η
l20

) (
∇Θi (x

n
p )
)T (

∇Θj (x
n
p )
)

c = [ci ] =
∑
p

V n
p

(
∆t

η
D̃n
p + d

n
i

)
wn
ip

Here,A is a diagonalmatrix,B is theMPMdiscrete Laplace operator,
and c is the vector of right hand terms. We can solve this system
using the conjugate gradient method preconditioned with the Jacobi
preconditioner due to its heat equation-like form [Gao et al. 2018b;
Stomakhin et al. 2014; Wolper et al. 2019]. In practice, this requires
under two iterations to reach near-roundoff accuracy.

5 ANISOTROPIC ELASTICITY

5.1 QR-Elasticity
Drawing inspiration from [Jiang et al. 2017], we design our anisotropic
hyperelastic constitutive model through QR-decomposition of the
deformation gradient F = QR, whereQ is a rotation and R is upper-
triangular such that:

R =
©­«
r11 r12 r13

r22 r23
r33

ª®¬ .
We write our additively-decomposed anisotropic energy as:

Ψ(R) = Ψµ (R) + Ψλ(R) + Ψf (R)

where Ψµ (R) =
µ
2 (
∑
i j r

2
i j − dim) − µ(J − 1) is the shearing term,

Ψλ(R) = λ2 (J − 1)2 is the volumetric term, and with J = det(F ). This
design comes from the stable Neo-Hookean energy [Smith et al.
2018]. In the original model, there is also a logarithmic term that
helps ensure meta-stability under degeneracy, but we omit this term
because, as we will show, our anisotropic design already ensures
there is no degenerate local optimum on the energy manifold.
To enable anisotropy (including orthotropy), we add two terms

to penalize stretching in the primary fiber direction with stiffness
kx and, optionally, stretching in the secondary fiber direction (or-
thogonal to the first) with stiffness ky , i.e. Ψf (R) = kx

2 (r11 − 1)2 +
ky
2 (

√
r212 + r

2
22 − 1)2. This is the fiber term (see Fig. 17 to visualize

isotropic, transverse isotropic, and orthotropic elasticity); note that
this model is similar to that of Teran et al. [2003] but with an addi-
tional orthotropic term and added efficiency from our QR approach.
In practice, we set stiffness parameters kx and ky by multiplying µ
with a fiber scale parameter, γ , to make it more intuitive (see Fig. 18
for the influence of E and γ , and Fig. 20 to visualize the γ -scaled en-
ergy density). When r11 = 0, the derivative of our anisotropic term,
− ∂Ψf

∂r11
= kx > 0, points in the direction of the recovering material’s

rest shape; naturally, − ∂Ψ
∂r11

does the same, effectively avoiding get-
ting trapped in a degenerate configuration during simulation (see
Fig. 19b).
Jiang et al. [2017] proved that given Ψ = Ψ(R), the symmetric

matrixQT ∂Ψ
∂F R

T shares the same upper triangular part with ∂Ψ
∂F R

T ,
which is trivially derivable from the expression of Ψ(R). Then, we
can accordingly compute the first Piola-Kirchhoff stress P = ∂Ψ

∂F .
We leave the detailed computation of the stress differential and
derivative to the supplemental document [Wolper et al. 2020].
Our anisotropic elasticity energy design has several advantages

that lead to better performance than existing models. First, our elas-
ticitymodel is efficient for computing forces with explicit MPM since
no SVD-decomposition is needed. Our tests show that QR-elasticity
is over 3.4× faster than a fixed-corotated elastic model. Similarly,
we can easily achieve orthotropy in our model. Additionally, note
that while we can define the fiber terms using the columns of F ,
we find it is still more efficient to use QR for the isotropic terms; as
such, we define all terms using R for unity and clarity.
Furthermore, our anisotropic elasticity is robust to inversions,

as both the energy density and the stress are well defined over the
whole domain, and our local minimum is attained if and only if F is
a rotation (including F = I ). This enables us to simulate challenging
scenes with extreme deformation or inversion (see Fig. 19).

5.2 Elasticity Degradation
We perform our elasto-damage coupling through elasticity degrada-
tion. Specifically, we use the degradation function д(d) ∈ [0, 1] (see
§3.3) to degrade the tensile contribution of the hyperelasticity, Ψ+,
to allow for material separation under tension while still enforcing
material resistance to compression. We additively decompose our

Fig. 17. Elastic Tube PullWe stretch a tube with (a) isotropic, (b) transverse
isotropic, and (c) orthotropic elasticity. The cross sections at right reveal the
material anisotropy: (a) has equal compression, (b) shows less compression
along the fiber scaled horizontal direction (γ = 15), and (c) shows similar
behavior to (b) (keeping horizontal γ = 15), but additionally scales the
secondary direction to reduce compression in the vertical direction (γ = 3).
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Fig. 18. Effect of E and γ .We show in world space that increasing Young’s
modulus increases material fracture resistance; in material space we illus-
trate that increasing the fiber scale, γ , gives sharper fracture paths.

QR-elasticity into Ψ(R) = Ψ+(R) + Ψ−(R) + Ψf (R) like so:

Ψ+(R) =

{
Ψµ (R) + Ψλ(R) J ≥ 1
Ψµ (R) J < 1

, Ψ−(R) =

{
0 J ≥ 1
Ψλ(R) J < 1

.

Notice that we unconditionally include the shearing term in the ten-
sile contribution but include only the volumetric term when J ≥ 1,
indicating an increase in volume. Thus, by Eq. (10), this means we
always degrade the shearing term, conditionally degrade the volu-
metric term, and never degrade the fiber term. Notice that we choose
to only degrade the isotropic part of the elasticity, meaning that
AnisoMPM predominantly models materials with negligible fiber
fracture tendencies (fibers separate but do not tear). However, it is
an interesting extension to explore modeling a separate degrada-
tion for the fiber terms to allow for fiber breakage under extreme
conditions. See Fig. 20 to see how damage affects our QR-energy as
it increases.

6 INEXTENSIBILITY
Although our anisotropic elasticitymodel generally provides visually-
plausible results, it may still have difficulty resolving extremely stiff
materials (see Fig. 21). Due to the soft constraint approach intrin-
sic to our constitutive model, we struggle to model high stiffness

Fig. 19. Inversions and Extreme Deformations.We use mesh-based lin-
ear FEM to show that our QR-elasticity is robust under extreme circum-
stances. We show that both (a) a randomly initialized configuration and
(b) a one-point initialized configuration can recover the rest shape of the
gorilla and model accurate dynamics (assuming the absence of plasticity).

Fig. 20. Anisotropic Elasticity Visualized. (Left) We plot our QR-energy
density for three damage values in Cauchy stress space, illustrating the
degrading energy as damage increases. (Right) We show the energy density
for three fiber scales, γ , corresponding to isotropic, transverse isotropic,
and orthotropic elasticity. Note the asymmetry of the transverse isotropic
energy compared to orthotropic’s symmetric scaling.

materials without significantly decreasing ∆t for explicit MPM. Sim-
ilarly, the system may even be too stiff to solve using implicit MPM.
Furthermore, even if the system were solvable, it may still suffer
from the classic locking effect (see Fig. 22). To avoid this difficulty,
we present an embedded directed inextensibility solver in which
extreme stiffness is modeled with hard constraints. Note throughout
this section that we assume the inextensible fibers embedded in
the continuum to only transform under rigid kinematics. By using
polar decomposition to extract the closest rotation R to the local
deformation gradient F , we assign the world space fiber direction
to be Ra1. Also recall that fibers are co-located with material points,
whose F is updated with ∇v as usual. In this way, our inextensibil-
ity routine requires no additional fiber modeling or treatment than
what AnisoMPM already provides.

6.1 Theory and Equations
We follow [O’Bradaigh and Pipes 1991] to formulate our inextensi-
bility enforcing constraint equation in Eulerian space as follows:

(a ⊗ a) : d = 0, (14)

where d = 1
2

(
∂v
∂x +

∂v
∂x

T ) is the Eulerian rate-of-strain tensor and
a = a(x, t) is the current unit fiber direction in Eulerian space. We
leave the derivation of this to the supplemental document [Wolper
et al. 2020]. Supposing we are at a certain time step, we solve our gov-
erning equation with the above constraint to update grid velocities.
Our constrained conservation of momentum equation is:

ρ(x, t)
Dv

Dt
= ∇x · σfull + ρ(x, t)д, (15)

where σfull = σ + λ(a ⊗ a) is the full stress, λ = λ(x, t ;a) represents
the unknown tension along the fiber direction enforcing the inexten-
sibility constraint, and σ is the isotropic stress from the constitutive
model. Our goal is to construct a system to solve forv and λ.

6.2 Weak Form
We follow [Jiang et al. 2016] to derive the weak form for our equa-
tions. We will use α, β as the dimension indices, i as the traditional
MPM grid index, and z as the grid cell index. For convenience, we
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Fig. 21. Hanging Torus. For the left six tori we simulate the ropes with
anisotropic elasticity, whereas the right two have ropes simulated with inex-
tensibility. Across runs we increase the density of the torus to demonstrate
that for a constant time step and fiber scale, anisotropic elasticity numeri-
cally fractures for heavier tori, whereas inextensibility remains steadfast.

also use the subscript iα to denote the α dimension of grid i . We
define Nn to be the number of MPM grid nodes and Nc to be the
number of MPM grid cells.

6.2.1 Momentum equation. By multiplying Eq. (15) by our test
functionq(x, t), integrating in world space, and applying integration
by parts and divergence theorem (ignoring gravity and assuming a
zero-traction boundary for simplicity), we have:∫

Ωt
qα ρ

Dvα
Dt

dx = −

∫
Ωt

qα ,βσα βdx −

∫
Ωt

qα ,βλaαaβdx, (16)

where summation over index α, β is implied.
We expand velocity and q at nodes, λ at cell
centers using B-Spline (note that we use two
sets of basis, N is quadratic at nodes whereas
Γ is linear at cell centers) to get: qα (x) =
qiαNi (x),vα (x) = viαNi (x), λ(x) = λzΓz (x).
The figure on the left illustrates the effect of
particles on grid nodes and cell centers. Cir-
cles represent grid nodes while crosses rep-
resent cell centers, and red denotes non-zero
weights. We pick qiα = δ(i ,α )=(i∗,α ∗) to get

one equation for each degree of freedom for each grid node. After
simplification, we get the final form of our momentum equation:

mi
∆t

vn+1iα + B(z,iα )λz = biα , (17)

where the coefficients are B(z,iα ) =
∫
Ωtn aα (a · ∇Ni )Γz (x)dx , and

biα =
mi
∆t v

n
iα −

∫
Ωtn Ni ,β (x)σα β (x, t

n )dx . This gives us dim × Nn

equations of vn+1iα and λz .

6.2.2 Constraints. We similarly manipulate Eq. (14) by introducing
the test function, h(x, t), to get a variational problem:∫

Ωt
h(x, t)(a ⊗ a) : ddx = 0. (18)

Once again, we interpolate our equation over grid nodes and cells
to get: vα (x) = viαNi (x) and h(x) = hzΓz (x). We let hz = δz=z∗ (in
turn picking an equation for each cell center). Simplifying, we get:∫

Ωt
Γc (x)aαaβviα

∂Ni (x)

∂xβ
dx = 0. (19)

Extracting the viα term, we derive our linear constraint equations:

B(z,iα )viα = 0, (20)

giving us Nc equations of vn+1iα and λz .

6.3 Discretization and Implementation
As shown above, the equations are discretized over the MPM grid
(both nodes and cells). We further discretize the integration in biα
and B(z,iα ) over the particles following standard MPM, resulting in:∫

Ωtn
Ni (x)σα β (x, t

n )dx ≈
∑
p

V n
p σ

n
pα βNi ,β (xp ), (21)

and B(z,iα ) ≈
∑
p

V n
p Γz (xp )aα (a · ∇Nj (xp )). (22)

Assembling the above equations, we present our linear system as:(
M BT

B O

) (
v

λ

)
=

(
b
0

)
(23)

whereM is a (dim × Nn ) × (dim × Nn ) diagonal matrix where the
(iα, iα) element equals mi

∆t , b is a (dim × Nn ) × 1 vector with iα-th
element equal to biα in Eq. (17), and B is a Nc × (dim × Nn ) sparse
matrix with its (z, iα) element equal to B(z,iα ).
This is a sparse and symmetric KKT system and is not positive-

definite. In practice, we do not need to directly solve this system.
We eliminate v and solve λ via BM−1BT λ = BM−1b. One can
easily verify that this is equivalent to solving the original sys-
tem. Note thatM is a diagonal matrix with positive entries; hence,
M,M−1,BM−1BT are all symmetric semi-positive definite, which
we then can solve with the conjugate gradient method and compute
v to get the inextensibility-constrained grid velocities. This inexten-
sibility solver can be easily integrated into our AnisoMPM pipeline
as a hard-constrained grid velocity solve (see Fig. 13). Inextensibility
works in tandem with our anisotropic damage and is able to create
sharp fracture along any fiber direction (see Fig. 23).

7 RESULTS
We showcase a wide variety of demos to illustrate the sheer magni-
tude of dynamic anisotropic fracture effects AnisoMPM can produce.

Fig. 22. Locking. We hang a jello prism using both inextensible fibers (a,b)
and anisotropically elastic fibers (c,d). When the fibers are parallel to one
another (a,c) these methods behave the same; however, when the fibers
are slightly perturbed (b,d), anisotropic elasticity experiences the common
"locking" effect (whereas inextensible fibers are resolved properly).
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Fig. 23. Disk Tear. We tear a disk composed of longitudinal fibers using
(a) anisotropic damage and inextensibility (no elasticity), and (b) isotropic
damage and elasticity, demonstrating the successful coupling of anisotropic
damage and inextensibility.

We list all major demo timings and parameters in Table 1. All simula-
tions were run on an Intel i7-9700K CPU with 8 threads at 3.60 GHz
using symplectic Euler time integration for momentum and with
ζ = 1, l0 = 0.5∆x , and α = −1. We will open-source all AnisoMPM
code after publication.
We first discuss our illustrative demos, each seeking to high-

light a core feature of AnisoMPM. In Fig. 14, we show the seamless
incorporation of plasticity into AnisoMPM as well as the plastic
behavior only possible through this union. In Fig. 10 and Fig. 18
we exhibit the high degree of artistic control that our AnisoMPM
parameters afford artists. In Fig. 4 we show that AnisoMPM is gen-
eral and robust enough to capture not only isotropic fracture, but
also transversely isotropic and orthotropic fracture, as well. We
also demonstrate in Fig. 17 that our constitutive model can model
isotropic, transversely isotropic, and orthotropic elastic responses.
Furthermore, we highlight the inversion safety and robustness of
our hyperelasticity in Fig. 19. We also compared our QR-based elas-
ticity with an existing SVD-based model and found ours to be over
3.4× faster at computing the elastic response for 1 × 108 different F .
Finally, we explore the efficacy of our directed inextensibility solve:
in Fig. 22 we show inextensibility to be locking-free; in Fig. 21, we
show that inextensibility can resolve extremely stiff materials even
under heavy loads that anisotropic elasticity fails under; and, in
Fig. 23 and Fig. 9, we show inextensibility to successfully pair with
the anisotropic damage. We also note that the KKT system within
our inextensibility solve can be easily relaxed by adding a diagonal
matrix to the bottom-right block, improving the conditioning of the
entire system. Interestingly, we proved in our supplement [Wolper
et al. 2020] that the relaxation is theoretically equivalent to applying
a soft penalty on the inextensibility constraints, which is similar to
modeling inextensibility using QR-elasticity. This reveals that QR-
elasticity and inextensibility are both solving the same constrained
problem, but utilize soft and hard constraints respectively.

Thus far, we have shown each of AnisoMPM’s core components
to be successful. However, in Fig. 2 and Fig. 3, we show that the
anisotropic damage and anisotropic elasticity should be paired to-
gether for best results, as only one method alone fails to produce
the robustly-directed fracture that AnisoMPM is clearly capable of.
These figures demonstrate that damage alone produces messy, hard
to control fractures. Similarly, elasticity alone produces fractures,
but these are purely numerical and not controllable in terms of
crack propagation speed or physical fracture resistance. In Fig. 2(d)
we further highlight that without anisotropic damage, the material

experiences extreme deformation before beginning to tear, a highly
undesirable property when seeking to artistically harness fracture.
In Fig. 9, we showcase a piercing demo with a variety of settings
within AnisoMPM, demonstrating the many successful visual pos-
sibilities. We further show successful flow-generated fiber guided
fracture by skinning a fish in Fig. 6. AnisoMPM even produces con-
vincing real-world bone fractures (seen in Fig. 24) that qualitatively
agree with existing medical data [Pierce et al. 2004]. Finally, we
present an exciting set of photo-realistically rendered demos pro-
duced with AnisoMPM. In Fig. 4, we peel apart the decadent layers
intrinsic to dong-po pork belly (rendered using photogrammetry
on a real homemade piece). In Fig. 7 we peel apart a cheese stick to
reveal the stringy mozzarella fibers. For dessert, we tear a succulent
orange slice in Fig. 5 to reveal the jewel-like structures inherent to
its radial anisotropy. Finally, in Fig. 1, we tear raw meat along its
fiber grain to illustrate the underlying anisotropic muscle fibers.
While AnisoMPM clearly stands as a successful and novel new

approach that achieves highly-detailed dynamic anisotropic fracture,
it is impossible to ignore direct comparisons with other CDM based
MPM approaches such as the recently introduced PFF-MPM [Wolper
et al. 2019]. AnisoMPM’s key advantage lies not only in its ability
to produce isotropic and anisotropic fracture (PFF-MPM is strictly
isotropic), but also in its introduction of explicit damage evolution,
leading to significantly higher efficiency than PFF-MPM (see Fig. 25).
While methods do exist to augment PFF with anisotropic damage, it
requires the introduction of a fourth-order term that only adds to
the complexity of the existing implicit solve (see §2). As such, we
believe that AnisoMPM completely eclipses PFF-MPM in terms of
generality, efficiency, ease of implementation, and future potential.

Finally, we outline some auxiliary implementation details of Ani-
soMPM. First, we adopt the novel meshing algorithm of Wang et al.
[2019] to produce high fidelity meshes from MPM particles that can
be beautifully rendered with no trade offs related to fracture detail
and surface smoothness. This allows for highly detailed fracture
results with relatively few particles (most sims use 500K or less).
However, this meshing did not replace OpenVDB as a key tool for
AnisoMPM [Museth et al. 2013]. To ensure the best meshing results,
we used TetWild tetrahedralization to ensure good distributions
of particles for later meshing [Hu et al. 2018b]. Finally, we adopt

Fig. 24. Bone Fracture. We simulate the fracture of a vertically fibered
human femur using three different loading scenarios within AnisoMPM: (a)
twisting and pulling produces a spiral fracture, (b) pulling alone produces
a transverse fracture, and (c) bending produces an oblique fracture. These
results qualitatively agree with real-world bone fracture patterns [Pierce
et al. 2004]. Note this is one of two demos that uses damage only.
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Table 1. Parameters and Timings. Seconds per frame is provided as an average with all demos run using symplectic Euler dynamics on an Intel i7-9700K
CPU with 8 threads at 3.60 GHz. All parameters are reported in standard CGS units.

Example s/frame ∆tf rame ∆x ∆tstep N ρ E ν γ σc η r

(Fig. 1) Meat 19.30 1/24 6.88 × 10−3 5.00 × 10−4 500K 500 5000 0.45 10 3995 0.45 0.1

(Fig. 2) Tube Pull 1.403 1/24 4.38 × 10−2 1.00 × 10−3 50K 500 40K 0.45 10 31960 0.45 0.01

(Fig. 3) Tube Compress 83.36 1/24 1.48 × 10−2 1.00 × 10−4 400K 2 5000 0.37 10 610.2 0.3 0.01

(Fig. 4) Pork Belly 38.78 1/24 6.92 × 10−3 2.50 × 10−4 500K 2 200 0.25 10 17.78 0.1 0.01

(Fig. 5) Orange (int./ext.) 4.890 1/24 7.68 × 10−3 1.00 × 10−3 50K/30K 500 10K/50K 0.40 0 2058 0.01 0.001

(Fig. 6) Fish 0.5625 1/48 2.40 × 10−2 1.00 × 10−3 50K 1000 100K 0.40 8 35430 0.01 0.1

(Fig. 7) Cheese 48.87 1/24 3.08 × 10−3 2.00 × 10−4 500K 500 5000 0.45 10 3537 0.1 0.01

(Fig. 9) Lance (Arma./Ropes) 111.9 1/24 7.81 × 10−3 1.25 × 10−4 500K/150K 1/2 100/10 0.30 10/1000 12.67 0.1 0.01

(Fig. 14) Heart 23.88 1/24 9.09 × 10−3 5.10 × 10−4 500K 2 100 0.25 3 6.342 0.1 0.01

(Fig. 24) Bone (Bend) 1974 1/48 2.98 × 10−3 1.00 × 10−6 200K 800 7 × 108 0.25 0 2.393 × 106 0.1 0.0001

a flow-based fiber generation method in which fluid is simulated
through a volume with defined inflows and outflows [Saito et al.
2015]; these flow lines are saved as the material fiber directions (see
Figs. 6, 9, 14, and 23 for examples).

8 LIMITATIONS AND FUTURE WORK
Asmentioned throughout, AnisoMPMworks best when we combine
our anisotropic damage and elasticity approaches together; however,
there are some rare scenarios we found in which anisotropic damage
alone produced more desirable results (bone and orange, see Table.
1). This unpredictability highlights that the many parameters and
options available to an artist can make tuning difficult. As such,
while this breadth of options does enhance the flexibility of the
method and increase the potential for artistic control, there is a steep
learning curve that comes with this power. This marks AnisoMPM
as an opportune target for the development of a robust interface for
artistic control. This would further cement AnisoMPM as a highly
general, efficient, and easy to use tool for creating art-directable
fracture patterns in any volumetric solid.

Although AnisoMPM produces myriad ductile and dynamic frac-
tures, we did not as thoroughly explore brittle fracture (aside from
Fig. 24); however, this likely requires the development of new inter-
polation functions and treatments and is a prime target for future
exploration. Furthermore, AnisoMPM is not designed to produce
large-scale debris effects like those seen from plasticity models like
NACC [Wolper et al. 2019]; nonetheless, we have already shown
AnisoMPM to robustly couple with MPM plasticity (Fig. 14) and, as
such, high-debris fracture poses yet another promising target for
future work through the development of an anisotropic plasticity
scheme. Additionally, while our adopted meshing routine is inte-
gral, it still has trouble resolving some intricate details; thus, we
propose the exploration of particle resampling techniques like Yue
et al. [2015] to treat under-sampled regions and improve meshing.
The components that make up AnisoMPM also have some note-

worthy limitations. Explicit damage evolution has restrictions on
how small we can make η while maintaining stability, and bal-
ancing this CFL condition with the CFL condition related to the
momentum solve can be tricky. We seek to resolve this through the
additional inclusion of implicit damage; however, implicit damage
evolution, in practice, is slower than explicit damage and is also
significantly harder to implement. As for elasticity, we have shown

that the anisotropic constitutive model struggles to resolve materi-
als of extreme stiffness and is not exempt from numerical fracture;
fortunately, our inextensibility method assuages this limitation by
treating stiff materials differently. However, despite having some
advantages over our constitutive model, our directed inextensibility
method is non-trivial to implement and can be slow in practice (with
CG the lance demo runs ~1400 s/frame, but we propose exploring
efficient solvers like AMGCL) [Demidov 2019].
Despite these shortcomings, AnisoMPM clearly stands as a ro-

bust and general approach to animating dynamic fracture of not
only isotropic materials, but also the significantly more complex
transversely isotropic and orthotropic materials. Furthermore, Ani-
soMPM offers both the efficient and easy to implement explicit
damage and the stable and robust implicit damage, giving flexibility
based on the desired fracture behavior and simulation constraints.
Finally, we believe AnisoMPM also poses numerous exciting direc-
tions for future study, ranging from an intuitive interface for artistic
control to the exploration of other types of fracture effects.
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