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Abstract—This paper is on the problem of simultaneously
identifying the parameters of an aggregate thermal dynamic
model of a multi-zone building and unknown disturbances
from input-output data. An aggregate model is a single-zone
equivalent of a multi-zone building, and is useful for many
purposes, including model based control of large heating,
ventilation and air conditioning (HVAC) equipment that delivers
thermal energy to the entire building. A key challenge in
identification is the presence of unknown disturbance since it
is not measurable but non-negligible.

We first present a principled method to aggregate a multi-
zone building model into a single zone model. We then provide
a method to identify thermal parameters and the unknown
disturbance for this aggregate (single-zone) model. Finally, we
test our proposed identification algorithm to data generated
from a virtual building. A key insight provided by the aggrega-
tion method allows us to recognize under what conditions the
estimation of the disturbance signal will be necessarily poor
and uncertain.

I. INTRODUCTION

A dynamic model of a building’s zone temperature is
useful in several applications involving heating, ventilation,
and air conditioning (HVAC) systems, such as model-based
control for improving indoor climate and reducing energy
use [1], [2], limiting peak demand [3], [4], or providing
ancillary services to the power grid [5], [6]. To be used in
a control algorithm, the model should also be of low order.
One way to achieve this is to estimate the model from input-
output measurements.

There are many different model structures for modeling
the thermal dynamics of a building zone. Among them the
Resistance Capacitance (RC) network is a common subclass.
There is a rich literature on identification of the thermal pa-
rameters of a RC network model for single zone commercial
buildings [7], [8], [9], [10]. For single zone buildings, the
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inputs and output of the model are unambiguously defined.
The output is the zone temperature, while the inputs are
the heating (or cooling) rate injected by the HVAC system,
ambient air temperature, solar irradiance and the internal heat
load. The internal heat load is a sum of all sources of heat
inside the building, such as from occupants’ metabolism, and
lights and appliances used by occupants. The internal heat
load is an exogenous disturbance that is typically unknown
and not measurable. Since this disturbance can be compa-
rable in magnitude to the cooling provided by the HVAC
system, it poses a challenge in model identification from
measured input-output data [11]. Work on identifying the
model in spite of the presence of this unknown disturbance
is quite recent [11], [12], [13]. Earlier works have mostly
ignored this disturbance; see [12] for a discussion of earlier
approaches.

There are many challenges in extending
modeling/identification approaches from a single to a
multi-zone building. There are many more inputs and
outputs, as well as more parameters and states, in case of
a multi-zone model compared to a single-zone model. In
particular, there can be as many internal heat loads (unknown
disturbances) as there are zones. The identification of a
multi-zone model is therefore more challenging than that
of a single zone model [14]. Many works on model based
control for multi-zone buildings instead use a “single-zone
equivalent” model of the building, in which the average
building temperature (averaged over the zones) and the sum
of zone-level inputs are used [15], [16], [17]. Such a model
is still useful in computing control commands for large
equipment such as a chiller or an air handling unit that
serves a multi-zone building.

In this paper we address the problem of identification of
such an aggregate model. The first contribution of the paper
is a principled method of aggregating a high-dimensional
multi-zone model into a low-order single-zone equivalent
model (that has the same structure as a single-zone model).
We call it an aggregate model of the building. This step
is necessary because of the ambiguity in the definition of
inputs and outputs of the aggregate model. An outcome of
this method is an insight into the appropriate definition of



the internal heat load for the aggregate model. When the
measurable outputs and inputs of the aggregate model are
defined to be average of the zone-level signals, the aggregate
internal heat load turns out to be a non-trivial function of
many signals, not just the average of the internal heat loads
of the zones. Our second contribution is a novel method to
estimate both the model and the aggregate internal heat load
from measurable input-output data. The third contribution
is the evaluation of the proposed method with simulation
generated data. Evaluation from the simulation dataset shows
that the proposed method performs quite well. The insight
on the difference between the average internal heat loads and
the aggregate heat load is useful in evaluating the estimation
results.

A. Contribution over prior art

The concept of an aggregate model is not new in building
modeling and control literature. Many Model Predictive
Control (MPC) formulations reported in the literature require
an aggregate model to determine building level control com-
mands [17], [18]. There is in fact a plethora of works that
reduces a model of a large commercial multi-zone building
to that of a single “aggregate” zone. However, there are very
few principled methods in the current literature on how to
define the inputs and outputs of such an aggregate model,
especially for system identification. It is a common practice
to average the inputs and outputs over all the zones to form
a single set of input/output signals. These signals are then
assumed to be related by an arbitrary RC network model,
which is then set up as a system identification problem
to determine the parameters of the chosen RC network
structure. The difference between our present work and what
was just described, is that we first construct our aggregate
model through analysis of a multi-zone model.

Since there is a rich literature on building model identifica-
tion and control for a “single zone” building, we develop our
aggregate model so that it mimics the form of a single zone
model. We derive the aggregate model from the RC network
models of the individual zones and constructed definitions
of aggregate input/output signals. The derived aggregate
model is shown itself to be an RC network model that is
affected by additive time varying terms. These additive time
varying terms arise from the potential asynchronous inputs
affecting each different zone, which we term “aggregation
errors.” The thermal parameters of this aggregate model are
shown to be time invariant and are also direct functions of
the individual zone parameters. Additionally, The aggregate
input and output signals are solely functions of the individual
zone input and output signals, unlike other aggregation
techniques [17] that require knowledge of the individual
zone’s thermal parameters to form aggregate inputs/outputs.
Since the aggregate input/outputs only require knowledge of
the individual inputs/outputs, and parameters of the aggregate
model are time invariant, the aggregate model lends itself
well to system identification approaches.

The identification method proposed here is an extension
of the method proposed in our prior work [12], which

Nsolar

Nsolar

Fig. 1: 2R2C network on top of a single zone building.

identifies the parameters of a single-zone building model
and the unknown disturbance signal affecting the building.
The difference is that the method proposed here allows
incorporation of constraints (such as non-negativity of the
internal heat load) while that in [12] does not.

II. BUILDING THERMAL MODELING STRUCTURE

A. Single-zone Model

A floor plan for a single zone commercial building is
presented in Figure 1. A Resistance Capacitance (RC) net-
work model, in particular, a 2R2C model, is overlayed on
the floor plan. The 2R2C model refers to the following
coupled differential equations that describe the evolution of
the temperature of the building (zone), 7T, in response to
various inputs:
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where T, is a fictitious state (temperature of the wall, if
you must), q,. is the heat load due to the HVAC system,
and 7Nsorar, 1, and g;n; are non-controllable inputs, which
are the solar irradiance, ambient (outside) temperature, and
internal heat load, respectively. The parameters in this model
are {Rzaa 027 RZUM CUM Az7 Aw}-

B. Aggregate Multi-zone Model

Here we describe how a model of a multi-zone building
can be aggregated into a single-zone model of the type
described in the previous section. In the sequel, we call the
resulting single-zone model as the aggregate model of the
multi-zone building. It is shown that the aggregate model
is an RC network model either with time-varying thermal
parameters, or with time invariant thermal parameters and
additive time-varying terms.

To start the derivation, let N, be the number of zones in
the building, and each is modeled by a 2R2C network model



using (1). We now define the average input/output quantities
as follows:
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where T is the temperature of " location for the ;' zone,
e.g., T2 represents the zone temperature of 2nd zone. In the
sequel, the bar is used to distinguish an average quantity.
Note that the average signals so defined can be computed
from measurements of zone-level signals — though some,
especially ¢],,, — may be hard to measure.

By summing the V. individual thermal models (1) over
the j index and dividing by the number of zones, we have

LSS 1§xﬁm—wm+mw—ww)
s o N. =\ RLC R1,C!
N :
1 qznt Qa(‘ ) Ai 7 t
ﬁ Ensolar( )
z j=1 2
(3)
N N .
1 <& - 1 <= T TJ Al
— ST = — ) B )
N, "N, ngcj ci,
Jj=1 J=1
N.
1 = t) — t
+ _ ( ) ’lu( ) (4)
N. & Ri.Cl

Notice that above we have assumed that the zones have no
thermal interactions with each other. We have done so only
in the interest of space; later we comment on the changes
that occur if thermal interactions among zones are present.

Now we can construct the aggregate model by substituting
definitions (2) into equations (3)-(4). Two approaches are
available, leading to time varying model and time invariant
model, respectively.

1) Time Varying Model: 1If we define a model from (3)-
(4) that mimics the structure of the single-zone model (1)
in terms of the average signals defined earlier, the thermal
parameters will be time varying,
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where the expression for the thermal parameters are,
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To save space, the sub/superscripts on the LHS values denote
the relevant location (like the = subscript in (2)). The right
hand side of these equations become time-invariant only if
either thermal parameters or input variables are completely
homogeneous over the zone index j. Otherwise, these defined
“thermal parameters” will be time-varying depending on each
zone’s individual inputs and states, which is not an appealing
situation.

2) Time Invariant Aggregate Model: Since the thermal
parameters for the individual zones are out of our control and
it is unlikely that the inputs will be completely homogeneous
over each zone, we modify our interpretation of the average
signals (2) so that the aggregate model becomes a RC
network model with time invariant thermal parameters. Doing
so requires defining the following deviation variables:
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The interpretation of (10) is that each individual input and
state can be represented as the average quantity (2) (zonal
average) plus some deviation. With some tedious algebra,
it can be shown that with the help of these definitions, the
ODE:s (5)-(6) can be transformed to:
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The signals w,,w, are additive time-varying terms that
represent model mismatch due to the non-synchronous inputs



and states for each zone and wall, respectively. We term these
additive terms “aggregation errors” and they would be zero
only if all deviation variables are synchronous. We define the
aggregate internal heat load as:

Tagg(t) = Gint(t) + . (t)C-,

which leads to the final construction of the aggregate model,
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Comment 1: The derived model (16)-(17) represents the
time evolution for “average” quantities of building zones.
That is, if data is collected from individual zones in a building
and is aggregated (according to (2)) then equation (16)-(17)
describes how these states should change over time. Further-
more, if this average data is utilized in system identification
of an equivalent single-zone RC-network model, then (18)
informs us how the thermal parameters of such a model are
related to thermal parameters of each individual model. More
importantly, (15) shows that the aggregate disturbance Gqg4q
is not the average internal heat load, @;,¢, but that there is a
additive term (w,) that is related to all the other states and
inputs in a complex manner.

Comment 2: Although we have neglected thermal in-
teractions in the derivation of the aggregate model, those
interactions only change the interpretation of w,. The RC
network structure remains and the thermal parameters of the
aggregate model (18) remain the same.

Thermal interactions between the Zlones is modeled as an
additional term to 77 in (1), Z#] Fic If each CJ = C)
for all j, the thermal interactions will cancel completely in
the aggregate model, since R = RJ' by definition. If each
CY is distinct then the aggregation error w, changes to 0%,
where
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III. SYSTEM IDENTIFICATION
A. Problem Statement

We now turn to the problem of identifying the aggre-
gate model (16)-(17) from input-output data collected from
multiple zones. That is, given time traces (of length N)
of the average output and inputs, {Tz7k}kN;1, {(jac’k},]jél,

{Tayk}kNél, and {ﬁsolar,k}i\gl we wish to identify the ag-
gregate thermal parameters {7.q, Tow, Twas Twz, Czy Az Aw -
Recall that (i) these time traces can be computed from
measurements collected from each zone of the building, (ii)
the presence of the unknown disturbances in the model,
Jagg(t), Wy (t) presents a serious hurdle, especially since
Jagg 1 large; sometimes comparable to the cooling provided
by the HVAC system [11].

Our proposed approach is inspired by that in [12], in which
a simple dynamic model of aggregate internal heat load is
proposed and then estimation of this unknown signal is cast
as a state estimation problem. Recall that Gag9 = ine +w,C,.
In this work we assume that G;,; >> w,C,, that is the
average internal heat load is much larger than the scaled
aggregation errors. Due to this, we adapt the following
dynamic model for Goqq [12]:

d

%(jagg t)=0 (20)

The justification for this model comes from the usual pattern
of occupancy in commercial buildings, in which occupants
typically enter and exit the building in bulk. This bulk
transfer of people would correspond to a piece-wise con-
stant occupant-induced heat load signal, which would con-
sequently have a time-derivative whose value is O for most
of the time. Note that the dynamic model for the aggregate
internal heat load can be coupled with the aggregate RC
network model (16)-(17) to form the aggregate model:
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Jagg 0 0 0] |9agg
{—:a %Z Cfiz Ta
+ .,—_ia Aw 0 ﬁsolar P (21)
0 0 0 Qac

where we have dropped w,, for it is not accessible in reality.
This can then be expressed in compact continuous time state
space notation as,
z(t) = A0)x(t) + B(O)u(t)
2(t) = Cult
where the definitions of z(t
parison to (21).

The aggregate level identification problem can now be
posed as follows (with sampled data): given N; time-
samples of the average measured inputs ulk] = [T,[k],
Qaclk], Nsot[K]]T € R3 for k = 1,..., Ny and the measured
average output z[k] = T,[k], ldentlfy the unknown thermal
parameters, 0 = [T.q, Tows Twas Twzs Cey Az Ay € R, and
aggregate internal heat load signal samples J,q4(k] € R for
k:O,...,Nt—l.

(22)
(23)

-

,u(t), and 6 follow from com-

B. Proposed Method

Our proposed method involves solving a constrained non-
linear optimization problem in order to obtain estimates for
the aggregate thermal parameters and aggregate indoor heat



load. This optimization problem is inspired from the “batch
estimation” approach common in state estimation [19]. Since
Jagg has been recast as a state variable, estimation of the state
produces an estimate for this quantity.

If the thermal parameters were already known, a Kalman
filter would be adequate to estimate the state since the model
is linear. However, since the thermal parameters are unknown
the problem turns into a nonlinear state estimation prob-
lem. There are many available choices for non-linear state
estimation, such as particle filtering, the extended Kalman
filter, or moving horizon/batch estimation approaches [19],
[20]. In this work we elect the latter approach because it
allows for an easy incorporation of inequality constraints on
the state estimates. Particularly, the aggregate internal heat
load is enforced to be positive since occupant-induced load
usually provides heating.

To setup the batch optimization problem, the continuous
time aggregate model (21) is discretized using a first order
backward Euler method with a sampling time ¢,. Addition-
ally, process and measurement noise are included to account
for modeling error. The corresponding discrete time model
is then,

Tpp1 = T +ts (A()zr + B(O)ur) + Gaér,
2k = ka + v,

(24)
(25)

where & and vy are white noise sequences that capture the
modeling error and sensor noise, respectively. Here we only
model Gage as having process noise (i.e., G4 = [0,0,1]7).
The reason is that since we are also identifying system
parameters, adding noise to the other states would greatly
increase the number of degrees of freedom and likely produce
spurious results.
The batch estimation problem is now posed as,
min
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where X, represents the state inequality constraint at time
step k£ and © represents the thermal parameter constraint set.
The scalar values A\, R~—! represent the cost for the process
and measurement noise, respectively. The matrix P, lis a
weighting matrix for z§ which is the difference from the
initial guess of the initial state xy of (21). The matrix and
vector Pg 1.9 are design choices and represent a quadratic
cost and center of the parameter vector, respectively. Incorpo-
rating this term in the objective function allows for us to add
prior knowledge of the parameter values to the estimation
procedure.

We have incorporated an absolute value penalty on the
process noise for the aggregate internal heat load estimate.

TABLE I: Parameter estimates from open loop simulation
data of the virtual building.

Parameter  Estimate  True Value units
Tza 0.7652 0.7899 hour(s)
Tow 0.5919 0.5869 hour(s)
C. 0.7050 0.7147 EWh/K
A, 0.7884 0.5700 Km?2/kWh
Twa 24.5098 19.3798 hour(s)
Twz 2.6795 2.8441 hour(s)
Aw 4.2955 4.5537 Km?/kWh
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Fig. 2: Aggregate Disturbance estimate g,4, and internal
disturbance @;,; for the simulated virtual building.

This is because we expect the derivative of @;,; (Which is
a main component of G,44) to be sparse. Additionally, we
offer a penalty term on the aggregate internal heat load in
the objective function for system identification. Since the
aggregate internal heat load acts as a “slack variable” for
the aggregate zone temperature, we do not want it to make
up for all of the model error. Adding a penalty in the cost
function enforces this.

Mathematically, this problem represents the minimization
of a convex function over a non-convex constraint set.
This makes the overall problem a non-convex optimization
problem, which we solve with casadi [21] and the NLP solver
IPOPT [22].

IV. EVALUATION WITH SIMULATION DATA

We present the result for a 2 day open loop simulation
of a building model (“virtual building”) with 5 independent
zones, each modeled by a 2R2C network model (1). The
simulated data are aggregated according to the aggregation
method described in Section II-B. This data is used by the
proposed identification method to estimate the parameters
of an aggregate 2R2C network model (16)-(17) along with
the aggregate internal heat load. The parameter estimation
results are shown in Table 1. As one can see from the table,
the parameters are estimated quite accurately. The estimated
aggregate internal heat load ¢,4, and the true average internal
heat load ¢;,: are shown in Figure 2.

Figure 3 shows the estimated aggregate internal heat load
{age, the true aggregate internal heat load uge, and the
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Fig. 3: Comparison of Gagg, its estimate gog9, and Gine.

average internal heat load ¢;,:. The estimate is quite accurate
at night, but there are larger errors during the daytime.
The reason for this feature is not completely clear yet, but
part of the error can be easily explained from the analysis
performed earlier. In particular, recall from (15) that the
aggregate internal heat loads differs from the average heat
load by w,(t)C.. In fact this difference is clearly seen in
Figure 3. Since the estimation method is designed to estimate
the disturbance affecting the aggregate model (g,g,), which
is not the average internal heat load (g@;,:), even if the
estimation method performs perfectly there will be some
non-vanishing difference between the estimate and the true
average internal heat load. This observation should be kept
in mind in interpreting the estimation results. Otherwise the
estimation method may appear to perform more poorly than
it actually is.

V. CONCLUSION

We derive an aggregate (single-zone equivalent) model of
a multi-zone building. Our method shows that unless each
of the individual zones are identical (i.e synchronous inputs
and identical thermal parameters) the aggregate model will
be effected by time varying additive terms. These additive
terms act as an additional heating/cooling source to the
model. In fact, in [23] the authors apply similar definitions
of the aggregate input/output signals to collected data from
a multi-zone building. When the cooling load is predicted,
they observe that model errors were most sensitive to the
magnitude of the internal heat loads. The authors in [23]
provide one explanation for this. However, another possible
explanation is that the additive terms due to aggregation were
not accounted for.

Additionally, we propose an identification technique to
identify the parameters of the derived aggregate model and
the unmeasured internal heat load. The identification method
is then tested on data from an open loop simulation with
known internal heat load. The results corroborate the effec-
tiveness of our methods.

There are two main avenues for future work: examination
of the effect of latent heat, and identification of a multi-zone
building model.
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