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ABSTRACT: Magnetoelectric coeflicient values of above 5 and 2

V em™ Oe™ in 20 nm CoFe,0,—BaTiO; and NiFe,0,—BaTiO,

core—shell magnetoelectric nanoparticles were demonstrated.

These colossal values, compared to 0.1 V ecm™ Oe™ commonly

reported for the 0—3 system, are attributed to (i) the
heterostructural lattice-matched interface between the magneto-

strictive core and the piezoelectric shell, confirmed through J
transmission electron microscopy, and (ii) in situ scanning ~—
tunneling microscopy nanoprobe-based ME characterization. The -
nanoprobe technique allows measurements of the ME effect at a
single-nanoparticle level which avoids the charge leakage problem

of traditional powder form measurements. The difference in the frequency dependence of the ME value between the two material
systems is owed to the Ni-ferrite cores becoming superparamagnetic in the near-dc frequency range. The availability of novel
nanostructures with colossal ME values promises to unlock many new applications ranging from energy-efficient information
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processing to nanomedicine and brain—machine interfaces.
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ver the past decade, there has been a growing interest in

magnetoelectric nanoparticles (MENPs)." Many new
applications of MENPs have emerged, ranging from
spintronics for energy-efficient information processing to
nanomedicine for enabling personalized precision medicine.””*
Arguably, the wireless brain—machine interface (BMI) would
be one of the most impactful of these applications; it is hard to
overestimate the significance of the availability of such
technology for medicine, particularly related to treatment of
neurodegenerative diseases and brain tumors, as well as for
improving our fundamental understanding of the brain and
interfacing the human brain with artificial intelligence (AI).”
Owing to the presence of the magnetoelectric (ME) effect,
unlike any other nanoparticles, MENPs offer a way to use a
voltage to control the electron spin in spintronic devices and,
reciprocally, to use remotely controlled magnetic fields to
access local intrinsic electric fields that in turn underlie
fundamental physiological conditions at the molecular level.
The MENPs’ most essential property is their relatively high
ME coefficient, which reflects intrinsic coupling between
magnetic and electric fields. Hence, realization of the
aforementioned, groundbreaking MENPs’ applications strongly
depends on the availability of nanoparticles with an adequately
high ME coeflicient.
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There are two basic types of magnetoelectric materials: (i)
single-phase structures such as multiferroics in which magnetic
and electric fields are intrinsically coupled, for example,
through the spin—orbit interaction (L—S coupling) in one
single phase and (ii) multiphase heterostructured composites
in which spatially separated magnetostrictive and piezoelectric
components are connected through an interface. Due to the
contradiction between the traditional mechanism of ferro-
electric order, namely, unoccupied d-orbitals, and the magnetic
moment generated by partially filled d-orbitals in ferrites,
single-phase multiferroic materials have been rarely re-
ported."’~"* As for multiphase heterostructured ME compo-
sites, magnetoelectricity originates at the interface between
these two components.m_16 To date, the highest values, on the
order of 10 V cm™ Oe™}, have been reported mostly for
relatively large size heterostructured composites such as 2—2
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Figure 1. X-ray diffraction (XRD) measurements showing peak shifts of Co- and Ni-ferrite cores and the barium titanate shell during the formation
of CoFe,0,—BaTiO; and NiFe,0,—BaTiO; core—shells. To improve the clarity of the figure, the top three scans are multiplied by an intensity

factor of 3.

laminated composites,'” = not for 0—3 particulate composites

such as MENPs. Commonly reported experimental values for
0—3 particulate ME composites are on the order of 0.1 V cm™
Oe™! (=100 mV cm™! Oe™!).”7*® Hereinafter, we would like
to note that the paper follows the ME coeflicient units of V
cm™! Oe™! instead of the traditional mV cm™ Oe™". The most
studied composition is CoFe,O,—BaTiO; made of the
magnetostrictive spinel core, CoFe,O,, and the piezoelectric
perovskite shell, BaTiO3.”” The physical properties of these
materials can be adjusted by a compositional substitution of
transition metals, e.g,, using nickel instead of cobalt. The size
of these nanostructures can be controlled in a range from
below 20 nm to over 55 nm by varying the core size ranging
from 3 to 15 nm. Thermal decomposition and seed-mediated
growth methods have been employed to synthesize Co- and
Ni-ferrite cores.

The physics of multiferroics is usually described by Landau—
Ginsburg—Devonshire phenomenological thermodynamic
theory.”*™** According to this theory, the cross-field term of
the second order expansion of the free energy of a multiferroic
material, W, is given by eq 1

W= —aHE (1)
where E and H stand for electric and magnetic fields,
respectively, and « is the magnetoelectric coefficient tensor.
Owing to this energy cross-field term, application of a magnetic
field would lead to a change of the electric polarization, while
application of an electric field would lead to a change of the
magnetization. These two relations, known as direct and
converse magnetoelectric effects, respectively, can be expressed
through eqs 2 and 3

b= aH,

)

M, = o, 3)

Despite the rapidly emerging interest in the aforementioned
MENP-enabled applications, to date, the ME effect in MENPs

has only been investigated in powder form.”™*° It

noteworthy that the powder form does not accurately provide
the ME effect of an individual nanoparticle due to various
challenges.*® For example, according to the most popular ME
measurement technique, a powder of MENPs is exposed to a
mechanical pressure so that nanoparticles are in physical
contact with each other;*”~*° then, the net collective ME effect
is measured as a voltage change in response to a magnetic field
or, reciprocally, as a magnetic moment change in response to
an electric field. For the latter, the effect is also known as the
converse ME effect. The net effect in the powder measure-
ments depends also on the pressure between adjacent
nanoparticles as well as the morphology, volume fraction,
and orientation distribution of particles of both phases.'>***!
Ideally, for a basic 0—3 particulate composite, the magneto-
strictive phase, with the lower resistance, should be evenly
distributed in the piezoelectric matrix to maintain adequate
insulation of the composite. However, in practical powder
measurement systems, some charge leakage paths can be
formed through the magnetostrictive phase, making it difficult
to fully polarize the piezoelectric phase. Consequently, the
volume fraction of the magnetostrictive phase in the
piezoelectric matrix is limited by this charge leakage problem.**
Therefore, it is not surprising that the ME values reported from
different laboratories vary in a relatively wide range, typically
from below 0.001 V cm™ Qe ™ to over 0.1 V.em™ Oe™.* To
minimize the leakage problem, 2—2 type laminated hetero-
structured ME composites were developed where magneto-
strictive layers are separated by piezoelectric layers to prevent
the leakage problem. Indeed, several articles have reported ME
values above 1 V cm™ Oe™" for heterostructures with 2—2
type connectivity. Such values are significantly higher than
those for heterostructures with 0—3/1—3 connectivity of the
same composition.'”"#****7*% Tt is noteworthy that, to the
best of our knowledge, no studies of the ME effect in MENPs
have been reported at a single-nanoparticle level. ME

is
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Figure 2. (a) Diagram of the STM-based nanoprobe setup for single-nanoparticle level ME measurements. (b) Photograph of the setup.

measurements at nanoscale level could completely eliminate
the destructive charge leakage effect.

Therefore, in this study, a ME measurement technique,
based on a scanning tunneling microscope (STM) probe, has
been implemented with the purpose to overcome the leakage
problem of the traditional approach and to create MENPs with
ME values as high as those reported for 2—2 type laminated
heterostructured ME composites. An STM nanoprobe has
been employed as one electrode instead of utilizing a large size
conductive plate/film as in the traditional setup. This
technique is not only immune to the interparticle forces but
also could eliminate the charge leakage problem. According to
basic “back-of-the-envelope” physics calculations, given a
lattice-matched interface, assuming the magnetostriction
constant of the core and the piezoelectric constant of the
shell are equal to the values for their bulk counterparts, i.e.,
—200 ppm and ~190 pC/N, respectively, the ME coeflicient,
a, could be above 10 V cm™' Oe™".*”*® Further, given that the
elastic coefficients are expected to significantly increase as
characteristic sizes of these structures are reduced into the
nanoscale, significantly higher values of @ should be expected.
Indeed, an increase of the magnetostriction by 2 orders of
magnitude, compared to the bulk values, has been reported.*’
Therefore, there must be plenty of room to achieve a
substantially larger ME coefficient at the nanoscale, compared
to the value on the order of 0.1 V ecm™ Qe for 0-3
particulate composites that has been reported to date.
Considering the difficulty of unambiguously measuring the
ME coefficient, it is not straightforward to optimize the
synthesis method. Undoubtedly, there is an opportunity for
research concerning the synthesis of inorganic—inorganic,
lattice-matched core—shell MENPs. Therefore, this study aims
to significantly increase the ME coefficient by conducting
single-nanoparticle level ME measurements, as a feedback for
synthesis optimization, to achieve a lattice-matched core—shell
configuration which can be confirmed through TEM.

Core—shell MENPs of two different compositions,
CoFe,0,—BaTiO; and NiFe,0,—BaTiO;, both with a
diameter of approximately 20 nm, were synthesized according
to a thermal decomposition method for core synthesis, oil
phase transferred to hydrophilic phase of cores, and sol—gel
method for MENP synthesis, as described in detail (section S1
in the Supporting Information). X-ray diffraction (XRD)

analysis of these nanostructures is summarized in Figure 1. The
corresponding normalized peaks demonstrate the purity of
cobalt ferrite, nickel ferrite, and barium titanate as well as the
shift of each corresponding peak in core—shell conﬁ§urations
compared to those in isolated compositions.”’ As a
representative example, the main characteristic peak (110) of
barium titanate shifts left in the core—shell configuration of
CoFe,0,—BaTiO;, as illustrated in a zoomed-in version in
Figure S10. The positions and relative peaks match well with
cobalt ferrite PDF card 01-083-4766, nickel ferrite PDF card
00-054-0964, and barium titanate PDF card 04-012-8129,
respectively. The ME coefficient, &, was measured according to
the following contact nanoprobe method, as illustrated in
Figure 2. First, a thin layer of synthesized MENPs was
deposited on a highly oriented pyrolytic graphite (HOPG)
substrate. Then, a nanoscale contact was established between
the layer and a STM nanoprobe made of platinum/iridium
(see Figure S7 for the SEM image of a STM probe). The
nanoprobe was attached to the Z-nanopositioner of a Bruker
scanning probe microscope (SPM) Multimode. A permanent
magnet assembled inside the scanner provides a dc bias
magnetic field above 1000 Oe. A multiturn coil was placed
around the contact to generate a perpendicular ac magnetic
field. An electric current up to 60 mA through the coil resulted
in a field up to 100 Oe. Simulations of various magnetic field
strengths produced by the multiturn coil at ac voltages ranging
from 0.1 to 1 V were conducted through COMSOL software,
as shown in Figure S8. In turn, owing to the ME effect of the
nanoparticles in the layer, application of a magnetic field
induced a voltage change between the HOPG substrate and
the nanoprobe, V = Pd, where P is the induced polarization
and d is the thickness of the layer. The resulting ME coefficient
was found according to eq 2. Note that the lateral resistivity of
the nanoparticle layer on the HOPG was unreadable using a
multimeter. For each sample, seven identical measurements
were conducted on different spots on the nanoparticle layer.
The averaged ME coefficient was calculated based on multiple
measurements. In most cases, more than one nanoparticle
contributes to the measured ME coeflicients in order to
acquire a more stable ME voltage. This single-nanoparticle-
level ME measurement was used as feedback to optimize the
key parameters of the described synthesis approach. Typical
TEM images of thus fabricated 20 nm CoFe,0,—BaTiO; and
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Figure 3. (a) TEM image of a 20 nm CoFe,0,—BaTiO; MENP. (b) A zoomed-in version shows the lattice-matched interface between the core

and the shell. (c) TEM image of a 20 nm NiFe,0,—BaTiO; MENP.
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Figure 4. dc M—H loops measured via AGM of (a) 15 nm Co-ferrite nanoparticles and Co-ferrite-based 20 nm MENPs and (b) 10 nm Ni-ferrite

nanoparticles and Ni-ferrite-based 20 nm MENPs.

NiFe,0,—BaTiO; MENPs are shown in Figure 3a and ¢,
respectively. A zoomed-in version of the first system in Figure
3b clearly shows the lattice matching between the crystal
lattices of the core and the shell.

Again, the main goal of this Letter is to present the key
results, particularly the colossal ME values of the lattice-
matched core—shell MENPs. The key results are illustrated in
20 nm MENPs. It is noteworthy that the same approach can be
used to synthesize the two MENP systems in a wide size range,
as summarized in Figures S5 and S6, respectively. To control
the size of thus synthesized MENPs, we varied the size of the
core of the core—shell structures. Parts a—c of Figure S5 show
the Co-ferrite nanoparticles with diameters of 7, 11, and 15
nm, respectively, and parts d—f of Figure S5 show the
respective Co-ferrite-based MENPs of the three average sizes,

15, 18, and 20 nm, respectively. Similarly, parts a—c of Figure
S6 show the Ni-ferrite nanoparticles with diameters of 3, 10,
and 15 nm, respectively, and parts d—f of Figure S6 show the
respective Ni-ferrite-based MENPs of the three average sizes,
12, 20, and 50 nm, respectively. In addition, to further control
the sizes of the synthesized MENPs, atomic force microscopy
(AFM) imaging was conducted. Although AFM is prone to
drift and other errors, the measurements supported the basic
synthesis strategy. As an example, AFM studies of two different
sizes of MENPs are summarized in Figure S9.

Magnetization versus magnetic field dependencies, ie., M—
H loops, for these two MENP systems are shown in Figure 4.
The measurements were taken at room temperature with
alternating gradient magnetometry (AGM) with a sensitivity of
107 emu. Also shown are the M—H loops for the magnetic
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Figure S. Nanoprobe-based ME coefficient measurements: (a) Co-ferrite MENPs: the ME coefficient is shown as a function of the ac field strength
(at 100 Hz) (top row) and frequency (at 9 Oe) (bottom row). Each dependence is shown as a 3D chart and a 2D plot with an error bar. The error
bar for each point is obtained as a result of averaging over seven measurements. (b) Ni-ferrite MENPs: the ME coefficient is shown as a function of
the ac field strength (at 100 Hz) (top row) and frequency (at 9 Oe) (bottom row). The solid black line in the ME frequency dependence figure

also shows a theoretical curve assuming a stability ratio of 20.

core nanoparticles, CoFe,0, and NiFe,0,, of which the two
MENP systems were made. As expected, the saturation
magnetization of MENPs is significantly lower than that of
their respective magnetic cores. It can be noted that these

measurements were conducted in a powder form. Therefore, it
is not possible to directly quantify the magnetic anisotropy of
these nanostructures. To be able to directly quantify the
magnetic anisotropy values, it is important to identify “easy”

https://dx.doi.org/10.1021/acs.nanolett.0c01588
Nano Lett. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/acs.nanolett.0c01588?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c01588?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c01588?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c01588?fig=fig5&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://dx.doi.org/10.1021/acs.nanolett.0c01588?ref=pdf

Nano Letters

pubs.acs.org/NanoLett

magnetic orientations and conduct measurements in both
directions, parallel and perpendicular, to these preferred
orientations. In contrast, in the powder form, all of the
orientations are equivalently mixed up and therefore there are
no preferred orientations. However, indirectly, comparative
conclusions about the magnetic anisotropy of these systems
could be made. Indeed, it could be seen that the Co-ferrite
magnetic cores do not reach their saturation magnetization
even at the highest applied magnetic field of 10 kOe. In
comparison, the Ni-ferrite magnetic cores reach their
saturation magnetization at about 1 kOe. Furthermore, as
expected for this core size range, the Ni-ferrite cores and the
MENPs made of these cores are in the superparamagnetic
state; i.e., their M—H loops show no hysteresis. In contrast, the
Co-ferrite cores and the MENPs made of these cores show
visible hysteresis loops, with coercivity fields of 480 and 320
Oe, respectively. As described below in more detail, the
difference between the two systems is due to the significant
difference, by approximately an order of magnitude, between
their magnetocrystalline anisotropg energies and the resulting
difference in the stability ratio.”"”

The single-nanoparticle level, nanoprobe-based ME meas-
urements for the two studied systems, Co- and Ni-ferrite-based
20 nm MENPs, as a function of the field strength and
frequency, are summarized in Figure Sa and b, respectively.
The Co- and Ni-ferrite MENPs have shown ME coeflicients in
the near-dc frequency range on the order of 6 V. cm™ Qe
and less than 0.1 V cm™ Oe™!, respectively. However, the
frequency dependences of the MENPs of these two materials
are dramatically different. The ME coeflicient of the Co-ferrite-
based MENPs shows a frequency roll-off dependence,
particularly after 100 Hz, as explained below in more detail.
In contrast, the ME coefficient for the Ni-ferrite-based MENPs
strongly depends on the frequency; the coeflicient significantly
increases to over 2 V. cm™' Oe™! for the highest frequency
value of 200 Hz. The frequency dependence can be explained
by the transition between the ferromagnetic and super-
paramagnetic states of the MENPs’ magnetic cores. The
stability ratio for the magnetic core is defined as

S = KV /kgT (4)

where K is the magnetic anisotropy energy density, V is the
volume of the core component, kg is the Boltzmann constant,
and T is the ambient temperature. For a shelf life (non-
volatility duration) of 10 years, the stability ratio should be
larger than approximately 40.>° Because of the exponential
dependence of the collective spin relaxation process, reduction
of the stability ratio only by a factor of 2, i.e, down to 20,
would reduce the shelf life down to the order of 1 s. For
example, for the 15 nm Co-ferrite nanoparticles, with a
magnetocrystalline anisotropy, K, of 10° J/m®, and neglecting
shape anisotropy, the stability ratio, S, would be on the order
of 10° x (4/3)7(7.5 x 107°)%/(4 x 1072') ~ 200. For
comparison, for the 10 nm Ni-ferrite nanoparticles, with a
magnetocrystalline anisotropy, K, of 10° J/m?’ ie., approx-
imately an order of magnitude smaller, the stability ratio, S,
would be on the order of 10° X (4/3)n(5 x 107°)%/(4 x
107%") ~ 20. Therefore, the shelf life for the Co- and Ni-ferrite
nanoparticles would be greater than 10 years and on the order
of 1 s, respectively. It should be noted that this analysis is a
relatively rough evaluation of the stability ratios for the two
nanostructures. The precise values of the magnetic anisotropy
depend also on the shape anisotropy (in practice, in the size

range under study, these nanoparticles are not perfect spheres,
as can be noted from the shown TEM images) as well as the
surface contribution to the net effect (the smaller the size, the
larger the surface to volume contribution). To some
approximations, this difference in the stability ratio between
the two nanostructures could explain the observed frequency
dependences. In the case of dc AGM measurements, the Ni-
ferrite-based MENPs are superparamagnetic and thus display a
weak magnetoelectric effect. However, as soon as the
frequency is increased above approximately 1 Hz, which
implies a measurement time of less than 1 s, the nanoparticles
are not superparamagnetic during the measurement time. This
explains the exponentially fast rise of the ME value
corresponding to an increase in frequency. A theoretical
curve, assuming a stability ratio of 20, is also plotted as a solid
black line in the left bottom corner in Figure Sb. The relatively
smaller frequency roll-off dependence of the Co-ferrite-based
MENTPs, especially for the points after 100 Hz, could be
explained by the contribution of the inductance into the
impedance of the electromagnet used to measure the ME
coeflicient. Indeed, the inductive impedance, R;, of the
electromagnetic system increases with frequency as Ry ~
2rfL, where L is the inductance and f is the frequency. For
example, at a frequency of 100 Hz and an inductance of 1 mH
(measured with a standard inductance meter), the reactive
impedance (due to the inductance) is Ry ~ 1 Q. Given the real
resistance of the coil on the order of 5 Q, the increased
contribution of the inductive component to the net impedance
can explain the rolling-off frequency dependence after
approximately 100 Hz. In the case of the Ni-ferrite-based
MENPs, we do not “see” this coil effect dependence of the
frequency roll-off because it is overshadowed by the more
significant effect due to the aforementioned superparamag-
netic-to-non-superparamagnetic transition.

This study has directly demonstrated, through TEM
imaging, the creation of crystal lattice matching between the
two main components of the inorganic—inorganic crystalline
core—shell nanoparticles under study. The two specific types of
20 nm MENPs, Co- and Ni-ferrite-based MENPs, differed in
their core compositions and their core sizes, 15 and 10 nm,
respectively, while having the same shell composition of
barium titanate. These nanostructures have been obtained as a
result of the discussed synthesis method using the nanoprobe
ME measurement as an optimization feedback. The perfect
interface coupling and the optimized volume fraction of the
magnetostrictive core being selected as 0.5 could explain the
colossal ME coefficient of above § and 2 V cm™ Oe™! for Co-
and Ni-ferrite-based 20 nm MENPs, respectively.”™>> It is
more than an order of magnitude improvement compared to
previous measurements reported elsewhere.’® It is noteworthy
that these values are significantly closer to the values obtained
based on the above theoretical analysis and other theoretical
studies elsewhere.'” The ME coefficients in both Co- and Ni-
based MENPs were independent of the applied ac magnetic
field strength and found to be in reasonable agreement with
other theoretical papers.”” These colossal ME values have a
great potential to unlock the aforementioned novel applica-
tions in energy-efficient information processing and nano-
medicine.
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