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Abstract

Three rational number notations -- fractions, decimals, and percentages -- have
existed in their modern forms for over 300 years, suggesting that each notation serves a
distinct function. However, it is unclear what these functions are and how people choose
which notation to use in a given situation. In the present article, we propose
quantification process theory to account for people’s preferences among fractions,
decimals, and percentages. According to this theory, the preferred notation for
representing a ratio corresponding to a given situation depends on the processes used to
quantify the ratio or its components. Quantification process theory predicts that if exact
enumeration is used to generate a ratio, fractions will be preferred to decimals and
percentages; in contrast, if estimation is used to generate the ratio, decimals and
percentages will be preferred to fractions. Moreover, percentages will be preferred over
decimals for representing ratios when approximation to the nearest percent is sufficiently
precise, due to the lesser demands of using percentages. Experiments 1, 2, and 3 yielded
empirical evidence regarding preferences that were consistent with quantification process
theory. Experiment 4 indicated that the accuracy with which participants identified the
numerical values of ratios when they used different notations generally paralleled their

preferences. Educational implications of the findings are discussed.
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How Do People Choose Among Rational Number Notations?

1. Introduction

Rational numbers—fractions, decimals, and percentages—are pervasively
important. A trip to a supermarket might include paying $0.99 (a decimal) for 1/8 pound
of prosciutto (a fraction) on sale at 10% off of its usual price (a percentage). Rational
numbers are frequently used in the workplace as well. In a poll of a random sample of
over 2,000 U.S. adults, including both high-skill and low-skill white-collar and blue-
collar workers, 68% reported using rational numbers at their jobs (Handel, 2016), almost
as many as said they used whole numbers and far more than said they used any more
advanced mathematics. Rational numbers also play a crucial role in numerical
development. They are essential to mathematics beyond elementary school, as reflected
in their pervasive use in algebra, statistics, and trigonometry. Individual differences in
rational number understanding are also important: Fractions knowledge in fifth grade
predicts overall mathematics achievement in tenth grade, even after controlling for the
effects of whole number arithmetic skill, verbal and non-verbal IQ, working memory, and

socio-economic status (Siegler et al., 2012).

Unlike whole numbers, for which a single standard notation is almost always
used, three different rational number notations are common: fractions, decimals, and
percentages. Fractions have the most expressive power among the three: Every rational
number can be represented as a fraction, because every rational number is, by definition,
a ratio between two numbers, the numerator and the denominator. Decimals, on the other
hand, can only represent rational numbers whose implicit denominators are powers of 10

(e.g., 0.7 signifies 7/10, 0.753 signifies 753/1000), and percentages can only represent
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rational numbers whose implicit denominator is 100 (e.g., 75% signifies 75/100). (For
simplicity, we do not consider percentages with decimal components, such as 75.33%,

which are percentage-decimal hybrids.)

The greater expressive power of fractions suggests the question of why decimals
and percentages are needed at all. Fractions, decimals, and percentages have all existed in
their modern forms for at least three centuries (Cajori, 1930). Thus, it appears likely that
each serves a distinct function and could not easily be replaced by the others. But what
are those distinct functions, and how do people choose which notation to use in a given

situation?

The purpose of the present study is to propose and test quantification process
theory, an approach to understanding people’s preferences among fractions, decimals,
and percentages. First, we review a previous proposal regarding preferences among
rational number notations: semantic alignment theory (DeWolf, Bassok, & Holyoak,
2015). Then, we present quantification process theory and note similarities and
differences between its predictions and those of semantic alignment theory. Finally, we

describe four experiments designed to test predictions of the two theories.

1.1. Semantic Alignment Theory
DeWolf et al. (2015) applied the general theory of semantic alignment (Bassok,

Chase, & Martin, 1998) to explain people’s preferences, as well as their speed and
accuracy, in using rational number notations to represent spatial displays. DeWolf et al.
posited that when choosing among rational number notations to represent the ratio in a

given display, people prefer to use the notation whose semantic structure matches that of
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the ratio displayed. Regarding the particular alignment, DeWolf et al. (2015) argued that
fractions are bi-dimensional due to their “bipartite structure,” and that decimals are
“inherently unidimensional because the implied denominator is fixed (base 10)” (p. 129).
They further proposed that ratios involving discrete quantities are two-dimensional, but
ratios involving continuous quantities are unidimensional. Therefore, fractions “naturally
express a two-dimensional relationship between the cardinal values of sets” (p. 140),

whereas decimals “provide a one-dimensional measure of a portion of a continuous unit”

(p. 129).

To test this theory, DeWolf, Bassok, and Holyoak (2015) presented U.S.
university students with several types of visual displays representing ratios between: a)
two small sets of discrete objects, henceforth referred to as “small-number discrete
displays” (Figure 1A); b) two small sets of units within continuous quantities, henceforth
referred to as “small-number discretized displays” (Figure 1B); and c) two parts of a
continuous quantity, henceforth referred to as “continuous displays” (Figure 1C).
Consistent with semantic alignment theory, when asked whether the ratio depicted in
each display should be represented with a fraction or a decimal, participants chose
fractions more often than decimals to represent small-number discrete and discretized
displays, but they chose decimals more often than fractions to represent continuous
displays. Further, when asked to judge whether a given fraction or decimal represented
the part-part ratio or the part-whole ratio in a given display (e.g., the ratio of red items to
green items or the ratio of red items to all items in Figure 1A), participants were faster
and more accurate with fractions than with decimals for small-number discrete and

discretized displays, but they were faster with decimals than with fractions for continuous
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displays. Subsequent studies with participants from the U.S., Korea, and Russia yielded
similar results (Lee, DeWolf, Bassok, & Holyoak, 2016; Plummer, DeWolf, Bassok,
Gordon, & Holyoak, 2017; Rapp, Bassok, DeWolf, & Holyoak, 2015; Tyumeneva et al.,

2018).

Insert Figure 1 About Here

Gray, DeWolf, Bassok, and Holyoak (2017) extended semantic alignment theory
to include percentages. U.S. university students were shown small-number discrete,
small-number discretized, and continuous displays, with each display followed by a
fraction, a decimal, or a percentage. Their task was to indicate whether the number
represented the part-part ratio (i.e., the ratio of one color to the other color) or the part-
whole ratio in the display (i.e., the ratio of one color to the whole). Results for decimals
and percentages did not differ on any of the three types of displays. Therefore, Gray et al.
concluded that the “dominant interpretation” of percentages is similar to that of decimals

because percentages “are one-dimensional like decimals” (pp14-15).

1.2. Quantification Process Theory

Quantification process theory, a specific application of strategy choice theory
(Siegler, 1996), reflects an alternative analysis of preferences among rational number
notations. The key assumption of quantification process theory is that the preferred
notation for representing a ratio corresponding to a given situation depends on the
processes used to quantify the ratio or its components, rather than the alignment of
semantic structures. Quantification processes involve either exact enumeration of the

numerator and denominator (via subitizing, counting, adding, or a combination of them)



RATIONAL NUMBER NOTATIONS 8

or estimation of the ratio as a single integrated magnitude. The theory predicts that if the
exact numerator and denominator are to be enumerated, fractions will be preferred to
decimals and percentages, because enumeration yields an exact numerator and an exact
denominator that together constitute the relevant fraction. In contrast, the theory predicts
that if a ratio is to be estimated, decimals and percentages will be preferred to fractions,
because decimals and percentages permit directly representing an integrated magnitude as
a single number. Thus, quantification process theory posits that the preferences
documented in DeWolf et al. (2015) and follow-up studies reflect the quantification
processes elicited by the spatial displays and instructions in those studies. It also predicts
that eliciting different quantification processes through varying the spatial displays and
instructions will produce choices of notations not predicted by semantic alignment

theory.

According to quantification process theory, whether a ratio is quantified via
estimation or exact enumeration is largely determined by properties of the spatial display
being represented. Exact enumeration is likely to be used when small numbers of discrete
or discretized items are involved, because they can be easily counted or subitized;
estimation is likely to be used when the display involves continuous proportions, which
cannot be subitized or counted. Thus, both theories imply that fractions will be preferred
to decimals and percentages for representing ratios of small-number discrete and
discretized displays and that decimals and percentages will be preferred to fractions for

representing ratios of continuous quantities.

However, the theories also make several differing predictions. One involves their

predictions regarding ratios of large numbers of discrete objects, henceforth referred to as
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“large-number discrete displays” (Figure 1D), a type of ratio that was not examined in
previous studies. Because ratios between large discrete sets have the same two-
dimensional semantic structure as ratios between small discrete sets, semantic alignment
theory implies that fractions should be preferred for representing ratios between discrete
sets, regardless of the numbers of items in the sets. However, from the perspective of
quantification process theory, large-number discrete displays are likely to elicit
estimation rather than counting or subitizing, because exact enumeration becomes
increasingly time-consuming and effortful as the number of items increases.
Quantification process theory therefore predicts that for representing ratios between
discrete sets, preferences for fractions over decimals and percentages will decrease as the
number of items in the sets increases. For large sets of discrete items, decimals and

percentages will be preferred to fractions.

Especially important for distinguishing the two theories, quantification process
theory implies that directly manipulating quantification processes should break the link
between display properties and notation preferences. For example, according to
quantification process theory, an individual who complies with a request to use counting
to quantify a ratio between large-number discrete displays should prefer fraction notation,
even if the display elicits a preference for percentages or decimals in the absence of such
instructions. Similarly, instructions to estimate, together with time limits sufficiently
stringent to preclude accurate counting, should lead to estimation being used to quantify
the ratio and therefore to a preference for percentages or decimals to represent displays

that otherwise would elicit a preference for fractions. Semantic alignment theory does not



RATIONAL NUMBER NOTATIONS 10

make these predictions, because it does not consider the quantification process used to

generate numerical representations of ratios as a determinant of notation preferences.

Quantification process theory also posits that the amount of effort required to
represent a ratio with each notation influences preferences among notations. The
predictions described above were based in part on this assumption. The prediction that
fractions will be preferred to decimals or percentages when the exact numerator and
denominator of a ratio are enumerated was based in part on the fact that in this situation,
using decimals or percentages would require the extra effort of dividing the numerator by
the denominator after each had been enumerated. The prediction that decimals or
percentages will be preferred to fractions when the ratio is estimated was based in part on
the fact that in this situation, using fractions requires the extra effort of explicitly
choosing a denominator from among all other numbers. Finally, the prediction that
increasing set size should give rise to decreasing preference for fractions over
percentages and decimals was based on the fact that larger sets require more effort to
count than do smaller sets, whereas the effort needed to estimate ratios remains roughly
constant over set sizes. This analysis closely resembles that of the more general strategy

choice model in numerous other domains (Siegler, 1996).

The assumption that effort affects notation preferences also led to another
prediction: Percentages will be preferred to decimals for representing ratios if the ratios
are estimated and the number of decimal digits is not constrained. Choosing a decimal to
represent a set requires choosing an implicit denominator (tenths, hundredths,
thousandths, etc.). For example, with a display having 16 red and 28 blue dots, should the

proportion of reds be represented as .4, .36, .364, or some other decimal? Such choices
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require effort. In contrast, choosing a percentage to represent the set constrains the
choices to ones with no greater precision than the nearest percent. Therefore, percentages
should be preferred to both decimals and fractions for representing ratios that are
quantified by estimation, unless there is a need to represent a ratio with more precision
than percentages afford (i.e., more precision than the closest 1%). This prediction
contrasts with the implication of semantic alignment theory that there should be no

preference between percentages and decimals, because both are one-dimensional (Gray et

al., 2017).

Table 1 summarizes the predictions of quantification process and semantic
alignment theories that were tested in the four experiments in this article. A more
complete set of predictions of both theories is presented in the Supplementary

Information, Table A.

Insert Table 1 About Here

2. Experiment 1
In this experiment, participants were presented small-number discrete, small-
number discretized, and continuous displays (Figures 1A-1C) and were asked on each
trial which rational number notation they preferred to represent the ratio shown in the
display. In the two-choice condition, the choice of notations was between fractions and
decimals, as in DeWolf et al. (2015). In the three-choice condition, the choice was among

fractions, decimals, and percentages.
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A key prediction of quantification process theory (Prediction 1) was that
percentages should be the notation of choice when ratios are quantified by estimation.
Therefore, we expected that participants in the three-choice condition would choose
percentages more often than decimals and fractions to represent continuous displays.
They would prefer percentages to fractions because continuous displays only allow
estimation, and they would prefer percentages to decimals because using percentages
avoids the cognitive effort needed to decide how many decimal digits to use. We also
expected that in the two-choice condition, participants would choose decimals more often
than fractions to represent continuous displays, again because continuous displays only
allow estimation of ratios (and also following the results of DeWolf et al., 2015). For
small-number discrete and discretized displays in both the two-choice and the three-
choice conditions, both theories predicted that participants would choose fractions more

often than decimals and percentages.

2.1. Method
2.1.1. Participants. The participants were 47 Carnegie Mellon University

students. Twenty-four participants were randomly assigned to the two-choice condition
(fractions or decimals), and 23 were assigned to the three-choice condition (fractions,
decimals, or percentages). Students received course credit or monetary compensation.
This and the subsequent experiments were approved by the Institutional Review Board of
the universities from which participants were recruited. Informed consent was obtained

from participants in this and the subsequent experiments.

2.1.2. Design. Participants were individually tested in a quiet room on a laptop

during a single session. Stimuli were presented in MATLAB (The MathWorks, 2015)
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with Psychophysics Toolbox extensions (Brainard, 1997; Kleiner, Brainard, & Pelli,
2007) here and in Experiments 2 and 4. All of the visual displays in all experiments were
presented within a black rectangle at the center of the screen with an approximate visual

angle of 3.5°%3.5°.

2.1.2.1. Notation preference task. The procedure followed that of DeWolf et al.
(2015). On each trial, participants saw one of three types of display: small-number
discrete, small-number discretized, or continuous (Figures 1A-1C). Participants were
instructed to choose the notation that they preferred to represent the part-whole ratio in

each display.

Twenty ratios were used to create the displays, with each ratio being presented for
each type of display (Supplementary Information, Table B1). The number of entities in
the discrete and discretized displays was equal to the denominator of the ratio used to
create the display and ranged from 7 to 13. The part of the display corresponding to the
numerator was red, and the remainder was green. For example, the discretized display
that corresponded to 7/8 included eight rectangles, seven of which were red and one of
which was green (Figure 1B). Following DeWolf et al. (2015), rectangles, triangles, and

several other shapes were used to create small-number discrete displays.

As in DeWolf et al. (2015), the task involved choices among notations rather
than numerical values. Participants in the two-choice condition were asked to “choose
which notation is a better representation of the depicted relation — a fraction or a
decimal’; participants in the three-choice condition were asked to “choose which notation

is the best representation of the depicted relation — a fraction, a percentage, or a decimal.”



RATIONAL NUMBER NOTATIONS 14

The two-choice condition replicated that in DeWolf et al. (2015); the three-choice
condition, new to this study, assessed the effect of adding percentages as an option.
Participants were asked to press the key associated with their preferred notation for each
display (i.e., for participants in both conditions, "z" for decimal and "m" for fraction; for

participants in the three-choice condition, "v" for percentage).

Participants were notified that they did not have to use both/all of the notations
and that we were simply interested in their preferences. One example of each type of
display was presented before starting the task. Displays were presented at the center of
the screen until a response was detected; there was no pressure to respond quickly. A

fixation cross was presented for 600ms after each trial was completed.

Each participant completed 60 trials (3 display types (small-number discrete,
small-number discretized, or continuous) X 20 ratios). Stimuli were presented in a
pseudo-random order for each participant, with the restriction that no more than two

successive trials involve displays of the same type.

2.2. Analyses

A bootstrap procedure was used to estimate the 95% confidence interval (CI) of
preferences between each pair of notations for each type of display in each condition. To
illustrate this bootstrap procedure, we describe how we generated the 95% CI for the
preference between fractions and decimals for small-discrete displays in the two-choice
condition. (1) For each of the 24 participants in the two-choice condition, we calculated a
preference score between decimals and fractions for trials involving small-discrete

displays by subtracting the proportion of those trials on which the participant chose
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decimals from the proportion of those trials on which the participant chose fractions. This
yielded 24 preference scores. (2) In one simulated experiment, we randomly sampled,
with replacement, 24 times from the 24 preference scores, then calculated the mean
preference score across those 24 samples. (3) We ran 10,000 simulated experiments as
described in (2), yielding 10,000 mean preference scores. The 95% CI was the smallest

range of scores that included at least 95% of these 10,000 scores.

Preferences between a given pair of notations, for a given type of display in a
given condition, were considered significant if the 95% CI of the preference score
excluded zero. All significant differences are reported. The bootstrap analyses were

conducted in R (Canty & Ripley, 2019; Team R Core, 2018).

2.3. Results

Separate analyses were conducted for the two- and three-choice conditions.
Consistent with predictions of both theories and with previous findings, participants in
the two-choice condition (Figure 2A) preferred fractions to decimals for representing
both small-number discrete displays (mean preference score = 45%, 95% CI =[19%,
69%]) and small-number discretized displays (mean preference score = 54%, 95% CI =
[29%, 76%]) but preferred decimals to fractions for continuous displays (mean preference

score = 44%, 95% CI = [17%, 69%]).

Insert Figure 2 About Here

Also as predicted by both theories and by previous findings in the three-choice
condition, fractions were the preferred notation for the small-number discrete and

discretized displays (Figure 2B). Participants preferred fractions to decimals for both
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small-number discrete displays (mean preference score = 65%, 95% CI = [42%, 84%])
and small-number discretized displays (mean preference score = 41%, 95% CI =[12%,
67%]). Participants also preferred fractions to percentages for both small-number discrete
(mean preference score = 65%, 95% CI =[46%, 81%]) and small-number discretized

displays (mean preference score = 34%, 95% CI = [5%, 61%)]).

However, consistent with Prediction 1 of quantification process theory, the option
to choose percentages greatly changed preferences among notations for representing
continuous displays. As shown in the rightmost column of Figure 2B, participants in the
three-choice condition chose percentages to represent continuous displays on 77% of
trials with continuous displays. This was far more often than they chose not only
fractions (mean preference score = 70%, 95% CI =[50%, 85%]) but also decimals (mean

preference score = 63%, 95% CI =[39%, 83%)]).

2.4. Discussion

Adding the option of choosing percentages revealed notational preferences for
representing continuous displays that were not evident in prior experiments: Decimals
were the preferred notation when the only alternatives were decimals and fractions, but
percentages were strongly preferred when they were an additional option in the three-
choice condition. The differences were very large: Decimals were preferred on almost
75% of trials when fractions were the only alternative, but on only 15% of trials when
percentages were also an option. Percentages were preferred on more than 75% of trials
when they were an alternative. The strong preference for percentages over decimals for
representing continuous displays in the three-choice condition was predicted by

quantification process theory but not by semantic alignment theory.
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An alternative interpretation of these findings was that the preference for
percentages to represent continuous displays in the three-choice condition reflected the
task providing three rather than two choices. To test this interpretation, we presented a
new group of university students (N = 36) the same notation preference task but with only
binary choices: fractions or percentages, decimals or percentages, and fractions or
decimals. As in the three-choice condition of Experiment 1, when asked to represent
continuous displays on the binary choice tasks, participants consistently preferred
percentages to fractions (82% vs. 18%) and to decimals (75% vs. 25%). Moreover, the
preference for percentages over fractions was greater than the preference for decimal over
fractions (60% vs. 40%) for continuous displays. Thus, the option of choosing
percentages yielded the preference for percentages for representing continuous displays
regardless of whether the task involved two or three choices. Other findings from this
new group of students were consistent with those reported above; a complete report of

these findings is presented in the Supplementary Information, Part C.

3. Experiment 2

Consistent with Prediction 1 of quantification process theory, participants in
Experiment 1 consistently preferred percentages over fractions and decimals for
representing ratios in continuous displays. One purpose of Experiment 2 was to test
whether this finding, which was obtained from U.S. university students, could be
generalized to students from China, a nation with quite different educational and cultural
practices than the U.S. The notation preference task presented to U.S. students in
Experiment 1 was used, with participants randomly assigned to either the two-choice or

the three-choice condition. We predicted that despite the educational and cultural
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differences between China and the US, Chinese students would show the same pattern of
preferences as their U.S. peers, because notation preferences in both countries would be

driven by the same quantification processes in the same way.

The other purpose of Experiment 2 was to test Prediction 2, that large-number
discrete displays would produce preferences like those with continuous displays and
unlike those with small-number discrete displays. This prediction was based on the logic
that large-number discrete displays would elicit estimation rather than counting, due to
the effort required to count the many objects in the sets. This reasoning, combined with
Prediction 1, implied that participants would prefer percentages to represent these
displays. The large-number discrete displays were presented under three-choice
conditions to all participants, regardless of whether they earlier had been in the two-
choice or three-choice condition. The reason was to maximize power to test whether

participants preferred percentages to represent these displays.

3.1. Method
3.1.1. Participants. Forty-eight students at Beijing Normal University and

Beijing University of Posts and Telecommunications in China were randomly assigned to

the two-choice or the three-choice condition, 24 students in each condition.

3.1.2. Design. Participants first completed the notation preference task with small-
number discrete displays, small-number discretized displays, and continuous displays,
either under two-choice or three-choice conditions. Then, all participants were presented

large-number discrete displays under three-choice conditions. The first author, a native
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Chinese speaker, translated the instructions and the text into Chinese and administered

the experiment.

3.1.2.1. Notation preference tasks. The notation preference task with small-
number discrete, small-number discretized, and continuous displays had the same design,
stimuli, and procedure as the notation preference task in Experiment 1. The notation
preference task with large-number discrete displays was identical to the three-choice
condition of the notation preference task in Experiment 1 except that displays were more
numerous and only included dots, rather than rectangles and other shapes. The large-
number discrete displays were created using the same ratios as the small-number
displays, so that the total number of dots and numbers of dots in the subsets were
multiples of the numbers of shapes in the small-number discrete displays. Each large-
number discrete display included between 70 and 91 dots, compared to between 6 and 13
in the small-number discrete displays. For example, where the small-number discrete
display representing 7/8 contained 7 red squares and 1 green circle for a total of 8 shapes,
the corresponding large-number discrete display contained 63 red dots and 9 green dots

for a total of 72 dots (Figure 1D).

One large-number discrete display with dots of the same size and one large-
number discrete display with dots of varied sizes were created for each of 20 ratios,
resulting in 40 trials. Using dots of constant or variable sizes enabled us to investigate
whether differences between area and numerical cues interacted with numerical notation
(DeWind, Adams, Platt, & Brannon, 2015). Including variability of dot sizes in our
analyses did not have any detectable effect; therefore, it is not included as a factor in the

analyses here or in Experiment 4, which also employed variable-size dots displays.
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3.2. Results

Chinese students’ performance on the notation preference task showed highly
similar results to those with US students. For small-number discrete, small-number
discretized, and continuous displays in the two-choice condition (Figure 3A), Chinese
participants, like those in the U.S., chose fractions more often than decimals for both
small-number discrete displays (mean preference score = 30%, 95% CI = [2%, 59%]) and
small-number discretized displays (mean preference score = 66%, 95% CI = [53%,
79%]). The proportion of trials on which Chinese participants chose decimals and

fractions did not differ for continuous displays.

Insert Figure 3 About Here

Similarly, in the three-choice condition (Figure 3B), to represent small-number
discrete displays, Chinese participants, like U.S. peers, preferred fractions over decimals
(mean preference score = 49%, 95% CI =[24%, 71%]) and decimals over percentages
(mean preference score = 32%, 95% CI =[3%, 61%]). Also like U.S. peers, to represent
small-number discretized displays, Chinese participants chose fractions more often than
decimals (mean preference score = 71%, 95% CI = [54%, 86%]) or percentages (mean
preference score = 57%, 95% CI =[29%, 81%]). They also chose percentages somewhat
more often than decimals for those displays (mean preference score = 14%, 95% CI =
[2%, 28%]). Again like U.S. peers, to represent continuous displays, Chinese participants
chose percentages more often than either fractions (mean preference score = 39%, 95%

CI =[10%, 64%]) or decimals (mean preference score = 48%, 95% CI = [25%, 69%]).
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Of particular interest, when presented large-number discrete displays, the Chinese
students chose percentages more often than fractions (mean preference score = 30%, 95%
CI =[15%, 44%]) or decimals (mean preference score = 40%, 95% CI = [29%, 52%]).
The preference for percentages over decimals was consistent with Prediction 1 of
quantification process theory; the fact that students also preferred percentages to fractions
was consistent with Prediction 2 of the theory. As expected, preferences for large-number

discrete displays (Figure 3C) closely resembled preferences for continuous displays.

3.3. Discussion

In addition to replicating the Experiment 1 findings with students from a different
country with a different educational system and culture, results of Experiment 2
demonstrated a preference for percentages over decimals and fractions for representing
ratios in large-number discrete displays. The preferences closely resembled those with
continuous displays. Taken together, these results are consistent with the prediction of
quantification process theory that percentages are the preferred notation for representing
ratios when the ratios are quantified by estimation rather than enumeration and when

there is no need to represent ratios with more precision than percentages allow.

4. Experiment 3
Consistent with Prediction 2 of quantification process theory, participants in
Experiment 2 preferred percentages for representing ratios between large discrete sets, as
they earlier had been found to prefer them for representing ratios of continuous
quantities. Experiment 3 tested a related hypothesis, Prediction 3: For ratios of discrete

objects, preferences for fractions should decrease, and preferences for percentages,
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decimals, or both should increase, as the number of items in the sets increases. To test
this prediction, we administered the notation preference task using discrete displays of 31

to 76 dots, a range within which pilot testing indicated that notation preferences vary.

Experiment 3 also tested Prediction 4: Instructions to enumerate should produce a
preference for fractions, and instruction to estimate should produce a preference for
percentages or decimals to represent ratios in discrete displays. To test this prediction, we
used a different task, the number generation task, in which participants were asked to
generate a fraction, a decimal, or a percentage to represent the part-whole ratio in each
display, either using counting (counting instructions condition) or estimation (estimation
instructions condition). When participants were instructed to count, we expected fractions
to be preferred. When participants were instructed to estimate, we expected percentages

to be preferred, based on Predictions 1 and 4 and the results of Experiments 1 and 2.

The reason that we employed the number generation task to test Prediction 4 was
to increase the likelihood that participants would use the instructed quantification process
(i.e., counting or estimating). Display characteristics strongly influence choices among
quantification processes (Boyer, Levine, & Huttenlocher, 2008; Plummer et al., 2017),
and if asked to choose a notation without generating a number (as in Experiments 1 and
2), participants might ignore the instructions and choose a notation consistent with the
quantification process they would typically use for that type of display. However, the
requirement of the number generation task to state a specific number to represent the ratio
was expected to increase the likelihood of participants using the requested quantification

process.
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In this experiment, the same displays were used in the notation preference task
and in the number generation task. In contrast to our Prediction 3, that number of items in
the displays would affect preferences on the notation preference task, we predicted that to
the extent that participants adhered to the instructions, number of items would have little
or no impact on notation choices on the number generation task (Prediction 4). The
reason was that by manipulating the quantification strategy directly, the instructions
would sever the usual link between set size and notation preferences on the number
generation task. According to quantification process theory, effects of display
properties—such as number of items—on notation preferences are mediated by
quantification processes. Therefore, on the number generation task, regardless of set size,
instructions to count were expected to produce predominant choices of fractions, whereas

instructions to estimate were expected to produce predominant choices of percentages.

4.1. Method
4.1.1. Participants. The participants were 40 Florida State University students

who received course credit for participating.

4.1.2. Design. Participants were individually tested in a quiet room on a laptop
during a single session. Stimuli were presented in PsychoPy3 (Peirce et al., 2019). All
participants first performed the notation preference task and then performed the number
generation task under both counting and estimation instructions conditions. The notation
preference task was presented before the number generation task so that instructions to
use a particular quantification strategy in the number generation task would not affect

responses in the notation preference task.
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Both the notation preference task and the number generation task involved
discrete displays of red and blue dots. Two sets of ratios, with 12 ratios in each set, were
used to create the displays, with each ratio used once (Supplementary Information, Table
B2). The number of red dots in each display was equivalent to the numerator of the ratio
used to create the display, and the total number of dots in each display was equivalent to
the denominator. Denominators of the ratios ranged from 32 to 75 in one set and 31 to 76

in the other. In each set of ratios, three ratios fell into each quartile of the range 0 — 1.

4.1.2.1. Notation preference task. The procedure of this task was identical to that
in the three-choice condition of Experiment 1. Each participant was presented each of the

24 displays once in a random order (not blocked by stimulus set).

4.1.2.2. Number generation task. Each participant performed this task in both the
counting instructions condition and the estimation instructions condition. On each trial,
participants were shown a display on a screen, asked to determine the part-whole ratio in
the display, and asked to write down their answer on printed answer sheets in whichever

rational number notation they preferred.

In the counting instructions condition, participants were asked to determine the
ratio in each display by counting the dots; they were given as much time as needed for
each trial. The display remained on the screen until the participant pressed the Space key
to proceed to a screen that asked them to write their answer for that display on the answer

sheet. Pressing the Space key again started the next trial.

In the estimation instructions condition, participants were asked to estimate the

ratio in each display. A display appeared on the screen for 2 seconds. This time limit was
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imposed to prevent participants from counting the dots. A fixation cross appeared at the
center of the screen after the display disappeared. As in the counting instructions
condition, participants were asked to press the Space key after they wrote each answer to

start the next trial.

In each condition, participants finished two practice trials without feedback before
the test trials. Four ratios that were not in the two sets of ratios used to create stimuli for
the main task were used to create practice trial displays (Supplementary Information
Table B2). Each participant saw displays created from one set of ratios in the counting
instructions condition and displays created from the other set of ratios in the estimation
instructions condition. Each display appeared once per participant. The order of the two

conditions and the sets of displays used in them were counterbalanced across participants.

Symbols for all three rational number notations were printed on the answer sheets
for each trial so that participants only needed to fill in the numerals (see Supplementary
Information Part D, for an example answer sheet). This manipulation was intended to
eliminate differences in the effort needed to write rational numbers in different notations.

Locations of symbols for the three notations were randomized for each participant.

4.2. Analyses

4.2.1. Notation preference task. To examine the relation between the number of
dots in each display and participants’ notation preferences on that display, we fitted a
mixed-effects logistic regression model for each notation to predict whether that notation
was chosen on each trial, with number of dots as a fixed effect and participant as a

random effect. Models were fitted with R (Team R Core, 2018) and the /me4 package



RATIONAL NUMBER NOTATIONS 26

(Bates, Méchler, Bolker, & Walker, 2014). P-values were obtained by likelihood ratio

tests comparing the model including the effect of interest to the model without it.

4.2.2. Number generation task. The same bootstrap procedure used to analyze
data on the notation preference task in Experiments 1 and 2 was used to estimate pairwise
differences in the proportion of trials on which the participant generated answers in each
notation in each condition. Then, to test our prediction that number of items would have
little or no effect once quantification method was specified, we fitted mixed-effects
logistic regression models to predict whether or not each particular notation was chosen,
with number of dots as a fixed effect and participant as a random effect. Separate
analyses were conducted for each combination of task condition and notation (six in

total).

4.3. Results

4.3.1. Notation preference task. Consistent with Prediction 3 of quantification
process theory, on the notation preference task, increased number of dots predicted higher
likelihood of choosing percentages, B = 0.03, ° (1) = 26.64, p < .001 (Figure 4A), and
lower likelihood of choosing fractions, B = -0.03, x° (1) =22.21, p <.001 (Figure 4B).
The number of dots did not influence likelihood of choosing decimals, # = -.006, y° (1) =

0.66, p = 0.42.

Insert Figure 4 About Here

4.3.2. Number generation task. Consistent with Prediction 4 of quantification
process theory, in the counting instructions condition of the number generation task,

participants generated fractions far more often than percentages (mean preference score =
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86%, 95% CI =[72%, 96%]) or decimals (mean preference score =91%, 95% CI =
[83%, 97%]). Also consistent with Prediction 4, in the estimation instructions condition,
participants generated percentages far more often than fractions (mean preference score =
53%, 95% CI = [30%, 73%]). Consistent with Prediction 1, participants also chose
percentages far more often than decimals (mean preference score = 68%, 95% CI =
[53%, 81%]). Moreover, mixed-effect logistic regressions for each combination of
condition and notation, with use of a given notation as the dependent variable, number of
dots as a fixed effect, and participant as a random effect, did not indicate an effect of

number of dots for any combination of condition and notation, ps > 0.09.

4.4. Discussion

Consistent with Prediction 3, on the notation preference task, preferences among
rational number notations were dependent on the number of items in the display to be
quantified. However, directly manipulating quantification strategy in the number
generation task eliminated this effect of number of items. When instructed to count,
participants more often represented the ratio with fractions than percentages, but when
instructed to estimate, they more often represented the ratio with percentages than

fractions.

These findings provide strong evidence for quantification process theory. They
show that when the quantification process is directly manipulated, that process controls
the choice of rational number notation to represent ratios in sets of discrete objects.
Number of items in the set, which influences choice of notations when quantification
process is not manipulated, loses its influence when quantification process is

manipulated. These findings were not predicted by semantic alignment theory, which
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posits that choice of notations to represent ratios in spatial displays depends on the
semantic structure of the displays. All displays in Experiment 3 had the same two-
dimensional semantic structure, but choice of notation varied greatly with instructions to

count or to estimate.

5. Experiment 4

Results of Experiments 1-3 were consistent with Prediction 1, that percentages are
preferred to decimals for representing estimated ratios if there is no need for precision
greater than 1%. The basis for this prediction was that although both decimals and
percentages permit representing an estimated ratio as a single number, decimals—but not
percentages—require determination of an implicit denominator, which can be any power
of 10. This assumption holds implications not only for preferences, but also for
performance. Specifically, if representing estimated ratios is more cognitively demanding
when decimals rather than percentages are used, then accuracy and speed should be

greater with percentages than decimals.

Experiment 4 tested this prediction. Participants completed a number matching
task, in which they were asked to choose which of two specific fractions, two specific
decimals, or two specific percentages more accurately represented ratios in small-number
discrete, small-number discretized, large-number discrete, and continuous displays. The
key prediction was that responses would be slower and/or less accurate with decimals
than with percentages for the types of displays on which we expected estimation to be

used, namely, large-number discrete and continuous displays.
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This prediction contrasts with findings from a previous study (Gray et al., 2017)
in which no performance differences between decimals and percentages emerged.
However, in that study, all decimals had the same number of decimal digits (two). From
the perspective of quantification process theory, the presence or potential for varying
numbers of decimal digits, and therefore varying implicit denominators, is what makes
decimals more difficult to use than percentages. Therefore, in Experiment 4, we
examined whether performance was better with percentages than with decimals when

number of decimal digits varied.

5.1. Method
5.1.1. Participants. Thirty-eight Carnegie Mellon University students

participated in the experiment and received course credit or monetary compensation for

participating.

5.1.2. Design. Participants were individually tested in a quiet room during a single
session. They first completed the number matching task with small-number discrete
displays, small-number discretized displays, and continuous displays, and then with

large-number discrete displays. The task was performed on a laptop.

5.1.2.1 Number matching task. On the number matching task, sixteen pairs of
ratios were used to create the stimuli (Supplementary Information, Table B3). Each ratio
pair consisted of a farget ratio and a foil ratio; each foil ratio differed from the
corresponding target ratio by between 0.12 and 0.18. Only the target ratios were used to
create the displays shown to participants; the target and foil ratios together were used to

generate the response options, as described below.
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For each target ratio, we created one small-number discrete display, one small-
number discretized display, one continuous display, and two large-number discrete
displays with the same number of dots as each other (one with dots of constant size and
one with dots of varied sizes). The displays were created as described in Experiments 1-3.
The number of entities in small-number discrete and discretized displays was equal to the
denominator of the ratio used to create the display. The number of dots in each large-
number display was a multiple of the denominator of the ratio that was used to create the

display and ranged from 70 to 91.

For each target-foil pair, three pairs of response options were created—one pair of
fractions, one pair of decimals, and one pair of percentages (as shown in Supplementary
Information, Table B3). The fractions within each pair were exactly equal to the
corresponding target and foil ratios. The decimals within each pair were within 0.03 of
the corresponding target and foil ratios; also, the decimals within each pair had different
numbers of decimal digits, ranging from one to three. The percentages within each pair
were equal to the corresponding target and foil ratios rounded to the nearest hundredth.
The distance between the target and foil ratio was very close (within .01) to being
constant over the fraction, decimal, and percentage response option pairs. For example,
on the trial with response options 7/8 and 5/7, the corresponding options with percentages

was 88% and 71%, and with decimals 0.9 and 0.73.

On each trial, participants were shown a display and a pair of numbers—either
two fractions, two decimals, or two percentages. One of the numbers was either equal (in
the case of fractions) or approximately equal (in the case of decimals and percentages) to

the target ratio used to create the display; the other number was equal or approximately
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equal to the corresponding foil ratio. The task was to choose the number that better
represented the part-whole ratio in the display; the correct answer was the number that

was equal or approximately equal to the target ratio.

The number matching task with small-number discrete, small-number discretized,
and continuous displays employed a 3 (notation: fraction, decimal, or percentage) by 3
(display type: small-number discrete, small-number discretized, or continuous) design.
Both factors were within-subjects. Each combination of notation, display type, and ratio
pair was presented twice: once with the target rational number on the left and once with it
on the right. Thus, each participant completed 288 test trials (3 rational number notations
x 3 display types x 16 ratio pairs % 2 locations for the target number). Problems were
completed in two blocks of 144 trials each. The order of stimuli was pseudo-randomized
for each participant, with the constraints that each combination of notation, display type,
and ratio pair appeared only once in each block, and a ratio pair would not appear again

until all 16 pairs were presented.

The number matching task with large-number discrete displays employed a 3
(notation: fraction, decimal, or percentage) by 2 (dot size: constant or variable) design.
Both factors were within-subjects. Each combination of notation, ratio pair, and dot size
was presented twice—once with the target fraction, decimal, or percentage shown on the
left and once with it on the right—resulting in 192 test trials (3 notations % 16 ratio pairs
x 2 dot sizes x 2 locations for the target fraction, decimal, or percentage). The trials were
completed in two blocks of 96 trials each. The order of stimuli was pseudo-randomized

for each participant, with the same constraints as for the number matching task.
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Participants were told to choose as quickly as possible without sacrificing
accuracy, and that the next trial would start if they did not respond within 5s. Six practice
trials were presented before the main task. Feedback was given on the correctness of

participants’ answers on practice trials but not on test trials.

5.2. Analyses
Data were analyzed using ANOV As. Significant effects of three-level factors

(notation and display type) were investigated using pairwise post-hoc comparisons; p-
values for these comparisons were adjusted using the Bonferroni correction. Trials on
which participants did not respond within 5s were excluded from analysis (< 1% of all
trials). A small number of participants (three in the number matching task with
continuous, small-number discrete, and small-number discretized displays, and four in
the number matching task with large-number discrete displays) were excluded due to
large numbers of no-response trials, extremely low accuracy, or technical failures (details

are provided in the Supplementary Information, Part E).

Analyses focused on accuracy. Response time patterns on correct trials generally
converged with accuracy patterns or showed no effects of notation; there was no evidence
of speed-accuracy tradeoffs. Analyses of RTs are reported in the Supplementary

Information, Part F.

5.3. Results
A 3 (notation) by 3 (display type) ANOVA on accuracy yielded main effects of

notation, F' (2, 68) = 17.73, p <.001, n; = .34, and display type, F' (2, 68) = 20.37, p <

.001, 7712, = .37, and an interaction between the two , /' (4, 136) =26.89, p < .001, n, = .44.
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Post-hoc comparisons indicated that, as predicted, accuracy was lower when choosing
between decimals (M = 81%, SD = 7%) than when choosing between percentages (M =
85%, SD = 8%), F (1,34)=11.25, p =.005, r]zz, =.25. Accuracy was also lower when
choosing between decimals than between fractions (M = 87%, SD = 8%), F' (1, 34) =
35.26, p <.001, n% = .51. Participants were more accurate in identifying the correct ratio
for small-number discretized displays (M = 87%, SD = 8%) than for continuous displays
(M =85%, SD =8%), F (1,34)=6.57, p=.045, n,z) = .16, and more accurate on
continuous than on small-number discrete displays (M = 82%, SD = 8%), F (1, 34) =

12.97, p=.003 .045, n2 = .28,

For continuous displays, accuracy with percentages (M = 88%, SD = 9%) was
higher than with fractions (M = 81%, SD = 10%), F (1, 34) = 18.76, p <.001, n;; = .36.
Accuracy with decimals (M = 85%, SD = 9%) was also higher than with fractions, F (1,
34)=8.61,p=.02, 77;2; =.20. These findings were consistent with quantification process
theory and with previous findings (DeWolf et al., 2015; Gray et al., 2017; Lee et al.,
2016). Participants also were more accurate with percentages than decimals, as predicted
by quantification process theory, but the difference was not significant, F' (1, 34) =3.11,

p=0.26,72=0.08.

Results for small-number discrete and discretized displays also were consistent
with previous findings (DeWolf et al., 2015; Gray et al., 2017; Lee et al., 2016), as well
as with the predictions of the present theory. For small-number discrete displays,
accuracy with fractions (M = 90%, SD = 9%) was higher than with percentages (M =

79%, SD = 10%), F (1, 34) = 64.26, p < .001, n2 = .65 or decimals (M = 76%, SD = 9%),
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F(1,34)=69.03, p <.001, n; = .67. For small-number discretized displays, accuracy
with fractions (M = 90%, SD = 10%) also was higher than with decimals (M = 82%, SD =
8%), F' (1, 34) = 28.48, p < .05, n;; = .46. Accuracy with fractions on these displays was

slightly higher than accuracy with percentages (M = 87%, SD = 9%), but the difference

was not significant, / (1, 34) =3.10, p = 0.26, n;; = 0.08.

On the number matching task with large-number discrete displays, trials for 3 of
the 32 displays were excluded from analyses because the displays were not exactly equal
to the target ratios. Analyses that included these flawed stimuli yielded the same effects
as reported in here (Supplementary Information, Part G). An ANOVA on accuracy, with
notation as a within-subjects factor, yielded an effect of notation, F' (2, 66) = 13.99, p <
.001, n5 = .30. Consistent with predictions of quantification process theory, post-hoc
comparisons indicated that participants were more accurate on large-number discrete
displays when the choice was between two percentages (M = 78%, SD = 8%) than when
it was between two decimals (M = 74%, SD = 9%), F' (1, 33) =9.29, p = 0.013, n; = 0.22,
or two fractions (M = 71%, SD = 7%), F' (1, 33) = 27.80, p < .001, n, = 0.48. Participants
also tended to be more accurate when the choice involved two decimals than two

fractions, F' (1, 33) =5.15, p = .090, n; = 0.14.

5.4. Discussion

Consistent with quantification process theory, accuracy using rational numbers to
represent ratios in spatial displays paralleled notation preferences. Critically, with large-
number discrete displays, participants performed the number matching task more

accurately with percentages than with decimals. This result is analogous to Experiment
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2’s finding that percentages were preferred to decimals for representing ratios in large-
number discrete displays. Both findings can be explained by quantification process
theory’s assumption that using decimals incurs a greater cognitive demand than using

percentages to represent estimated ratios.

6. General Discussion
In this study, we raised the question of how people choose among the three
rational number notations in a given situation, proposed quantification process theory to
explain people’s preferences, and reported empirical data from four experiments that
tested predictions of the theory. In this concluding section, we discuss findings about
each notation’s distinct functions, discuss how quantification process theory accounts for
the findings, and then consider implications of the findings and theory for how rational

numbers should be taught to students.

6.1. Percentages

The most striking findings to emerge from the present study relate to percentages.
On the notation preference task, both U.S. and Chinese participants strongly preferred
percentages over decimals and fractions for representing ratios in continuous displays and
large-number discrete displays. As the number of items in discrete displays increased,
participants’ preference for percentages also increased. On the number generation task,
when asked to estimate ratios, participants generated more answers in percentage notation
than in fraction or decimal notation for all types of spatial displays. Finally, on the
number matching task, accuracy was higher with percentages than with fractions or

decimals on large-number discrete displays, and higher with percentages than with
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fractions for continuous displays. These findings were consistent with our premise that
percentage notation endures because people prefer it to other notations when using

estimation to approximate ratios.

Previous research on children’s and adults’ understanding of rational numbers has
focused almost entirely on fractions and decimals; percentages have rarely been studied
(Tian & Siegler, 2017). One reason why percentages have received so little attention is
that they are mathematically interchangeable with decimals if hybrid representations such
as 12.34% are allowed. This mathematical equivalence might be assumed to yield
psychological equivalence. However, neither U.S. nor Chinese participants in the present
study viewed decimals and percentages as interchangeable. If they had, they would not
have shown strong, systematic preference for percentages over decimals for representing

ratios in continuous and large-number discrete displays.

Analyses based on quantification process theory implied that percentages are
preferred over decimals for representing estimated ratios when precision beyond the
nearest percent is not required, which was the case in the present study. The rationale for
this prediction was that percentages require less cognitive effort than decimals when
decimals can have varying numbers of decimal digits, as is usually true in real-world
situations. With a fixed implicit denominator of 100, percentages only require choice of a
whole number numerator to complete the ratio, whereas using a decimal also requires a
choice of how many decimal digits to include. Our assumption that choosing the number
of decimal digits imposes a cognitive cost led to the predictions that participants would
prefer percentages to decimals in situations that did not require highly precise answers,

and that they would perform more accurately with percentages than with decimals if the
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decimal alternatives had varying numbers of digits. Both of these predictions proved

accurate.

Looking beyond the types of tasks examined to date, percentages are used in a
vast range of contexts, from the everyday to the arcane. They are used to convey
information about price discounts, sales and income tax rates, gratuities in restaurants,
demographic descriptions, survey and poll results, growth rates, probabilities, and
variance explained in statistical analyses. Percentages also appear in common phrases
such as “give 100 percent,” “120% effort,” and “the 1 percent,” and they are implicit in
phrases such as “the odds are 50-50.” Future research should further explore the range of
contexts in which percentages are the rational number notation of choice and the

variables that determine those contexts.

6.2. Fractions

Many findings of the present study pertain to differences between fractions on the
one hand, and decimals and percentages on the other. Previous investigators concluded
that for representing ratios between discrete sets, fractions are preferred to, and yield
better performance than, decimals and percentages (DeWolf et al., 2015; Gray et al.,
2017; Lee et al., 2016; Plummer et al., 2017; Rapp et al., 2015). The present study
replicated these results, but only when the discrete sets contained small numbers of items

or when participants were instructed to use counting to determine the ratios, conditions
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hypothesized to elicit counting!. When discrete sets contained large numbers of items that
made counting implausible within the time provided, or when participants were instructed
to quantify the ratios by estimating, participants strongly preferred percentages to
fractions. Also, when participants performed the number matching task with large-

number discrete sets (Experiment 4), accuracy was lower with fractions than percentages.

The preference for, and greater accuracy with, fractions over decimals and
percentages for representing ratios between small discrete sets have previously been
interpreted as evidence for an inherent semantic alignment between the bipartite structure
of fractions and ratio relations between sets. If this interpretation were correct, these
preferences should be present regardless of set sizes, instructions, and time limits. In
contrast, quantification process theory posits that preferences for, and advantages of,
fractions for representing ratios between discrete sets should disappear with sets that do
not allow precise enumeration in the allocated time or when participants are instructed to
use estimation. The predictions of quantification process theory were the ones consistent

with the data in the present experiments.

6.3. Decimals

On the notation preference and number generation tasks presented in Experiments
1-3, fractions or percentages were preferred to decimals for every type of display. On the

number matching task in Experiment 4, fractions or percentages afforded higher accuracy

1 Plummer et al.'s (2017) analyses of eye movements showed that small-number discrete

displays tend to elicit counting and that continuous displays tend to elicit estimation.
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than decimals in most cases in which differences between notations were found. These

results invite the question: “Decimals: What are they good for?”

One answer is that decimals are a straightforward extension of the base-10 system
for expressing whole numbers. With whole numbers, the digit immediately to the left
invariably expresses a base that is 10 times as great as the one to its right. Decimals

permit representation of rational numbers that follow the same principle.

Another rationale for the use of decimals is that they are particularly useful for
representing measurements, especially with metric units, because their implicit
denominators can be any power of 10. Although decimals cannot represent all ratios
exactly, they can represent any ratio to any desired degree of precision. This property
may make decimals particularly advantageous for measurement, because different
measurement situations require different degrees of precision. When weighing checked
luggage in an airport, measurements may be rounded to the nearest 0.1 or 0.01 pound;
when weighing items to be carried into orbit by a rocket, decimals permit much greater
precision. Perhaps for this reason, decimals are frequently used to express measures of

mass, length, area, volume, speed, force, energy, pressure, and other dimensions.

Where decimals seem especially likely to be preferred for representing metric
measures, fractions seem most likely to be preferred for representing imperial measures.
The imperial system employs a variety of conversion ratios: 1ft = 12in, 1 yd =3 ft, 1lb =
160z, 1qt = 4cups, etc. Fractions provide useful flexibility for representing imperial
system measures (an inch is 1/12 of a foot, an ounce is 1/16 of a pound, a cup is 1/4 of a

quart, etc.), because their denominators can be any number.
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An analysis of fraction and decimal word problems in mathematics textbooks—
specifically, kindergarten to eighth grade textbooks of Addison-Wesley Mathematics --
yielded results consistent with this analysis. Rapp et al. (2015) found that when textbook
problems involved metric units (e.g., centimeters, grams, liters), decimals were used
more often than fractions. In contrast, when textbook problems involved imperial units
(e.g., inches, pounds, gallons), fractions were used more often than decimals. It seems
likely that preferences between decimals and fractions for different types of measurement
units are influenced by the variability of denominators in the notations. Further research
is needed to test this hypothesis and to identify other influential factors involving notation

preferences.

6.4. Quantification Process Theory and Semantic Alignment Theory

Semantic alignment, the process of aligning multiple semantic structures, has
much broader application than explaining preferences among rational number notations.
For example, it has been applied to understanding reasoning by analogy (Gentner, 1983;
Hummel & Holyoak, 2003), solving and constructing problems mathematically (Bassok,
Chase, & Martin, 1998; Novick & Holyoak, 1991), modeling business processes
(Brockmans, Ehrig, Koschmider, Oberweis, & Studer, 2006), and analyzing biological
pathways (Gamalielsson & Olsson, 2008). The present findings are not intended to
challenge semantic alignment theory in general, but rather to challenge its specific

application for explaining preferences among rational number notations.

It might seem that semantic alignment theory could accommodate some of the
present findings if supplemented by assumptions about how semantic structure varies

with stimulus features and context. For example, the finding that increasing the number
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of items involved in a discrete ratio leads to decreased preference for fractions to
represent the ratio could be explained by assuming that large numbers of items are likely
to be perceived as continuous quantities, so that ratios between large numbers are likely
to be perceived as one-dimensional. Similarly, the finding that preference for fractions
decreases when participants are instructed to quantify ratios by estimating rather than by
counting could be explained by assuming that estimation leads to the ratios being

perceived as one-dimensional.

However, these explanations implicitly acknowledge that quantification processes
shape preferences among rational number notations. In contrast, both the present and
previous findings, especially ones involving notation preferences, can be accounted for
by considering the quantification processes used in the situation, without reference to
semantic alignment. Thus, quantification process theory appears to offer a more
parsimonious account of findings regarding choices among rational number notations

than does semantic alignment theory.

6.5. Quantification Process Theory and Strategy Choice Theory

Quantification process theory assumes that the preferred notation for representing
a ratio depends on the strategy employed to quantify it. Choices among quantification
strategies, in turn, depend on contextual variables, such as the number of items in the
display and instructions to count or estimate. These and other determinants of strategy
choices follow from Siegler's (1996) more general strategy choice theory, which asserts
that choices among strategies depend on task characteristics, situational variables,
frequency of input of various types of problems, and past experience with the strategies

being chosen among.
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This perspective implies that other variables that affect strategy choices in
general, including variables that were not manipulated in the present study, would also
affect rational number notation preferences. For example, a need for high precision (a
task characteristic) would be expected to increase preference for decimals over
percentages; a short time limit (a situational variable) would be expected to increase
preference for estimation over counting, and therefore influence choice of rational
number notations (as it, together with the instructions, did in Experiment 3 of the present
study); exposure to percentage discounts in advertisements (an experiential variable)
should increase preference for percentages. Future research should test these and other
implications of quantification process theory and link the specific theory of choices

among rational number notations more closely to the general strategy choice theory.

6.6. Implications for Education

The present findings also have implications for how rational numbers should be
taught. Addressing this issue is particularly urgent because many children struggle with
rational numbers (Lortie-Forgues, Tian, & Siegler, 2015; Siegler & Braithwaite, 2017);
because rational number knowledge in elementary school is predictive of mathematics
achievement in high school, even after controlling for numerous relevant variables
(Siegler et al., 2012); and because rational numbers have been found to be pervasively

used in the workplace (Handel, 2016).

Existing mathematics textbooks focus primarily on using fractions, decimals, and
percentages to represent quantities exactly; mathematics instruction rarely address the use
of rational numbers for approximation (Siegler & Booth, 2005). However, representing

quantities that are difficult or impossible to determine exactly, and that therefore must be
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estimated, is also an important function of rational numbers. An implication is that
rational number instruction should devote greater attention to the use of rational numbers
for approximating quantitative values; doing so could better prepare children to apply

rational numbers to the full range of tasks for which they are suitable.

Another educational implication relates to the sequence in which different
notations should be taught. Children in kindergarten to fourth grade can reason about
ratios between continuous quantities earlier than they can reason about ratios between
small sets of discrete objects (Boyer et al., 2008). For example, when asked to choose
which of two pictures showed a ratio matching that in a target picture, kindergartners
were more accurate when the pictures involved continuous quantities than second graders
were when the pictures involved countable discretized quantities. This finding, together
with the present ones, suggests that it might be advantageous to introduce ratios between
continuous quantities, using decimals and/or percentages, earlier in the curriculum than

ratios between small discrete sets, using fractions.

This conclusion runs counter to most U.S. mathematics curricula, which typically
introduce fractions years before decimals and percentages (National Governors
Association Center for Best Practices, 2010). However, the conclusion dovetails with
findings from studies of an experimental rational number curriculum (Kalchman, Moss,
& Case, 2001; Moss & Case, 1999). In a five-month intervention with fourth graders,
percentages were introduced first, decimals second, and fractions last. When compared to
peers in a control condition, who received business-as-usual instruction that introduced
the three notations in the opposite order, children who received the experimental

curriculum showed greater gains in rational number knowledge. The current findings
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provide additional reasons to explore whether introducing percentages and decimals
earlier in the curriculum than is now typical leads to improved learning of rational

numbers among younger children.

6.7. Conclusion

The present study suggests that there are good reasons why multiple notations for
representing rational numbers have endured for more than 300 years. Each notation
serves a valuable function, and people prefer different notations in different situations.
Fractions are the preferred notation for representing ratios whose exact numerators and
denominators are needed, known, or easily established. Decimals and percentages are
preferred to fractions for representing estimates of ratios. Percentages are preferred to
decimals when precision beyond the nearest percent is not required. Decimals seem to be
preferred for expressing metric measures. Considering quantification processes involved
in determining ratios, as well as properties of each notation, can help provide a unified
account of how, when, and why people use percentages, decimals, and fractions, as well

as linking this specific strategy choice to more general theories of strategy choice.
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Table 1

52

Divergent Predictions of Quantification Process Theory and Semantic Alignment Theory

Predictions of Quantification Process
Theory

Corresponding Predictions of Semantic
Alignment Theory

Prediction 1. Both percentages and
decimals should be preferred to fractions
for representing ratios in continuous
displays, because such displays elicit
estimation, but percentages should be
preferred to decimals because estimating
percentages entails less effort.

Both percentages and decimals should be
preferred to fractions for representing
ratios in continuous displays, and they
should be equally preferred, because
percentages, decimals, and ratios in
continuous displays all have a one-
dimensional structure.

Prediction 2. Notation preferences for
large-number discrete displays should be
similar to preferences for continuous
displays, rather than preferences for
small-number discrete displays, because
large-number displays (like continuous
displays) elicit estimation rather than
exact enumeration.

Notation preferences for large-number
discrete displays should be similar to
preferences for small-number discrete
displays rather than preferences for
continuous displays, because large-
number displays (like small-number
discrete displays) are two-dimensional
rather than one-dimensional.

Prediction 3. For representing discrete
displays, the degree to which fractions are
preferred over decimals and percentages
should decrease, and the degree to which
percentages or decimals are preferred over
fractions should increase, as the number
of items in the displays increases.

For representing discrete displays, the
degree to which fractions are preferred
over decimals and percentages should not
change as the number of items in the
displays increases, because the discrete
displays are always two-dimensional
regardless of the number of items
included.

Prediction 4. Instruction to enumerate
should produce a preference for fractions
to represent large-number discrete
displays that otherwise would elicit a
preference for decimals or percentages.
Instruction to estimate, and time limits
short enough to preclude counting, should
produce a preference for percentages or
decimals to represent discrete displays
that otherwise would elicit a preference
for fractions.

Instructions to enumerate or estimate and
time limits should not affect notational
preferences, because they do not affect the
one-dimensional or two-dimensional
quality of the displays or the notations.
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Figure 1. Visual displays of ratios used in the present study to express 7/8. (A) Small-
number discrete display. (B) Small-number discretized display. (C) Continuous display.
(D) Large-number discrete display. Displays (A), (B), and (C) were modeled after stimuli

from DeWolf, Bassok, and Holyoak (2015). Display (D) was new to this study.
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Figure 2. Notation preferences of U.S. students on small-number discrete, small-number

discretized, and continuous displays in Experiment 1 in (A) the two-choice condition and

(B) the three-choice condition.
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Figure 3. Notation preferences of Chinese students on small-number discrete, small-

number discretized, and continuous displays in Experiment 2 in (A) the two-choice
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condition and (B) the three-choice condition. Results of the notation preference task with

large-number discrete displays, in which all participants had three choices, are shown in

(©).
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Figure 4. Probability of choosing percentages (A) or fractions (B) as a function of
number of dots in the display on the notation preference task in Experiment 3. Circles
indicate empirically observed probabilities; blue lines indicate probabilities predicted by

the logistic regression models described in the text.



