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Local duality for the singularity category of a
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Abstract. A duality theorem for the singularity category of a finite dimen-
sional Gorenstein algebra is proved. It complements a duality on the category
of perfect complexes, discovered by Happel. One of its consequences is an
analogue of Serre duality, and the existence of Auslander-Reiten triangles for
the p-local and p-torsion subcategories of the derived category, for each ho-
mogeneous prime ideal p arising from the action of a commutative ring via
Hochschild cohomology.

§1. Introduction

This work concerns duality phenomena in various triangulated categories of modules
over Gorenstein algebras. By a Gorenstein algebra we mean here an algebra A, finite
dimensional over a field k, with the property that A has finite injective dimension both as
a left module and a right module over itself. For such an A the derived Nakayama functor
is an equivalence:

v: DP(mod A) = DP(mod A) where v(X) = Homy (4, k) o% X.
Happel [19] proved that for perfect complexes X,Y there is a natural isomorphism
Homy (Homp (X, Y), k) = Homp (Y, vX) .

where D := DP(mod A). In other words, the Nakayama functor on D restricts to a Serre
functor, in the sense of Bondal and Kapranov [12], on the full subcategory of perfect com-
plexes.

In this work we discover that Happel’s result is only the tip of an iceberg: It is a
special case of a duality on all of D, analogous to Grothendieck’s local duality for commu-
tative Gorenstein algebras. The duality on D also involves a graded-commutative algebra,
namely the Hochschild cohomology HH*(A/k) of A over k that acts on D via canonical
homomorphisms of k-algebras

HH*(A/k) — Ext(X,X) for each X €D.

In this way D acquires a structure of an HH*(A/k)-linear category.

In the remainder of the introduction we fix a homogeneous k-subalgebra R of HH*(A/k)
that is finitely generated as a k-algebra. To simplify the exposition we assume R? = k. This
is not a great loss of generality for given any R as above, we can drop down to the subring
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2 BENSON, IYENGAR, KRAUSE AND PEVTSOVA

k @ R>! without sacrificing the finite generation. A natural choice for R is k@ HH>!(A/k),
assuming it is finitely generated, but, for example, when A is a Hopf algebra (such as the
group algebra of a finite group) it is more natural to take R = Ext’ (k, k), the cohomology
ring of A, for this is functorial in the ring argument, whilst the Hochschild cohomology is
not.

Fix a homogeneous prime ideal p of R. Let v, (D) be the triangulated category obtained
from D by localising the graded morphisms at p and then taking the full triangulated
subcategory of objects such that the graded endomorphisms are p-torsion. By construction
Yp(D) is an Ry-linear category, where R, denotes the homogenous localisation of R at p.
The Nakayama functor induces an equivalence

Vp: 7p(D) = (D).

Let Spect(R) denote the set of homogenous prime ideals in R not containing R7!, the
unique maximal homogenous ideal of R. For each p in Spec’ (R) we write I(p) for the
injective hull of the graded R-module R/p. Our local Serre duality statement reads:

THEOREM 1.1. Let p be in Spect(R) and let d be the Krull dimension of R/p. Then
Y4 o, is a Serre functor for v,(D), in that, for all X,Y in ~,(D) there are natural
isomorphisms

Homp, (Hom’, ) (X,Y), I(p)) = Hom. (p) (Y, X~ (X)) .

This result is proved towards the end of Section 5 from a more general statement concern-
ing the category GProj A of (possibly infinite dimensional) Gorenstein projective modules.
These are A-modules M with the property that Exti‘ (M,P) =0 for i > 1 and projective
A-module P. The connection to D is through its subcategory, Gproj A, consisting of finite
dimensional modules. These are precisely the maximal Cohen-Macaulay A-modules, in the
terminology of Buchweitz [14].

The stable category, GProj A, of GProj A is a compactly generated triangulated cat-
egory, with compact objects equivalent to Gproj A, the stabilisation of Gproj A. Buch-

weitz [14] proved that there is a equivalence of triangulated categories
Cproj A = Dgg(A) := D" (mod A)/D"(proj A)

where Dgy(A) is the singularity category, also known as the stable derived category, of A.
There is a natural R-action on GProj A and the equivalence above is compatible with
the induced R-actions. For each prime ideal p in Spec™(R) the canonical functors induce
equivalences of triangulated categories

’Yp(GprOj A) L> IYP(D) L> 'YP(DSg(A))

compatible with Ry-actions, by Lemma 5.5. Thus to prove Theorem 1.1 it suffices to prove
the corresponding statement for Gproj A; equivalently, for the singularity category of A.

This also explains the title of this paper.

To that end we consider the subcategory I,(GProj A) of GProj A consisting of the p-
local p-torsion modules. These are the Gorenstein projective A-modules M with the prop-
erty that for each finite dimensional A-module C, every element of Hom®* (C, M), the graded
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R-module of morphisms in GProj A, is annihilated by some power of p, and the natural map
Hom’ (C, M) — Hom™(C, M), is bijective. Then I},(GProj A) is also a compactly gener-
ated triangulated category and the full subcategory of compact objects is equivalent, up to
direct summands, to v,(Gproj A). There is an idempotent functor I,: GProj A — GProj A
with image the p-local p-torsion modules; see Section 3 for details. The central result of

this work is a local duality theorem for this category:

THEOREM 1.2. Let p be in Spec™ (R) and let d be the Krull dimension of R/p. Let
X, Y be Gorenstein projective A-modules and suppose that X is finite dimensional. Then
there is a natural isomorphism

Homp(Ext* (X,Y), I(p)) = Hom 4 (Y, Q4I, GP v(X)).

Here GP is the Gorenstein projective approximation functor and {2 is the syzygy functor;
see Section 2 for details. The theorem above is contained in Theorem 5.1.

Theorems 1.1 and 1.2 are formulated in terms of an arbitrary (but fixed) subalgebra
R of the Hochschild cohomology of A. It is thus natural to ask how these results are
related as we vary R. This point is addressed in Remark 5.8. Another issue is what
transpires in Theorem 1.1 if we set p = R”'. When the ring R is such that, in addition
to being noetherian, the R-module Ext’ (X, X) is finitely generated for each X € D, the
subcategory I'(D) is precisely the subcategory of perfect complexes and the analogue of
Theorem 1.1 is Happel’s duality; see Remark 5.6.

The duality statements above are modeled on, and extensions of, analogous results for
representation of modules over finite group schemes established in [11]. In that context,
the stable category of (finite dimensional) Gorenstein projectives is the stable category of
(finite dimensional) representations. We refer to that work for antecedents of these results
and for applications, notably, the existence of AR triangles in 4,(D). The proof of the
results in op. cit. exploited the tensor structure on the module categories in question, but
in fact the arguments can be readily adapted to deal with the general case, as we do here.
In doing so, it became clear that local duality is a feature of Gorenstein algebras in general.

ACKNOWLEDGEMENTS. We are grateful to the American Institute of Mathematics in
San Jose, California for supporting this project by their “Research in Squares” program.
Our thanks also to a referee for reading this document with care, and offering constructive
criticism.

§2. Gorenstein algebras

In this section we recall basic notions and results from the homological theory of Goren-
stein algebras, mainly pertaining to duality. The main result we are working towards is
Theorem 2.9. This result is well-known, in principle, but unavailable in the literature in
the form we need, so a complete proof is given.

Throughout this work k& will be a field and A a finite dimensional k-algebra.

Let Mod A be the category all (left) A-modules and mod A its full subcategory consist-
ing of finitely generated A-modules. The full subcategory of Mod A consisting of projective
A-modules is denoted Proj A, and we set proj A := Proj ANmod A. The injective analogues
are denoted Inj A and inj A, respectively. In what follows for A-modules M, N we set

Hom 4 (M, N) := Homa (M, N)/{¢ | ¢ factors through a projective}
Homy (M, N) := Homu (M, N)/{¢ | ¢ factors through an injective}.
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When M and N are finitely generated, it suffices to consider maps ¢ that factor through
proj A and inj A, respectively.

Vector space duality
For any A-module M we set

DM := Homy (M, k),
viewed as an A°P-module. The assignment M — DM induces an equivalence
(mod A)°® —— mod AP

which restricts to an equivalence (proj A)°° = inj A°P. The functor D also extends to an
equivalence between the corresponding bounded derived categories:

D: DP(mod 4)” = DP(mod A°P). (2.1)

Let DP(proj A) denote the bounded derived category of proj A. We identify it with the
subcategory of DP(mod A) consisting of perfect complexes.

The Nakayama functor

Observe that DA is an A-bimodule. The functor v: Mod A — Mod A that assigns to
each A-module M the A-module

vM :=DA®s M

is called the Nakayama functor. The functor v~ := Homa (DA, —) is its right adjoint. Both
functors preserve all products and coproducts since DA is a finitely presented module on
either side. The Nakayama functor is an equivalence if A is self-injective but not in general.
However one has the result below. In the sequel, given an A-module X we write Add X for
the full subcategory of Mod A consisting of direct summands of coproducts of copies of X,
and Prod X where products are used instead of coproducts.

LEMMA 2.1. For any finite dimensional k-algebra A one has ProjA = Prod A and
Inj A = Add DA, and v restricts to an equivalence Proj A = Inj A.

Proof. Adjunction yields an isomorphism of functors Homy(—, DA) = Homy(—, k).
Thus the A-module DA is a faithful injective. As A is noetherian this implies that Inj A =
Add DA; see [15, Chapter I, Exercise 8]. Hence v restricts to a functor Proj A — Inj A.
Here we are using the fact that also Proj A = Add A. Moreover vA = DA and v~ DA = A;
the latter is by adjunction. Since v and v~ preserve coproducts it follows that the unit
id — v~v and counit vv~ — id of the adjunction are isomorphisms and hence v and v~
are equivalences of categories:

Proj A ﬁ Inj A

v

Finally Inj A = Prod DA, since DA is a faithful injective, and v~ preserves products, so
the equivalence above yields Proj A = Prod A.
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The singularity category
Buchweitz [14] introduced the stable derived category of A as the Verdier quotient

Dgg(A) := DP(mod A)/D"(proj A).

This category was rediscovered by Orlov [22], who called it the singularity category of A,
and our notation reflects this terminology. When the global dimension of A is finite one
has Dgg(A) = 0, so the singularity category is one measure of the deviation of A from finite
global dimension.

The singularity category can be realized (in more than one way) as a stabilisation of a
subcategory of mod A. This is described next.

Gorenstein algebras

Henceforth the k-algebra A will be Gorenstein (also known as Iwanaga-Gorenstein):
the injective dimension of A as a left A-module and as a right A-module is finite. In this
case, the injective dimensions are the same; this was proved by Zaks [25]. Evidently when
A is Gorenstein so is A°P, the opposite algebra of A. The Gorenstein condition on A is
equivalent to: An A-module has finite projective dimension if and only if it has finite injec-
tive dimension; see, for example, [14, Lemma 5.1.1]. This implies that the equivalence (2.1)
restricts to an equivalence DP(proj A)°P = DP(proj A°P), and hence induces an equivalence

D Dyg(A)°P =5 Dyy(AP). (2.2)

This will be used often in the sequel.

Gorenstein projective and Gorenstein injective modules
An A-module X is Gorenstein projective if

Ext(X,P) =0 for each projective P and each i > 1.
Since Proj A = Prod A, by Lemma 2.1, the condition above is equivalent to
ExtYy(X,A) =0 for each i > 1.
We write GProj A for the category of Gorenstein projective A-modules and set
Gproj A := GProjANmod A.

These are the maximal Cohen-Macaulay A-modules, in Buchweitz’s terminology.

Standard arguments (following, for example, [19, Section 9]) yield that GProj A is
a Frobenius exact category with projective objects the projective A-modules. We write
GProj A for the corresponding stable category; it is a triangulated category. Its thick
subcategory consisting of the finitely generated modules is denoted Gproj A, for it identifies
with the stabilisation of Gproj A.

On GProj A the syzygy functor 2 has an inverse, denoted Q~!, that is well-defined up
to projective summands. This is the translation on GProj A.

An A-module Y is Gorenstein injective if

Ext%4(Q,Y) =0 for each injective Q and each i > 1.
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Again, Lemma 2.1 implies that the condition above is equivalent to
Exty (DA, Y) =0 foreachi> 1.

We write GInj A for the category of Gorenstein injective modules and set Ginj A := GInj AN
mod A. The stabilisation of GInjA is denoted GInj A, and the subcategory of finitely
generated modules is Ginj A. These are triangulated categories, where the translation LY
of a Y € GlInj A is the cokernel of an embedding into an injective A-module:

0—Y —I1—3%XY —0
The equivalence D: (mod A)°P = mod A°P restricts to equivalences
(Gproj A)°® — Ginj A°® and (proj A)°® — inj A°P. (2.3)
and hence induces an equivalence of triangulated categories
D: Gproj A — Ginj A°P. (2.4)
Here is the result on realising the singularity category as a stabilisation.

PROPOSITION 2.2. The inclusions Gproj A — DP(mod A) and Ginj A — D"(mod A)
induce triangle equivalences

p: Gproj A = Dgg(A) and q: Ginj A = Dgg(A).

Proof. The first equivalence is Theorem 4.4.1 from [14], and the second equivalence
follows from that statement applied to A°P and dualities (2.4).

Approximations
The following result—see [14, Lemma 5.1.1]—is straightforward to verify.

LEMMA 2.3. Let X be a Gorenstein projective module.
(1) Exty (X, F) =0 for any module F of finite projective dimension and i > 1.

(2) If an A-linear map X — N factors through a module of finite projective dimension,
then it factors through a projective module.

The analogous statements for Gorenstein injective modules also hold. U

This has the following consequence.
LEMMA 2.4. If X is Gorenstein projective and Y is Gorenstein injective, then
Hom 4 (X,Y) =Homu(X,Y).

Proof. Given Lemma 2.3, one has to verify that a map f: M — N factors through
a module of finite projective dimension if and only if it factors through a module of finite
injective dimension. This is a tautology as these categories coincide.
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The following result is due to Auslander and Buchweitz, and is the cornerstone of their
theory of maximal Cohen-Macaulay approximations. There is an analogous statement
involving Gorenstein injectives.

PROPOSITION 2.5. FEwery finite dimensional A-module M fits into exact sequences
0>Fy—=>Xy—>M-=0 and 0M—>FM 5 XM 50

where Xy, XM are in Gproj A and Fyr, FM have finite projective dimension. For X €
Gproj A and F of finite projective dimension, these sequences induce bijections

Hom 4 (X, Xp7) = Hom 4 (X, M) and Hom 4(FM,F) = Hom (M, F).
Proof. This is part of [14, Theorems 5.1.2, 5.1.4]; see also [4, Theorems 1.8, 2.8|.

We write GP(M) := X for the Gorenstein projective approximation of M. It follows
from the preceding result that X, is well-defined in Gproj A.

LEMMA 2.6. The Gorenstein projective approximation GP induces a triangle equiva-
lence Ginj A = Gproj A satisfying q =2 poGP, where p, q are the functors in Proposition 2.2.

Proof. Since pF = 0 for any A-module F of finite projective dimension, Proposition 2.5
implies ¢Y = p GP(Y) for any Gorenstein injective module Y. This yields also that GP is
a triangle equivalence, since p, ¢ are triangle equivalences.

Remark 2.7. When A is self-injective the projective and injective A-modules coincide
and hence GProj A = GInj A. Conversely, when the (projective) module A is Gorenstein
injective, A is self-injective: Consider an exact sequence

0—A—I1—3XA—0

where [ is injective. If A is Gorenstein injective, then so is XA, and hence the sequence
above splits, as the injective dimension of A is finite. Thus A is injective.

Example 6.3 describes a Gorenstein algebra that is not self-injective, and identifies
modules that are Gorenstein projective but not Gorenstein injective.

The Nakayama functor again
The Nakayama functor restricts to equivalences

projA —~%— inj A

[ [

Gproj A —~— Ginj A.

Therefore one gets an induced equivalence v: Gproj A — Ginj A. In particular one has
vQ 1 X ~ YvX for each X in Gproj A.
The derived Nakayama functor, which we also denote v, is also an equivalence:

v: DP(mod A) = DP(mod A) where M +— DA% M.
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On the other hand, since the complexes of finite projective dimension are the same as those
of finite injective dimension (because A is Gorenstein), DA is in the thick subcategory
of DP(mod A°P) generated by A, and hence, by duality A is in the thick subcategory of
DP(mod A) generated by DA, that is to say, by vA. It follows that the derived Nakayama
functor satisfies

v(DP(proj A)) = D"(proj A) .

This is the essence of Happel duality. It induces an equivalence 7 on the singularity category
that makes the following square commutative

GprojA —%— Ginj A

plN qu (2.5)

The vertical equivalences are from Proposition 2.2.

The Auslander transpose

Let X be a finite dimensional Gorenstein projective A-module. In what follows we
will often need the fact that the A°°-module Hom 4 (X, A) is also Gorenstein projective.
This can be verified directly from the definition; see, for example, [14, Lemma 4.2.2]. Any
projective presentation

PhP—FP—X—0

induces an exact sequence of A°P-modules.
0 — Homy (X, A) — Homu(Py, A) — Homuy (P, A) — Tr X — 0.

The A°P-module Tr X is the Auslander transpose of X, and it depends only on X up to
projective summands. It is a Gorenstein projective A°P-module since it identifies with
Hom (922X, A). Applying D yields an exact sequence of A-modules

0—DTr X —vPL —vPh—vX —0.

Since Tr X is Gorenstein projective over A°P, the A-module D Tr X is Gorenstein injective
and the exact sequence above implies that there is an isomorphism

Y (DTrX) = vX. (2.6)
in Ginj A.

Auslander-Reiten Duality

We are ready to state the main results of this section. For similar statements we refer
to [1, 6].

PROPOSITION 2.8. Let A be a Gorenstein algebra, and X,Y Gorenstein projective A-
modules. When X is finite dimensional, there is a natural isomorphism

DHom 4(X,Y) = Hom 4 (Y, Q' GP(D Tr X)).
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Proof. The exact sequence 0 — QY — P — Y — 0 with P projective, induces the
first of the following isomorphisms

DHom ,(X,Y) = D Ext} (X, QY)
>~ Hom4 (Y, D Tr X)
>~ Hom 4 (Y, D Tr X)
>~ Hom 4 (Y, GP(D Tr X))
>~ Hom (Y, Q"' GP(D Tr X)).

The second isomorphism is Auslander-Reiten duality [3, Proposition 1.3.4], whilst the third
isomorphism is from Lemma 2.4, since QY is Gorenstein projective and D Tr X is Gorenstein
injective. The fourth isomorphism follows from Proposition 2.5, and the final one is clear
since €2 is an equivalence on Gproj A.

As in Bondal and Kapranov [12, §3], a Serre functor on a k-linear, Hom-finite, additive
category C is an equivalence F': C — C along with natural isomorphisms

D Homc(X,Y) = Homc(Y, FX)

for all objects X, Y in C.
The result below subsumes the formula for the Serre functor on the stable module
category of a self-injective algebra.

THEOREM 2.9. Let A be a Gorenstein algebra. Then

QoGPov: GprojA = GprojA and X 'ow: Dg(A) =5 Deg(A)

are Serre functors.

Proof. For any Gorenstein projective A-module X, one has a sequence of isomorphisms
in Gproj A, where the first and the last one are by construction:

Q'GP(DTrX) =S GP(DTrX)
~GP(EDTrX)
~ GP(X7vX)
~ " HGPvX)
=Q(GPrX).
The second and the fourth isomorphisms hold because GP is a triangle functor, and the
third one is by (2.6). Thus Proposition 2.8 yields that {2 o GPov is a Serre functor on

GProj A, as claimed. The description of the Serre functor on Dgs(A) is then a consequence
of Lemma 2.6 and (2.5).

Compact generation
So far the results have mostly dealt with the categories Gproj A and Ginj A consisting
of finite dimensional modules. To prove the local duality theorem announced in the intro-

duction we need to work in larger categories, GProj A and GInj A. To this end we recall
the following result, which is well-known at least for self-injective algebras.
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PROPOSITION 2.10. The stable categories GProj A and GInj A are compactly generated
triangulated categories, and the full subcategories of compact objects identify with Gproj A
and Ginj A, respectively.

Proof. The Nakayama functor induces a triangle equivalence GProjA = GlInj A4,
identifying Gproj A with Ginj A; the quasi-inverse is given by Hom(D(A),—). It thus
suffices to verify the assertions about GInj A.

It follows from [20, §5] that GInj A is compactly generated; it remains to identify the

compact objects. If X is a finite dimensional module, then Hom 4 (X, —) preserves direct

sums. Thus every module in Ginj A is compact in GInj A.

On the other hand, for any nonzero module Y in GInj A there exists a finite dimensional
module M such that Homa(M,Y) # 0; this is because Y is not injective. Choose a
Gorenstein injective approximation M — W, using the analogue of Proposition 2.5 for
Gorenstein injective modules. Then

Homy(W,Y) =2 Homu(M,Y) #0,
which implies that Ginj A is all the compact objects of GInj A.

§3. Cohomology and localisation

In this section we recall basic notions and constructions concerning certain localisation
functors on triangulated categories with ring actions. The material is needed to state and
prove the results in Section 4 and 5. The main triangulated category of interest is the stable
category of Gorenstein projective modules. Primary references for the material presented
here are [7, 8].

Triangulated categories with central action
Let T be a triangulated category with suspension Y. Given objects X and Y in T,
consider the graded abelian groups

Homi(X,Y) = @) Homr(X,2Y) and Endf(X) = Hom} (X, X).
1€EZ
Composition makes End%(X) a graded ring and Hom$ (X, Y') aleft-EndT(Y") right-End7 (X)
module.

Let R be a graded-commutative ring. We say the triangulated category T is R-linear,
or that R acts on T, if for each X in T there is a homomorphism of graded rings ¢x: R —
EndT(X) such that the induced left and right actions of R on Hom%(X,Y") are compatible
in the following sense: For any r € R and o € HomT(X,Y), one has

v (r)a = (=1)"agx(r).

In what follows, we fix a compactly generated R-linear triangulated category T and
write T€ for its full subcategory of compact objects.

Graded modules

In the remainder of this section R will be a graded-commutative noetherian ring. We
will only be concerned with homogeneous elements and ideals in R. In this spirit, ‘localisa-
tion’ will mean homogeneous localisation, and Spec R will denote the set of homogeneous
prime ideals in R.
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Given graded R-modules M and N, we denote by Hompg(M, N) the R-linear maps
¢: M — N such that ¢(M?) C N* for all i € Z, and

Homyk(M,N) = @HomR(M7N[i])
1EL

where N[i]P = N**P for all i,p € Z.

Localisation

Fix an ideal a in R. An R-module M is a-torsion if My = 0 for all q in Spec R with
a Z q. Analogously, an object X in T is a-torsion if the R-module Hom7(C, X) is a-torsion
for all C' € T¢. The full subcategory of a-torsion objects

Iy T:={X € T| X is a-torsion}

is localising and the inclusion Iy T C T admits a right adjoint, denoted Iy (q).

Fix a p in Spec R. An R-module M is p-local if the localisation map M — M, is
invertible, and an object X in T is p-local if the R-module HomT(C, X)) is p-local for all
C € T¢. Consider the full subcategory of T of p-local objects

Ty :={X € T| X is p-local}
and the full subcategory of p-local and p-torsion objects
INT:={X € T| X is p-local and p-torsion}.

Note that I, T € T, C T are localising subcategories. The inclusion T, — T admits a
left adjoint X + X, while the inclusion I,T — T, admits a right adjoint. We denote by
I'y: T — I,T the composition of those adjoints; it is the local cohomology functor with
respect to p; see [7, 8] for explained notions and details.

The following observation is clear.

LEMMA 3.1. For any element v in R\ p, say of degree n, and p-local object X, the
natural map X — X"X is an isomorphism. 0

Koszul objects
Fix objects X,Y in T. Any element b in R? induces a morphism X — %X and let

X /b denote its mapping cone. This gives a morphism X — % ~%(X /b). For a sequence of
elements b :=by,...,b, in R set X//b := X,, where
Xo =X and Xz = i—l//bi for 1§ZSTL

It is easy to check that for s =), |b;| there is an isomorphism

Homt(X,Y/b) = Homt(X /b, X5T"Y). (3.1)
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Injective cohomology objects

Given an object C'in T¢ and an injective R-module I, Brown representability yields an
object T(C,I) in T such that

Homp(Hom%(C, —), I) = Hom%(—,T(C,I)). (3.2)
This yields a functor
T:T¢xInjR — T.
For each p in Spec R, we write I(p) for the injective hull of R/p and set

Ty :==T(=1(p),

viewed as a functor T — T. For objects C and D in T€, applying (3.2) twice one gets a
natural R-linear isomorphism

Hom7(T(C,I),T(D,I)) = Homgk(Hompy(Hom?(C, D), I),1I). (3.3)

84. Hochschild and Tate cohomology

Let k be a field and A a finite dimensional Gorenstein k-algebra. The enveloping algebra
of A is the k-algebra A€ := A ®; A°P; it is also Gorenstein, by Proposition 6.1, but this
observation does not play a role in the sequel. The Hochschild cohomology of the k-algebra
Ais

HH*(A/k) := Ext%.(A, A).
This is a graded-commutative k-algebra.
When X and Y are Gorenstein projective A-modules, we set

Hom’ (X,Y) = @) Hom 4 (X, Q77Y).
1€Z
This is the Tate cohomology of X,Y . There is a canonical homomorphism

Ext%(X,Y) — Hom’% (X,Y), (4.1)

of graded abelian groups, induced from the canonical morphism tX — pX from a complete
projective resolution to a projective resolution of X; see [14, 6.2]. In particular, this map
is surjective in degree 0 and bijective in positive degrees.

Action on GProj A

For any A-module M there is a canonical map

HE* (A/k) —22M, Ext? (M, M)

that is a morphism of graded k-algebras. When X is Gorenstein projective, composing the
map above with the one in (4.1) one gets a homomorphism of k-algebras

¢x: HH*(A/k) — Hom’% (X, X)

and this induces an action of HH*(A/k) on GProj A, in the sense of Section 3. It follows
from the construction of the action that for any element b € HH*(A/k) and morphism
f: X = Y in GProj A, there is a natural morphism f/b: X//b — Y//b. This observation
will be used often in the sequel.
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AssumMPTION 4.1. We fix a homogenous k-subalgebra R of HH*(A/k) such that
(1) RO=k
(2) R is finitely generated as a k-algebra.

Condition (1) implies RZ! is the unique maximal ideal of R, which allows us to import the
results from [11]. Imposing it is not a loss of generality. Indeed A decomposes as a direct
product of connected algebras, and for a connected algebra A the ring HHY(A/k), being
the center of A, is a finite dimensional local ring, so the inclusion R® C HH(A/k) induces
a bijection on spectra.

The finite generation of the k-algebra R is equivalent to the condition that the ring R
is noetherian; see [13, Proposition 1.5.4]. Since the HH*(A/K)-action on GProj A restricts
to an R-action, the noetherian property of R allows one to invoke the constructions and
results presented in Section 3.

Base change
Let K/k be an extension of fields and set

AK =K Rk A.
This is a finite dimensional K-algebra, and extension of scalars
ModA — ModAg, Xm—Xg=K®,X

and restriction
Mod A — Mod A, X — X|, = Homg (K, X)

form an adjoint pair of exact functors. The result below is standard.

LEMMA 4.2. For A-modules X and Y, the canonical K -linear map
K ® Homu(X,Y) — Homy, (Xk, Yk)
is a isomorphism when X, or K, is finite dimensional over k. [

LEMMA 4.3. FExtension and restriction preserve projectivity and injectivity; in partic-
ular, the K-algebra Ax is Gorenstein. Moreover extension and restriction preserve Goren-
stein projectivity.

Proof. We will use without mention that both extension and restriction preserve co-
products. Extension of scalars takes A to Ax and hence projective A-modules to pro-
jective Ag-modules. Moreover, since A is finite dimensional over k the natural map
Homy (A, k) — Homg (Ag, K) is an isomorphism, by Lemma 4.2. It follows from Lemma 2.1
that (—)x restricts to a functor Inj A — Inj Ag.

Viewed as an A-module Ak is a (possibly) infinite direct sum of copies of A, and in
particular projective. It follows that restriction preserves projectivity. That it also preserves
injectivity follows from the fact that it is right adjoint to extension of scalars, which is an
exact functor.
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If X is a Gorenstein projective A-module, then the Agx-module Xg is Gorenstein
projective, for one has

EthK(XK,AK) >~ ExtYy (X, Axla) =0 fori> 1.

The first isomorphism is adjunction, and the second one holds because A is projective as
an A-module.

The Ax-module Homy (K, A) is isomorphic to Homy (K, k) ®x A and hence it is projec-
tive. Thus if X is a Gorenstein projective Ax-module, one gets

Ext’ (X4, A) = Ext’y (X, Homy (K, A)) 20 fori>1,

where the first isomorphism is again by adjunction. It follows that X|, is Gorenstein
projective.

There are isomorphisms of K-algebras
(Ag)® =2 (A% and HH*(Ag/K) = K ®, HH*(A/k).

Thus extension of scalars yields a ring homomorphism HH*(A/k) — HH*(Ax/K), and
setting Ri := K ®j R one gets a ring homomorphism

R—)RK.

Observe that the K-subalgebra Ry of HH*(Ax /K) satisfies the conditions in 4.1.
The action of Hochschild cohomology on GProj A is compatible with extension of scalars
and restriction, in that, for any X,Y € GProj A the natural map

Hom 4(X,Y) — Homy, (Xr, Vi)

of graded abelian groups, induced by Lemma 4.2, is compatible with the homomorphism
HH*(A/k) — HH*(Ak/K), as is the adjunction isomorphism

Hom 4(X,Z|,) = Homy, (Xk, Z)

for any Z in GProj Ax. The result below is a special case of [9, Theorem 7.7]; a proof
tailored to the present context is provided for readability.

LEMMA 4.4. Let a be an ideal in R and b an ideal in Ry .

(1) For X in GProj A there is a natural isomorphism
(I X)k = Dyarg) (XK) -
(2) IfY in GProj Ak is b-torsion, then Y|, is (b N R)-torsion.

Proof. (1) Suppose a = (71,...,7,). There is then a natural isomorphism of functors
Iyqy = Iy(pp)0- - -0 ly,); see [7, Proposition 6.1]. Thus we can assume a = (r), a principal
ideal. Since (—)g preserves coproducts, the statement follows from an explicit description
of Iy(;y in terms of homotopy colimits; see [8, Proposition 2.9].
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(2) Let C be a compact object in GProj A, that is to say, a finite dimensional (over
k) Gorenstein projective A-module; see Proposition 2.10. The Ag-module Cf is evidently
finite dimensional over K; it is also Gorenstein projective, by Lemma 4.3. In particular,
Hom,, (Ck,Y) is b-torsion. It remains to recall what was noted above: the adjunction
isomorphism

HOIHA(C, Y\I/A) = HOIIlAK (CK, Y)
is compatible with the homomorphism R — Rg.
As usual Spec™ (R) denotes the set of prime ideals that do not contain R”!. Next we

recall a construction from [10] of a field extension K/k and a closed point in Spec’(R)x
lying over a given point in Spec™t(R).

CONSTRUCTION 4.5. Let R be a finitely generated, graded k-algebra with RY = k. Fix
a point p in Spec’ (R), and let d be the Krull dimension of R/p.

Choose elements a := ag,...,aq_1 in R of the same degree such that their image in
R/p is algebraically independent over k& and R/p is finitely generated as a module over the
subalgebra kla]. Set K := k(t1,...,tq3_1), the field of rational functions in indeterminates
t1,...,tq—1 and

bi ::ai—aoti fOFiZl,...,d—l

viewed as elements in Rg. Let p’ denote the extension of p to Rk, and set
g:=p'+(b) and m:=.,/7.
The following statements hold:
(1) mis a closed point in Spec™ (R)x with the property that m N R = p;
(2) the induced extension of fields k(p) = k(m) is an isomorphism.

The first part is contained in [10, Theorem 7.7]. The second one holds by construction; see
[10, Lemma 7.6, and (7.2)].

We record the following observation for later use: Since the a; are not in p, when Y in
GProj A is p-local Lemma 3.1 yields a natural isomorphism

QY =Y wheres=» [a;| =) bi]. (4.2)

7 2

This algebraic construction has the following representation theoretic avatar.

LEMMA 4.6. If X in GProj A is p-torsion, then X /b in GProj Ax is m-torsion and
(XK Jb)d 4, its restriction to A, is p-local and p-torsion.

Proof. Since Iy X = X one gets the first isomorphism below
X = Ty X))k = Iy (Xk);

the second one is by Lemma 4.4(1). In other words, Xy is p’-torsion and hence Xk /b is
(p’ 4 b)-torsion, that is to say, it is m-torsion, since m is the radical of p’ + b. The claim
about the restriction of Xx /b to A follows from Lemma 4.4(2).
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16 BENSON, IYENGAR, KRAUSE AND PEVTSOVA

Fix an object X in GProj A. The sequence of elements b in Ry yields a morphism
XK — Q°(Xk//b). Adjunction gives a morphism

Ix: X — Q¥ ( Xk b)la

When X is p-torsion the target of fx is p-local, by Lemma 4.6, so the map factors through
localisation at p and yields a natural morphism

gx: FpX :Xp — QS(XK//I))J,A = (XK//b)J,A

The isomorphism holds by (4.2), which applies by Lemma 4.6. Here we have implicitly used
the fact that passing to syzygies commutes with restriction.

The result below extends [11, Theorem 3.4] that concerns modules over finite group
schemes, but the argument is essentially the same.

THEOREM 4.7. Let X be a Gorenstein projective A-module. When X is p-torsion, the
natural morphism gx constructed above is an isomorphism:

gx: [ X — (XK //b)la
For an arbitrary X, the morphism gx induces a natural isomorphism

X — Tn(Xk b)) a

Proof. The p-torsion modules X for which gx is an isomorphism form a localising
subcategory of GProj A. Moreover, by [8, Proposition 2.7], the p-torsion modules form a
localising subcategory of GProj A generated by the modules X //p, for X in Gproj A. It thus
suffices to verify the desired isomorphism for such modules, that is to say that the map
gxp is an isomorphism. This is proved in [10, Theorem 8.8] for the case of finite group
schemes and X = k, the trivial representation. The argument uses [10, Proposition 6.2(2)]
that should be substituted by Lemma 4.4.

Let X be an arbitrary Gorenstein projective A-module and p’ the ideal in Construc-
tion 4.5. Since Y := Iy, X is p-torsion, gy is an isomorphism. This is the second isomor-
phism below:

I,x= FV(p)X)
Iy X))k [b)da
FV(p (XK)//b)iA

(
(
(
(v (X J0))4a
(
(

1R 1R

I

Ty +w)) (XK [0))d 4
In(Xk /6))da -

12

The third one is by Lemma 4.4, applied to the functor K ®j(—) from GProj A to GProj Ax.
The next one is standard while the penultimate one holds because X /b is (b)-torsion.
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§5. The Gorenstein property
Let F': Gproj A — Gproj A be the Serre functor from Theorem 2.9, given by

F(X)=(QoGPov)(X).

Given the description of F', the result below contains Theorem 1.2. It extends [11, The-
orem 5.1], which deals with the case A is the group algebra of a finite group scheme and
R = Ext% (k, k), its cohomology ring.

THEOREM 5.1. Let k be a field, A a finite dimensional Gorenstein k-algebra and R C
HH*(A/k) as in 4.1. Fiz p € Spec™(R), and let d be the Krull dimension of R/p. On
Gproj A there is a natural isomorphism of functors

IyoF = Q4+t oTy.
Thus for any object X in Gproj A there is a natural isomorphism
Hom y (—, "' [, F(X)) 2 Homp(Ext} (X, —), I(p).
This result is proved further below, following some preparatory remarks.
Remark 5.2. Let X,Y be Gorenstein projective A-modules. The natural map
Ext’ (X,Y) — Hom% (X,Y)

is compatible with action of HH*(A/k), and hence of R. The map is surjective in degree
zero, with kernel PHomy4(X,Y), the maps from X to Y that factor through a projective
A-module. Since it is bijective in positive degrees one gets an exact sequence of graded
R-modules

0 — PHom (X,Y) — Ext’(X,Y) — Hom*(X,Y) — C — 0 (5.1)

with C? = 0 for 4 > 0. For degree reasons, the R-modules PHomy(X,Y) and C are
R?!-torsion so for p in Spec™(R) the induced localised map is an isomorphism:

Ext’ (X,Y), = Hom% (X,Y),. (5.2)
It follows from Lemma 4.3 that the functor F' is compatible with base change.

LEMMA 5.3. Let K/k be a field extension and Fi: Gproj Ax — Gproj A the cor-

~

responding Serre functor. For X in Gproj A there is a natural isomorphism Fr(Xg) =
F(X)k. [

The argument below is direct adaptation of the one for [11, Theorem 5.1].

Proof of Theorem 5.1. The proof uses the following observation: For any A-modules
X, Y that are p-local and p-torsion, there is an isomorphism X = Y in GProj A if and only
if there is a natural isomorphism

Hom 4 (M, X) = Hom,(M,Y)
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18 BENSON, IYENGAR, KRAUSE AND PEVTSOVA

for p-local and p-torsion A-modules M. This follows from Yoneda’s lemma.

In anticipation of using the preceding remark, we note that I,(X) and T,(X) are p-
local and p-torsion. This is clear for I,(X) and follows for 7,(X) from the fact that I(p)
is a p-local and p-torsion R-module. Another observation is that, by (5.2), for any p-local
R-module I, there is an isomorphism

Homp(Ext% (X, —),I) &2 Homg(Hom* (X, —), I).

Consequently, one can rephrase the defining isomorphism (3.2) for the object T,(X) as a
natural isomorphism

Hom 4(—, Ty(X)) = Hom p(Ext’y (X, —), I(p))
Our task is to verify that, on Gproj A, there is an isomorphism of functors
IF = Q T, .
We verify this when p is closed and then use a reduction to closed points.
Claim. The desired isomorphism holds when m is a closed point in Spec™ (R).

The injective hull, I(m), of the R-module R/m is the same as that of the Ry-module
k(m), viewed as an R-module via restriction of scalars along the localisation map R — Ry,.
Let Y be a Gorenstein projective A-module that is m-local and m-torsion. The claim is a
consequence of the following computation:

Hom 4 (Y, I'y(FX)) = Hom 4 (Y, FX)
= Homy(Hom 4 (X,Y), k)
= Homp, (Hom’} (X,Y), I(m))
~ Homp(Hom’ (X,Y), I(m))
= Hom (Y, T (X)) .
The first isomorphism holds because Y is m-torsion; the second is Serre duality, Proposi-

tion 2.8, and the next one is by [11, Lemma A.2], which applies because Hom% (X,Y) is
m-local and m-torsion as an A-module.

Let p be a point in Spec™ (R) that is not closed, and let K, b, and m be as in Construc-
tion 4.5. Recall that m is a closed point in Rg lying over p.

Claim. In GProj A there is an isomorphism of A-modules

(Ta(Xx) D)4 = QT (X) (5:3)
where d is the Krull dimension of R/p.

Let Y be an A-module that is p-local and p-torsion. Then we have the following:
Hom (Y, Q" (T (XK ) /b)44) = Homy, (Yie, Q1 (T(X k) /b))
= Homy, (Yi /b, Tn(XKk))
= Hompg, (Hom} , (Xk, Yk /b), [(m))
= HomR(HomZK (XK, Yr /b)), I(p))
= Hompg(Hom’s (X, (Y /b){a), 1(p))
=~ Homp(Hom’% (X,Y), I(p))
(

= Hom 4 (Y, T, (X)) .
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The first and fifth isomorphisms are by adjunction. The second one is a direct computation
using (3.1) and (4.2). The next one is by definition and the fourth isomorphism is by
[11, Lemma A.3], applied to the homomorphism R — Rg; it applies as the Rx-module
Hom’y (X, Yy /b) is m-torsion. The sixth isomorphism is by Theorem 4.7, and the last
one by definition. This justifies the claim.

Consider now the chain of isomorphisms:

I F(X) = Tn(F(X) Kk /)4 a
= I'n(Fr(XK)/b)da
& (In(Fr(Xk)) /)4
= (Tw(Xk)/b)a
~ QT (X).

The first isomorphism is by Theorem 4.7, the second by Lemma 5.3, the third is clear, the
fourth follows from the first claim, since m is a closed point for Ag, and the last one follows
from the second claim.

This completes the proof that the functors I',o F' and Q-dtl oT}, are isomorphic. Given
this and the alternative description of T, above, the last isomorphism in the statement
follows.

Next we record a corollary of Theorem 5.1 concerning 7, (Gproj A), the p-torsion objects

in the p-localisation of Gproj A; see [11, §7] and the references therein for details of this
construction. The R-linear triangle equivalences

v: GprojA — GinjA and GP: Ginj A — Gproj A

induce Ryp-linear triangle equivalences

. 1% — —_— GP .
(Gproj A) —Z— 7, (Ginj 4) Y(Ginj A) —> 75(Gproj A)
j j and j j (5.4)
(Gproj A), —2* , (Ginj A), (Ginj A), % (Gproj A),

compatible with the localisation functor; see [11, Remark 7.1]. The result below can be
interpreted as the statement that the category v,(Gproj A), and hence also 7, (Ginj A), has
a Serre functor.

COROLLARY 5.4. For X,Y in C:=~,(Gproj A), there is a natural isomorphism
Homp, (Hom¢ (X,Y), I(p)) = Homc (Y, Q4 GPy 14(X)) .
Proof. Up to direct summands, the categories C and I},(GProj A)¢ are equivalent, and

the compact objects in I},(GProj A) are of the form M,, for some M € Gproj A that is
p-torsion; see [11, Remark 7.2]. We obtain the desired isomorphism by reinterpreting the

isomorphisms in Theorem 5.1, as follows.
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Fix p-torsion objects M, N in Gproj A. One has the first isomorphism below because
M is finite dimensional:

Homp, (Hom’s (My, Ny), I(p)) = Homp, (Hom’s (M, N)y, I(p))
= Homp, (Ext}y (M, N),, I(p))
= HomR(EXtZ(Ma N)a I(p)) :
The second one is by (5.2), and the last one is by adjunction.

On the other hand, since M is p-torsion, so is F(M) and hence one has the first
isomorphism below:

QUL F(M) = Q7 F(M), = QTN QGP v(M)), = Q4GP vy (M)

The second one is by the definition of F' and the third one follows by the discussion around
(5.4). Applying Hom 4 (N, —) to the composition yields the first isomorphism below, whilst
the second one holds as the covariant argument is p-local:

Hom 4 (N, Q% GPy vy (M,)) = Hom 4 (N,, Q¥ I, F(M))
=~ Hom 4 (N, Q' I, F(M)).

The isomorphisms above and Theorem 5.1, applied with X = M and Y = N, yield the
desired result.

LEMMA 5.5. For any p € Spec™ (R) the quotient functor DP(mod A) — Dgg(A) induces
equivalences

D"(mod A), —— Dgg(A), and ~,(D"(mod A)) —— ~,(Dsy(A))

p
compatible with the Ry actions.

Proof. The quotient functor is essentially surjective and hence so is its p-localisation
DP(mod A)p — Dsg(A)p. The latter is also fully faithful, by (5.2), and so is an equivalence

of categories. It is also Ry-linear, by construction. Given this, it is immediate from the
definition that the p-torsion subcategories are equivalent.

Proof of Theorem 1.1. Recall that A is a finite dimensional Gorenstein algebra and
R is a finitely generated, homogenous, k-subalgebra of HH*(A/k) with R® = k. Also,
D := D"(mod A). We fix a homogeneous prime ideal p in Spec™ (R). We want to verify that
for all X,Y in v,(D) there are natural isomorphisms

Homp, (Hom? o (X,Y), I(p)) = Hom, (p) (Y, 5~ (X))
with d the Krull dimension of R/p. Lemma 5.5 gives the second equivalence below:
7 (Gproj A) — 7p(D) — 7p(Dsg(4))

whereas the first one is induced by Proposition 2.2, and both these are compatible with the
Ry, actions. It remains to recall Corollary 5.4.
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The (Fg) condition

Let R C HH*(A/k) be a k-subalgebra as in (4.1). Assume in addition that for each
M € mod A the R-module Ext’ (M, M) is finitely generated. Said otherwise, the alge-
bra A satisfies the (Fg) condition with respect to R, introduced in [16]. As noted in [24,
Proposition 5.7], this condition implies that the Hochschild cohomology algebra HH*(A/k)
is finitely generated. The (Fg) condition holds for several interesting classes of finite dimen-
sional Hopf algebras, including group algebras of finite groups (or group schemes), small
quantum groups, and also for finite dimensional commutative complete intersection rings;
see [16, 18, 21, 24].

When A satisfies the (Fg) condition, it follows from Corollary 5.4 that the triangulated
category 7,(Gproj A), and hence also anything equivalent to it, has AR-triangles. This is
explained in [11, Section 7], for which we refer the reader also for other consequences of
Serre duality.

Remark 5.6. Assume that the algebra A satisfies the (Fg) condition with respect to R
and set v := R>!, the homogenous maximal ideal of R. Set D := D"(mod A).

Claim. The triangulated category v:(D) is equivalent to DP(proj A).

Indeed, by definition, (D) consists of complexes M € D for which Extf(M, M) is
t-torsion as an R-module; equivalently, Exti (M, N) is t-torsion for each N € D. In partic-
ular, Ext(M, A/J) is v-torsion, where J is the Jacobson radical of A. As the R-module
Exth (M, A/J) is finitely generated, by the (Fg) condition, this last property is equivalent
to Extip (M, A/J) =0 for i > 0, that is to say, M is perfect.

Given this claim, one gets a Serre duality on ,(D): For perfect complexes X, Y from [19]
we get the second isomorphism below:

Hompg(Homp (X,Y), I(r)) = Homy(Homp (X, Y), k)
=~ Homp (Y, v(X)).

The first one is by adjunction as I(v) = Homy(R, k); see [11, Lemma A.2]. Thus Theorem 1.1
may be seen as an extending, in this case, the known Serre duality to cover the other
(homogeneous) prime ideals in R.

Remark 5.7. Concerning the claim in Remark 5.6: Even when A does not satisfy the
(Fg) condition with respect to R, the subcategory 7(D) contains the perfect complexes, but
it is possible that it contains more. To see what is at stake, consider the special case that
A is self-injective. Let M € mod A be a module containing A as a direct summand and
satisfying Ext’ (M, M) = 0 for all i > 0. Tt is easy to verify that M is in (D). However,
it is still unknown, and a conjecture of Auslander and Reiten [5], whether such an M has
finite projective dimension, equivalently that M is projective.

Remark 5.8. Let k be a field and A a finite dimensional, Gorenstein, k-algebra. Let
R and S be k-subalgebras of the Hochschild cohomology algebra HH*(A/k) satisfying 4.1.
Theorem 5.1, and so also its corollaries, applies to the action of R, and also of S, on GProj A.

In reconciling the two, one can replace S by the k-subalgebra of HH*(A/k) generated by R
and S and assume R C S. Then one has an induced map ¢: Proj S — Spec’(R) defined
by the assignment ¢ +— q N R.
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Given q in Proj S, it is clear that there is an inclusion
I'y(GProj A) C I,(GProjA) where p =qNR.

So the version of Theorem 5.1 for the action of S may be seen as a refinement of the one
for the action of R. Indeed, in the extremal case R = k, one has p = 0 for any q in Spec S
and I,(GProj A) = Gproj A.

A more interesting situation occurs when S is finite as an R-module. Then there are
only finitely many primes q in Proj S lying over a given p € Spec™’(R), and [9, Corollary 7.10]
yields a direct sum decomposition

I (GProjA)= @ I4(GProjA).
a€p~1(p)

This decomposition thus reflects the ramification, in the sense of commutative algebra, of
the inclusion R C S.

§6. Examples

In this section we describe some examples of Gorenstein algebras. To begin with gentle
algebras, introduced by Assem and Skowronski [2], are Gorenstein. This was proved by
Geifl and Reiten [17]. Their result also shows that the injective dimension of a gentle
algebra can be arbitrary. One can construct new examples of Gorenstein algebras using
tensor products. This is explained below.

Throughout k will be a field. The injective dimension of a finite dimensional k-algebra
A is the injective dimension of A viewed as a (left) module over itself; we denote it inj.dim A.
This is also the projective dimension of the A-module Homy (A, k). The last assertion in
the result below is well-known, but we could not find a reference for the equality of injective
dimensions, so a proof is provided.

PROPOSITION 6.1. Let I' and A be finite dimensional k-algebras. The finite dimen-
sional k-algebra I' ®j, A satisfies

inj.dim(I’ ®; A) = inj.dimI" + inj.dim A .
In particular T ®k A is Gorenstein if, and only if, both T' and A are Gorenstein.
Proof. Set M := Homy(T', k) and N := Homg (A, k). Let P, @ be minimal projective
resolutions of M, N respectively. Then P®y (@ is a minimal projective resolution of M ®z N

by Lemma 6.2 below. It remains to observe that the latter is isomorphic to Homy (T'®g A, k),
as modules over I' ®;, A.

LEMMA 6.2. Let P, @ be minimal projective resolutions of modules M, N over finite

dimensional algebras I', A respectively. Then P ®i Q is a minimal projective resolution of
the I' ® A-module M ®;, N.

Proof. With J(—) denoting the Jacobson radical, J(I') @ A +I'® J(A) is a nilpotent
two-sided ideal in I' ®; A, and therefore it is contained in J(I' ®; A). So for any projective
I'~module U and projective A-module V', we have

Rad(U) ®; V + U ®; Rad(V) C Rad(U ®4 V)

as I'® A-modules. The lemma follows from the fact that a projective resolution is minimal
if and only if the image of each differential lands in the radical.
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Using the result above, one can construct Gorenstein algebras of any given injective
dimension, as long as we find one whose injective dimension is one. The next example
describes such an algebra. In particular its class of Gorenstein projective modules is not the
same as the class of Gorenstein injective modules; confer Remark 2.7. Another noteworthy
feature of the algebra is that it is not of finite global dimension.

EXAMPLE 6.3. Let k be a field, k[e] the k-algebra of dual numbers, and set

k k
A :=Fkl[e] @ ' where I' = {0 k]

The k-algebra A has injective dimension one over itself, and can be realised as the path
algebra of the quiver

a2 D

modulo the relations
6% =0= 5% and gl = €90x.

The algebra A is representation finite and has precisely nine indecomposable modules.
There are two simple modules corresponding to the vertices 1 and 2. The following diagram
shows the Auslander-Reiten quiver. The vertices represent the indecomposables via their
composition series. There is a solid arrow X — Y if there is an irreducible morphism, and
a dotted arrow X --+» Y when Y = D Tr X.

1792 | <

The Gorenstein projectives have a bold frame, the Gorenstein injectives are shaded, and
the modules of finite projective and injective dimension have rectangular shape. A module
belongs to all three classes if and only if it is projective and injective; there is a unique
indecomposable with this property.
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One way to justify these computations is via [23, Theorem 2| due to Ringel and Zhang

that sets up a bijection between indecomposable non-projective Gorenstein projective mod-
ules over kle] ®j kQ and the indecomposable kQ-modules, for any quiver Q.
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