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Abstract

This article focuses on the relationship between a measure.of creativity and the
human brain network for subjects in a brain connectome dataset obtained using a
diffusion weighted magnetic resonance imaging (DWI) procedure. We identify brain
regions and interconnections that have a significant effect on creativity. Brain
networks are often expressed in terms of symmetric adjacency matrices, with row
and column indices of the matrix_representing the regions of interest (ROI), and a
cell entry signifying the estimated number of fiber bundles connecting the
corresponding row and celumn ROIs. Current statistical practices for regression
analysis with the brain“network as the predictor and the measure of creativity as the
response typicallyvectorize the network predictor matrices prior to any analysis,
thus failing to/@account for the important structural information in the network. This
results in‘peorinferential and predictive performance in presence of small sample
sizes. To'answer the scientific questions discussed above, we develop a flexible
Bayesian framework that avoids reshaping the network predictor matrix, draws
inference on brain ROIs and interconnections significantly related to creativity, and
enables accurate prediction of creativity from a brain network. A novel class of
network shrinkage priors for the coefficient corresponding to the network predictor
is proposed to achieve these goals simultaneously. The Bayesian framework allows
characterization of uncertainty in the findings. Empirical results in simulation studies



illustrate substantial inferential and predictive gains of the proposed framework in
comparison with the ordinary high dimensional Bayesian shrinkage priors and
penalized optimization schemes. Our framework yields new insights into the
relationship of brain regions with creativity, also providing the uncertainty
associated with the scientific findings.

Keywords: Brain connectome; High dimensional regression; Influential nodes; Influential

edges; Network predictors; Network shrinkage prior.

1 Introduction

In recent years, there has been a growing interest in the study of functional and
structural interconnection networks in the human brain (Fornitowef af, 2013; Park and
Friston, 2013; Jbabdi ef a/., 2015), also referred to as brain.connecfomics. This article
focuses on structural connections in the human brain,"¢oinciding with fiber bundles that
are estimated using diffusion weighted magnetic resonance imaging (DWI). The
complex structural organization of the white. matterof the brain can be depicted in vivo
in great detail with advanced DWI| (Hagmannef a/, 2006). Using data from DWI, the
brain can be segmented into differentregions of interest (ROI), with the fiber bundles

connecting the different regions estimated.

Information on fiber connections inthe human brain can be used to generate network
valued object data, with the network nodes corresponding to regions of interest (ROI)
and the estimated number of fiber bundles connecting any two ROls signifying the
strength of interconnection between them. There are several compelling possibilities in
terms of relating. these objects to brain related phenotypic traits of individuals (Zhang ef
al., 2019). For instance, the number of fibers connecting pairs of ROls varies across
individuals, and perhaps features of these fiber connections as well as certain ROls in
the brain relate to traits of individuals, such as their creativity. In this article, we provide
necessary Bayesian statistical tools to draw such inferences. In particular, we consider
the problem of predicting the creativity of individuals (measured using the composite

crealivity index or CCl) based on neuroimaging data signifying the connectivity network



among different brain regions. The objective of these studies is twofold. First,
neuroscientists are often interested in identifying regions of the brain and
interconnections between them which are involved in creative thinking. Secondly, it is
important to determine how the strength of connection among these influential regions

affects the level of creativity of the individual.

From a statistical point of view, our inferential problem can be best cast as a network
regression problem. In a typical network regression framework, one is interested.in the
relationship between the structure of the network and one or more global attributes of
the experimental unit on which the network data is collected. However, an
overwhelming literature on network objects mainly relies on modeling the network as a
random variable, rather than treating it as a predictor in a typical'network regression. A
number of classic models have emerged in the literature viewing the network as a
random variable with a goal of either predicting an unobserved link in a network or
investigating ~Aomophily, i.e., the process of formation ofisocial ties due to matching
individual traits. Examples include exponential random graph models (Frank and
Strauss, 1986), social space models (Hoff efal, 2002; Hoff, 2005) including random dot
product graph (RDPG) models (Young and Scheinerman, 2007) and stochastic block
models (Nowicki and Snijders, 2001). Alternatively, models which explain covariates
related to network nodes as a function of the network structure (e.g., Fowler and
Christakis, 2008; Shoham ef a/, 2015) and joint models for the co-evolution of the
network structure and nodal attributes (e.g., Fosdick and Hoff, 2015; Durante ef a/,
2017; De la Haye et a/, 2010; Guhaniyogi and Rodriguez, 2018) have also found

prominence in the statistical literature of networks.

However, the inferential goals in this article in the context of the brain connectome data
mentioned earlier do not quite fit in to the aforementioned literature. To address these,
we employ a Bayesian model for network regression with the brain network as the
predictor and the composite creativity index as the response. In particular, we construct
a Bayesian network shrinkage prior that combines ideas from spectral decomposition

methods and spike-and-slab priors to generate a model that takes into account the



topological structure of the network predictor. The model produces accurate predictions,
allows us to identify both ROls and interconnections among them that have influence on
creativity, and yields well-calibrated interval estimates for the model parameters. For

instance, a notable finding from the brain connectome dataset using our model is that a
substantial number of ROls influencing creativity are located in the fempora/and fronta/

lobes of the human brain.

Earlier literature involving a network predictor and a scalar response has not amply
exploited the relational nature of the network predictor. A common approach to network
regression is to use a few summary measures from the network in the context of a
flexible regression or classification approach (e.g., see Bullmore and Sporns, 2009 and
references therein). Clearly, the success of this approach is highly dependent on
selecting the right summaries to include. Furthermore, such.an approach cannot identify
the impact of specific nhodes on the response, which is'of clear interest in our setting.
Alternatively, a number of authors have proceeded to vectorize the network predictor
(originally obtained in the form of a symmetric adiacency matrix). Subsequently, the
continuous response would be regressed on the high dimensional collection of edge
weights (e.g., see Richiardi ef a/, 2011 and Craddock ef a/., 2009). This approach can
take advantage of the recent developments in high dimensional regression, consisting
of both penalized optimization (Tibshirani, 1996) and Bayesian shrinkage (Park and
Casella, 2008; Carvalho efal, 2010). However, this approach treats the links of the
network as fully exchangeable, ignoring the fact that coefficients involving common

nodes can be expected to be correlated a priori.

Recently, Arroyo Relidn ef a/, 2019 proposed a penalized optimization scheme that not
only enables classification using network predictors, but also identifies important nodes
and interconnections/edges between nodes. Although this model seems to perform well
for prediction problems, uncertainty quantification is difficult because standard bootstrap
methods are not consistent for Lasso-type methods (e.g., see Kyung ef al, 2010).
Modifications of the bootstrap that produce well-calibrated confidence intervals in the

context of standard Lasso regression have been proposed (e.g., see Chatterjee and



Lahiri, 2011), but it is not clear whether they extend to the kind of group Lasso penalties
discussed in Arroyo Relidn ef a/, 2019. Viewing the network predictor matrix as a two
dimensional symmetric tensor, recent developments in tensor regression (e.g., see
Guhaniyogi ef af, 2017; Raskutti ef a/, 2019; Fan ef a/, 2019) are also relevant to our
work. However, these approaches do not generally take into account the symmetric
constraint in the network predictor matrix, tend to focus mainly on prediction and
identification of important network edges, and are not specifically designed towdetect
important nodes impacting the response. Moreover, their specification leadsto,a low-
rank solution of the tensor predictor coefficient, whereas the estimated network

predictor coefficient from our approach does not bear any guarantee“of being low-rank.

The rest of the article evolves as follows. Section 2 provides.a description of the brain
connectome dataset we analyze in this article. Section 3 preposes the novel network
shrinkage prior and discusses posterior computation for the'proposed model. Empirical
investigations with various simulation studies are presented in Section 4. Section 5
analyzes the brain connectome dataset, presenting scientific findings on influential
regions of inferest (ROls) and edges. Einally, 8ection 6 concludes the article with an

eye towards future work.

2 Human Brain Network DataDescription

Human creativity has been at the crux of the evolution of the human civilization, and has
been the topic of research in several disciplines, including neuroscience. Though
creativity can be defined in numerous ways, one could envision a creative idea as one
that is unusual as well as effective in a given social context (Flaherty, 2005).
Neuroscientists generally concur that a coalescence of several cognitive processes
determines the creative process, which often involves a divergence of ideasto
conceivable solutions for a given problem. To measure the creativity of an individual,
Jung ef al, 2010 propose the composite creativity index (CCl), which is formulated by
linking measures of divergent thinking and creative achievement to cortical thickness of
young (23.7 = 4.2 years), healthy subjects. Three independent judges grade the

creative products of a subject from which the CCl is derived.



Along with CCl measurements, brain network information for n = 79 subjects is gathered
using diffusion weighted magnetic resonance imaging (DWI). DWI is an imaging
technique that enables measurement of the restricted diffusion of water in tissue in
order to produce neural tract images. The brain imaging data we use has been pre-
processed using the NDMG pre-processing pipeline (Kiar ef a/., 2016). In the context of
DWI, the human brain is divided according to the Desikan atlas (Desikan ef a/, 2006)
that identifies 34 cortical regions of interest (ROIs) in each of the left and right
hemispheres of the human brain, implying 68 cortical ROls in all. These 68/RQOls are
contained in 6 /obes each in the left and the right hemispheres, namely.the femporal,
frontal, occipital, parietal, insuia and cinguiate lobes. A ‘brain network’ for each subject
is represented by a 68 x 68 symmetric adjacency matrix whoserows.and columns
correspond to different ROIs and entries correspond to estimates.of the number of |
fibers’ connecting pairs of brain regions. Figure 1 shows'maps©of the brain network for

two representative individuals in the sample.

Our goal is to predict the CCl of a subjectdfrom hisfher brain network, and to identify
brain regions (hodes in the brain network) that are involved with creativity, as well as
influential connections between different brain regions. Along with identifying a brain
region as being influential, we also aim 1o provide the probability of the same, which
serves as a measure of uncertainty. This necessitates the development of a flexible but
parsimonious Bayesian model with a network predictor and a scalar response in a
network regression context. The model and prior constructions follow in the next

section.

3 Model Formulation

A 1"

Let Vi © | and represent the observed continuous scalar response and the

weighted network predictor for the +th sample, i= 1""’”, respectively. It is assumed

that all network predictors are defined on a common set of nodes. For example, in our

brain connectome application, ;i corresponds to a phenotype (CCI), while 4, encodes

the strength of the network connections between different regions of the brain for the



th individual. Mathematically, this amounts to 4, being a VVx VVmatrix, with the (4, }-th

entry of 4, denoted by Gipr € . In this paper, we focus on networks that contain no self

relationship, i.e., Gix = O, and are undirected (a*?*"f = Gtk ). The brain connectome
application that motivates our work naturally justifies these assumptions. However, as

will become evident later, extensions to directed networks with self-relations are

straightforward.

3.1 Bayesian Network Regression Model

We propose the high dimensional regression model of the response yifor the £th
_ v
individual on the undirected network predictor A= (@ ) e as

tuf
Y= 4+{A.B); +9,0~NO,T), (1)

where B is the symmetric network coefficient matrix of dimension VVx VVwhose (4 A-th
element is given by Vi l? and (A, B), =Tracel BLAY denotes the Frobenius inner

product between 4, and B. The Frobenius inner product is the natural inner product in
the space of matrices and is a generalization of the dot product from vector to matrix
spaces. Similar to the network predictor,"the network coefficient matrix 8is assumed to
be symmetric with zero diagonalentries. The parameter 7 is the variance of the

observational error.

Since self relationship is absent and both 4, and B are symmetric,

(A B = Z i ik
ksleV , and (1) can be rewritten as

Y, = HF Z a7+ g~ N(O,7*). (2)

lek<izl

Equation (2) connects the network regression model with the linear regression

framework with %+!'s as predictors and Yei'g as the corresponding coefficients.
However, while in ordinary linear regression the predictor coefficients are indexed by

the natural numbers N | model (2) indexes the predictor coefficients by their positions



in the matrix 8. This is done in order to keep tabs not only on the edge itself but also on

the nodes connecting the edges.

3.2 Developing the Network Shrinkage Prior

3.2.1 Vector Shrinkage Prior

High dimensional regression with vector predictors has recently been of interest in
Bayesian statistics. Continuous shrinkage priors, which strongly shrink coefficients
corresponding to unimportant variables to zero while minimizing the shrinkage of
coefficients corresponding to influential variables, have become particularly. popular.
Many of these priors can be expressed as a scale mixture of normal distributions,
commonly referred to as global-local scale mixtures (Polson and Scott, 2010), that
enable fast computation employing simple conjugate Gibbs sampling. More precisely, in

the context of model (2), a global-local scale mixture priorwould take the form
Vo~ N0, SU’.Ez),sk,lE ~g, T ~g,l<k<l<V

Note that “v2>"*"**v-v gre local scale parameters controlling the shrinkage of the
coefficients, while 7 is the global scale parameter. Different choices of gv and g2 lead
to different classes of Bayesian shrinkage priors. The Bayesian Lasso (Park and

Casella, 2008) shrinkage priortakes.gn as exponential and g. as the Jeffreys prior.

The direct application of this global-local prior in the context of (2) is unappealing. In
practice, we expectithe matrix of coefficients B (which itself can be regarded as
describing a weighted-network) to exhibit transitivity effects, i.e., we expect that if the
interactions between regions & and /and between regions kand !’ both influence the
response, the interaction between regions /and {' will likely be influential (e.g., see Li ef
al., 2013). Ordinary global-local shrinkage priors do not necessarily conform to such an

important restriction.

3.2.2 Network Shrinkage Prior



We propose a shrinkage prior on the coefficients Vet and refer to it as the Bayesian
Network Shrinkage prior BNSP). The prior borrows ideas from low-order spectral

representations of matrices, and aims to capture transitivity effects in the matrix of
e
regression coefficients. Let %" v be a collection of RF~dimensional latent

variables, one for each node, such that * corresponds to node & We draw each Ve
conditionally independent from a density that can be represented as a location and

scale mixture of normals. More precisely,

Y | sk’;,uk,us,rz ~ N(uk'Aus,rzsu), Ses ™ Exp(612), 6~ Gamma(l,1), (3)

where %! is the scale parameter corresponding to each y“, and A= diag(4,.....

an R x Rdiagonal matrix with A €{0.-L1}

Conditional on the latent variables %« % and A | if Skt = 0 then (3) implies a reduced

rank-decomposition I =2B=U'AU where Uigan R X"V matrix whose A-th column

_ v
corresponds to % and I'= ((y*’f))*ﬂ’:‘. Drawinguintuition from the random dot product

graph (RDPG) models (Young and Scheinerman, 2007), we can interpret the latent

vectors ¥ % a5 the positions ofthesnedes in a latent space, with the strength of the

edge effect being controlled by the inner product or the angular distance between the

R

o _ D8s ey =Ry <R _
vectors. In this interpretation, ! , represents the effective

dimensionaliy of the latent space, where O a1y takes the value 1 if A €i-LI)

, and is
0 otherwise. The effect of the interaction between the 4-th and £th nodes has a positive,
negative or neutral impact on the response depending on whether w,'Aw, > 0,0, Au, <0

or u,'Au = 0, respectively. This kind of bilinear structure is also commonly used to
model social and biological networks because of its ability to capture the kind of

transitive effects we discussed before (Hoff, 2005).

In order to learn which components of % are informative for (3), we assign a

hierarchical prior



0, wp7x

le*

A, ~¢ L wpor,,, (m,, 7y, 75, ) ~ Dirichler(r",1,1), 7 > 1.

_l’ Ww.p. ﬂS,r’

The choice of hyper-parameters of the beta distribution is crucial. In particular, note that

E[o 1=2/2+7")—>0

A &=L as > and that

s L& 27 267 +1)
206 ) = 2 e e 3 e a8

r=1

as R >, The first property

provides (weak) identifiability of the different latent dimensions, while the second
lim

var(Reg) < 00
ensures that

R

In fact, we can think of our model as a level-R truncation of an infinite dimensional
model, similar in spirit to the stick-breaking construction of the [ndian Buffet process
(Teh efal, 2007). Therefore, as long as R is chosen 10 be “large enough”, the
inferences will be roughly invariant to this choice. In©urillustrations, we perform
sensitivity analyses to determine an optimalwvalue of Fthat maintains computational

efficiency, and at the same time ensures the robustness of the results.

In order to determine which nodeg'are most influential in explaining the response, we

assign a spike-and-siab mixturewprior (Ishwaran and Rao, 2005) to the latent factor |

.- {N(O,M bota L e Bera), “)

5,  ifg&=0,

% is.the Dirac-delta function at ¢ and Mis a covariance matrix of order R x R,

where
The parameter A corresponds to the probability of the nonzero mixture component.
Note that if the A4th node of the network predictor is not influential in predicting the
response then, a-posteriori, & should provide high probability to 0. Thus, based on the
posterior probability of &, it will be possible to identify unimportant nodes, which we

loosely refer to as “uninfluential nodes”, in the network regression.

10



The rest of the hierarchy is accomplished by assigning prior distributions on
A~ Betata,.by) gng M ~ WD \yhere TW(D genotes an Inverse-Wishart

distribution with identity scale matrix | and degrees of freedom v Finally, we choose a

pu ) -
T . Appendix A in the

supplementary material shows the propriety of the posterior distribution under this prior.

2
non-informative prior on #:7) such that

Note that integrating over the .15 alone leads to double exponential priors that are

reminiscent of the Bayesian Lasso. On the other hand, while no closed form expression

exists for the marginal prior after integrating over Bty it s easy to/see that,

marginally, the edge coefficients have mean zero and are not independent. Hence, from

this point of view, the latent positions Hiowenslly gim ply provide a mechanism to sparsely

model the prior dependence among coefficients.

Before concluding this section, we note that the BNSP prior in (3) can be alternatively

;Vk,l = ukrAuI +§;k,.!537k,3 - N(Os rzsk,;)ssk,;

written as \ERG . Integrating over SU, the

distribution of 7*! becomes a double exponential distribution. Notably, the distributions

j;k,f"

of s are independent over all (& /pairs (k< ) and are independent of the

distribution of ** and %', and Pk E(_Oo’oo). Since there is no restriction imposed on

_ byt ¥ _ ]
U=/ 2o, B=U'AU [24F does not assume low-rankness. Therefore, the

proposed prior should ideallysbe able to accurately estimate the true predictor coefficient

matrix even when it/does.not assume any specific low-rank structure.

3.3 Posterior Computation

Although summaries of the posterior distribution cannot be computed in closed form, full
conditional distributions for all the parameters are available and correspond, in most

cases, to standard families. Thus, posterior computation can proceed through a Markov
chain Monte Carlo algorithm. We note, however, that a naive implementation of such an

algorithm to update 7, the vector composed of the upper triangular elements of I,

would have complexity q’) , where 9~ VIV-1D/2 The resulting algorithm would

11



therefore be computationally too expensive for situations such as our real data
application, where V=68 and ¢ = 2278. To address this issue, we develop a procedure
that proposes the use of the Woodbury matrix identity (Harville, 1998) to instead
compute the inverse of an n % 7 matrix. Since in the type of applications with which this
paper is concerned, 7 is typically much smaller than g, this approach leads to
substantial computational savings that make real-life applications viable. Details of the
Markov chain Monte Carlo algorithm and the efficient sampling procedure for<. are

presented in Appendix B of the online supplementary material.

While inferences on the latent positions ¥ ******v is not our main focus, being able to

visualize these positions can be helpful in terms of interpreting the model results.

However, note that vectors Uiy are not identifiable becduse the model is invariant

to rotations of the latent space. Hence, before we can use the posterior samples
generated by our algorithm to conduct inferences onithese latent positions we must first

rotate them to a common orientation. This is done using a “Procrustean” transformation

(Sibson, 1978; Hoff ef al, 2002; Hoff, 2005)."For.each posterior sample U we find the

("
rotation U that has the smallest sum.of squared deviations from an arbitrary fixed

L

Uu') -, (U(!;‘)), {U("')UO'UO (U(,a)),}— b U

reference matrix UO. This rotation is/.given by

. . . . (n .
In our analysis, we use the first iterate after burn-in, U as the reference matrix UO.

Appendix E of the online.supplementary material provides an illustration of the inference

6]
on latent positions using'/s" in one of the simulation cases.

In order toiidentify whether the Ath node is important in terms of predicting the

1) L)
response, we rely on the post burn-in L samples & & of é« Node kis said to be
L
lz 0= 05
influential if &= . To identify influential edges we utilize a modification of the

algorithm proposed in Li and Pati, 2017 that allows us to estimate the false discovery

rate of the procedure as a function of the number of discoveries. Details are provided in

Appendix C of the online supplementary material. Finally, an estimate of PR, = r{Data)

12



LSS A=)

is given by = =1 w1 , where /A4) for an event Ais 1 if the event A happens and

0 otherwise, and “m >**** = are the L post burn-in MCMC samples of Am.
4 Simulation Studies

This section comprehensively contrasts both the inferential and predictive performances
of our proposed approach with a number of competitors in various simulation‘settings.
As competitors, we consider both penalized likelihood methods as well as Bayesian
shrinkage priors for high-dimensional regression. Our first set of competitorsuse
generic variable selection and shrinkage methods that treat edges between nodes as *
bags of predictors” and rely on high dimensional regression, therebytignoring the
relational nature of the predictor. More specifically, we use Lassox(Tibshirani, 1996),
which is a popular penalized optimization scheme, andthe Bayesian Lasso (Park and
Casella, 2008) and Horseshoe priors (Carvalho ef a4, 2010), which are popular
Bayesian shrinkage regression methods. The Horseshoe in particular is considered to
be a state-of-the-art Bayesian shrinkage priorand is known to perform well, both in
sparse and not-so-sparse regression settings. We use the glmnet package in R
(Friedman ef af, 2010) to implement Lasso regression, and the monomvn package in R
(Gramacy, 2013) to implement.the Bayesian Lasso (BLasso for short) and the
Horseshoe. A thorough comparison with these methods will indicate the relative

advantage of exploitingithe structure of the network predictor.

Additionally, we compare our method to a frequentist approach that develops network
regressiomin the presence of a network predictor and scalar response (Arroyo Relion ef
al., 2019). To be precise, we adapt Arroyo Relidn ef al, 2019 to a conlinuous response

context and propose to estimate the network regression coefficient matrix 8 by solving

_ : 1 § 2
B=arg e ’Bzrgfgag(m:ﬂ{;; (y,—u—(A,.B). )"+

, ) (5)
2
1B +g[z||3m I +lB ||1]},
k=1

13



| Bl-=(B.B)r | Bl

where denotes the Frobenius norm, | is the sum of the absolute

values of all the elements of matrix B, I, is the £ norm of a vector, By, is the Ath row
of Band #£¢ are tuning parameters. The best possible choice of the tuning parameter
triplet (©.£.9) is made using cross validation over a grid of possible values. Comparison
with (5) will highlight the advantages of a carefully structured Bayesian network
shrinkage prior over the penalized optimization scheme incorporating network
information. In the absence of open source code, we implemented the algorithm,in
Arroyo Relidon ef a/, 2019 ourselves. While a better and more efficient implementation of
(5) is perhaps possible, our implementation provides an approximate tnderstanding of
its performance. All Bayesian competitors are allowed to draw 50, 000 MCMC samples,
with posterior inference carried out on the last 20, 000 MCMC samples after suitable

thinning.

4.1 Predictor and Response Data Generation

In all simulation studies, );is generated accordingto the network regression model
Y= Mo+ {ALB) 4G, 9~ N(0,75),0(6)

with % as the true noise variance. All simulations use V= 20 nodes and n= 70
samples.

4.1.1 Simulation 1

w,'w,
In this group of simulations, the (4 /-th entry of B, isgivenby 2 | where the

W 4 W : , .
vectors ! v, each of dimension Rgen are generated from a mixture

w,o~a N, W Wi+ (1-7)d,, kell... V], (7)
where % is the Dirac-delta function and 77 is the probability of any Wi being nonzero.
Since (-, is the probability of a node not being influential, it is referred to as the

node sparsity paramefer. This data generation mechanism is quite similar (although not

14



identical) to our hierarchical prior. Hence, the goal of this first simulation is to evaluate
the ability of the model to recover the true data-generation mechanism and, in

particular, its ability to identify the true dimension of the latent space, as well as the
sensitivity of the results to the choice of the maximum latent dimension A. The ability of
the model to identify the true dimension of the latent space is assessed by looking at the
posterior mode of the effective dimensionality Res (discussed in Sections 3.2.2 and 3.3).
As we illustrate in Appendix D of the online supplementary material, the posterior mode

of Rercoincides with the true dimension Rgen In all cases under Simulation 4.

For a comprehensive picture of Simuiation 7, we consider 10 different cases as
summarized in Table 1. In each of these cases, the network predictor coefficient and the

-7)

response are generated by changing the sparsity ( and the true dimension Rgen of

the latent variables "*'s. The table also presents the maximum dimension R, used to fit
the model, of the latent variables “’s for the network regression model (2). Note that

. . . | e 4 .. R=>R
we include various cases of model mis-specification in‘which o For all

2 0.8x1

. . I :
simulations, ¥me and s are set as Rer and =% | respectively, and the

variance % is fixed at 1. In Cases 1-8, the entries of the network predictor 4, for the £th
sample are simulated from a standard.normal distribution. In Cases 9 and 10 the
network predictor 4, for the £th sample follows a stochastic blockmodel. In Case 9, we
assume that each brain network has 3 local clusters with high within-cluster and low

between-cluster connectivity. More specifically, the matrices 4, 's consist of 3 symmetric

block diagonal matrices of dimensions 6 X 6, 7 X 7 and 7 x 7, respectively. Elements in

] N
these mattices are-drawn from V</:J") where / €11:2.3) for the fth block diagonal.
The off-diagonal blocks are highly sparse, with very few non-sparse elements denoting

connections between nodes in different clusters, randomly chosen from A{0, 1). In Case
10, 4, 's consist of 3 block diagonal matrices of dimensions 5 x5, 8 x8and 7 x 7. As

) .
before, the elements in these matrices have been drawn from N JT) where J €11.2.3)
, for the f#th block diagonal. However, in this case the elements in the off-diagonal
matrices have been drawn from M4, 1), M5, 1) and M6, 1).

15



4.1.2 Simulation 2

In this case, B, is constructed by first generating Vbinary indicators foesdy

Ber(m, )

independently from a , one for each node in the network. If both &=1 and

&=1 , the edge coefficient connecting the Ath and the £fth nodes (4 < } is simulated
from V(O.8.1) Otherwise, we set the (4 )-th edge coefficient to be 0. Similar to

Simulation 1, we refer to (1 a 7!2’"’) as the node sparsity parameter. While this simulation
scenario has some similarities to our proposed model, the mean effect for influential
edges is constant. Therefore, the goal of this simulation is to evaluate the\performance
of the model in situations where there are weak network effects in the matrix of

coefficients. The network predictor A4 for the £th sample is simulated by drawing Gt

i =0

independently from a MO, 1) distribution for & < fand setting B [Tk and %k for

2
I k.l E{]""’V} . Finally, the variance % is fixed at 1@s in\Simulation 1. Table 2

al
presents the two cases we consider for Simulation Z/which are obtained by varying the

node sparsity parameter. Unlike in Simulation 7, the true network predictor coefficient

matrix B, is not guaranteed to be low<xank in"Simuiation 2.

4.1.3 Simulation 3

Ber(m, )

In this case, we draw Vindicatorvariables - from a corresponding to

the V' nodes of the network. If both &=1 and &=1 , then the edge coefficient
connecting the Athahd the £th nodes (1=& </ =V s simulated from a mixture

ﬂin(O'S’DJF(l_ﬂiwwo. Otherwise, if &=0 for any & we set the

distribution given by
(k, H-th edge coefficient to be 0 for all { Contrary to Simulation 2, Simulation 3 allows

the possibility of an edge between the A4th and the A/th nodes having no impact on the

response even when both & and & are nonzero. |n the context of Simulation 3,

(=-7,) and (=7, are referred to as the node sparsify and the edge sparsity

parameters, respectively. Hence, the goal of this simulation is to evaluate the impact of
edge sparsity and its interaction with node sparsity on model performance in situations

where there are weak network effects in the matrix of coefficients. Network predictors
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are randomly generated using the same mechanism as in Simuiation 2and the true
2
variance % is again fixed at 1 for all cases. Table 3 presents the four cases we

consider in this evaluation, which are generated by changing the node sparsifyyand

edge sparsity. Similar to Simulation 2, the true network predictor coefficient matrix B, s

not guaranteed to be low-rank in Simufation 3.
4.2 Results

In all simulation results shown in this section, our BNSP model is fitted with the choices

of the hyper-parameters given by v =10, a,=1b,= 1, {=1and /= 1.Qurextensive
simulation studies reveal that both inference and prediction are robust to various

choices of the hyper-parameters.

4.2 1 |ldentification of Influential Nodes

Figures 2 and 3 show the posterior probability of the 4th node being detected as

influential, i.e., P(g, = 1|Data) , for each node and each case within Simulation 1,
Simulation 2and Simulation 3. In the case of\Simulation 7, the model is able to
accurately identify nodes influencing the response for any reasonable cutoff threshold.
Indeed, the receiver operating characteristic (ROC) curves associated with all these
simulations have areas under the curve (AUC) very close to 1. For both cases in
Simulation 2, using our default threshold of 0.5, the model identifies all nodes to be
inactive, though the performance is a bit better in Case 1 with a higher node sparsity. In
particular, in Case 1, the model tends to assign lower posterior probabilities to truly non-
influential nodes, and hence, the associated AUC is quite high (1.00). In Simulation 3,
the model performs well when the node sparsity is high (AUC 1.00 for both Cases 1 and
3), and somewhat unsatisfactorily when the node sparsity is low. Furthermore, under
lower node sparsity, the AUC is higher with lower edge sparsity (AUC for Case 2 and
Case 4 are 0.81 and 0.57, respectively). Among the competitors, only Arroyo Relidn ef
al., 2019 allow identification of influential nodes, and when applied to these simulations,

selects all nodes as significant in every case.

4.2.2 Parameter estimation
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Tables 4 and 5 present the mean squared error (MSE) of all the competitors in

Simulations 1, 2and 3 respectively. Given that both the fitted network regression

coefficient Band the true coefficient B, are symmetric, the MSE is calculated as

2 . >
vy —1) ;(}/k,f Yiio)

, Where il is the point estimate of et For Bayesian models

(including our proposed model), Vet is taken to be the posterior mean of Vit

Table 4 shows that BNSP outperforms all its competitors in all cases of Simuiafion.7. In
Cases 1-7, where the sparsity parameter is low to moderate, we perform
overwhelmingly better than all the competitors. When the sparsity parameter in

Simulation 7is high (Case 8), our simulation scheme sets a very.large proportion of

Yi10's to zero. As a result, BNSP only slightly outperforms BlLassoand Horseshoe.
BNSP also shows superior performance when the network predictor has modular
structure (Cases 9-10). While BNSP is expected toperform much better than BLasso,
Horseshoe and Lasso due to incorporation of network_ information, it is important to note
that the carefully chosen global-local shrinkage. prior with a well formulated hierarchical
mean structure seems also to outperform Arroyo Relidon ef a/., 2019, which is explicitly

designed to account for the network structure.

For Simu/ations 2and 3, Table 5,demonstrates that, when node or edge sparsity are
high, BNSP is marginally outperformed by Horseshoe. This might be due to the fact that
a high degree of sparsity‘in the'edge coefficients in the truth favors ordinary high
dimensional regression. As node sparsity decreases, so that more edge coefficients are
nonzero in.the truth and the network structure in the predictors dominates, BNSP tends

to show increasing advantage in terms of estimating the network coefficient B.

4.2.3 Identifying influential edges

Tables 6 and 7 show the true positive rates (TPR) and false positive rates (FPR)
associated with the detection of important edges for Simuiation 7 and Simulation 3
using BNSP, Lasso and Arroyo Relidn ef al, 2019. Since Simulation 3is a more general

case of Simuiation 2 a corresponding table for Simulation 2is omitted in the interest of
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space. The results for our method are based on controlling the FDR at 0.05 using the

algorithm described in Appendix C of the Supplementary material.

In Simuiation 7, BNSP outperforms Lasso and Arroyo Relidon ef a/. (2019). Lasso is
competitive with BNSP in Simulation 3, although in this case all models tend to perform
unsatisfactorily when node sparsity is low. Arroyo Relidn ef a/, 2019 identify all edges
as important in all the simulation scenarios, resulting in high FPRs, although their
performance could perhaps be improved with a more appropriate choice of tuning
parameters rather than the choice made by a 10-fold cross-validation scheme in this
article (Leng ef a/, 2006; Meinshausen and Buhlmann, 2010). However, in the absence
of any available package for our context, we refrain from a more detailed investigation

of this issue as it does not constitute the main Bayesian focus ofthis article.
4.2.4 Predictive Inference

We compare the out-of-sample predictive ability of the different models based on the
point prediction and characterization of predictive uncertainties using test samples of
size nprea = 30. To assess point prediction, we.employ the mean squared prediction
error (MSPE). As measures of predictive uncertainty, we provide coverage and length of
95% predictive intervals. For frequentist competitors, 95% predictive intervals are

obtained by using predictive point estimates plus and minus 1.96 times standard errors.

Tables 8 and 9 show results for Simuiation 1, Simulation 2and Simulation 3,
respectively. For Simuiation 7, BNSP clearly outperforms other competitors in terms of
point prediction. Horseshoe becomes competitive in cases with a higher degree of
sparsity (Cases.2 and 8). Lasso and BLasso are competitive only in Case 8, while our
approach seems to dominate the method of Arroyo Relidn ef af (2019) in all cases. In
terms of prediction uncertainty, BNSP tends to generate the shortest intervals among
the competitors, showing slight under-coverage only in Cases 2 and 8. As in the case of
point prediction, Horseshoe seems to yield results very similar to our model in Cases 2
and 8.
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In the case of Simufations 2and 3, BNSP seems to outperform all other methods in
terms of point prediction in situations where the node sparsity is low. Similar
observations can be made with respect to the coverage of the intervals. BNSP seems to
have shorter intervals and good coverage among all Bayesian competitors in Case 2 of
Simulation 2and in Cases 2 and 4 of Simuiation 3 making it the top performer among
the Bayesian competitors. In Case 2 of Simulation 2, BNSP and Horseshoe are the two
best performers in terms of characterizing uncertainties. For the remaining cases in
Simulations Zand 3, Horseshoe and BLasso also are competitive with our method:
Notably under Simuiations 2and 3 the true coefficient matrix does not.necessarily
assume any low-rank structure. BNSP is a competitive performer interms of parametric

and predictive inference even under such settings.

4.2.5 Sensitivity to the choice of R

In order to examine the behavior of the model with increasing A, we rerun our model for
each simulation scenario with £ =10, 15 and 20.(in(addition to our original choice of R).
For the sake of brevity, we only provide results for the data corresponding to Case 5 in
Simulation 7 (see Table 10). The behavior of all metrics is quite stable. The only values
that seem to be slightly affected are the posterior means of Rerand the length of the

95% credible intervals, which show/little increase when we go from £ =5to R = 20.
4.2.6 Scalability and Computation Time

Computation times {in-hours) for competing methods are provided in Table 11. It may
be noted that computation times for frequentist methods correspond to the time required
to compute the method for each combination of tuning parameters and each fold in the
cross-validation procedure. For BNSP, we provide the total time taken to run 50, 000
MCMC iterations. Since frequentist methods yield results just after a few iterations, they

require substantially smaller computation times compared to ENSP.

S Findings from Brain Connectome Data using BNSP
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This section presents the analysis of the brain connectome data using BNSP and
highlights the important findings. Note that the interest lies in predicting the CCl of a
subject from his/her brain network, and in identifying brain regions (nodes in the brain
network) that are involved with creativity, as well as influential connections between
different brain regions. Before carrying out our analysis, each cell of the adjacency
matrix is standardized by subtracting the mean and dividing by the standard deviation
with respect to all 7 =79 samples. CCl is also standardized in a similar fashion. The
MCMC chain for our model is run for 50, 000 iterations, with the first 30, 000 iterations
discarded as burn-in. Convergence is assessed by comparing different.simulated
sequences of representative parameters started at different initial values,(Gelman ef a/,
2014). We monitor the auto-correlation plots and effective sample sizes. Prior
specification is identical as in the simulation studies. For the purpose of this data
analysis, BNSP is fitted with /= 9. Later, we show thatthe results are robust to

moderate increases in the value of A,

We first focus on identifying influential ROls.in the brain network. To add robustness to
this process in the absence of any ground truth, ENSP has been fitted 10 times on the

=1Data) o eeds

real data. In each fit, the Ath node is identified as nfluentialit (g
0.5. Finally, we report those nodes 16 be /nfluentia/that are found as so in more than

50% of the 10 runs. This criteria identifies 19 out of 68 ROls as influential

Of the influential ROls, 7 belong to the left hemisphere and 12 belong to the right
hemisphere. (see Table 13). Our findings coincide with results that have been
previously presented In the literature. A large number of the 19 influential nodes
detected by ourmethod are part of the fronfa/(6) and fempora/ (6) cortices in both
hemispheres. The frontal cortex has been scientifically associated with divergent
thinking and problem solving ability, in addition to motor function, spontaneity, memory,
language, initiation, judgement, impulse control and social behavior (Stuss ef a/., 1985).
Some of the other functions directly related to the frontal cortex seem to be behavioral
spontaneity, interpreting environmental feedback and risk taking (Razumnikova, 2007;
Miller and Milner, 1985; Kolb and Milner, 1981). Similarly, Finkelstein ef a/, 1991 report
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de novo artistic expression to be associated with the frontal and temporal regions. Our
results also show substantial overlap with those of Jung ef a/, 2010, in which a
regression model is used to understand the relationship between CCIl and ROI-specific
measures to account for the relationship between creativity and different brain regions.
In particular, both approaches identify the /feff superior temporal sulcus, the pars
frianguiarns, the right supericrparietal, the orbifofrontal/ and the right posterior cingulate
regions as influencing CCIl. However, although there is significant intersection between
the findings of Jung ef af, 2010 and our method, there are a few regions that'we detect
as influential and they do not, and vice versa. For example, our model detectsthe right
paracentraland the precenifra/regions in both the hemispheres to besignificantly
related to CCI, while Jung ef a/, 2010 do not. On the other hand;*they.identify the
fusiform region to be significant while we do not. Applying thesmethod of Arroyo Relién
et al., 2019 to our dataset leads to the identification of 6&wout,of 68 ROIls as influential.
The three regions that are found to be uninfluential.are the fronfalpole, femporalpole

and the fransversefemporalregions in the right hemisphere.

Along with influential ROls, we are interested'in identifying the statistically significant
edges or connections between the 68 ROls. Figure 4 plots the 98 interconnections that
appear to be influential, controlling for a 0.05 FDR. A posteriori, the average of the

mean effective dimensionality over 10 runs is 3.37.

Our interest turns now to the predictive ability of the Bayesian network regression
model. Table 12 reports the average mean squared prediction error (MSPE) between
observed and predicted responses, length and coverage of 95% predictive intervals for
a ten-fold cross-validation exercise, over 10 independent model fits. As reference, we
also present MSPE, length and coverage values for Lasso, BLasso and Arroyo Relion
et al,, 2019. BNSP outperforms all other methods in terms of point prediction. In terms
of prediction intervals, all methods perform similarly. The coverage of BNSP and
Horseshoe are slightly under our target, while those of the other methods are slightly

above target.
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Finally, we assess the sensitivity of the model to the choice of R. Table 14 shows nearly
identical results by choosing £ =9, 10, 12 and 15, suggesting that our original choice of

R is sufficiently large for this application.

6 Conclusion and Future Work

This article finds regions of interest (ROI) and interconnections among ROls in the
human brain predictive of the composite creativity index (CCI) using a novel Bayesian
regression framework. This framework involves CCI as the response and the brain
network as the predictor. To account for the correlation in the regression coefficients
that is expected from the relational nature of the brain network predictor,we carefully
construct a novel class of network shrinkage priors. A notable finding.of this article is
that the majority of brain regions significantly related to CCl| belongto the fronia/and
femporallobes in both hemispheres. Further, the Bayesian framework allows careful
guantification of predictive uncertainty, as well as the uncertainty related to the
identification of each ROI to be influential. Empirical results from simulation studies
show that our method is superior to popular alternatives in situations where the level of
network node sparsity is at least moderate, and mostly competitive in other

circumstances.

A number of future directions emerge from this work. There exist brain connectome
applications where there is'a binary response phenotype (say Intelligence Quotient or
1Q), and the goal is to simultaneously classify a sample of brain networks into *high” and
‘low” 1Q groups and identify influential ROls and the interconnections between ROls
predictive of Q.. The methodological problem in such applications requires extending
our current approach to the context of a binary response. We wiill explore embedding
our proposed hierarchical prior into a generalized linear model and extend the
computational algorithms to deal with binary regression schemes using standard latent
data augmentation (Albert and Chib, 1993).

The efficient MCMC algorithm proposed here provides substantial benefits if Ais small

to moderate, but faces longer computation time when A is large. We plan to suitably

23



adapt existing Bayesian methods for high dimensional regression in the presence of a
large sample size and a large number of predictors in the context of our proposed
network regression, with a large sample size A and a larger number of nodes V. Finally,
we could replace the global-local priors we use in this paper with non-local priors
(Johnson and Rossell, 2012).

Supplementary Material

Appendix A: This section shows posterior propriety of parameters in the BNSP,model.

Appendix B: This section provides details of posterior computation forall the

parameters.

Appendix C: This section describes the procedure for edge selection in BNSP.
Appendix D: This section presents inference on the.effective dimensionalify in BNSP.
Appendix E: This section presents inference on'the, /afent positions in the BNSP model.

Acknowledgement

Sharmistha Guha was partially supported by funds from the Trinity College of Arts &

Sciences at Duke University.
Abel Rodriguez was partially supported by award NSF-DMS 1738053 and 1740850.
References

Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous
response data. Jowrnal of the American Statistical Association, 88(422), 669-679.

Arroyo Relidn, J. D., Kessler, D., Levina, E., Taylor, S. F., efal (2019). Network
classification with applications to brain connectomics. 7he Annals of Applied Stalistics,
13(3), 1648-1677.

24



Bullmore, E. and Sporns, O. (2009). Complex brain networks: Graph theoretical
analysis of structural and functional systems. Nalfure Reviews. Neuroscrence, 10(3),
186-198.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). The horseshoe estimator for
sparse signals. Biomelrika, 97(2), 465-480.

Chatterjee, A. and Lahiri, S. N. (2011). Bootstrapping lasso estimators. Jouwrnal of the
American Stalistical Association, 108(494), 608-625.

Craddock, R. C., Holizheimer, P. E., Hu, X. P., and Mayberg, H. S#(2009). Disease
state prediction from resting state functional connectivity. Magnetic Resonance in
Medicine, 62(6), 1619-1628.

De la Haye, K., Robins, G., Mohr, P., and Wilson, C. {2010). Obesity-related behaviors
in adolescent friendship networks. Social Netwerks, 32(3), 161-167.

Desikan, R. S., Ségonne, F., Fischl, B., Quinn,"B: T., Dickerson, B. C., Blacker, D.,
Buckner, R. L., Dale, A M., Maguire, R"P., Hyman, B. T., ef a/ (2006). An automated
labeling system for subdividing therhuman cerebral cortex on MRI scans into gyral

based regions of interest. Newreimage, 31(3), 968-980.

Durante, D., Dunson, DB, efa/ (2017). Bayesian inference and testing of group

differences in brainnetworks. Bayesian Analysis.

Fan, J., Gong, W., and Zhu, Z. (2019). Generalized high-dimensional trace regression

via nuclear norm'regularization. Jouwrnal/ of Economefrics.

Finkelstein, Y., Vardi, J., and Hod, I. (1991). Impulsive artistic creativity as a

presentation of transient cognitive alterations. Behavioral Medicine, 17(2), 91-94.

Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation
and creative drive. Journal of Comparative Neurology, 493(1), 147-153.

25



Fornito, A., Zalesky, A., and Breakspear, M. (2013). Graph analysis of the human

connectome: promise, progress, and pitfalls. Newroimage, 80, 426-444.

Fosdick, B. K. and Hoff, P. D. (2015). Testing and modeling dependencies between a
network and nodal attributes. Journal of the American Statistical Association, 110(511),
1047-1056.

Fowler, J. H. and Christakis, N. A, (2008). Dynamic spread of happiness in alarge
social network: longitudinal analysis over 20 years in the Framingham Heart Study.
British Med/ical Journal, 331.

Frank, O. and Strauss, D. (1986). Markov graphs. Journal of the American Silalistical
Association, 81(395), 832-842.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized

linear models via coordinate descent. Journalwof Statistical Software, 33(1), 1-22.

Gelman, A, Carlin, J. B., Stern, H. S., Dunson;"D. B., Vehtari, A., and Rubin, D. B.
(2014). Bayesian Dala Analysis, volume 2. CRC Press Boca Raton, FL.

Gramacy, R. B. (2013). R packagemonomvn.

Guhaniyogi, R. and Rodriguez,/A. (2018). Joint modeling of longitudinal relational data

and exogenous variables. Bayesian Analysis.

Guhaniyogi, R, Qamar, S., and Dunson, D. B. (2017). Bayesian tensor regression.

Journal of Machine Learning Research, 18(79), 1-31.

Hagmann, P., Jonasson, L., Maeder, P., Thiran, J.-P., Wedeen, V. J., and Meuli, R.
(2006). Understanding diffusion mr imaging techniques: from scalar diffusion-weighted
imaging to diffusion tensor imaging and beyond. Radiographics, 28(suppl_1), S205-
8223,

Harville, D. A. (1998). Matrix Algebra from a Statistician’'s Perspective.

26



Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Jouwrna/ of the
American Stalistical Association, 100(469), 286-295.

Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to
social network analysis. Journal of the American Stalistical Association, 97(460), 1090-
1098.

Ishwaran, H. and Rao, J. 8. (2005). Spike and slab variable selection: Frequentist and
Bayesian strategies. Annals of Stalistics, 33(2), 730-773.

Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C., and"Behrens, T. E.
(2015). Measuring macroscopic brain connections in vivo. Nafure neuroscience, 18(11),
1546.

Johnson, V. E. and Rossell, D. (2012). Bayesian model selection in high-dimensional
settings. Journal of the American Statistical Association,107(498), 649-660.

Jung, R. E., Segall, J. M., Jeremy Bockholt;\H.*Flores, R. A., Smith, S. M., Chavez, R.
S., and Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31(3),
398409,

Kiar, G., Gray Roncal, W., Mhembere, D., Bridgeford, E., Burns, R., and Vogelstein, J.
(2016). ndmg: Neurodata's MRI graphs pipeline.

Kolb, B. and Milner; B. {1981). Performance of complex arm and facial movements

after focal.brain lesions. Neuropsychologia, 19(4), 491-503.

Kyung, M., Gill, J., Ghosh, M., Casella, G., efal (2010). Penalized regression,

standard errors, and bayesian lassos. Bayesian Analysis, 5(2), 369-411.

Leng, C., Lin, Y., and Wahba, G. (2006). A note on the lasso and related procedures in
model selection. Stafistica Sinica, 16(4), 1273.

27



Li, H. and Pati, D. (2017). Variable selection using shrinkage priors. Compulational
Statistics & Data Analysis, 107, 107-119.

Li, Y., Qin, Y., Chen, X,, and Li, W. (2013). Exploring the functional brain network of

alzheimer?s disease: based on the computational experiment. F/oS one, B(9), e73186.

Meinshausen, N. and Bahlmann, P. (2010). Stability selection. Journa/ of the Roya/
Statistical Sociely: Series B (Stalistical Methodology), T2(4), 417-473.

Miller, L. and Milner, B. (1985). Cognitive risk-taking after frontal or temperal
lobectomy-II. The synthesis of phonemic and semantic information. Neurops)chologia,
23(3), 371-379.

Nowicki, K. and Snijders, T. A. B. (2001). Estimation and prediction for stochastic block
structures. Journal of the American Stalistical Association, 96(455), 1077-1087.

Park, H.-J. and Friston, K. (2013). Structural and'functional brain networks: from
connections to cognition. Science, 342(6158), 1238411.

Park, T. and Casella, G. (2008). The 'Bayesian Lasso. Journal/ of the American
Statistical Association, 103(482), 681-686.

Polson, N. G. and Scott, J. G. (2010). Shrink globally, Act locally: Sparse Bayesian
Regularization and Prediction. Bayesian Statistics, 8, 501-538.

Raskutti, G., Yuan,»M., Chen, H., ef a/. (2019). Convex regularization for high-
dimensional multiresponse tensor regression. The Annals of Statistics, 47(3), 1554—
1584.

Razumnikova, O. M. (2007). Creativity related cortex activity in the remote associates
task. Brain Research Bulletin, T3(1), 96-102.

Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., and Van De Ville, D. (2011).
Decoding brain states from fMRI connectivity graphs. Neuroimage, 56(2), 616-626.

28



Shoham, D. A, Hammond, R., Rahmandad, H., Wang, Y., and Hovmand, P. (2015).
Modeling social norms and social influence in obesity. Current Epidemiclogy Reports,
2(1), 71-79.

Sibson, R. (1978). Studies in the robustness of multidimensional scaling: Procrustes
statistics. Journal of the Royal Statistical Sociely. Series B (Methodological), pages
234-238.

Stuss, D., Ely, P., Hugenholtz, H., Richard, M., LaRochelle, S., Poirier, C4 and Bell, I.
(1985). Subtle neuropsychological deficits in patients with good recovery after.closed

head injury. Neurosurgery, 17(1), 41-47.

Teh, Y. W., Grar, D., and Ghahramani, Z. (2007). Stick-breaking.construction for the
indian buffet process. |n Artificial Intelligence and Stalistics, pages 556-563.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the

Royal Statistical Society. Series B (Methodelogical), 58(1), 267-288.

Young, S. J. and Scheinerman, E. R.{2007). Random dot product graph models for
social networks. |n /nfernational Werkshop on Algorithms and Models for the Web-

Graph, pages 138-149. Springer.

Zhang, Z., DescoteauxyM., and Dunson, D. B. (2019). Nonparametric bayes models of

fiber curves connecting brain regions. Journal of the American Stalistical Association,

pages 1-23.

29



Fig. 1 Maps of the brain network (weighted adjacency matrices) for two representative
individuals in the sample. Since the (4, A-th off-diagonal entry in any adjacency matrix
corresponds to the number of fibers connecting the 4th and the £th ROls, the
adjacency matrices are symmetric. Hence the figure only shows the upper triangular

portion.
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Fig. 2 Posterior probability that a node is influential, P(¢; =1|Data) , for each node and
each of the 10 cases associated with Simuiation 7. Dark cells correspond to the truly

influential nodes.
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Fig. 3 Posterior probability that a node is influential, P(¢; =1|Data) , for each node and

all cases associated with Simulation 2and Simu/ation 3. Dark cells correspond to the

truly influential nodes.
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Fig. 4 Significant inter-connections detected among influential brain regions of interest
(ROIs) in the Desikan atlas. White cells show influential nodal associations among
ROls. Prefix ‘Ih-" and ‘rh-’ in the ROl hames denote their positions in the left and right

hemispheres of the brain respectively.
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Table 1 Table presents different cases for Simulfation 7. The true dimension Rgen is the

dimension of vector object Wi using which data has been generated. The maximum

dimension R is the dimension of vector object o using which the model has been fit.

Sparsity refers to the fraction of generated Wi = 0, Le., -z, .
Cases
Quantity | Case | Case | Case | Case | Case | Case |Case |Case | Case | Case
1 2 3 4 5 6 7 8 9 10
Rgen 2 2 2 2 2 2 3 2 3 3
R 3 5 4 5 3 4 4 5 5
Sparsity | 0.5 0.6 0.3 0.4 0.5 0.4 0.5 0.7 0.5 0.6

Table 2 Table presents different cases for.Simufation 2. The maximum dimension R is

the dimension of vector object %, using whichithe model has been fit. Simuwiation 2only

. Fia
has one sparsity parameter ~ 2.

Cases
Quantity | Case 1 | Case 2
R 5 5
Sparsity | 0.7 0.2
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Table 3 Table presents different cases for Simufation 3. The maximum dimension R is
the dimension of vector object o using which the model has been fit. While Simulation
2only has a sparsity parameter, Simu/ation 3has a node sparsity (ﬂz’“’) and an edge

sparsity (ﬂi“’ ) parameter, respectively.

Cases
Quantity Case 1 |Case 2 | Case 3 | Case 4
R 5 5 5 5

Node Sparsity | 0.7 0.2 0.7 0.2

Edge Sparsity | 0.5 0.5 0.3 0.7

Table 4 Performance of BNSP vis-a-vis competitors for.cases in Simuiation 7. Point
estimation of edge coefficients has been capturedthrough the Mean Squared Error

(MSE). The minimum MSE among competitors for any case is made bold.

MSE
Method Case | Case |Case.|Case | Case |Case | Case | Case | Case | Case

1 2 3 4 5 6 7 8 9 10
BNSP 0.007 |/0.008 | 0.058 | 0.006 | 0.007 | 0.005 | 0.050 | 0.006 | 0.396 | 0.004
Lasso 0.438 | Q.660 | 1.295 [ 0.455 | 0.371 | 0.412 | 1.344 | 0.010 | 2.231 | 0.025
Relién(2019) | 0.524 1 0.929 | 1.117 | 0.552 | 0.493 | 0.655 | 1.629 | 0.069 | 2.207 | 0.047
BlLasso 0472 | 0.863 | 1.060 | 0.465 | 0.699 | 0.464 | 1.638 | 0.008 | 0.751 | 0.018
Horseshoe | 0.395 | 0.012| 1.070 | 0.393 | 0.299 | 0.493 | 1.381 | 0.007 | 0.706 | 0.012
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Table 5 Performance of BNSP vis-a-vis competitors for cases in Simulation 2and

Simulation 3, respectively. Point estimation of edge coefficients has been captured

through the Mean Squared Error (MSE). The minimum MSE among competitors for any

case is made bold.

MSE
Simulation 2 Simulation 3
Method Case 1| Case 2 |Case 1 |Case 2 | Case 3 | Case 4
BNSP 0.053 |0.732 |0.006 |0485 |(0.010 |0.128
Lasso 0.012 |0.843 |0.006 |0.636 |(0.004 |0.178
Relién(2019) | 0.036 | 0.859 |0.017 |0.617 |[0.036 |0.145
BlLasso 0.008 |0.836 |0.004 |0.669 |0.005 [10.182
Horseshoe |(0.006 |0.948 |0.002 |0.629 |0.004 |0.145

Table 6 True Positive Rates (TPR) and False Positive Rates (FPR) for edges for cases

in Simufation 1.

Method Case | Casen|\Case | Case | Case | Case | Case | Case | Case | Case
1 2 3 4 5 6 7 8 9 10

BNSP | TPR | 0.98=| 1 0.90 |1 0.82 [0.98 (093 (087 |0.83 |0.85
FPR [205, 0.02 |0.02 |0.08 |0.06 [0.08 [0.06 [0.01 |0.02 |0.06

Lasso |[TPR|G60 |0.86 |0.14 |053 |047 (059 (060 [0.73 |0.58 |0.61
FPR|029 025 |0.05 |0.23 |0.27 [0.29 [0.27 (0.22 |0.18 |0.17
Relion [ TPR | 1 1 1 1 1 1 1 1 1 1
FPR| 1 1 1 1 1 1 1 1 1 1
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Table 7 True Positive Rates (TPR) and False Positive Rates (FPR) for edges for cases
in Simulation 3.

Method Case 1| Case 2 | Case 3 [ Case 4
BNSP |[TPR|0.72 0.82 1 0.91
FPR| 0.14 0.62 0.51 0.84
Lasso |TPR | 0.86 0.36 0.91 0.23
FPR| 0.20 0.21 0.15 0.07
Relion [ TPR | 1 1 1 1
FPR| 1 1 1 1
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Table 8 MSPE, coverage and length of 95% predictive intervals (Pls) under the BNSP

vis-a-vis competitors for cases in Simuiation 1. Lowest MSPE for any case is made

bold.
MSPE
Method Case 1 | Case 2 |Case 3 |Case 4 | Case 5 | Case 6 | Case 7 | Case 8 | Case 9 | Case 10
BNSP 0.021 0.003 (0052 |0.011 |0.025 |0.006 |0.025 |0.041 0.186 | 0.037
Lasso 0425 0.311 1.022 10294 (0555 |0447 (0533 0075 |0823 |4.887
Relion 0.587 0.461 0498 |0.369 |[0.561 0.539 |0.605 |0.365 | 0.821 0.461

BlLasso 0.451 0414 | 0815 |0.249 |0.729 |[0821 |0.572 |[0,060% [0.381 |0.252

Horseshoe | 0.434 0.005 |0772 |0.243 | 0.361 0.745 | 0563 (]| 0.046 |0.383 |0.182

Coverage of 95% Pl

Method Case1 |[Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case@'| Case 8 | Case @ | Case 10

BNSP 1.000 0.933 | 0990 |0.967 |0990 |[1.000 %] 0067 (0933 (0990 |0.990
Lasso 1.000 0.967 |0900 |1.000 |0933 |[0967, |097 [1.000 (0933 |0.965
Relidn 0.667 0.767 | 0767 |0.900 |0633, 0667 |0633 (0900 (0867 |0.833

BlLasso 1.000 0.967 |1.000 |1.000 |096/ " .[0900 |1.000 |[1.000 (0990 |0.967

Horseshoe | 0.967 1.000 |[1.000 |1.000% (1.000 (0967 |0967 |[0.967 (0990 |0.900

Length of 95% PI

Method Case1 |[Case 2 |Case 3 | Cased | Case 5 | Case 6 | Case 7 | Case 8 | Case @ | Case 10

BNSP 10,923 [ 6.118 |[24.630 [W7.894 | 8697 |[8.008 |27.491 |4.753 |34.726 |5.638
Lasso 39.732 [ 99.778 38259 | 52177 | 27.43 [956.922 | 70.655 | 23.964 | 75.309 | 13.216
Relidn 18.348 [ 34.138 {30.126| 26.848 | 15.115 | 32.434 | 31.746 | 12.122 | 61.221 [ 10.419

BlLasso 40.297 | 60.108 |©67.251 [ 39.728 | 43.027 | 75.322 | 83.132 | 8578 | 55.603 | 11.485

Horseshoe | 33.489 [9.366 |[61.534 | 33.529 | 30.132 | 76.089 | 68.103 | 5.846 | 69.886 | 6.618
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Table 9 MSPE, coverage and length of 95% predictive intervals (Pls) under the BNSP
vis-a-vis competitors for cases in Simuiation 2and Simulation 3, respectively. Lowest

MSPE for any case is made bold.

MSPE
Simulation 2 Simulation 3
Method Case 1| Case 2 |Case 1 |Case 2| Case 3 | Case 4
BNSP 0519 |0.5676 |0.243 |0.661 |0.148 |0.438
Lasso 0252 |0.671 |0.252 |0.815 |0.134 |0.696
Relién 0453 |0.739 |0452 |0.867 |0407 |0.576
BlLasso 0153 |0.722 |0.220 |0.875 |0.124 |0.781
Horseshoe | 0.122 |0.816 |0.210 |0.873 |0.119 | 0595

Coverage of 85% PI

Simulation 2 Simulation 3
Method Case 1| Case 2 | Case 1 | Case 2| Case 3 | Case 4
BNSP 0.990 |0.933 |1.000 |1.00Q 7| 0900 |0.967
Lasso 1.000 |0.700 |1.000 {0.900% | 1.000 |0.433
Relién 0.833 |0.600 |0.967".|0.633 |0.900 |0.633
BlLasso 0.933 |0.833 40933 |1.000 |0.933 |0.867
Horseshoe | 0.967 | 0.867" 10.967 |1.000 | 0.833 |0.967

Length of 85% P

Simulation 2 Simulation 3
Method Case 1 |WCase 2 | Case 1 [Case 2 | Case 3 | Case 4
BNSP 14.068 | 32.219 | 6.889 | 33.094 | 10.069 | 18.704
Lasso 15.940 | 34.413 | 13.080 | 27.121 | 22.774 | 9.397
Relién 9544 | 20117 |7.877 |17.913 | 11.760 | 11.675
BlLasso 8.957 |45.959 |6.508 |52.087 |5.980 |22.049
Horseshoe | 6.879 |43.834 | 5.268 |50.072|5.654 |20.227




Table 10 Model behavior in terms of model performance metrics with changing values

of Rfor data corresponding to Simulation 7, Case 5. We report MSE, MSPE, length and

coverage of 95% predictive intervals, and the posterior mean of effective dimensionality

Rer

R | MSE | MSPE | Coverage | Length of 95% PI | Posterior Mean of Rer
5 |0.0066 | 0.025 | 0.990 8.697 212

101 0.0063 | 0.022 | 0.967 7.167 2.27

151 0.0062 | 0.021 | 0.967 7.251 2.86

201 0.0063 | 0.019 | 0.990 8.014 2.79
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Table 11 Computation times of competing methods for different values of sample size

(V) and number of nodes (V). For the Bayesian method BNR, the table records the run

time in hours for all 50, 000 MCMC iterations. The last two columns record total run time

for frequentist methods with a single combination of tuning parameter values.

V| N | BNR | Lasso | Relion(2019)
20 |70 | 0312 |[0.0001 | 0.0005
20 |100|0.363 [ 0.0002 | 0.0006
20 | 1501|0484 |[0.0001 | 0.0016
40 |70 | 1.595 | 0.0001 | 0.0008
40 | 100 | 2.069 | 0.0001 | 0.0008
40 | 150 | 2.876 | 0.0002 | 0.0008
60 |70 |7.051 |[0.0003 |0.0016
60 |100|9.412 |[0.0002 |0.0025
60 | 150 | 13.458 [ 0.0002 | 0.0026
80 |70 |16.541 [ 0.0005 | 0.0026
80 | 100 | 25.605 [ 0.0004 | 0.0011
80 | 150 | 39.68 |[0.0006 |0.0017
100 |70 | 47.23 | 0.0002 | 0.0011
100 | 100 | 63.41 | 0.0004+] 0,004
100 | 150 | 75.90 [ 0.0004 .0:0023
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Table 12 Predictive performance of competitors in terms of mean squared prediction

error (MSPE), coverage and length of 95% predictive intervals, obtained through 10-

Fold Cross Validation in the context of real data. Note that since the response has been

standardized, an MSPE value greater than or around 1 will denote an inconsequential

analysis.

BNSP | Lasso | Relion(2019) | BLasso | Horseshoe
MSPE 084 (098 |0.98 1.84 1.78
Coverage of 95% PI | 0.91 0.97 [0.97 0.97 0.93
Length of 95% PI 352 [3.88 |3.89 3.40 4.99
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Table 13 Brain regions (ROls) detected as influential for CCI by BNSP.

Region of Interest (ROI) Hemisphere Lobe
bank of the superior temporal sulcus | Left Temporal
rostral middle frontal gyrus Left Frontal
pericalcarine Left Parietal
medial orbitofrontal Left Temporal
precentral Left Parietal
frontal pole Left Temporal
temporal pole Left Temporal
medial orbitofrontal Right Temporal
superior parietal lobule Right Temporal
caudal anterior cingulate Right Cingulate
paracentral Right Frontal
isthmus cingulate cortex Right Occipital
pars opercularis Right Frontal
pars orbitalis Right Frontal
pars triangularis Right Occipital
posterior cingulate cortex Right Frontal
precentral Right Parietal
superior frontal gyrus Right Parietal
rostral anterior cingulate cortex Right Frontal
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Table 14 Predictive performance of BNSP with R=9.1012.15 {5 assess the sensitivity

of predictive inference with the choice of <.

BNSP (R = BNSP (R = BNSP (R = BNSP (R =
9) 10) 12) 15)
MSPE 0.84 0.85 0.85 0.85
Coverage of 95% PI | 0.91 0.91 0.91 0.91
Length of 95% PI 3.52 3.61 3.65 3.64
Posterior Mean of 3.37 3.57 3.62 3.89

Rer
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