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Local duality for the singularity category of a

finite dimensional Gorenstein algebra
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Abstract. A duality theorem for the singularity category of a finite dimen-

sional Gorenstein algebra is proved. It complements a duality on the category

of perfect complexes, discovered by Happel. One of its consequences is an

analogue of Serre duality, and the existence of Auslander-Reiten triangles for

the p-local and p-torsion subcategories of the derived category, for each ho-

mogeneous prime ideal p arising from the action of a commutative ring via

Hochschild cohomology.

§1. Introduction

This work concerns duality phenomena in various triangulated categories of modules

over Gorenstein algebras. By a Gorenstein algebra we mean here an algebra A, finite

dimensional over a field k, with the property that A has finite injective dimension both as

a left module and a right module over itself. For such an A the derived Nakayama functor

is an equivalence:

ν : Db(modA)
∼−→ D

b(modA) where ν(X) = Homk(A, k)⊗L

A X.

Happel [19] proved that for perfect complexes X,Y there is a natural isomorphism

Homk(HomD(X,Y ), k) ∼= HomD(Y, νX) .

where D := D
b(modA). In other words, the Nakayama functor on D restricts to a Serre

functor, in the sense of Bondal and Kapranov [12], on the full subcategory of perfect com-

plexes.

In this work we discover that Happel’s result is only the tip of an iceberg: It is a

special case of a duality on all of D, analogous to Grothendieck’s local duality for commu-

tative Gorenstein algebras. The duality on D also involves a graded-commutative algebra,

namely the Hochschild cohomology HH∗(A/k) of A over k that acts on D via canonical

homomorphisms of k-algebras

HH∗(A/k) −→ Ext∗A(X,X) for each X ∈ D.

In this way D acquires a structure of an HH∗(A/k)-linear category.

In the remainder of the introduction we fix a homogeneous k-subalgebra R of HH∗(A/k)

that is finitely generated as a k-algebra. To simplify the exposition we assume R0 = k. This

is not a great loss of generality for given any R as above, we can drop down to the subring
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k⊕R>1 without sacrificing the finite generation. A natural choice for R is k⊕HH>1(A/k),

assuming it is finitely generated, but, for example, when A is a Hopf algebra (such as the

group algebra of a finite group) it is more natural to take R = Ext∗A(k, k), the cohomology

ring of A, for this is functorial in the ring argument, whilst the Hochschild cohomology is

not.

Fix a homogeneous prime ideal p of R. Let γp(D) be the triangulated category obtained

from D by localising the graded morphisms at p and then taking the full triangulated

subcategory of objects such that the graded endomorphisms are p-torsion. By construction

γp(D) is an Rp-linear category, where Rp denotes the homogenous localisation of R at p.

The Nakayama functor induces an equivalence

νp : γp(D)
∼−→ γp(D) .

Let Spec+(R) denote the set of homogenous prime ideals in R not containing R>1, the

unique maximal homogenous ideal of R. For each p in Spec+(R) we write I(p) for the

injective hull of the graded R-module R/p. Our local Serre duality statement reads:

Theorem 1.1. Let p be in Spec+(R) and let d be the Krull dimension of R/p. Then

Σ−d ◦ νp is a Serre functor for γp(D), in that, for all X,Y in γp(D) there are natural

isomorphisms

HomRp
(Hom∗

γp(D)(X,Y ), I(p)) ∼= Homγp(D)(Y,Σ
−dνp(X)) .

This result is proved towards the end of Section 5 from a more general statement concern-

ing the category GProjA of (possibly infinite dimensional) Gorenstein projective modules.

These are A-modules M with the property that ExtiA(M,P ) = 0 for i ≥ 1 and projective

A-module P . The connection to D is through its subcategory, GprojA, consisting of finite

dimensional modules. These are precisely the maximal Cohen-Macaulay A-modules, in the

terminology of Buchweitz [14].

The stable category, GProjA, of GProjA is a compactly generated triangulated cat-

egory, with compact objects equivalent to GprojA, the stabilisation of GprojA. Buch-

weitz [14] proved that there is a equivalence of triangulated categories

GprojA
∼−→ Dsg(A) := D

b(modA)/Db(projA)

where Dsg(A) is the singularity category, also known as the stable derived category, of A.

There is a natural R-action on GProjA and the equivalence above is compatible with

the induced R-actions. For each prime ideal p in Spec+(R) the canonical functors induce

equivalences of triangulated categories

γp(GprojA)
∼−−→ γp(D)

∼−−→ γp(Dsg(A))

compatible with Rp-actions, by Lemma 5.5. Thus to prove Theorem 1.1 it suffices to prove

the corresponding statement for GprojA; equivalently, for the singularity category of A.

This also explains the title of this paper.

To that end we consider the subcategory Γp(GProjA) of GProjA consisting of the p-

local p-torsion modules. These are the Gorenstein projective A-modules M with the prop-

erty that for each finite dimensional A-module C, every element of Hom∗
A(C,M), the graded
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R-module of morphisms in GProjA, is annihilated by some power of p, and the natural map

Hom∗
A(C,M) → Hom∗(C,M)p is bijective. Then Γp(GProjA) is also a compactly gener-

ated triangulated category and the full subcategory of compact objects is equivalent, up to

direct summands, to γp(GprojA). There is an idempotent functor Γp : GProjA → GProjA

with image the p-local p-torsion modules; see Section 3 for details. The central result of

this work is a local duality theorem for this category:

Theorem 1.2. Let p be in Spec+(R) and let d be the Krull dimension of R/p. Let

X,Y be Gorenstein projective A-modules and suppose that X is finite dimensional. Then

there is a natural isomorphism

HomR(Ext
∗
A(X,Y ), I(p)) ∼= HomA(Y,Ω

dΓpGP ν(X)) .

Here GP is the Gorenstein projective approximation functor and Ω is the syzygy functor;

see Section 2 for details. The theorem above is contained in Theorem 5.1.

Theorems 1.1 and 1.2 are formulated in terms of an arbitrary (but fixed) subalgebra

R of the Hochschild cohomology of A. It is thus natural to ask how these results are

related as we vary R. This point is addressed in Remark 5.8. Another issue is what

transpires in Theorem 1.1 if we set p = R>1. When the ring R is such that, in addition

to being noetherian, the R-module Ext∗A(X,X) is finitely generated for each X ∈ D, the

subcategory Γm(D) is precisely the subcategory of perfect complexes and the analogue of

Theorem 1.1 is Happel’s duality; see Remark 5.6.

The duality statements above are modeled on, and extensions of, analogous results for

representation of modules over finite group schemes established in [11]. In that context,

the stable category of (finite dimensional) Gorenstein projectives is the stable category of

(finite dimensional) representations. We refer to that work for antecedents of these results

and for applications, notably, the existence of AR triangles in γp(D). The proof of the

results in op. cit. exploited the tensor structure on the module categories in question, but

in fact the arguments can be readily adapted to deal with the general case, as we do here.

In doing so, it became clear that local duality is a feature of Gorenstein algebras in general.

Acknowledgements. We are grateful to the American Institute of Mathematics in

San Jose, California for supporting this project by their “Research in Squares” program.

Our thanks also to a referee for reading this document with care, and offering constructive

criticism.

§2. Gorenstein algebras

In this section we recall basic notions and results from the homological theory of Goren-

stein algebras, mainly pertaining to duality. The main result we are working towards is

Theorem 2.9. This result is well-known, in principle, but unavailable in the literature in

the form we need, so a complete proof is given.

Throughout this work k will be a field and A a finite dimensional k-algebra.

Let ModA be the category all (left) A-modules and modA its full subcategory consist-

ing of finitely generated A-modules. The full subcategory of ModA consisting of projective

A-modules is denoted ProjA, and we set projA := ProjA∩modA. The injective analogues

are denoted InjA and injA, respectively. In what follows for A-modules M,N we set

HomA(M,N) := HomA(M,N)/{φ | φ factors through a projective}
HomA(M,N) := HomA(M,N)/{φ | φ factors through an injective}.
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When M and N are finitely generated, it suffices to consider maps φ that factor through

projA and injA, respectively.

Vector space duality

For any A-module M we set

DM := Homk(M,k) ,

viewed as an Aop-module. The assignment M 7→ DM induces an equivalence

(modA)op
∼−−→ modAop

which restricts to an equivalence (projA)op
∼−→ injAop. The functor D also extends to an

equivalence between the corresponding bounded derived categories:

D : Db(modA)
op ∼−−→ D

b(modAop). (2.1)

Let D
b(projA) denote the bounded derived category of projA. We identify it with the

subcategory of Db(modA) consisting of perfect complexes.

The Nakayama functor

Observe that DA is an A-bimodule. The functor ν : ModA → ModA that assigns to

each A-module M the A-module

νM := DA⊗A M

is called the Nakayama functor. The functor ν− := HomA(DA,−) is its right adjoint. Both

functors preserve all products and coproducts since DA is a finitely presented module on

either side. The Nakayama functor is an equivalence if A is self-injective but not in general.

However one has the result below. In the sequel, given an A-module X we write AddX for

the full subcategory of ModA consisting of direct summands of coproducts of copies of X,

and ProdX where products are used instead of coproducts.

Lemma 2.1. For any finite dimensional k-algebra A one has ProjA = ProdA and

InjA = AddDA, and ν restricts to an equivalence ProjA
∼−→ InjA.

Proof. Adjunction yields an isomorphism of functors HomA(−, DA) ∼= Homk(−, k).

Thus the A-module DA is a faithful injective. As A is noetherian this implies that InjA =

AddDA; see [15, Chapter I, Exercise 8]. Hence ν restricts to a functor ProjA → InjA.

Here we are using the fact that also ProjA = AddA. Moreover νA = DA and ν−DA = A;

the latter is by adjunction. Since ν and ν− preserve coproducts it follows that the unit

id → ν−ν and counit νν− → id of the adjunction are isomorphisms and hence ν and ν−

are equivalences of categories:

ProjA InjA
ν

ν−
∼

Finally InjA = ProdDA, since DA is a faithful injective, and ν− preserves products, so

the equivalence above yields ProjA = ProdA.
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The singularity category

Buchweitz [14] introduced the stable derived category of A as the Verdier quotient

Dsg(A) := D
b(modA)/Db(projA).

This category was rediscovered by Orlov [22], who called it the singularity category of A,

and our notation reflects this terminology. When the global dimension of A is finite one

has Dsg(A) = 0, so the singularity category is one measure of the deviation of A from finite

global dimension.

The singularity category can be realized (in more than one way) as a stabilisation of a

subcategory of modA. This is described next.

Gorenstein algebras

Henceforth the k-algebra A will be Gorenstein (also known as Iwanaga-Gorenstein):

the injective dimension of A as a left A-module and as a right A-module is finite. In this

case, the injective dimensions are the same; this was proved by Zaks [25]. Evidently when

A is Gorenstein so is Aop, the opposite algebra of A. The Gorenstein condition on A is

equivalent to: An A-module has finite projective dimension if and only if it has finite injec-

tive dimension; see, for example, [14, Lemma 5.1.1]. This implies that the equivalence (2.1)

restricts to an equivalence Db(projA)op
∼−→ D

b(projAop), and hence induces an equivalence

D : Dsg(A)op
∼−−→ Dsg(A

op) . (2.2)

This will be used often in the sequel.

Gorenstein projective and Gorenstein injective modules

An A-module X is Gorenstein projective if

ExtiA(X,P ) = 0 for each projective P and each i ≥ 1.

Since ProjA = ProdA, by Lemma 2.1, the condition above is equivalent to

ExtiA(X,A) = 0 for each i ≥ 1.

We write GProjA for the category of Gorenstein projective A-modules and set

GprojA := GProjA ∩modA .

These are the maximal Cohen-Macaulay A-modules, in Buchweitz’s terminology.

Standard arguments (following, for example, [19, Section 9]) yield that GProjA is

a Frobenius exact category with projective objects the projective A-modules. We write

GProjA for the corresponding stable category; it is a triangulated category. Its thick

subcategory consisting of the finitely generated modules is denoted GprojA, for it identifies

with the stabilisation of GprojA.

On GProjA the syzygy functor Ω has an inverse, denoted Ω−1, that is well-defined up

to projective summands. This is the translation on GProjA.

An A-module Y is Gorenstein injective if

ExtiA(Q, Y ) = 0 for each injective Q and each i ≥ 1.
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Again, Lemma 2.1 implies that the condition above is equivalent to

ExtiA(DA,Y ) = 0 for each i ≥ 1.

We write GInjA for the category of Gorenstein injective modules and set GinjA := GInjA∩
modA. The stabilisation of GInjA is denoted GInjA, and the subcategory of finitely

generated modules is GinjA. These are triangulated categories, where the translation ΣY

of a Y ∈ GInjA is the cokernel of an embedding into an injective A-module:

0 −→ Y −→ I −→ ΣY −→ 0

The equivalence D : (modA)op
∼−→ modAop restricts to equivalences

(GprojA)op
∼−−→ GinjAop and (projA)op

∼−−→ injAop . (2.3)

and hence induces an equivalence of triangulated categories

D : GprojA
∼−−→ GinjAop . (2.4)

Here is the result on realising the singularity category as a stabilisation.

Proposition 2.2. The inclusions GprojA → D
b(modA) and GinjA → D

b(modA)

induce triangle equivalences

p : GprojA
∼−→ Dsg(A) and q : GinjA

∼−→ Dsg(A) .

Proof. The first equivalence is Theorem 4.4.1 from [14], and the second equivalence

follows from that statement applied to Aop and dualities (2.4).

Approximations

The following result—see [14, Lemma 5.1.1]—is straightforward to verify.

Lemma 2.3. Let X be a Gorenstein projective module.

(1) ExtiA(X,F ) = 0 for any module F of finite projective dimension and i ≥ 1.

(2) If an A-linear map X → N factors through a module of finite projective dimension,

then it factors through a projective module.

The analogous statements for Gorenstein injective modules also hold.

This has the following consequence.

Lemma 2.4. If X is Gorenstein projective and Y is Gorenstein injective, then

HomA(X,Y ) = HomA(X,Y ) .

Proof. Given Lemma 2.3, one has to verify that a map f : M → N factors through

a module of finite projective dimension if and only if it factors through a module of finite

injective dimension. This is a tautology as these categories coincide.
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The following result is due to Auslander and Buchweitz, and is the cornerstone of their

theory of maximal Cohen-Macaulay approximations. There is an analogous statement

involving Gorenstein injectives.

Proposition 2.5. Every finite dimensional A-module M fits into exact sequences

0 → FM → XM → M → 0 and 0 → M → FM → XM → 0

where XM , XM are in GprojA and FM , FM have finite projective dimension. For X ∈
GprojA and F of finite projective dimension, these sequences induce bijections

HomA(X,XM )
∼−→ HomA(X,M) and HomA(F

M , F )
∼−→ HomA(M,F ) .

Proof. This is part of [14, Theorems 5.1.2, 5.1.4]; see also [4, Theorems 1.8, 2.8].

We write GP(M) := XM for the Gorenstein projective approximation of M . It follows

from the preceding result that XM is well-defined in GprojA.

Lemma 2.6. The Gorenstein projective approximation GP induces a triangle equiva-

lence GinjA
∼−→ GprojA satisfying q ∼= p◦GP, where p, q are the functors in Proposition 2.2.

Proof. Since pF = 0 for any A-module F of finite projective dimension, Proposition 2.5

implies qY ∼= pGP(Y ) for any Gorenstein injective module Y . This yields also that GP is

a triangle equivalence, since p, q are triangle equivalences.

Remark 2.7. When A is self-injective the projective and injective A-modules coincide

and hence GProjA = GInjA. Conversely, when the (projective) module A is Gorenstein

injective, A is self-injective: Consider an exact sequence

0 −→ A −→ I −→ ΣA −→ 0

where I is injective. If A is Gorenstein injective, then so is ΣA, and hence the sequence

above splits, as the injective dimension of A is finite. Thus A is injective.

Example 6.3 describes a Gorenstein algebra that is not self-injective, and identifies

modules that are Gorenstein projective but not Gorenstein injective.

The Nakayama functor again

The Nakayama functor restricts to equivalences

projA injA

GprojA GinjA .

ν
∼

ν
∼

Therefore one gets an induced equivalence ν : GprojA
∼−→ GinjA. In particular one has

νΩ−1X ' ΣνX for each X in GprojA.

The derived Nakayama functor, which we also denote ν, is also an equivalence:

ν : Db(modA)
∼−→ D

b(modA) where M 7→ DA⊗L

A M .
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On the other hand, since the complexes of finite projective dimension are the same as those

of finite injective dimension (because A is Gorenstein), DA is in the thick subcategory

of Db(modAop) generated by A, and hence, by duality A is in the thick subcategory of

D
b(modA) generated by DA, that is to say, by νA. It follows that the derived Nakayama

functor satisfies

ν(Db(projA)) = Db(projA) .

This is the essence of Happel duality. It induces an equivalence ν̄ on the singularity category

that makes the following square commutative

GprojA GinjA

Dsg(A) Dsg(A) .

∼p

ν
∼

q∼

ν̄
∼

(2.5)

The vertical equivalences are from Proposition 2.2.

The Auslander transpose

Let X be a finite dimensional Gorenstein projective A-module. In what follows we

will often need the fact that the Aop-module HomA(X,A) is also Gorenstein projective.

This can be verified directly from the definition; see, for example, [14, Lemma 4.2.2]. Any

projective presentation

P1 −→ P0 −→ X −→ 0

induces an exact sequence of Aop-modules.

0 −→ HomA(X,A) −→ HomA(P0, A) −→ HomA(P1, A) −→ TrX −→ 0 .

The Aop-module TrX is the Auslander transpose of X, and it depends only on X up to

projective summands. It is a Gorenstein projective Aop-module since it identifies with

HomA(Ω
2X,A). Applying D yields an exact sequence of A-modules

0 −→ DTrX −→ νP1 −→ νP0 −→ νX −→ 0 .

Since TrX is Gorenstein projective over Aop, the A-module DTrX is Gorenstein injective

and the exact sequence above implies that there is an isomorphism

Σ2(DTrX) ∼= νX. (2.6)

in GinjA.

Auslander-Reiten Duality

We are ready to state the main results of this section. For similar statements we refer

to [1, 6].

Proposition 2.8. Let A be a Gorenstein algebra, and X,Y Gorenstein projective A-

modules. When X is finite dimensional, there is a natural isomorphism

DHomA(X,Y ) ∼= HomA(Y,Ω
−1GP(DTrX)) .
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Proof. The exact sequence 0 → ΩY → P → Y → 0 with P projective, induces the

first of the following isomorphisms

DHomA(X,Y ) ∼= DExt1A(X,ΩY )

∼= HomA(ΩY,DTrX)

∼= HomA(ΩY,DTrX)

∼= HomA(ΩY,GP(DTrX))

∼= HomA(Y,Ω
−1GP(DTrX)) .

The second isomorphism is Auslander-Reiten duality [3, Proposition I.3.4], whilst the third

isomorphism is from Lemma 2.4, since ΩY is Gorenstein projective andDTrX is Gorenstein

injective. The fourth isomorphism follows from Proposition 2.5, and the final one is clear

since Ω is an equivalence on GprojA.

As in Bondal and Kapranov [12, §3], a Serre functor on a k-linear, Hom-finite, additive

category C is an equivalence F : C → C along with natural isomorphisms

DHomC(X,Y ) ∼= HomC(Y, FX)

for all objects X,Y in C.

The result below subsumes the formula for the Serre functor on the stable module

category of a self-injective algebra.

Theorem 2.9. Let A be a Gorenstein algebra. Then

Ω ◦GP ◦ ν : GprojA
∼−→ GprojA and Σ−1 ◦ ν̄ : Dsg(A)

∼−→ Dsg(A)

are Serre functors.

Proof. For any Gorenstein projective A-module X, one has a sequence of isomorphisms

in GprojA, where the first and the last one are by construction:

Ω−1GP(DTrX) = ΣGP(DTrX)

∼= GP(ΣDTrX)

∼= GP(Σ−1νX)

∼= Σ−1(GP νX)

= Ω(GP νX) .

The second and the fourth isomorphisms hold because GP is a triangle functor, and the

third one is by (2.6). Thus Proposition 2.8 yields that Ω ◦ GP ◦ν is a Serre functor on

GProjA, as claimed. The description of the Serre functor on Dsg(A) is then a consequence

of Lemma 2.6 and (2.5).

Compact generation

So far the results have mostly dealt with the categories GprojA and GinjA consisting

of finite dimensional modules. To prove the local duality theorem announced in the intro-

duction we need to work in larger categories, GProjA and GInjA. To this end we recall

the following result, which is well-known at least for self-injective algebras.
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Proposition 2.10. The stable categories GProjA and GInjA are compactly generated

triangulated categories, and the full subcategories of compact objects identify with GprojA

and GinjA, respectively.

Proof. The Nakayama functor induces a triangle equivalence GProjA
∼−→ GInjA,

identifying GprojA with GinjA; the quasi-inverse is given by HomA(D(A),−). It thus

suffices to verify the assertions about GInjA.

It follows from [20, §5] that GInjA is compactly generated; it remains to identify the

compact objects. If X is a finite dimensional module, then HomA(X,−) preserves direct

sums. Thus every module in GinjA is compact in GInjA.

On the other hand, for any nonzero module Y in GInjA there exists a finite dimensional

module M such that HomA(M,Y ) 6= 0; this is because Y is not injective. Choose a

Gorenstein injective approximation M → W , using the analogue of Proposition 2.5 for

Gorenstein injective modules. Then

HomA(W,Y ) ∼= HomA(M,Y ) 6= 0 ,

which implies that GinjA is all the compact objects of GInjA.

§3. Cohomology and localisation

In this section we recall basic notions and constructions concerning certain localisation

functors on triangulated categories with ring actions. The material is needed to state and

prove the results in Section 4 and 5. The main triangulated category of interest is the stable

category of Gorenstein projective modules. Primary references for the material presented

here are [7, 8].

Triangulated categories with central action

Let T be a triangulated category with suspension Σ. Given objects X and Y in T,

consider the graded abelian groups

Hom∗
T(X,Y ) =

⊕

i∈Z

HomT(X,ΣiY ) and End∗T(X) = Hom∗
T(X,X) .

Composition makes End∗T(X) a graded ring and Hom∗
T
(X,Y ) a left-End∗T(Y ) right-End∗T(X)

module.

Let R be a graded-commutative ring. We say the triangulated category T is R-linear,

or that R acts on T, if for each X in T there is a homomorphism of graded rings φX : R →
End∗T(X) such that the induced left and right actions of R on Hom∗

T
(X,Y ) are compatible

in the following sense: For any r ∈ R and α ∈ Hom∗
T
(X,Y ), one has

φY (r)α = (−1)|r||α|αφX(r) .

In what follows, we fix a compactly generated R-linear triangulated category T and

write T
c for its full subcategory of compact objects.

Graded modules

In the remainder of this section R will be a graded-commutative noetherian ring. We

will only be concerned with homogeneous elements and ideals in R. In this spirit, ‘localisa-

tion’ will mean homogeneous localisation, and SpecR will denote the set of homogeneous

prime ideals in R.
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Given graded R-modules M and N , we denote by HomR(M,N) the R-linear maps

φ : M → N such that φ(M i) ⊆ N i for all i ∈ Z, and

Hom∗
R(M,N) =

⊕

i∈Z

HomR(M,N [i])

where N [i]p = N i+p for all i, p ∈ Z.

Localisation

Fix an ideal a in R. An R-module M is a-torsion if Mq = 0 for all q in SpecR with

a 6⊆ q. Analogously, an object X in T is a-torsion if the R-module Hom∗
T
(C,X) is a-torsion

for all C ∈ T
c. The full subcategory of a-torsion objects

ΓV(a)T := {X ∈ T | X is a-torsion}

is localising and the inclusion ΓV(a)T ⊆ T admits a right adjoint, denoted ΓV(a).

Fix a p in SpecR. An R-module M is p-local if the localisation map M → Mp is

invertible, and an object X in T is p-local if the R-module Hom∗
T
(C,X) is p-local for all

C ∈ T
c. Consider the full subcategory of T of p-local objects

Tp := {X ∈ T | X is p-local}

and the full subcategory of p-local and p-torsion objects

ΓpT := {X ∈ T | X is p-local and p-torsion}.

Note that ΓpT ⊆ Tp ⊆ T are localising subcategories. The inclusion Tp → T admits a

left adjoint X 7→ Xp while the inclusion ΓpT → Tp admits a right adjoint. We denote by

Γp : T → ΓpT the composition of those adjoints; it is the local cohomology functor with

respect to p; see [7, 8] for explained notions and details.

The following observation is clear.

Lemma 3.1. For any element r in R \ p, say of degree n, and p-local object X, the

natural map X
r−→ ΣnX is an isomorphism.

Koszul objects

Fix objects X,Y in T. Any element b in Rd induces a morphism X → ΣdX and let

X//b denote its mapping cone. This gives a morphism X → Σ−d(X//b). For a sequence of

elements b := b1, . . . , bn in R set X//b := Xn where

X0 := X and Xi := Xi−1//bi for 1 ≤ i ≤ n .

It is easy to check that for s =
∑

i |bi| there is an isomorphism

HomT(X,Y//b) ∼= HomT(X//b,Σs+nY ). (3.1)
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Injective cohomology objects

Given an object C in T
c and an injective R-module I, Brown representability yields an

object T (C, I) in T such that

Hom∗
R(Hom

∗
T(C,−), I) ∼= Hom∗

T(−, T (C, I)) . (3.2)

This yields a functor

T : Tc × InjR −→ T.

For each p in SpecR, we write I(p) for the injective hull of R/p and set

Tp := T (−, I(p)) ,

viewed as a functor T
c → T. For objects C and D in T

c, applying (3.2) twice one gets a

natural R-linear isomorphism

Hom∗
T(T (C, I), T (D, I)) ∼= Hom∗

R(Hom
∗
R(Hom

∗
T(C,D), I), I) . (3.3)

§4. Hochschild and Tate cohomology

Let k be a field and A a finite dimensional Gorenstein k-algebra. The enveloping algebra

of A is the k-algebra Ae := A ⊗k Aop; it is also Gorenstein, by Proposition 6.1, but this

observation does not play a role in the sequel. The Hochschild cohomology of the k-algebra

A is

HH∗(A/k) := Ext∗Ae(A,A) .

This is a graded-commutative k-algebra.

When X and Y are Gorenstein projective A-modules, we set

Hom∗
A(X,Y ) =

⊕

i∈Z

HomA(X,Ω−iY ) .

This is the Tate cohomology of X,Y . There is a canonical homomorphism

Ext∗A(X,Y ) −→ Hom∗
A(X,Y ), (4.1)

of graded abelian groups, induced from the canonical morphism tX → pX from a complete

projective resolution to a projective resolution of X; see [14, 6.2]. In particular, this map

is surjective in degree 0 and bijective in positive degrees.

Action on GProjA

For any A-module M there is a canonical map

HH∗(A/k)
−⊗AM−−−−→ Ext∗A(M,M)

that is a morphism of graded k-algebras. When X is Gorenstein projective, composing the

map above with the one in (4.1) one gets a homomorphism of k-algebras

φX : HH∗(A/k) −→ Hom∗
A(X,X)

and this induces an action of HH∗(A/k) on GProjA, in the sense of Section 3. It follows

from the construction of the action that for any element b ∈ HH∗(A/k) and morphism

f : X → Y in GProjA, there is a natural morphism f//b : X//b → Y//b. This observation

will be used often in the sequel.
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Assumption 4.1. We fix a homogenous k-subalgebra R of HH∗(A/k) such that

(1) R0 = k

(2) R is finitely generated as a k-algebra.

Condition (1) implies R≥1 is the unique maximal ideal of R, which allows us to import the

results from [11]. Imposing it is not a loss of generality. Indeed A decomposes as a direct

product of connected algebras, and for a connected algebra A the ring HH0(A/k), being

the center of A, is a finite dimensional local ring, so the inclusion R0 ⊆ HH0(A/k) induces

a bijection on spectra.

The finite generation of the k-algebra R is equivalent to the condition that the ring R

is noetherian; see [13, Proposition 1.5.4]. Since the HH∗(A/K)-action on GProjA restricts

to an R-action, the noetherian property of R allows one to invoke the constructions and

results presented in Section 3.

Base change

Let K/k be an extension of fields and set

AK := K ⊗k A .

This is a finite dimensional K-algebra, and extension of scalars

ModA −→ ModAK , X 7→ XK = K ⊗k X

and restriction

ModAK −→ ModA, X 7→ X↓A = HomK(K,X)

form an adjoint pair of exact functors. The result below is standard.

Lemma 4.2. For A-modules X and Y , the canonical K-linear map

K ⊗k HomA(X,Y ) −→ HomAK
(XK , YK)

is a isomorphism when X, or K, is finite dimensional over k.

Lemma 4.3. Extension and restriction preserve projectivity and injectivity; in partic-

ular, the K-algebra AK is Gorenstein. Moreover extension and restriction preserve Goren-

stein projectivity.

Proof. We will use without mention that both extension and restriction preserve co-

products. Extension of scalars takes A to AK and hence projective A-modules to pro-

jective AK-modules. Moreover, since A is finite dimensional over k the natural map

Homk(A, k)K → HomK(AK ,K) is an isomorphism, by Lemma 4.2. It follows from Lemma 2.1

that (−)K restricts to a functor InjA → InjAK .

Viewed as an A-module AK is a (possibly) infinite direct sum of copies of A, and in

particular projective. It follows that restriction preserves projectivity. That it also preserves

injectivity follows from the fact that it is right adjoint to extension of scalars, which is an

exact functor.
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If X is a Gorenstein projective A-module, then the AK-module XK is Gorenstein

projective, for one has

ExtiAK
(XK , AK) ∼= ExtiA(X,AK↓A) ∼= 0 for i ≥ 1.

The first isomorphism is adjunction, and the second one holds because AK is projective as

an A-module.

The AK-module Homk(K,A) is isomorphic to Homk(K, k)⊗k A and hence it is projec-

tive. Thus if X is a Gorenstein projective AK-module, one gets

ExtiA(X↓A, A) ∼= ExtiAK
(X,Homk(K,A)) ∼= 0 for i ≥ 1,

where the first isomorphism is again by adjunction. It follows that X↓A is Gorenstein

projective.

There are isomorphisms of K-algebras

(AK)e ∼= (Ae)K and HH∗(AK/K) ∼= K ⊗k HH
∗(A/k) .

Thus extension of scalars yields a ring homomorphism HH∗(A/k) → HH∗(AK/K), and

setting RK := K ⊗k R one gets a ring homomorphism

R −→ RK .

Observe that the K-subalgebra RK of HH∗(AK/K) satisfies the conditions in 4.1.

The action of Hochschild cohomology on GProjA is compatible with extension of scalars

and restriction, in that, for any X,Y ∈ GProjA the natural map

HomA(X,Y ) −→ HomAK
(XK , YK)

of graded abelian groups, induced by Lemma 4.2, is compatible with the homomorphism

HH∗(A/k) → HH∗(AK/K), as is the adjunction isomorphism

HomA(X,Z↓A) ∼= HomAK
(XK , Z)

for any Z in GProjAK . The result below is a special case of [9, Theorem 7.7]; a proof

tailored to the present context is provided for readability.

Lemma 4.4. Let a be an ideal in R and b an ideal in RK .

(1) For X in GProjA there is a natural isomorphism

(ΓV(a)X)K ∼= ΓV(aRK)(XK) .

(2) If Y in GProjAK is b-torsion, then Y ↓A is (b ∩R)-torsion.

Proof. (1) Suppose a = (r1, . . . , rn). There is then a natural isomorphism of functors

ΓV(a)
∼= ΓV(r1) ◦· · ·◦ΓV(rn); see [7, Proposition 6.1]. Thus we can assume a = (r), a principal

ideal. Since (−)K preserves coproducts, the statement follows from an explicit description

of ΓV(r) in terms of homotopy colimits; see [8, Proposition 2.9].
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(2) Let C be a compact object in GProjA, that is to say, a finite dimensional (over

k) Gorenstein projective A-module; see Proposition 2.10. The AK-module CK is evidently

finite dimensional over K; it is also Gorenstein projective, by Lemma 4.3. In particular,

HomAK
(CK , Y ) is b-torsion. It remains to recall what was noted above: the adjunction

isomorphism

HomA(C, Y ↓A) ∼= HomAK
(CK , Y )

is compatible with the homomorphism R → RK .

As usual Spec+(R) denotes the set of prime ideals that do not contain R>1. Next we

recall a construction from [10] of a field extension K/k and a closed point in Spec+(R)K
lying over a given point in Spec+(R).

Construction 4.5. Let R be a finitely generated, graded k-algebra with R0 = k. Fix

a point p in Spec+(R), and let d be the Krull dimension of R/p.

Choose elements a := a0, . . . , ad−1 in R of the same degree such that their image in

R/p is algebraically independent over k and R/p is finitely generated as a module over the

subalgebra k[a]. Set K := k(t1, . . . , td−1), the field of rational functions in indeterminates

t1, . . . , td−1 and

bi := ai − a0ti for i = 1, . . . , d− 1

viewed as elements in RK . Let p′ denote the extension of p to RK , and set

q := p′ + (b) and m :=
√
q .

The following statements hold:

(1) m is a closed point in Spec+(R)K with the property that m ∩R = p;

(2) the induced extension of fields k(p)
∼=−−→ k(m) is an isomorphism.

The first part is contained in [10, Theorem 7.7]. The second one holds by construction; see

[10, Lemma 7.6, and (7.2)].

We record the following observation for later use: Since the ai are not in p, when Y in

GProjA is p-local Lemma 3.1 yields a natural isomorphism

ΩsY ∼= Y where s =
∑

i

|ai| =
∑

i

|bi|. (4.2)

This algebraic construction has the following representation theoretic avatar.

Lemma 4.6. If X in GProjA is p-torsion, then XK//b in GProjAK is m-torsion and

(XK//b)↓A, its restriction to A, is p-local and p-torsion.

Proof. Since ΓV(p)X ∼= X one gets the first isomorphism below

XK
∼= (ΓV(p)X)K ∼= ΓV(p′)(XK) ;

the second one is by Lemma 4.4(1). In other words, XK is p′-torsion and hence XK//b is

(p′ + b)-torsion, that is to say, it is m-torsion, since m is the radical of p′ + b. The claim

about the restriction of XK//b to A follows from Lemma 4.4(2).
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Fix an object X in GProjA. The sequence of elements b in RK yields a morphism

XK → Ωs(XK//b). Adjunction gives a morphism

fX : X −→ Ωs(XK//b)↓A .

When X is p-torsion the target of fX is p-local, by Lemma 4.6, so the map factors through

localisation at p and yields a natural morphism

gX : ΓpX = Xp −→ Ωs(XK//b)↓A ∼= (XK//b)↓A .

The isomorphism holds by (4.2), which applies by Lemma 4.6. Here we have implicitly used

the fact that passing to syzygies commutes with restriction.

The result below extends [11, Theorem 3.4] that concerns modules over finite group

schemes, but the argument is essentially the same.

Theorem 4.7. Let X be a Gorenstein projective A-module. When X is p-torsion, the

natural morphism gX constructed above is an isomorphism:

gX : ΓpX
∼=−−→ (XK//b)↓A .

For an arbitrary X, the morphism gX induces a natural isomorphism

ΓpX
∼=−−→ Γm(XK//b)↓A .

Proof. The p-torsion modules X for which gX is an isomorphism form a localising

subcategory of GProjA. Moreover, by [8, Proposition 2.7], the p-torsion modules form a

localising subcategory of GProjA generated by the modules X//p, for X in GprojA. It thus

suffices to verify the desired isomorphism for such modules, that is to say that the map

gX//p is an isomorphism. This is proved in [10, Theorem 8.8] for the case of finite group

schemes and X = k, the trivial representation. The argument uses [10, Proposition 6.2(2)]

that should be substituted by Lemma 4.4.

Let X be an arbitrary Gorenstein projective A-module and p′ the ideal in Construc-

tion 4.5. Since Y := ΓV(p)X is p-torsion, gY is an isomorphism. This is the second isomor-

phism below:

ΓpX ∼= (ΓV(p)X)p
∼= ((ΓV(p)X)K//b)↓A
∼= (ΓV(p′)(XK)//b)↓A
∼= (ΓV(p′)(XK//b))↓A
∼= (ΓV(p′+(b))(XK//b))↓A
∼= (Γm(XK//b))↓A .

The third one is by Lemma 4.4, applied to the functor K⊗k (−) from GProjA to GProjAK .

The next one is standard while the penultimate one holds because XK//b is (b)-torsion.
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§5. The Gorenstein property

Let F : GprojA → GprojA be the Serre functor from Theorem 2.9, given by

F (X) = (Ω ◦GP ◦ ν)(X).

Given the description of F , the result below contains Theorem 1.2. It extends [11, The-

orem 5.1], which deals with the case A is the group algebra of a finite group scheme and

R = Ext∗A(k, k), its cohomology ring.

Theorem 5.1. Let k be a field, A a finite dimensional Gorenstein k-algebra and R ⊆
HH∗(A/k) as in 4.1. Fix p ∈ Spec+(R), and let d be the Krull dimension of R/p. On

GprojA there is a natural isomorphism of functors

Γp ◦ F ∼= Ω−d+1 ◦ Tp .

Thus for any object X in GprojA there is a natural isomorphism

HomA(−,Ωd−1ΓpF (X)) ∼= HomR(Ext
∗
A(X,−), I(p)) .

This result is proved further below, following some preparatory remarks.

Remark 5.2. Let X,Y be Gorenstein projective A-modules. The natural map

Ext∗A(X,Y ) → Hom∗
A(X,Y )

is compatible with action of HH∗(A/k), and hence of R. The map is surjective in degree

zero, with kernel PHomA(X,Y ), the maps from X to Y that factor through a projective

A-module. Since it is bijective in positive degrees one gets an exact sequence of graded

R-modules

0 −→ PHomA(X,Y ) −→ Ext∗A(X,Y ) −→ Hom∗
A(X,Y ) −→ C −→ 0 (5.1)

with Ci = 0 for i ≥ 0. For degree reasons, the R-modules PHomA(X,Y ) and C are

R>1-torsion so for p in Spec+(R) the induced localised map is an isomorphism:

Ext∗A(X,Y )p
∼−→ Hom∗

A(X,Y )p . (5.2)

It follows from Lemma 4.3 that the functor F is compatible with base change.

Lemma 5.3. Let K/k be a field extension and FK : GprojAK → GprojAK the cor-

responding Serre functor. For X in GprojA there is a natural isomorphism FK(XK) ∼=
F (X)K .

The argument below is direct adaptation of the one for [11, Theorem 5.1].

Proof of Theorem 5.1. The proof uses the following observation: For any A-modules

X,Y that are p-local and p-torsion, there is an isomorphism X ∼= Y in GProjA if and only

if there is a natural isomorphism

HomA(M,X) ∼= HomA(M,Y )
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for p-local and p-torsion A-modules M . This follows from Yoneda’s lemma.

In anticipation of using the preceding remark, we note that Γp(X) and Tp(X) are p-

local and p-torsion. This is clear for Γp(X) and follows for Tp(X) from the fact that I(p)

is a p-local and p-torsion R-module. Another observation is that, by (5.2), for any p-local

R-module I, there is an isomorphism

HomR(Ext
∗
A(X,−), I) ∼= HomR(Hom

∗
A(X,−), I).

Consequently, one can rephrase the defining isomorphism (3.2) for the object Tp(X) as a

natural isomorphism

HomA(−, Tp(X)) ∼= HomR(Ext
∗
A(X,−), I(p)) .

Our task is to verify that, on GprojA, there is an isomorphism of functors

ΓpF ∼= Ω−d+1Tp .

We verify this when p is closed and then use a reduction to closed points.

Claim. The desired isomorphism holds when m is a closed point in Spec+(R).

The injective hull, I(m), of the R-module R/m is the same as that of the Rm-module

k(m), viewed as an R-module via restriction of scalars along the localisation map R → Rm.

Let Y be a Gorenstein projective A-module that is m-local and m-torsion. The claim is a

consequence of the following computation:

HomA(Y, Γm(FX)) ∼= HomA(Y, FX)

∼= Homk(HomA(X,Y ), k)

∼= HomRm
(Hom∗

A(X,Y ), I(m))

∼= HomR(Hom
∗
A(X,Y ), I(m))

∼= HomA(Y, Tm(X)) .

The first isomorphism holds because Y is m-torsion; the second is Serre duality, Proposi-

tion 2.8, and the next one is by [11, Lemma A.2], which applies because Hom∗
A(X,Y ) is

m-local and m-torsion as an A-module.

Let p be a point in Spec+(R) that is not closed, and let K, b, and m be as in Construc-

tion 4.5. Recall that m is a closed point in RK lying over p.

Claim. In GProjA there is an isomorphism of A-modules

(Tm(XK)//b)↓A ∼= Ω−d+1Tp(X) (5.3)

where d is the Krull dimension of R/p.

Let Y be an A-module that is p-local and p-torsion. Then we have the following:

HomA(Y,Ω
d−1(Tm(XK)//b)↓A) ∼= HomAK

(YK ,Ωd−1(Tm(XK)//b))

∼= HomAK
(YK//b, Tm(XK))

∼= HomRK
(Hom∗

AK
(XK , YK//b), I(m))

∼= HomR(Hom
∗
AK

(XK , YK//b), I(p))

∼= HomR(Hom
∗
A(X, (YK//b)↓A), I(p))

∼= HomR(Hom
∗
A(X,Y ), I(p))

∼= HomA(Y, Tp(X)) .
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The first and fifth isomorphisms are by adjunction. The second one is a direct computation

using (3.1) and (4.2). The next one is by definition and the fourth isomorphism is by

[11, Lemma A.3], applied to the homomorphism R → RK ; it applies as the RK-module

Hom∗
AK

(XK , YK//b) is m-torsion. The sixth isomorphism is by Theorem 4.7, and the last

one by definition. This justifies the claim.

Consider now the chain of isomorphisms:

ΓpF (X) ∼= Γm(F (X)K//b)↓A
∼= Γm(FK(XK)//b)↓A
∼= (Γm(FK(XK))//b)↓A
∼= (Tm(XK)//b)↓A
∼= Ω−d+1Tp(X).

The first isomorphism is by Theorem 4.7, the second by Lemma 5.3, the third is clear, the

fourth follows from the first claim, since m is a closed point for AK , and the last one follows

from the second claim.

This completes the proof that the functors Γp ◦F and Ω−d+1 ◦Tp are isomorphic. Given

this and the alternative description of Tp above, the last isomorphism in the statement

follows.

Next we record a corollary of Theorem 5.1 concerning γp(GprojA), the p-torsion objects

in the p-localisation of GprojA; see [11, §7] and the references therein for details of this

construction. The R-linear triangle equivalences

ν : GprojA → GinjA and GP: GinjA → GprojA

induce Rp-linear triangle equivalences

γp(GprojA) γp(GinjA)

(GprojA)p (GinjA)p

νp
∼

νp
∼

and

γp(GinjA) γp(GprojA)

(GinjA)p (GprojA)p

GPp

∼

GPp

∼

(5.4)

compatible with the localisation functor; see [11, Remark 7.1]. The result below can be

interpreted as the statement that the category γp(GprojA), and hence also γp(GinjA), has

a Serre functor.

Corollary 5.4. For X,Y in C := γp(GprojA), there is a natural isomorphism

HomRp
(Hom∗

C(X,Y ), I(p)) ∼= HomC(Y,Ω
dGPp νp(X)) .

Proof. Up to direct summands, the categories C and Γp(GProjA)c are equivalent, and

the compact objects in Γp(GProjA) are of the form Mp, for some M ∈ GprojA that is

p-torsion; see [11, Remark 7.2]. We obtain the desired isomorphism by reinterpreting the

isomorphisms in Theorem 5.1, as follows.
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Fix p-torsion objects M,N in GprojA. One has the first isomorphism below because

M is finite dimensional:

HomRp
(Hom∗

A(Mp, Np), I(p)) ∼= HomRp
(Hom∗

A(M,N)p, I(p))

∼= HomRp
(Ext∗A(M,N)p, I(p))

∼= HomR(Ext
∗
A(M,N), I(p)) .

The second one is by (5.2), and the last one is by adjunction.

On the other hand, since M is p-torsion, so is F (M) and hence one has the first

isomorphism below:

Ωd−1ΓpF (M) ∼= Ωd−1F (M)p ∼= Ωd−1(ΩGP ν(M))p ∼= ΩdGPp νp(Mp)

The second one is by the definition of F and the third one follows by the discussion around

(5.4). Applying HomA(N,−) to the composition yields the first isomorphism below, whilst

the second one holds as the covariant argument is p-local:

HomA(Np,Ω
dGPp νp(Mp)) ∼= HomA(Np,Ω

d−1ΓpF (M))

∼= HomA(N,Ωd−1ΓpF (M)) .

The isomorphisms above and Theorem 5.1, applied with X = M and Y = N , yield the

desired result.

Lemma 5.5. For any p ∈ Spec+(R) the quotient functor Db(modA) → Dsg(A) induces

equivalences

D
b(modA)p

∼−−→ Dsg(A)
p

and γp(D
b(modA))

∼−−→ γp(Dsg(A))

compatible with the Rp actions.

Proof. The quotient functor is essentially surjective and hence so is its p-localisation

D
b(modA)p → Dsg(A)

p
. The latter is also fully faithful, by (5.2), and so is an equivalence

of categories. It is also Rp-linear, by construction. Given this, it is immediate from the

definition that the p-torsion subcategories are equivalent.

Proof of Theorem 1.1. Recall that A is a finite dimensional Gorenstein algebra and

R is a finitely generated, homogenous, k-subalgebra of HH∗(A/k) with R0 = k. Also,

D := D
b(modA). We fix a homogeneous prime ideal p in Spec+(R). We want to verify that

for all X,Y in γp(D) there are natural isomorphisms

HomRp
(Hom∗

γp(D)(X,Y ), I(p)) ∼= Homγp(D)(Y,Σ
−dνp(X))

with d the Krull dimension of R/p. Lemma 5.5 gives the second equivalence below:

γp(GprojA)
∼−−→ γp(D)

∼−−→ γp(Dsg(A)) ,

whereas the first one is induced by Proposition 2.2, and both these are compatible with the

Rp actions. It remains to recall Corollary 5.4.
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The (Fg) condition

Let R ⊆ HH∗(A/k) be a k-subalgebra as in (4.1). Assume in addition that for each

M ∈ modA the R-module Ext∗A(M,M) is finitely generated. Said otherwise, the alge-

bra A satisfies the (Fg) condition with respect to R, introduced in [16]. As noted in [24,

Proposition 5.7], this condition implies that the Hochschild cohomology algebra HH∗(A/k)

is finitely generated. The (Fg) condition holds for several interesting classes of finite dimen-

sional Hopf algebras, including group algebras of finite groups (or group schemes), small

quantum groups, and also for finite dimensional commutative complete intersection rings;

see [16, 18, 21, 24].

When A satisfies the (Fg) condition, it follows from Corollary 5.4 that the triangulated

category γp(GprojA), and hence also anything equivalent to it, has AR-triangles. This is

explained in [11, Section 7], for which we refer the reader also for other consequences of

Serre duality.

Remark 5.6. Assume that the algebra A satisfies the (Fg) condition with respect to R

and set r := R>1, the homogenous maximal ideal of R. Set D := D
b(modA).

Claim. The triangulated category γr(D) is equivalent to D
b(projA).

Indeed, by definition, γr(D) consists of complexes M ∈ D for which Ext∗R(M,M) is

r-torsion as an R-module; equivalently, Ext∗R(M,N) is r-torsion for each N ∈ D. In partic-

ular, Ext∗R(M,A/J) is r-torsion, where J is the Jacobson radical of A. As the R-module

Ext∗R(M,A/J) is finitely generated, by the (Fg) condition, this last property is equivalent

to Ext∗R(M,A/J) = 0 for i � 0, that is to say, M is perfect.

Given this claim, one gets a Serre duality on γr(D): For perfect complexesX,Y from [19]

we get the second isomorphism below:

HomR(Hom
∗
D(X,Y ), I(r)) ∼= Homk(Hom

∗
D(X,Y ), k)

∼= HomD(Y, ν(X)) .

The first one is by adjunction as I(r) = Homk(R, k); see [11, Lemma A.2]. Thus Theorem 1.1

may be seen as an extending, in this case, the known Serre duality to cover the other

(homogeneous) prime ideals in R.

Remark 5.7. Concerning the claim in Remark 5.6: Even when A does not satisfy the

(Fg) condition with respect to R, the subcategory γr(D) contains the perfect complexes, but

it is possible that it contains more. To see what is at stake, consider the special case that

A is self-injective. Let M ∈ modA be a module containing A as a direct summand and

satisfying ExtiA(M,M) = 0 for all i > 0. It is easy to verify that M is in γr(D). However,

it is still unknown, and a conjecture of Auslander and Reiten [5], whether such an M has

finite projective dimension, equivalently that M is projective.

Remark 5.8. Let k be a field and A a finite dimensional, Gorenstein, k-algebra. Let

R and S be k-subalgebras of the Hochschild cohomology algebra HH∗(A/k) satisfying 4.1.

Theorem 5.1, and so also its corollaries, applies to the action of R, and also of S, on GProjA.

In reconciling the two, one can replace S by the k-subalgebra of HH∗(A/k) generated by R

and S and assume R ⊆ S. Then one has an induced map ϕ : ProjS → Spec+(R) defined

by the assignment q 7→ q ∩R.
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Given q in ProjS, it is clear that there is an inclusion

Γq(GProjA) ⊆ Γp(GProjA) where p = q ∩R.

So the version of Theorem 5.1 for the action of S may be seen as a refinement of the one

for the action of R. Indeed, in the extremal case R = k, one has p = 0 for any q in SpecS

and Γp(GProjA) = GprojA.

A more interesting situation occurs when S is finite as an R-module. Then there are

only finitely many primes q in ProjS lying over a given p ∈ Spec+(R), and [9, Corollary 7.10]

yields a direct sum decomposition

Γp(GProjA) ∼=
⊕

q∈ϕ−1(p)

Γq(GProjA) .

This decomposition thus reflects the ramification, in the sense of commutative algebra, of

the inclusion R ⊆ S.

§6. Examples

In this section we describe some examples of Gorenstein algebras. To begin with gentle

algebras, introduced by Assem and Skowroński [2], are Gorenstein. This was proved by

Geiß and Reiten [17]. Their result also shows that the injective dimension of a gentle

algebra can be arbitrary. One can construct new examples of Gorenstein algebras using

tensor products. This is explained below.

Throughout k will be a field. The injective dimension of a finite dimensional k-algebra

A is the injective dimension of A viewed as a (left) module over itself; we denote it inj.dimA.

This is also the projective dimension of the A-module Homk(A, k). The last assertion in

the result below is well-known, but we could not find a reference for the equality of injective

dimensions, so a proof is provided.

Proposition 6.1. Let Γ and Λ be finite dimensional k-algebras. The finite dimen-

sional k-algebra Γ⊗k Λ satisfies

inj.dim(Γ⊗k Λ) = inj.dimΓ + inj.dimΛ .

In particular Γ⊗k Λ is Gorenstein if, and only if, both Γ and Λ are Gorenstein.

Proof. Set M := Homk(Γ, k) and N := Homk(Λ, k). Let P , Q be minimal projective

resolutions of M , N respectively. Then P⊗kQ is a minimal projective resolution of M⊗kN

by Lemma 6.2 below. It remains to observe that the latter is isomorphic to Homk(Γ⊗kΛ, k),

as modules over Γ⊗k Λ.

Lemma 6.2. Let P , Q be minimal projective resolutions of modules M , N over finite

dimensional algebras Γ, Λ respectively. Then P ⊗k Q is a minimal projective resolution of

the Γ⊗k Λ-module M ⊗k N .

Proof. With J(−) denoting the Jacobson radical, J(Γ)⊗k Λ+Γ⊗k J(Λ) is a nilpotent

two-sided ideal in Γ⊗k Λ, and therefore it is contained in J(Γ⊗k Λ). So for any projective

Γ-module U and projective Λ-module V , we have

Rad(U)⊗k V + U ⊗k Rad(V ) ⊆ Rad(U ⊗k V )

as Γ⊗kΛ-modules. The lemma follows from the fact that a projective resolution is minimal

if and only if the image of each differential lands in the radical.
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Using the result above, one can construct Gorenstein algebras of any given injective

dimension, as long as we find one whose injective dimension is one. The next example

describes such an algebra. In particular its class of Gorenstein projective modules is not the

same as the class of Gorenstein injective modules; confer Remark 2.7. Another noteworthy

feature of the algebra is that it is not of finite global dimension.

Example 6.3. Let k be a field, k[ε] the k-algebra of dual numbers, and set

Λ := k[ε]⊗k Γ where Γ =

[

k k
0 k

]

.

The k-algebra Λ has injective dimension one over itself, and can be realised as the path

algebra of the quiver

1 2ε1
α ε2

modulo the relations

ε21 = 0 = ε22 and αε1 = ε2α.

The algebra Λ is representation finite and has precisely nine indecomposable modules.

There are two simple modules corresponding to the vertices 1 and 2. The following diagram

shows the Auslander-Reiten quiver. The vertices represent the indecomposables via their

composition series. There is a solid arrow X → Y if there is an irreducible morphism, and

a dotted arrow X 99K Y when Y = DTrX.

1 2
1 2

1
1

2
2

1
2

1 2
1

2

1 2
1

2
1 2

2
1

The Gorenstein projectives have a bold frame, the Gorenstein injectives are shaded, and

the modules of finite projective and injective dimension have rectangular shape. A module

belongs to all three classes if and only if it is projective and injective; there is a unique

indecomposable with this property.
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One way to justify these computations is via [23, Theorem 2] due to Ringel and Zhang

that sets up a bijection between indecomposable non-projective Gorenstein projective mod-

ules over k[ε]⊗k kQ and the indecomposable kQ-modules, for any quiver Q.
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Ann. Scient. Éc. Norm. Sup. (4) 41 (2008), 575–621.

[8] D. J. Benson, S. B. Iyengar, and H. Krause, Stratifying triangulated categories, J. Topology 4 (2011),

641–666.

[9] D. J. Benson, S. B. Iyengar, and H. Krause, Colocalising subcategories and cosupport, J. Reine Angew.

Math. 673 (2012), 161–207.

[10] D. J. Benson, S. B. Iyengar, H. Krause, and J. Pevtsova, Stratification for module categories of finite

group schemes, J. Amer. Math. Soc., 31 (2018), 265–302.

[11] D. J. Benson, S. B. Iyengar, H. Krause, and J. Pevtsova, Local duality for representations of finite

group schemes, Compositio Math., 155 (2019), 424–453.

[12] A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and mutations, Izv. Akad.

Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183–1205, 1337; translation in Math. USSR-Izv., 35 (1990),

no. 3, 519–541.

[13] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39.

Cambridge University Press, Cambridge, 1998. Revised edition.

[14] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology

over Gorenstein rings, Unpublished manuscript (1986), 155 pp, available at

https://tspace.library.utoronto.ca/handle/1807/16682.

[15] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, NJ, 1956.

[16] K. Erdmann, M. Holloway, R. Taillefer, N. Snashall, and Ø. Solberg, Support varieties for selfinjective

algebras, K-Theory 33 (2004), 67–87.

[17] C. Geiß and I. Reiten, Gentle algebras are Gorenstein, Representations of algebras and related topics,

129–133, Fields Inst. Commun., 45, Amer. Math. Soc., Providence, RI, 2005.

[18] V. Ginzburg and S. Kumar, Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993),

179–198.

[19] D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987),

no. 3, 339–389.

[20] S. Iyengar and H. Krause, Acyclicity versus total acyclicity for complexes over Noetherian rings, Doc.

Math. 11 (2006), 207–240.

[21] M. Mastnak, J. Pevtsova, P. Schaunberg, and S. Witherspoon, Cohomology of finite dimensional pointed

Hopf algebras, Proc. London Math. Soc. 100 (2010), 377–404.

[22] D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, (Rus-

sian) ; translated from Tr. Mat. Inst. Steklova 246 (2004), Algebr. Geom. Metody, Svyazi i Prilozh.,

240–262 Proc. Steklov Inst. Math. 2004 246, 227–248



Local duality for Gorenstein algebras 25

SUBMIT

[23] C. M. Ringel and P. Zhang, Representations of quivers over the algebra of dual numbers, J. Algebra

475 (2017), 327–360.

[24] Ø. Solberg, Support varieties for modules and complexes, Trends in representation theory of algebras

and related topics, 239–270, Contemp. Math., 406, Amer. Math. Soc., Providence, RI, 2006.

[25] A. Zaks, Injective dimension of semi-primary rings, J. Algebra 13 (1969), 73–86.

Dave Benson

Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen AB24 3UE, Scotland U.K.

d.j.benson@abdn.ac.uk

Srikanth B. Iyengar

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, U.S.A.

iyengar@math.utah.edu

Henning Krause

Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany.

hkrause@math.uni-bielefeld.de

Julia Pevtsova

Department of Mathematics, University of Washington, Seattle, WA 98195 U.S.A.

pevtsova@uw.edu


