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Abstract: Identifying disease clusters (areas with an unusually high inci-
dence of a particular disease) is a common problem in epidemiology and
public health. We describe a Bayesian nonparametric mixture model for
disease clustering that constrains clusters to be made of adjacent areal
units. This is achieved by modifying the exchangeable partition probability
function associated with the Ewen’s sampling distribution. We call the re-
sulting prior the Restricted Chinese Restaurant Process, as the associated
full conditional distributions resemble those associated with the standard
Chinese Restaurant Process. The model is illustrated using synthetic data
sets and in an application to oral cancer mortality in Germany.
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1. Introduction

A disease cluster is a higher-than-expected incidence of a particular disease
or disorder occurring in close proximity in terms of both time and geography.
Although communicable diseases (those that can be spread from one person
to another, such as the flu or HIV) often occur in clusters, clusters of non-
communicable disease are rare and their presence might indicate the presence
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of a harmful environmental factor or other hazard. Therefore, identification of
cancer clusters is a key task in epidemiology and public health.

A strand of the statistics literature on disease clustering focuses on methods
for confirmatory cluster analysis. Sometimes called focused tests, these methods
are concerned with determining whether the rate of disease in a pre-specified
area (which usually contains some putative health hazard) is higher than ex-
pected (e.g., see Stone, 1988, Besag & Newell, 1991, Tango, 1995, Morton-Jones
et al., 1999). In contrast, the focus of this paper is on methods for de novo iden-
tification of disease clusters in datasets in which the presence of such clusters is
not known. Methods based on scan statistics (e.g., see Weinstock, 1981, Kull-
dorff, 1997, Tango & Takahashi, 2005) are well known examples of this type of
approaches. Implementations of classical approaches to disease cluster analysis
are widely available in a number of platforms. One example is the R package
DCluster (Gómez-Rubio et al., 2005).

Methods for disease clustering can also be classified according to whether
they are designed to work with point-referenced or with spatially aggregated
(areal) data. In the case of point-referenced data, it is common to distinguish
between distance-based methods (Whittemore et al., 1987, Besag & Newell,
1991, and Tango, 1995, among others), which derive tests based on the distri-
bution of the time/distance between locations on which events occurred, and
quadrat-based methods (e.g, Openshaw et al., 1987, Kulldorff & Nagarwalla,
1995), which study the variability of case counts in certain subsets of the region
of interest (called quadrats). In the case of areal data, frequency tests similar
to those used in quadrat-based methods are frequently used (e.g., see Potthoff
& Whittinghill, 1966a and Potthoff & Whittinghill, 1966b). Bayesian meth-
ods for disease clustering in spatially aggregated data have been proposed by
Knorr-Held & Raßer (2000), Gangnon & Clayton (2000), Green & Richardson
(2002), Gómez-Rubio et al. (2018), Wakefield & Kim (2013), and Anderson et al.
(2014). Other recent contributions to the field include the work of Moraga &
Montes (2011), Charras-Garrido et al. (2012), Heinzl & Tutz (2014), and Wang
& Rodŕıguez (2014). Kulldorff et al. (2003), Waller et al. (2006), and Goujon-
Bellec et al. (2011) present detailed comparisons of various methods for disease
clustering.

It is worth noting that the main goals of disease clustering methods are similar
but distinct from those of disease mapping. Typically, disease mapping appli-
cations deal with the estimation of smooth covariate-adjusted risk measures,
but do not aim at identifying discontinuities in the risk function. On the other
hand, the whole point of methods for de novo identification of cancer cluster is
to pinpoint such discontinuities. Of course, these two objectives are not neces-
sarily opposed (e.g., see Knorr-Held & Raßer, 2000, Green & Richardson, 2002,
and Anderson et al., 2014), but most techniques designed for disease mapping
are not directly applicable in the context of disease clustering. The literature on
disease clustering is also related to, but distinct from, the literature on bound-
ary analysis in areal data (sometimes referred to as “areal wombling”, e.g., see
Lu & Carlin, 2005; Lu et al., 2007; Fitzpatrick et al., 2010; Li et al., 2015b;
Guhaniyogi, 2017).
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In this paper we develop a Bayesian approach for de novo identification of
disease clusters in areal data. Our approach uses a restricted version of the
Exchangeable Partition Probability Function (EPPF) associated with a species
sampling model (SSM) (Pitman, 1995, 1996) as a prior on the partition of areal
units. To simplify our exposition, we focus here on the SSM associated with
the Dirichlet process (Ferguson, 1973; Blackwell & MacQueen, 1973; Antoniak,
1974; Lee et al., 2013; Rodŕıguez & Quintana, 2015), which is sometimes re-
ferred to as the Chinese restaurant process (CRP). However, the formulation is
more general and our key results (particularly around the form of the full con-
ditional distributions associated with the prior) extend to other SSMs such as
the Generalized CRP induced by the two-parameter Poisson-Dirichlet process
(Pitman & Yor, 1997).

The restricted prior we introduce in this paper is specifically designed to en-
force clusters made of adjacent spatial units (which we call admissible). The
approach we develop in this paper is related to those developed in Fuentes-
Garćıa et al. (2010) and Mart́ınez et al. (2014) in the context of time series
data. Fuentes-Garćıa et al. (2010) consider a special case of our model that
assumes ordered observations and uses reversible jump Markov chain Monte
Carlo algorithms for inference. More recently, Mart́ınez et al. (2014) propose
a change-point model constructed by restricting a Generalized CRP (Pitman,
1995; Gnedin & Pitman, 2006), but their proposal differs from ours in the
way the probability associated with inadmissible partitions is redistributed. Our
model can be seen as generalizing the ideas in Fuentes-Garćıa et al. (2010) and
Mart́ınez et al. (2014) to situations in which the EPPF is restricted to partitions
driven by general neighborhood graphs. We also show that, for our construc-
tion, the full conditional distributions associated with the restricted prior take
a simple and appealing form, making the use of reversible jump algorithm un-
necessary.

The model we introduce here is also related to the literature on spatially-
dependent mixture models. Fernández & Green (2002) consider the use of a
Potts model as the joint prior on the cluster indicators of a finite mixture model,
leaving the question of how the number of clusters is to be selected open. Loschi
& Cruz (2005), Müller et al. (2011), and Page et al. (2016) consider extensions
of Hartigan’s product partition model (PPM) (Hartigan, 1990) in which the
so-called coherence functions account for temporal and/or spatial dependence.
These models cannot be easily generalized to other SSMs beyond the CRP,
where the prior on the partition cannot be written in terms of the product of
coherence functions. Dahl (2008), Blei & Frazier (2011), Ghosh et al. (2011), and
Dahl et al. (2017) consider Chinese restaurant processes in which co-clustering
probabilities are functions of the distance between observations. In a similar
spirit, Li (2015), Li et al. (2013), Li et al. (2014), Li et al. (2015a), Li et al.
(2016a), Li et al. (2016b), and Li et al. (2016c) generalize the approach of Blei
& Frazier (2011) so that the clustering probabilities depend on side informa-
tion. A common feature of all these approaches is their focus on soft constraints
that encourage nearby areas to cluster together but still allow clusters to be
disconnected. In contrast, our focus is on ensuring that clusters are fully con-
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nected. This type of constraint is the most natural one in the context of our
application to disease clustering, and cannot be easily enforced with any of the
models discussed above. For example, Page et al. (2016) note that computational
challenges arise when a restricted cohesion function in a PPM is considered in
order to assign zero probability to “non-desirable” cluster configurations. Our
proposal overcomes these challenges.

The remaining of the paper is organized as follows: Section 2 presents our
model and discusses its properties. Section 3 describes our computational ap-
proach. Sections 4 and 5 present the analysis of two simulated data sets and an
application to oral cancer mortality in Germany, respectively. Finally, Section 6
discusses the limitations of our model as well as future research directions.

2. The model

Suppose that areal data in the form of pairs (yi, hi) are available, where yi
records the observed number of cases in region i, and hi represents the expected
number of cases in region i, obtained by internal or external standardization, for
i = 1, . . . , n. As is common in the literature, we assume that the counts in region
i are independently Poisson distributed and model their rates as a function of
hi and their log-scale relative risk, ηi, log-RR for short. More specifically,

yi | ηi ∼ Pois(hie
ηi), i = 1, . . . , n, (1)

where ηi = xt
iθi, x

t
i is the transpose of a p-dimensional vector of covariates

associated to region i, θi ∈ R
p is the random effect associated with region i, and

Pois(λ) denotes the Poisson distribution with rate λ > 0. When no covariates
are available, i.e., xi,j = 1, for all i, j, the log-RR reduces to ηi = θi, with θi ∈ R.

Our approach assumes that the geographic information associated with the
data set is encoded in a known n × n binary adjacency matrix, W = [wi,i′ ].
This adjacency matrix can be interpreted as defining an unweighted, undirected
graph G whose nodes correspond to the different geographical regions under
study. In our illustration we focus on first-order neighborhood matrices in which
wi,i′ is equal to 1 if regions i and i′ share a common boundary, and equal to
0 otherwise. However, our methodology applies more generally to higher order
neighborhoods, or to other ways to define the (binary) adjacency relationship,
e.g., by means of the distances between centroids or of distances based on length
of shared boundary.

Recall that our interest is to identify clusters of spatially connected regions
that share the same relative log-risk. Therefore, regions i and j can belong to
the same cluster k only if G contains a path that connects them for which all
the nodes in the path also belong to cluster k. In what follows we will propose a
spatially restricted prior distribution for the cluster membership random vari-
able and illustrate how specific adjacency matrices impact the probability mass
function of the number of clusters.

To construct our prior on the random effects we borrow ideas from the model-
based clustering literature. More specifically, we augment the model in (1) with
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Table 1

All possible partitions and cluster configurations for a sample of size n = 3.

K Partition of data c Ak, k = 1, . . . ,K

1 {y1, y2, y3} (1, 1, 1) A1 = {1, 2, 3}
2 {y1}, {y2, y3} (1, 2, 2) A1 = {1}, A2 = {2, 3}
2 {y1, y2}, {y3} (2, 2, 1) A1 = {1, 2}, A2 = {3}
2 {y1, y3}, {y2} (2, 1, 2) A1 = {1, 3}, A2 = {2}
3 {y1}, {y2}, {y3} (1, 2, 3) A1 = {1}, A2 = {2}, A3 = {3}

a labeling vector c = (c1, . . . , cn) describing to which cluster each observation
belongs, hence ci ∈ {1, . . . ,K}, whereK = K(c) denotes the number of clusters,
K ≤ n, and define θi = θ̃ci , where θ̃k is the log-RR of cluster k = 1, . . . ,K. Note
that the vector c induces a partition of the set of integers [n] = {1, . . . , n} into
A1, . . . , AK non null, disjoint sets, whose union is [n]. For instance, if n = 3, there
are 5 possible partitions of the set [3] into A1, . . . , AK clusters, K ∈ {1, 2, 3},
induced by all 5 possible configurations of c (see Table 1).

If no spatial information were available (or, alternatively, if W corresponds
to the complete graph), it would be convenient to assign c a Chinese restaurant
process prior (CRP) (Pitman, 1995),

π(c | α) =
Γ(α)

Γ(α+ n)
αK(c)

K(c)
∏

k=1

Γ (nk(c)) , (2)

where nk(c) =
∑n

i=1 1 (ci = k) is the number of labels having value k or, equiva-
lently, the number of observations in cluster k and Γ(z) =

∫∞

0
tz−1e−t dt denotes

the Gamma function.
The corresponding full conditionals are given by

π(ci = k | c−i, α) ∝

{

nk(c−i) k ≤ K(c−i),

α k = K(c−i) + 1,
(3)

where c−i = (c1, . . . , ci−1, ci+1, . . . , cn). Therefore, each ci is either an already
existing label, with probability proportional to nk(c−i), or a new label, with
probability proportional to α. Clearly, the concentration parameter α controls
the number of clusters, with larger values of α favoring larger numbers of clusters
a priori.

In order to define a spatially restricted prior distribution that enforces con-
nected clusters, we propose to modify (2) by giving zero probability to configu-
rations that involve clusters with non-connected components. More specifically,
let GAk

be the subgraph of G involving only the nodes that belong to the set
Ak. We call a partition A1, . . . , AK admissible if GAk

is a connected subgraph
(but not necessarily complete) for every k = 1, . . . ,K. If we define the function
Q(c,W ) as being equal to 1 whenever c is an admissible cluster configuration
under W , our prior takes the form

π(c | α,W ) =
αK(c)

C(α,W )

⎧

⎨

⎩

K(c)
∏

k=1

Γ (nk(c))

⎫

⎬

⎭

Q(c,W ), (4)
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where the normalizing constant C(α,W ) is given by

C(α,W ) =
∑

{c′: Q(c′,W )=1}

αK(c′)

⎧

⎨

⎩

K(c′)
∏

k=1

Γ(nk(c
′))

⎫

⎬

⎭

. (5)

We call this prior the Restricted Chinese Restaurant Process with parameters
α and W , denoted c | α,W ∼ RCRP (α,W ).

In general, there is no closed form expression for C(α,W ); two exceptions are
provided in Appendix A. However, we can still make some general statements.
For example, we note that C(α,W ) is a polynomial function of degree n in α,
i.e., we can write

C(α,W ) = f1(W )α+ f2(W )α2 + . . .+ fn(W )αn, (6)

where the coefficient fl(W ) is a weighted sum over the admissible partitions

involving l clusters, fl(W ) =
∑

{c′: K(c′)=l}

∏l
k=1 Γ (nl(c

′))Q(c′,W ). In par-

ticular, f1(W ) = Γ(n) for any W , fn(W ) = 1 for any W that implies a graph
G that is connected (and fn(W ) = 0 otherwise), and fl(W ) = |Sn,l|, the un-
signed Stirling number of the second kind, when W implies the complete graph.

Figure 1 presents the probability associated with the number of clusters K(c)
for the unrestricted CRP, as well as for the neighborhood structures associated
with a star and a linear graphs (see Appendix A), when n = 6. Recall that
the prior on partitions implied by the model of Fuentes-Garćıa et al. (2010)
corresponds to the linear graph setting, while the model in Mart́ınez et al.
(2014) is constructed to ensure that the prior on K(c) matches the one for the
unrestricted CRP. It is clear from the graph that the probability of the partitions
depends on the underlying adjacency matrix. For both restricted cases, the
probability of K = 1 and K = n are higher than in the non-restricted case.
For smaller values of α (α = 0.1 and α = 1), the linear graph seems to favor a
smaller number of clusters than the star graph. This pattern is reversed for the
larger values of α (α = 3 and α = 10).

While an explicit expression for C(α,W ) is generally not available, the full
conditional distributions associated with (4) take a particularly simple, appeal-
ing, and computationally convenient form (see Appendix B):

π(ci = k | c−i, α,W ) ∝

⎧

⎪

⎨

⎪

⎩

nk(c−i) k ≤ K(c−i) and Q(c,W ) = 1,

α k = K(c−i) + 1 and Q(c,W ) = 1,

0 Q(c,W ) = 0.

(7)

Hence, when the assignment of a region to a particular cluster leads to an
admissible configurations, (7) and (3) agree. On the other hand, for assignments
that lead to inadmissible configurations, the full conditional is zeroed out. As
before, α controls the number of clusters.

The CRP prior has sometimes been criticized in the context of clustering
applications because of their tendency to create clusters of unbalanced size.
In disease clustering applications, where the disease clusters can usually be
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Fig 1. Prior probability associated with the number of clusters K(c) under non-restricted
(light grey), star (black) and linear (dark grey) RCRPs, for different values of α.

expected to be rare and small a priori, this behavior (which will carry out to
the restricted model we discuss below) is an appealing feature of the model.

Having defined the spatially restricted prior distribution for the labeling ran-

dom variables, the rest of the model is specified by θ̃k
iid
∼ N(µ, σ2), where µ ∈ R

and σ2 ∈ R
+ are the mean and variance of the normal distribution. Addition-

ally, we consider hyperprior distributions for α, µ, and σ2. Our model can finally
be written as

yi | θ̃, ci ∼ Poi(hie
θ̃ci ), c | α ∼ RCRP (α), θ̃k | µ, σ2 iid

∼ N(µ, σ2), (8)

with one more level for the hyperpriors

µ ∼ N(κ, φ2), σ2 ∼ IG(a, b), α ∼ π, (9)

where the parameters κ, φ2, a, and b are fixed, IG(a, b) denotes the inverse
gamma distribution with shape and scale parameters a > 0 and b > 0, respec-
tively, and π is a distribution on R

+.
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3. Computational aspects

We use Markov Chain Monte Carlo (MCMC) algorithms (Smith & Roberts,
1993; Robert & Casella, 2005) to generate samples from the posterior distri-
butions associated with the proposed model. This Section describes the full
conditional distributions involved.

The full conditional distribution for the components of the indicator vector
c takes the relatively simple form:

π(ci = k | yi, c−i, ...) ∝

⎧

⎪

⎨

⎪

⎩

nk(c−i)f(yi | θ̃k) k ≤ K(c−i) and Q(c,W )= 1,

αf(yi | θ̃K(c−i)+1) k=K(c−i) + 1 and Q(c,W )= 1,

0 Q(c,W )= 0,

(10)

where θ̃K(c−i)+1 ∼ N(µ, σ2) and f(yi | θ̃k) denotes the probability mass function

of a Poisson distribution with rate parameter hie
θ̃k . This resembles algorithm 8

from Neal (2000). Note that there is an implicit and very standard relabeling of
vector c every time a cluster becomes empty (i.e., nk = 0, for some k), as in the
“no gap” algorithm of MacEachern & Müller (1998). The Markov chain that
results from cycling through these full conditional distributions is irreducible:
we can move from between any two admissible configurations by first breaking
each cluster (one region at a time, starting with the “periphery” to ensure that
admissibility is preserved), and then reassembling the new clusters.

While the need to repeatedly check on the admissibility of the configurations
might suggest that the computational cost of implementing this algorithm would
be high, that is not the case. Using the fact that the current configuration must
be admissible, a careful implementation of the algorithm only requires that, for
each i, we check that the cluster currently containing observation i remains fully
connected if that observation is removed (which, in the worst case scenario, can
be done in quadratic time on the size of that cluster). Then ci is updated with
the label of any of its neighbours (which can be directly identified from W in
linear time) or with a new label according to the probabilities given by (10).

As with a standard mixture model, posterior distributions for log-RR param-
eters θ̃1, . . . , θ̃K(c) are conditionally independent and take the form

π(θ̃k | y, ...) ∝ exp

{

−
1

2σ2

(

θ̃k −
[

µ+ σ2y+k
]

)2

− eθ̃kh+
k

}

, k = 1, . . . ,K(c),

(11)

where y+k =
∑

{i:ci=k} yi and h+
k =

∑

{i:ci=k} hi. Since these posterior distri-
butions do not belong to any tractable family of distributions, one must resort
to algorithms such as random walk Metropolis-Hastings (M-H) or Hamiltonian
Monte Carlo to sample from them. However, these algorithms require that the
user selects a number of tuning parameters (such as the variance of the random
walk in random walk M-H algorithms, or the size and number of steps in Hamil-
tonian Monte Carlo algorithms). Instead, we resort to slice samplers algorithms
(Damien et al., 1999), which do not require the selection of any tuning param-
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eters and therefore facilitate the use of our approach by practitioners. More
specifically we introduce unit-rate exponentially distributed auxiliary random
variables, uk, leading to truncated exponential and truncated normal conditional
distributions for uk and θ̃k, respectively,

π(uk | θ̃k, ...) ∝ Exp(uk | 1)1
(

uk ≥ exp{θ̃k}h
+
k

)

,

π(θ̃k | uk, ...) ∝ N
(

θ̃k | µ+ σ2y+k , σ
2
)

1

(

θ̃k ≤ log(uk)− log(h+
k )
)

,

where Exp(· | λ) denotes the exponential distribution with rate λ. On the other
hand, the hyperparameters µ and σ2 are sampled from their conjugate posterior
distributions

µ | ... ∼ N

(

σ2κ+ φ2
∑K

k=1 θ̃k
σ2 + φ2K

,
σ2φ2

σ2 + φ2K

)

,

σ2 | ... ∼ IG

(

a+
K

2
, b+

1

2

K
∑

k=1

(θ̃k − µ)2

)

.

Finally, we discuss the process of generating samples from the full conditional
distribution of α. This step is particularly difficult because the full conditional

π(α | ...) ∝ π(α)
αK

C(α,W )

{

K
∏

k=1

(nk − 1)!

}

Q(c,W ), (12)

is double intractable: additionally to the posterior not belonging to any known
distribution, it involves the computation of the intractable normalizing constant
C(α,W ).

In this paper we use the noisy exchange algorithm (NEA), proposed by
Alquier et al. (2016), for sampling from (12). The NEA updates α using a
M-H step replacing the ratio of normalizing constants C(α,W )/C(α∗,W ) by
an unbiased importance sampling estimator. Note that, as a consequence of
importance sampling,

C(α,W )

C(α∗,W )
=

∑

{c′:Q(c′,W )=1}

(

C(α,W )

C(α∗,W )

π(c
′

| α,W )

π(c′ | α∗,W )

)

π(c
′

| α∗,W )

= E
c
′ |α∗,W

(

αK(c′

j)

α∗K(c′

j
)

)

,

where Ec′|α,W denotes the expectation under c′ | α,W . Therefore, the ratio of
normalizing constants is approximated by

C(α,W )

C(α∗,W )
≈

1

N

N
∑

j=1

αK(c′

j)

α∗K(c′

j
)
, (13)

where c′1, . . . , c
′
N are samples from (4), obtained by running a second MCMC

algorithm based on the full conditionals given by (7). In order to speed up
computations, we considered a discrete prior distribution for α with support on a
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relatively small number of point masses, and computed the ratios of normalizing
constants in advance.

4. Simulated data

We conduct two simulation studies to ascertain the performance of our model.
Both scenarios assume that the spatial association is given by the first-order
neighborhood structure of the counties in the U.S. state of Ohio, and that
hi = 100 for every i = 1, . . . , 88. Scenario I involves eight snake-shaped clus-
ters with log-RR θi ∈ {−2, 0, 2} (see Figure 2, top row). Note that in this case
some clusters share same disease risk. Scenario II is formed by 4 round-shaped
connected clusters with log-RR θi ∈ {−1.5,−0.5, 0.5, 1.5}, so each cluster has a
different disease risk (see Figure 2, bottom row).

4.1. A comparison model

We compare the performance of our model against the boundary distance (BD)
model proposed by Knorr-Held & Raßer (2000). The BD model uses a Poisson
likelihood similar to ours, but assigns a different prior distribution on the par-
tition indicators c1, . . . , cn that is inspired by K-means clustering. More specif-
ically, their prior is specified hierarchically through a prior distribution on the
number of clusters, K, a uniform prior distribution on the set of cluster centers,
denoted (g1, . . . , gK), with gk ∈ {1, . . . , n}, and a measure of distance between
regions, which in their case is given by the minimum number of boundaries that
need to be crossed to move between the two regions. Given K and (g1, . . . , gK),
each region i is assigned to the cluster whose center is closest. If one region
is equally distant from two cluster centers, then it is assigned to the cluster
with the smallest index position. As we will show in our simulations, this prior
strongly favors round shaped cluster configurations.

In terms of the prior for the log-RR, Knorr-Held & Raßer (2000) make a choice
that is similar to ours. In particular, they set θi = β̃ci , with log β̃k ∼ N(µ, σ2).
Their posterior sampling MCMC scheme is based on a reversible jump MCMC
iterating over birth, death, shift, switch, height and hyper steps. This algorithm
tends to mix very slowly, and requires a large number of iterations (in the order
of millions of samples) to produce approximations with a reasonably small Monte
Carlo error.

4.2. Prior specification and comparison criteria

In our simulation studies, we compare the performance of the RCRP model
and BD model, under different specifications of the prior distributions. For the
RCRP model, we fix α = 4 (resulting on a prior distribution on the number of
clusters centered roughly around K = 5), and a product of independent priors
for (µ, σ2),

π1(µ, σ
2) = N(µ | q0.5, s

2
n/2)IG(σ2 | 2, s2n/2), (14)
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Fig 2. Simulation Scenarios I and II: True cluster configuration, true relative risk in log
scale, and observed relative risk in log scale for Scenarios I and II.
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where q0.5 and s2n denote the median and unbiased sample variance of log(yi/hi).
The hyperparameters κ = q0.5 and a = 2 were chosen such that the prior
mean of the log RR are centered at q0.5 and the prior variance of σ2 is infinity.
A sensitivity analysis involving three more combinations of hyperparameters
for φ2 and b is included in the supplementary material (Wehrhahn et al., 2020).
Results appeared to be robust to the different prior specifications.

To ensure that the comparison between models is fair, we slightly modify
the hyperpriors for the BD model from those originally used in Knorr-Held
& Raßer (2000). In particular, we assign (µ, σ2) the same hyperpriors as the
RCRP model. Additionally, rather than the original geometric prior used by
Knorr-Held & Raßer (2000), we consider two slightly different prior distributions
for K that more closely resemble the prior implied by our model. These two
priors correspond to a truncated Poisson and a truncated Negative Binomial,
respectively.

π1(K) = Poi(K | λ = 5)1(K ≥ 1),

π2(K) = NB(K | p = 0.2, r = 1)1(K ≥ 1),

so that E(K) = 5.03 under π1 and E(K) = 5.1 under π2.
For each of the two models, we report point estimates for the cluster configu-

ration, ĉ, heat maps of the posterior probability of two regions belonging to the
same cluster, π(ci = cj | y), i �= j (which provide a measure of the uncertainty
associated with the point estimates), and a comparison between the prior and
posterior distributions over the number of clusters K. The point estimate ĉ is
obtained by minimizing (using iterative componentwise optimization) a slightly
modified version of the expected loss function discussed in Lau & Green (2007),

U(ĉ) = Q(ĉ,W )

n
∑

i=1

∑

j=i+1

1 (ĉi = ĉj)

[

w2

w1 + w2
− π(ci = cj | y)

]

.

Note that the ratio w1/w2 controls the relative loss of incorrectly clustering
or separating a pair of regions, and the multiplier Q(ĉ,W ) ensures that our
point estimate corresponds to an admissible partition. In our illustrations we
set w1/w2 = 1.

We evaluate the ability of the models to identify clusters using the adjusted
random index (ARI, Hubert & Arabie, 1985) of the posterior cluster configu-
rations. The ARI evaluates the agreement in cluster assignment between two
cluster configurations. It ranges between −1 and 1, larger values indicating
agreement between cluster configurations. On the other hand, estimates of the
log-RR are evaluated through the mean squared error (MSE) of the posterior
mean of the log-RR.

4.3. Results

For each model, a single Markov chain was generated. In all cases, the infer-
ences presented below are based on 10,000 samples obtained after burn-in and
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thinning. The amount of burn-in varied; we discarded 40,000 samples in both
instances of the RCRP model, 200,000 for the BD model in Scenario I, and
300,000 for the BD model in Scenario II. Convergence was evaluated by stan-
dard convergence tests, as implemented in the CODA R package (Plummer et al.,
2009), and by examining the trace plot of the log-posterior distribution, the
number of clusters K(c), and the hyperparameters µ and σ2.

Figure 3 displays point estimates for the cluster configurations for Scenario I
and Scenario II. Under Scenario I, the BD model struggles even though the rates
associated with the clusters are quite well differentiated. In particular, note that
the BD model breaks down the 8 snake-like clusters into a large number of very
small, round clusters. Under scenario II, the BD model improves its performance
substantially, but still tends to slightly overestimate the number of clusters. In
particular, note that the upper left and bottom right clusters are being broken
down by the BD model into two subclusters each. In contrast, the RCRP model
is able to recover the true cluster structure in both scenarios.

Figure 4 provides further insight into the estimates of the cluster structure by
displaying the heat maps of the posterior probability of two regions belonging
to the same cluster. To facilitate visualization, regions are ordered according
to the true cluster configuration. In general, there is very little uncertainty
associated with the point estimates presented in Figure 3, particularly for the
RCRP model. Along similar lines, Figure 5, displays boxplots of the posterior
distribution of the ARI. We can see that, while the posterior distribution of the
ARI for the RCRP model is concentrated around 1 (further confirming that the
model places high probability on the true clustering configuration), the values
for the BD model tend to be much smaller, particularly in Scenario I. It is also
worth noting that, for the BD model, π2(K) leads to much higher variability in
the quality of the cluster estimates.

Finally, we compute the MSE of the log-RR with respect to the true log-RR.
Under Scenario I the MSE for the RCRP model and α = 4, BD model and
π1(K), and BD model and π2(K) were 0.00145, 0.00579, and 0.00731, respec-
tively. On the other hand, under Scenario II, the respective MSEs were 0.00057,
0.00073 and 0.00074. For both scenarios the RCRP model has the best perfor-
mance; in the best case scenario, the MSE of the BD model, was 3.99 and 1.28
times bigger that the MSE for the RCRP model in Scenario I and Scenario II,
respectively. Also, note that, under the BD model, prior π1(K) shows the best
performances.

Further results comparing the performance of the models regarding the num-
ber of clusters and the log-RRs can be found in the online supplementary ma-
terial (Wehrhahn et al., 2020).

5. An application to oral cancer in Germany

As a second illustration, this Section reports our analysis of the oral cancer
mortality data discussed in Knorr-Held & Raßer (2000) (see Figure 6). The
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Fig 3. Cluster configuration estimates under Scenario I and Scenario II: minimum expected
loss cluster configuration for RCRP model and BD model under priors π1 and π2 for K.
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Fig 4. Heat map of two regions belonging to the same cluster under Scenario I and Scenario
II: heat map for RCRP model and BD model under priors π1 and π2 for K.
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Fig 5. Posterior distribution of ARI under Scenario I and Scenario II: Boxplot of posterior
distribution of ARI for RCRP model and BD model under priors π1 and π2 for K.
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Fig 6. Observed log relative risk for Germany data.

data set registers the observed and expected number of deaths during the period
1986–1990 across 544 administrative districts in Germany. As in the simulation
studies, this analysis emphasizes a comparison between the RCRP and the BD
models.

5.1. Prior specification

Under the RCRP model, we employ a discrete uniform prior distribution for
α. This prior has support on the set {16, 20, 24, 28, 32} and is denoted π1(α).
This choice results in a prior distribution for the number of clusters centered
around 16. As we discussed before, the use of a discrete prior enables additional
flexibility while containing the computational cost of the MCMC algorithm (by
allowing us to pre-compute approximations to the ratio of intractable normal-
izing constants used in the noisy exchange algorithm). As in the case of the
simulated data, the hyperprior on (µ, σ2) is given by (14).

For the BD model, two prior specifications for K were considered:

π3(K) = NB(K | p = 0.65, r = 92.84)1 (K ≥ 1) ,

π4(K) = NB(K | p = 0.01, r = 1)1 (K ≥ 1) .

Both prior distributions are centered around 50, with π4(K) being more dis-
persed than π3(K). Knorr-Held & Raßer (2000) used π4(K) in their analysis. In
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an attempt to reproduce their results, for the hyperparameters (µ, σ2) we also
follow Knorr-Held & Raßer (2000) and use independent priors with p(µ) ∝ 1
and σ2 ∼ IG(1, 0.01).

5.2. Results

As before, we generate a single Markov chain for each model specification. For
the RCRP model, one sample of size 10,000 was generated, obtained by saving
1 out of every 10 iterations and after a burn-in period of 20,000 samples. In
order to approximate the intractable ratio of normalizing constants, one sample
of size 10,000 was generated for each pair of values of α in the support of the
discrete prior, after a burn-in period of 15,000 iterations. Based on these samples,
the ratios of normalizing constants, used in the M-H updating step of α, were
estimated as in (13). For the BD model, we also generated posterior samples
of size 10,000. However, following Knorr-Held & Raßer (2000), in this case the
samples were obtained after a burn-in period of 1,000,000 iterations by saving 1
out of every 10,000 iterations. As in the case of the simulated data, convergence
of these chains was evaluated by standard convergence tests, as implemented
in the CODA R package (Plummer et al., 2009), and by examining the trace
plot of the log-posterior distribution, the number of clusters in the data, and
the hyperparameters µ and σ2.

Figure 7 presents our point estimate of the partition structure under each
model. The differences are again striking. The RCRP model identifies five clus-
ters: a main one, formed by the vast majority of regions, two small ones (formed
by 110 and 9 regions, respectively), and a couple of singleton clusters. In con-
trast, the BD model identifies 84 and 98 clusters under π4(K) and π3(K), respec-
tively. The shape of the clusters suggests that we might be in a situation that
is similar to the one in our first simulated data sets, where the BD model artifi-
cially splits large, non-circular clusters into a large number of smaller, roughly
circular ones.

To further emphasize the difference in the reported partition structure, we
present in Figure 8 heat maps of the posterior probability of two regions be-
longing to the same cluster. From these graphs we can see that, while the level
of uncertainty in the point estimates is somewhat larger in this case when com-
pared to the simulation studies, it is clear that all models are quite certain about
the main features of their reported partition estimates.

Finally, Figure 9 displays the posterior mean log-RR estimate under both
models. There are some clear similarities in the estimated rates. For example,
both the RCRP and the BD models estimate a higher incidence of the disease
in the Southwest corner of Germany, and a lower incidence in the East of the
country. However, it is clear that the RCRP model smooths the rates much more
than the BD model. This is not surprising given the very different estimates of
the partition structures induced by these models.

Further results comparing the performance of the models regarding the num-
ber of clusters can be found in the supplementary material (Wehrhahn et al.,
2020).
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Fig 7. Minimum posterior expectation loss cluster configuration estimate for Germany data.
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Fig 8. Heat map of probability of two regions belonging to the same cluster, Germany data.
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Fig 9. Posterior mean log relative-risk, Germany data.
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6. Discussion

We have proposed a restricted mixture model for detecting clusters of non com-
municable diseases. The restriction is imposed in the CRP prior for the cluster
membership vector, constraining the space of possible configurations only to
those resulting in connected clusters, i.e., those where there is a path joining
any pair of regions that includes only regions that belong to the cluster. We
show that the model is very flexible and less computationally demanding that
the alternative BD model.

A number of extensions of this model are possible. For example, while we
have focused here on restrictions of a CRP prior, the basic approach could be
used to restrict any other exchangeable SSM. Our key result around the struc-
ture of the full conditional distribution of the restricted model should extend
in a straightforward fashion. Similarly, the model could easily accommodate
different likelihood functions and other more general definitions of the binary
neighborhood matrix W . Furthermore, while this paper has focused on appli-
cations to disease clustering, it is clear that our approach can be extended to
applications in time series and image segmentation. Another extension would
involve using dependent priors for the cluster specific parameters θ̃1, . . . , θ̃K .
Indeed, we might expect that nearby clusters have more similar rates than clus-
ters located far away. For example, we could consider a (proper) conditionally
autoregressive prior for θ̃1, . . . , θ̃K . However, such an approach introduces com-
plex identifiability issues that make prior elicitation complex. In particular, note
that a model in which there is a single cluster is equivalent to the (limit) model
in which we allow for any number of clusters but make the spatial correlation in
the prior goes to 1. This means that the prior distribution would have an even
more critical effect on the model, one that would be hard to measure a priori.
In that sense, the use of independent priors can be seen as a kind of “maximum
separation” prior that will maximize the ability of the model to identify a dis-
ease cluster. Finally, an anonymous referee suggested the use of a more general
form for Q(c,W ) that would allow for continuous values on [0, 1].

Our model works by restricting an EPPF, which leads to a model that is par-
tially exchangeable. That is, the probability distribution implied by the model
is invariant to simultaneous permutations of the observations and the rows and
columns of the neighborhood matrix W . A referee pointed out that using an
exchangeable PPF as the starting point is not required. While this is true as a
general modeling strategy, the appropriateness of such an approach will depend
on the application at hand. For example, in applications to time series data
(where there is a natural ordering to the observations), the use of such a non-
exchangeable PPF as our starting point might make sense. However, in spatial
applications such as the ones considered in this paper, partial exchangeability
would seem to be the right assumption: why would one want to have a different
model when counties are listed alphabetically in the database vs. when they are
listed by, say, population size?

One shortcoming of our model is that it uses a single set of random effects to
capture both overdispersion in the Poisson model and spatial dependence. One
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way to address this limitation is to use two sets of random effects: one set in
which they are independent (meant to capture over-dispersion), and another set
in which they are dependent and modeled using our restricted CRP (therefore
capturing the spatial effects in the data). See, for example, Banerjee et al. (2014).
Such an approach could be easily incorporated into our disease clustering model.

Appendix A: Two special restrictions

In what follows we consider two special adjacency graphs for which the normaliz-
ing constant C(α,W ) can be computed in closed form: (1) when the underlying
graph G is the star graph, and (2) when the underlying graph G is linear. The
former is of interest for its simplicity, and the latter because of its potential
application to modeling ordered/time series data.

The analysis of the these two special graphs is also useful in terms of high-
lighting the differences between our model and that of Mart́ınez et al. (2014).
Indeed, if the approach in Mart́ınez et al. (2014) was extended beyond time se-
ries models to accommodate general adjacency graphs, it would lead to exactly
the same prior distribution on partitions under either graphs. That is because
the number of admissible partitions for any size happens to be the same under
both graphs. In contrast, our model leads to quite different specifications for
these two graphs because our prior weights partitions according to the size of
the clusters.

A.1. Restriction under a star graph

Under this adjacency structure, in any cluster configuration with l clusters there
will be exactly l−1 singleton clusters, and one cluster with n−l+1 observations
(which must include the root node). This is because any cluster of size greater
than one must necessarily include the root node in order to be formed of adjacent
regions. See the top row of Table 2 for an example with n = 4. Hence,

fl (W star) =

(

n− 1

n− l

)

Γ(n− l + 1) =
(n− 1)!

(l − 1)!
,

and

C (α,W star) =
n
∑

l=1

(n− 1)!

(l − 1)!
αl.

A.2. Restriction under a linear graph

In a linear graph, there are also a total of
(

n−1
l−1

)

configurations involving exactly
l clusters. Indeed, note that choosing l adjacent clusters is equivalent to picking
l − 1 breakpoints out in n− 1 possible positions for them. However, unlike the
star case, each of these configurations involves clusters of different sizes (see the
bottom row of Table 2).
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Table 2

All possible partitions and count of cluster sizes, a for a sample of size n = 4 under star
and linear graphs.

Graph K = 1 K = 2 K = 3 K = 4

linear Ak, k = 1, . . . ,K {1, 2, 3, 4} {{1}, {2, 3, 4}} {{1}, {2}, {3, 4}} {{1}, {2}, {3}, {4}}
{{1, 2, 3}, {4}} {{1}, {2, 3}, {4}}
{{1, 2}, {3, 4}} {{1, 2}, {3}, {4}}

star Ak, k = 1, . . . ,K {1, 2, 3, 4} {{1, 2, 3}, {4}} {{1, 2}, {3}, {4}} {{1}, {2}, {3}, {4}}
{{1, 2, 4}, {3}} {{1, 3}, {2}, {4}}
{{1, 3, 4}, {2}} {{1, 4}, {2}, {3}}

If we interpret the indexes i1, . . . , il−1 ∈ {1, . . . , n − 1} as the sizes of the
clusters (organized in sequential order), we have:

fl
(

W linear
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Γ(n) l = 1,

n+l−1
∑

i1=1

n−i1−1
∑

i2=1

. . .

n−i
+

l−2
−1

∑

il−1=1

Γ(n− i+l−1)

l−1
∏

r=1

Γ(ir) l ≥ 2,

where i+l =
∑l

r=1 ir. Therefore,

C
(

α,W linear
)

= Γ(n)α+
n
∑

l=2

⎧

⎪

⎨

⎪

⎩

n+l−1
∑

i1=1

n−i1−1
∑

i2=1

. . .

n−i
+

l−2
−1

∑

il−1=1

Γ(n− i
+

l−1)

l−1
∏

r=1

Γ(ir)

⎫

⎪

⎬

⎪

⎭

α
l
.

The computation of fl can be efficiently implemented using a simple recursive
algorithm similar to the one used to enumerate all possible combinations of n
elements into l groups. Since W is fixed in our model, this computation only
needs to be done once at the beginning of the MCMC algorithm.

Appendix B: Derivation of the full conditional distributions for the

restricted Chinese restaurant process

Recall that the spatially restricted joint distribution for c is given by

π(c | α,W ) =
αK(c)

C(α,W )

⎧

⎨

⎩

K(c)
∏

k=1

Γ (nk(c))

⎫

⎬

⎭

Q(c,W ), (15)

where C(α,W ) is the normalizing constant. From (15), it follows that

π(ci = l | c−i, α,W ) ∝ αK(c)

⎧

⎨

⎩

K(c)
∏

k=1

Γ(nk(c))

⎫

⎬

⎭

Q(c,W ),

where l = 1, . . . ,K(c−i)+1. If ci = l leads to an inadmissible configuration, then
π(ci = l | c−i,W , α) ∝ 0. On the other hand, if ci = l leads to an admissible
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configuration, then we must consider two cases. For l ≤ K(c−i),

π(ci = l | c−i, α,W ) ∝ αK(c−i)

K(c−i)
∏

k=1

Γ (nk(c−i) + 1(k = l)) ,

= nl(c−i)

⎡

⎣αK(c−i)

K(c−i)
∏

k=1

Γ (nk(c−i))

⎤

⎦ . (16)

This follows from the fact that

Γ (nk(c−i) + 1(k = l)) =

{

Γ (nk(c−i)) k �= l,

nk(c−i)Γ (nk(c−i)) k = l.

On the other hand, if l = K(c−i) + 1,

π(ci = l | c−i, α,W ) ∝ αK(c−i)+1

K(c−i)
∏

k=1

Γ (nk(c−i)) ,

= α

⎡

⎣αK(c−i)

K(c−i)
∏

k=1

Γ (nk(c−i))

⎤

⎦ . (17)

The simplified expression in (7) are obtained by noting that both (16) and
(17) include a term of the form

αK(c−i)

K(c−i)
∏

k=1

Γ (nk(c−i)) ,

which can be treated as part of the proportionality constant.
The previous derivation assumes that there is at least one value of ci in the

set {1, . . . ,K(c−i)+1} that leads to an admissible configuration. Otherwise the
normalizing constant is zero and the full conditional is not well defined. Since
our MCMC algorithm must start in an admissible configuration, and the full
conditionals maintain admissibility, this is not an issue for our purposes.
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