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Learning Semi-supervised Multi-Label Fully
Convolutional Network for Hierarchical Object

Parsing
Xiaobai Liu, Qian Xu, Eric Medwedeff, Grayson Adkins, Liang Lin, Shuicheng Yan

Abstract—This paper presents a semi-supervised multi-label
Fully Convolutional Network (FCN) for hierarchical object
parsing of images. We consider each object part (e.g., eye and
head) as a class label and learn to assign every image pixel to
multiple coherent part labels. Different from previous methods
that consider part labels as independent classes, our method
explicitly models the internal relationships between object parts,
e.g., that a pixel highly scored for eyes should be highly scored
for heads as well. Such relationships directly reflect the structure
of the semantic space and thus should be respected while
learning the deep representation. We achieve this objective by
introducing a multi-label softmax loss function over both labeled
and unlabeled images and regularizing it with two pair-wise
ranking constraints. The first constraint is based on a manifold
assumption that image pixels being visually and spatially close
to each other should be collaboratively classified as the same
part label. The other constraint is used to enforce that no
pixel receive significant scores from more than one labels that
are semantically conflicting with each other. The proposed loss
function is differentiable with respect to network parameters and
hence can be optimized by standard stochastic gradient methods.
We evaluate the proposed method on two public image datasets
for hierarchical object parsing and compare it to the alternative
parsing methods. Extensive comparisons showed that our method
can achieve state-of-the-art performance while using 50% less
labeled training samples than the alternatives .

Index Terms—fully convolutional network, semi-supervised
learning, hierarchical models

I. INTRODUCTION

The goal of this work is to develop an effective approach

capable of segmenting objects, object parts (e.g. head, torso,

legs) and subparts (e.g. eyes, mouses) in images and generating

a hierarchical representation of objects. The outcomes of our

approach include a pixel-wise binary mask for each entity of

the hierarchy, which can be used to assist in high-level image

tasks, e.g., human pose recognition [15] or human interaction

recognition [1] [33]. In the past decade, the state of object

parsing has been rapidly evolving [39] [18] [13][14] [37],
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Fig. 1. Hierarchical object parsing. (a) Input images; (b)-(c): object masks
segmented by the proposed method for 2 labels (human and non-human), 6
human part labels, and 31 human subpart labels, respectively.

largely driven by the advances in statistical learning and

computer vision. In particular, the recently developed Fully

Convolutional Network (FCN) [27] is capable of end-to-end

learning multi-level feature representations for semantic image

segmentation. Multiple object parsing methods [31] [43] [9]

utilize FCN as basic networks and achieved encouraging re-

sults on multiple object detection benchmarks. The learning of

such deep representations, however, requires tens of thousands

of labeled samples and hence requires cost-intensive human

efforts to prepare training data. The situation becomes worse

while dealing with hierarchical object parsing, where an image

includes tens of part labels. Thus, there is a demand for

developing weakly supervised deep models for object parsing

in practical deployment.

Figure 1 shows two exemplar results of the proposed method

for hierarchical object parsing. Given a single image as the

input, our method can segment human region, human parts

(e.g. head), and human subparts (e.g. eyes), as shown in the

subfigures (b) - (d), respectively. These part labels are not

semantically independent with each other during inference

because, for example, a region of noses should be labeled as

heads as well, and a region of hands is part of the region of

upper-body. In addition to such coherences, two human part

labels might be exclusive from each other. For example, a

region cannot be classified as heads and torso simultaneously.

An effective hierarchical object parsing algorithm has to

respect both coherent and exclusive constraints between image

labels, which has not been systemically studied in the literature
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of deep representation learning [4].
In the proposed method, we consider each object part of

the hierarchy as a class label and aim to learn a multi-label

FCN from images. Hierarchical object parsing is essentially a

multi-label image segmentation problem which aims to assign

each pixel of the input image to multiple part labels, e.g., eye,

head, and upper-body. While the conventional neural network

methods [27] can be used for multi-label settings, their loss

functions cast image labels to be semantically independent

with each other and ignore their coherent relationships. For

example, an image pixel receiving the label of eye should be

classified as a head as well but not vice versa. In this work,

we propose to develop a multi-label softmax loss for FCN

to encourage compatibilities between the predicated labels

and ground-truth labels while respecting the above coherence

constraints between image labels.
We will learn the proposed model using a small number of

annotated images and a large amount of raw images without

annotations. This semi-supervised setting allows our model to

generalize to unseen data samples and avoid potential over-

fitting with the training data. Over-fitting is a serious issue

for modern neural network techniques [4], which have been

employing an increasingly large set of network parameters

(e.g., with deeper layers or more hidden units). To suppress

the effects of over-fitting, in this work, we develop two

regularization terms for the proposed semi-supervised model.

• Manifold regularization. We introduce a pixel-wise

manifold assumption over both the labeled and unlabeled

images, in order to enforce a smoothness constraint:

Image pixels that are visually and spatially close to each
other are coherent in the semantic space. We thus propose

to learn a manifold [50], [3] for representing all pixels so

as to preserve their relative spatial relationships. A classi-

cal method, for example, is the Laplacian Embedding [2].

Similar ideas have also been exploited by traditional

semi-supervised methods and most recently are integrated

with deep leaning representations [44]. In this work, we

generalize this methodology to learn a FCN for hierarchal

object parsing.

• Exclusive Constraints. We introduce a set of exclusive

constraints to regularize the FCN network: image pixels
with significant scores from a class (e.g. head) will not
be scored significantly for another exclusive class (e.g.,
torso). In multi-label settings, there are multiple exclusive

label lists and the labels in each list should be exclusively

assigned to an image pixel.

We integrate the above two types of constraints to define a

unified multi-label loss function. This function is differen-

tiable with respect to network parameters and hence can be

optimized by standard stochastic gradient methods [27]. Our

approach can take advantage of both labeled and unlabeled

images, providing a simple yet effective way to formulating

hierarchical object parsing in semi-supervised settings.
We evaluate the proposed method on two public image

datasets and compare it to the alternative object parsing meth-

ods. Experiments with comparisons showed that our method

can closely match the performance of fully-supervised systems

while using only 50% (or less) labeled images. Empirical anal-

ysis also validated the effectiveness of the proposed multi-label

loss function and regularization terms. Note that we pre-train

the proposed method on generic images with classification

labels (e.g., ImageNet), without accessing to pixel-wise image

labels.

The three Contributions of this paper include (i) an ef-

fective Multi-label FCN model for hierarchical object parsing

that can be trained over both labeled and unlabeled images;

(ii) a set of regularization terms, including manifold constraints

and exclusive constraints, which are applicable to other image

tasks; and (iii) a weakly supervised image parsing system that

can achieve state-of-the-art performance while using a small

number of fully annotated images.

II. RELATIONSHIPS TO PREVIOUS WORKS

The proposed research is closely related to four research

streams in computer vision and machine learning.

Object Part Detection has been extensively studied in com-

puter vision literature. The successful deformable part-based

model (DPM) [13] [37] and poselet model [5] can effectively

represent geometric relationships between object parts in 2D

and 3D, but are restricted to their shallow representations while

dealing with object instances with large variances. Chen et

al. [8] introduced rich contextual part relationships to boost

system robustness. Girshick et al. [14] re-formulated the DPM

model using convolution neural networks to favor end-to-

end learning of deep features. Song et al. [37] proposed to

discriminatively train a hierarchical graphical model to allow

fined-grained object detection. Wang et al. [43] proposed to

jointly segment objects and object parts through learning a

two-stream FCN in order to exploit the compositional relation-

ships between part labels. While achieving impressive results,

these algorithms did not explicitly formulate cooperative rela-

tionships between object parts. For example, an image pixel

classified as head should be recognized as ‘upper-body as well,

not vice versa; or that a pixel should not be simultaneously

assigned to upper-body and lower-body. In this work, we will

introduce an multi-label loss function to explicitly formulate

such coherence and exclusive constraints and use them to

guide the learning of deep features.

Semi-supervised methods [50] can be used to train machine

learning models using a small number of labeled data. It has

made use of embedding techniques [29], which aim to solve a

lower-dimensional data representation while preserving pair-

wise distances in the original feature space. Most embedding

algorithms utilize the structure assumption: points within the

same structure (or a manifold) are likely to have the same

label, and use unlabeled data to discover this structure. Suc-

cessful approaches include cluster kernels [23], label propa-

gation [30], LapSVM [48], MDSCAL [22], or ISOMAP [38].

Weston et al. [44] employed these embedding methods as

regularization terms to learn deep multi-layer neural networks

and achieved promising results. Similarly, this work presents a

multi-label convolutional network to learn deep features for hi-

erarchical object parsing. Our method explicitly enforces both

manifold assumption and coherence/exclusiveness constraints

between labels, and showed promising results in reducing the
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necessary amount of labeled data to achieve the same level of

performance.

Fully Convolution Networks (FCNs) [27] and its vari-

ants [7] [31] have been widely used to predict pixel-wise labels

and have shown compelling quality and efficiency on multiple

datasets [46] [26]. A FCN takes an image as the input, and

performs sliding-window-based classification at each pixel in

a local receptive field. The network can be trained end-to-

end given the pixel-wise semantic region labels. Pinheiro et

al. [35] utilizes a FCN to predict object segmentation masks

given an input image. To detect object instances, Dai et al. [9]

presented an instance-sensitive FCN to generate category-wise

instance score maps. All the above models are trained with full

supervisions to predict a single label for each pixel but are

not suitable for hierarchical object parsing. In this work, we

introduce a multi-label FCN in the semi-supervised setting,

which is a novel technique in the catalog of hierarchical

parsing methods.

Weakly Supervised Image Segmentation Methods in the

literature include two major categories. The first category uses

image-level labels and automatically reasons segment-label

correspondences during training [28], [40]. Popular techniques

include the Expectation-Maximization algorithm [11] [31],

Probabilistic Generative Models [41], Multi-Instance Meth-

ods [32] [34] and Latent Support Vector Machine [24] etc.

The second category [45] [49] [16] [6], [25] uses bounding

boxes around objects (e.g. humans, animals), instead of pixel-

wise image labels, to train image segmentation models. Box

inputs are also used as weak supervisions to guide interactive

image segmentation [36]. Kumar et al. [24], Xu et al. [47],

and Papandreou et al. [31] exploited both image labels and

bounding boxes as weak supervisions. In this work, we focus

on the semi-supervised image segmentation problem for which

a large number of training images are completely unlabeled

and aim to learn to hierarchically segment objects in the

multi-label setting. We propose to augment the popular FCN

model with both traditional semi-supervised regularizations

and multi-label exclusive constraints in order to guide the

training of deep features.

III. SEMI-SUPERVISED MULTI-LABEL FCN FOR

HIERARCHAL OBJECT PARSING

In this section we present a learning based hierarchical

object parsing algorithm built on top of the expressive Fully

Convolution Networks (FCNs) [27]. We focus on methods

for training the FCN parameters from both annotated and

unannotated images.

Notations We denote by C the total number of object parts

and sub parts. These parts form a hierarchy as graphically

shown in Figure 2. We denote by D = Dl ∪ Du the set of

training images, including labeled images Dl and unlabeled

images Du . Let x ∈ D denote a training image. For a labeled

image x ∈ Dl , we denote by y the segmentation map. Let

xi denote the image pixel at location i, and yi ∈ {1, . . . ,C}

denote its pixel-wise semantic label. We assume that the

number of unlabeled samples in Du are much larger than that

of the labeled samples in Dl . We denote the outputs of the

Human
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Fig. 2. Hierarchy of human parts used in this paper. There are a total of 31
human parts forming a tree-like structure.

convolutional network by f (·), which can be considered as a

scoring function of the image x.

The rest of this section is organized as follows: In Subsec-

tion III-A, we formulate the problem of hierarchical object

parsing as a multi-label classification problem. In Subsec-

tion III-B, we introduce how to extend the proposed formula to

the semi-supervised setting. In Subsection III-C, we present a

set of regularizations to the proposed semi-supervised model.

In Subsection III-D, we specify the unified formula used in this

work. In Subsection III-E, we elaborate on the implementation

of the proposed algorithm.

A. Multi-label FCN with Unidirectionally Coherent Con-
straints

In our approach for hierarchical object parsing, we adopted

the fully convolutional network (FCN) proposed in [27] as

the basic network architecture and investigate ways to specify

effective loss functions in the multi-label setting. Our method

considers multiple part labels which form a tree-like structure,

as shown in Figure 2, and enforces the following coherence

constrains: for any image pixel xi , the prediction score for
label A should be at least equal to the score for any offspring
labels of A. These pair-wise coherence constraints are unidi-

rectional and should be satisfied during the learning of deep

features.

We augment the multi-label softmax loss [17], which can

be used for single-label predictions as well, with extra reg-

ularizations in order to enforce the proposed unidirectional

coherence constrains. Let fi(k) denote the k-th output layer

of the FCN Network, which is the activation value for an

image pixel xi and class k, and f̂i(k) denote corresponding

probability, obtained as:

f̂i(k) =
exp[ fi(k)]∑C
l=1 exp[ fi(l)]

(1)

Let f̂i = [ f̂i(k)], k = 1, 2, . . . assembles the probability of xi
belonging to every label. Let yi denote a C-dimensional label

vector, whose k-th component is 1 if xi belongs to the class k;

0, otherwise. We normalize yi so that its sum is unit 1, and use
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it as the ground-truth probability. Thus, given a set of labeled

images, we aim to learn a FCN so as to minimize the Kullback-

Leibler (KL) divergence from the prediction probability f̂i
to ground-truth probability yi . Such a loss function is also

regularized by the between-label coherence constraints. Let

P(k) denote the set of offspring labels of the label k. We

define the loss function over labeled images as follows,

J(x, y) =
n∑

i=1
KL( f̂i ‖yi) (2)

s.t., ∀l ∈ P(k), f̂i(k) > f̂i(l) (3)

k ∈ [1,C] (4)

where KL( f̂i ‖yi) =
∑

k f̂i(k) log f̂i (k)
yi (k)

. Eq. (2) is a constrained

logarithm function and can be optimized using the standard

gradient method [21]. This supervised method requires a large

amount of labeled data, which is cost-intensive to prepare.

In the next subsection, we will introduce a semi-supervised

variant to take advantages of large-scale unlabeled images.

B. Manifold Regularization

We adopt the Eq. (2) to the semi-supervised setting in order

to learn a multi-label classifier capable of generalizing to

unseen testing images. Being similar to most semi-supervised

methods [50], we assume that the number of labeled samples

is much smaller than that of unlabeled samples, and that pixel-

wise features of the same image are drawn from one or mul-

tiple manifold subspaces. We employ a Laplacian graph [48]

to impose the above manifold regularizations. Let Wi j denote

the similarity between the image pixels xi and xj . We define

the Laplacian matrix by L = W − D, where Dii =
∑

j Wi j

is diagonal. Let fi denote the predicated label vector for the

image pixel i and F = [ fi] the predicated label matrix. Thus,

we introduce the following regularization term,

U(x) =
∑

i

∑

j

Wi j ‖ fi − fj ‖2 (5)

= tr(FT LF) (6)

s.t. FT DF = 1, FT D1 = 0 (7)

where tr(·) represents the trace of a matrix, 1 indicates a full-

one matrix and the two constraints are used to avoid trivial

solutions [50].

C. Integrating Mutually Exclusive Constraints

In the proposed multi-label setting, an image pixel might be

assigned to multiple coherent labels, e.g., head and nose. In

the meantime, for example, the labels of head and torso should

be exclusively assigned to an image pixel. Such exclusive

constraints are mutually effective for part labels, and should

be satisfied during the training of deep features. Therefore,

we regularize the proposed FCN model with the following

constraint: if an image pixel xi receives a relatively large score
for a part label k, it is less likely for xi to receive significant
scores for and only for the part labels that are exclusive from
the label k. Figure 2 graphically shows the decomposition

relationships between part labels. The exclusive labels of a part

(e.g., arm) include the parts of the same level in the hierarchy

(e.g., head) and their offspring parts (e.g., eye, nose).

To enforce the above exclusive constraints, we impose

additional regularizations terms over network activities f (·).
Let C(k) denote the exclusive labels for the label k. For each

label k and image pixel xi , we utilize an unified function to

accumulate the output activities for the labels in C(k), denoted

as p̂(xi; k). We normalize p̂(xi; k) so that its sum is unit 1.

Being similar to [17], we specify a loss regularization over

both labeled and unlabeled images, which aims to minimizes

the entropy of the distribution p̂(xi; k):

Ω(x) = −

C∑

k=1

∑

l∈C(k)

p̂l(xi; k) log p̂l(xi; k) (8)

Minimizing the above entropy will encourage sparsity over the

distribution p̂(xi; k) and thus directly encodes the proposed

exclusive constraints.

D. Unified formula: Semi-supervised Multi-label FCN

We define a unified loss function to integrate the objectives

in Eqs. (2), (5), and (8):

L(D) =
∑

x∈Dl

λlJ(x, y) +
∑

x∈D
[λuU(x) + λeΩ(x)] (9)

where λl, λu and λe are constants and their sum is 1. Among

these terms, J(x) is the multi-label supervised loss, U is the

manifold regularization tem and Ω(x) is the regularization tem

with exclusive constraints. These objectives are defined over

both labeled and unlabeled samples.

E. Network Architecture

Figure 3 graphically illustrates the network architecture of

the proposed semi-supervised multi-label fully convolutional

network. We use the VGG-16 network architecture, and em-

ploy the atrous algorithm [7] to generate dense pixel-wise

predictions. These convolutional layers are applied on the input

image to get a pixel-wise score map for each part label. We

pre-train the network on ImageNet with the cross-entropy loss

function [21], and fine-tune the network weights following

the procedure of Long et al. [27]. In particular, we replace

the 1000-way ImageNet classifier in the last layer of VGG-16

with a 32-way one, corresponding to the 31 human part labels

plus background label. On top of this pre-trained network, we

replace the last fully connected layers with two convolution

layers [9]: one layer uses 1×1 kernels and the other layer uses

3 × 3 kernels to generate pixel-wise predictions. Like Long

et al. [27], we upsample and concatenate the intermediate

predictions to get pixel-wise scores and use them calculate

losses over training images.

The proposed loss function Eq. (9) is smooth and differ-

entiable, and can be effectively optimized using the standard

stochastic gradient descent algorithm [21]. In particular, we

run forward propagation on the input image, generating pixel-

wise score maps. Each image pixel is associated with a score

for each of the 32 labels. It takes a total of 0.18 seconds to

evaluate an image on a K40 GPU. With pixel-wise prediction
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Fig. 3. Network architecture of the proposed semi-supervised multi-label fully convolutional network. The loss functions are defined over both labeled and
unlabeled data, and include three parts. J: multi-label softmax loss with unidirectional coherence constraints; U: loss over Laplacian graph; Ω: loss over
mutually exclusive constraints.

maps, we use the fully connected Conditional Random Field

(CRF) model [7] to obtain the final label assignment. This

post-processing step is known to be effective for smoothing

regions and refining region boundaries. It is noted that learning

potential functions for the CRF models simultaneously can

bring extra improvements in performances [7].

IV. EXPERIMENTS

In this section, we test and evaluate the proposed semi-

supervised method for hierarchical object parsing using public

image benchmarks and compare it to the other popular meth-

ods.

A. Evaluation Protocols

Datasets We use two public datasets for object parsing.

The first one is the UCLA Human Part dataset, which is

a subset of the UCLA PASCAL Part Challenge [46]. The

dataset includes 1716 training images and 1817 testing images.

It provides pixel-wise part annotations of 31 human parts, as

shown in Figure 2. This challenge requires multi-level part

recognitions which are more challenging than the alternative

benchmarks [21] [26]. The second dataset is the PASCAL
Quadrupseds dataset [43], which includes images of five

animals, including cat, dog, sheep, cow and horse. There are

3120 training images and 294 testing images, annotated with

4 part labels (including head, body, leg and tail). Note that the

second dataset is provided with two-level of part annotations:

the whole object (level-1) and part labels (level-2), and the

proposed multi-label framework is still applicable. These two

image datasets include a variety of natural object images,

being used to test the generalization capability of the proposed

hierarchical object parsing algorithm.

Image Augmentation Using a sufficient amount of rep-

resentative training images is crucial to the success of deep

learning models. In this work, we resize each training image so

that its longer dimension is 500 pixels, and slide a subwindow

of 300 by 300 pixels with a step size of 20 pixels. For

each subwindow, we perform 4 additional croppings through

randomly selecting one of the following ways: (i) flipping,

with a probability 0.1; (ii) changing color intensity by a

random scale in [0.7, 1.3], with a probability 0.4; (iii) rotating

a random degree between [-5, 5], with a probability 0.5.

We cropped 30-70 samples for each image. Similar cropping

protocol has been used in previous works, e.g., [43].
Implementation To measure the pair-wise distance between

image pixels, we extract the Histogram of Oriented Gradient

(HOGs) [10] from local regions centered at individual pixels,

and calculate their pair-wise Euclidean distance Wi j . In the

loss function Eq 9, we set λl, λu , and λe to be 0.6, 0.3,
and 0.1, respectively. We train the semi-supervised multi-

label FCN using stochastic gradient descent methods with

mini-batches. Each mini-batch contains 30 images. The initial

learning rate is 0.001 and is decreased by a factor of 0.1 after

every 2000 iterations. We set the momentum to be 0.9 and

the weight decay to be 0.0005. The initialization model is

a modified VGG-16 network pre-trained on ImageNet. Fine-

tuning our network on the first UCLA Human Part dataset

takes about 30 hours on a NVIDIA Telsa K40 GPU. The

average inference time for one image is about 0.3 seconds.

While applying the proposed method over each of the three

datasets, we use the 10, 582 images from PASCAL VOC 2012

as unlabeled images. Being similarly to [7], we decouple the

DCNN and Dense CRF training stages and learn the CRF

parameters by cross validation to maximize IOU (intersection-

over-union) segmentation accuracy in a heldout set of 100

fully-annotated images. We use 10 mean-field iterations for

Dense CRF inference [20].
Baselines We compare our algorithm with three state-

of-the-art methods for part segmentation, including two

popular supervised methods: the Deep Hypercolumn (HC)

method [19], and the Joint Object and Part Segmentation

method by Wang et al. [43]. Both methods require fully

annotated training images. We also compare to the weakly

supervised method by Papandreou et al. [31] which can

automatically infer pixel-wise segmentation maps using an EM

method. We implemented and trained their models following

the suggested configurations/procedures.
Evaluation Metrics We evaluate the results of various

object parsing methods using IOU, i.e. intersection-over-union

between pixel-wise predictions and ground-truth labels. The
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proposed method might generate multiple label predictions

for every pixel. In the evaluation, we consider each part/sub-

part as a separate class, and compute IOU for each class. We

calculate the mean IOU across images and average over all

labels.

B. Results on the UCLA Human Part Dataset [46]

We apply the proposed semi-supervised method over the

UCLA Human Part dataset and evaluate it in both inductive

and transductive settings. The former studies how well the

learned model works on unseen examples, while the latter

studies how the learning procedure discovers labels for the

unlabeled training samples [50].

Table I reports the quantitative comparisons of all methods

in the inductive setting. We learn the proposed model from

both labeled and unlabeled data and test the learned model

over unseen testing samples. Among the 31 part labels, we

did not include the results for the six subparts of head (e.g.,

ear, eye, mouse, brow, nose, hair) since their instances are very

rare. We evaluated three variants of the proposed method: Our-

I, Our-II, Our-III, which used 30%, 50%, and 100% labeled

training samples, respectively. The three baseline methods

used 100% labeled training samples for fair comparisons

since the three implementations of our method access extra

unlabeled images. The semi-supervised method [31] used all

the unlabeled images. We implement another variant of the

proposed method, denoted as Our-IV, which does not utilize

exclusive label constraints. We set λu = 0.4 and λe = 0
for Our-IV. We use these variants to analyze the effects of

individual components of the proposed method.

From the comparisons of various labeling algorithms, we

can draw the following observations. First, the proposed

method can achieve equivalent performance to the three fully

supervised object parsing methods while only using 50% or

less labeled images. With only 30% labeled training images,

the proposed Our-I (IOU: 51.4%) can still outperform the

methods [19] (IOU: 48.3%) and [43](IOU: 50.2%), which is

an encouraging result considering it is cost-intensive to collect

hierarchical part annotations. Our semi-supervised method,

however, still needs a descent amount of supervisions to

be properly trained. Note that our method is different from

one-short learning algorithms [12] [42] that work on one

or a few labeled training samples. Second, with additional

use of unlabeled images the semi-supervised methods Our-

III and [31] can achieve equivalent performance as the fully

supervised methods. This observation is consistent with the

previous works [31] and demonstrates the great potential of

semi-supervised methods in conjunction with advanced deep

learning techniques. Third, the comparisons between Our-

IV and Our-III demonstrated the advantages of the proposed

exclusive constraints. In particular, our method obtained about

3 percentages improvements while additionally employing

such constraints.

Figure 4 visualizes exemplar results of transductive infer-

ence using the proposed method Our-I. For each unlabeled

training image, we run forward propagation over the learned

network to get label-wise prediction maps and employ the

densely connected CRF method [7] to obtain final labels.

For each image in the first-column, we visualize its label

map using using three figures for clarity. Column 1: human

and background; Column 2: torso, head, neck, arm, and leg;

Column 3: other part labels. Note that we change the color

codes used in different columns to highlight the semantic

regions obtained. These images include many challenges to

existing state of object parsing, including occlusions (row

1), complex interactions (row 2), lighting changes (row 3)

and scale change (row 4). With the proposed constraints, our

method achieved promising results considering that only a

small number of labeled images is used for training.

C. Results on the Quadrupeds dataset [43]

We further test and evaluate the proposed method over

the Quadrupeds dataset. We used the same baseline methods

as the previous experiment. Table III reports the quantitative

comparisons between all algorithms using IOU metrics. We

first calculate IOU for each label, and then average across part

labels to get the category-wise IOU. For every method, we also

average category-wise IOU over all object categories for com-

parisons. The comparisons between various methods clearly

demonstrate the advantages of the proposed method. Notably,

with 30% labeled training images, the proposed method Our-

I can achieve much better performance (49.6%) than two

state-of-the-art methods [19] (38.8%) and [43] (44.3%). It is

also comparable to the semi-supervised method [31] (51.7%),

which uses all the labeled training images. Moreover, we can

observe that Our-IV achieved a decent accuracy (52.0%) while

only using multi-label loss and Laplacian regularization, and

obtained a much better accuracy (56.6%) while additionally

using the proposed exclusive constraints.

Fig. 5 visualizes the results of various human part parsing

methods, including [19], [43] and Our-I. The three exemplar

images include cat, horse and cow, respectively. We show the

ground-truth label map in the last column for comparisons.

For the image of cat (row-1), [19] is less accurate than the

other two methods since the labeled region of legs include

many background pixels. For the other two images, only the

proposed method can identify the part of tail. Our method aims

to directly model the coherence and exclusive relationships in

the label space, and demonstrates much stronger generalization

capability than the alternatives.

V. CONCLUSIONS

This paper presented a multi-label fully convolutional net-

work (FCN) that can be effectively trained on semi-supervised

images for hierarchical object parsing. Our model is capable of

explicitly imposing the various constraints between image la-

bels and taking advantages of unlabeled images. In particular,

we introduced three types of constraints: (i) Pair-wise coher-

ences between part labels and their offspring labels, (ii) Pixel-

wise manifold regularization, and (iii) Exclusive constraints

between object parts labels. We formulated these objectives in

a unified loss function and use it to learn deep features in the

semi-supervised setting. The proposed model can be end-to-

end trained using the standard stochastic gradient algorithm.
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Fig. 4. Exemplar results of transductive learning. Column-1 shows the input images. Columns 2-4 show the predicted maps for binary labels (human and
others), five part labels (torso, head, neck, arm, leg), and the other subpart labels, respectively.

Fig. 5. Exemplar results of part parsing. Column 1: Input images; Column 2: results by [19]; Column 3: Results by [43] ; Column 4: Results by the proposed
method (Our-I); Column 5: groundtruth label map. Color codes are randomly generated to highlight the segmented regions.
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human torso head neck arm leg u-arm l-arm hand u-leg l-leg foot Avg.
[19] 77.6 78.2 76.2 38.5 41.7 35.4 37.6 53.1 48.9 38.1 25.4 29.3 48.3
[43] 79.4 81.2 75.8 42.8 42.5 38.8 39.3 54.3 50.4 38.7 27.2 31.9 50.2
[31] 81.9 82.4 81.2 40.3 43.2 42.5 48.2 61.2 51.8 42.7 29.4 31.4 53.0

Our-I 78.3 79.3 80.4 41.6 39.1 41.2 46.1 59.1 50.5 36.5 32.4 32.7 51.4
Our-II 83.5 81.4 82.5 43.3 41.3 43.7 50.2 63.7 56.3 45.1 33.5 34.5 54.9
Our-III 86.1 84.5 87.9 45.2 47.8 52.1 55.4 65.2 58.4 48.5 36.5 42.1 59.1
Our-IV 83.1 82.3 84.7 44.1 42.3 48.5 51.4 62.8 54.3 47.6 34.1 38.7 56.0

TABLE I
PART PARSING RESULTS (IOU) ON THE UCLA HUMAN PART CHALLENGE [46]. THE PROPOSED SEMI-SUPERVISED METHOD OUR-I, OUR-II, AND

OUR-III USED 30%, 50%, AND 100% ANNOTATED TRAINING SAMPLES, RESPECTIVELY. THE METHOD OUR-IV USES 100% ANNOTATED IMAGES BUT

DOES NOT EMPLOYS THE EXCLUSIVE CONSTRAINTS BETWEEN LABELS. THE OTHER BASELINE METHODS USE ALL THE TRAINING SAMPLES.

Dog Cat Cow Horse Sheep Avg.
[19] 42.1 44.0 35.5 38.6 33.8 38.8
[43] 45.6 47.8 42.7 49.6 35.7 44.3
[31] 54.2 53.4 46.8 55.7 44.1 50.8

Our-I 50.3 54.2 45.9 53.1 44.3 49.6
Our-II 52.4 55.6 46.7 55.8 48.1 51.7
Our-III 57.9 63.2 52.4 58.3 55.1 57.4
Our-IV 52.4 57.4 46.1 56.3 47.8 52.0

TABLE II
PART PARSING RESULTS (IOU) ON THE QUADRUPEDS DATASET. THE

PROPOSED SEMI-SUPERVISED METHOD OUR-I, OUR-II, AND OUR-III
USED 30%, 50%, AND 100% ANNOTATED TRAINING IMAGES,

RESPECTIVELY. THE OTHER BASELINE METHODS USED ALL THE LABELED

TRAINING IMAGES. THE METHOD OUR-IV USES 100% ANNOTATED

IMAGES BUT DOES NOT EMPLOYS THE EXCLUSIVE CONSTRAINTS

BETWEEN LABELS.

Dog Cat Cow Horse Sheep Avg.
[19] 42.1 44.0 35.5 38.6 33.8 38.8
[43] 45.6 47.8 42.7 49.6 35.7 44.3
[31] 54.2 53.4 46.8 55.7 44.1 50.8

Our-I 50.3 54.2 45.9 53.1 44.3 49.6
Our-II 52.4 55.6 46.7 55.8 48.1 51.7
Our-III 57.9 63.2 52.4 58.3 55.1 57.4
Our-IV 52.4 57.4 46.1 56.3 47.8 52.0

TABLE III
RESULTS (IOU) ON THE QUADRUPEDS DATASET. THE PROPOSED

SEMI-SUPERVISED METHOD OUR-I, OUR-II, AND OUR-III USED 30%,
50%, AND 100% ANNOTATED TRAINING IMAGES, RESPECTIVELY. THE

BASELINE METHODS USED ALL THE LABELED TRAINING IMAGES. THE

METHOD OUR-IV USES 100% ANNOTATED IMAGES BUT DOES NOT

EMPLOYS THE EXCLUSIVE CONSTRAINTS BETWEEN LABELS.

Experiments with comparisons on public image datasets

showed that our method can achieve state-of-the results for

segmenting object parts of varying semantic levels in im-

ages. We empirically showed that: (i) Additional use of a

large amount of unlabeled images brought significant im-

provements in multi-level part segmentation; (ii) Our method

achieved comparable performance while using 50% or less

labeled samples than the alternatives; (iii) The proposed

coherence constrains and exclusive constraints resulted in

improved performance, respectively, and the integration of

these two constraints achieve state-of-the-art performance for

semi-supervised hierarchical object parsing.
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