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Learning Semi-supervised Multi-Label Fully
Convolutional Network for Hierarchical Object
Parsing

Xiaobai Liu, Qian Xu, Eric Medwedeff, Grayson Adkins, Liang Lin, Shuicheng Yan

Abstract—This paper presents a semi-supervised multi-label
Fully Convolutional Network (FCN) for hierarchical object
parsing of images. We consider each object part (e.g., eye and
head) as a class label and learn to assign every image pixel to
multiple coherent part labels. Different from previous methods
that consider part labels as independent classes, our method
explicitly models the internal relationships between object parts,
e.g., that a pixel highly scored for eyes should be highly scored
for heads as well. Such relationships directly reflect the structure
of the semantic space and thus should be respected while
learning the deep representation. We achieve this objective by
introducing a multi-label softmax loss function over both labeled
and unlabeled images and regularizing it with two pair-wise
ranking constraints. The first constraint is based on a manifold
assumption that image pixels being visually and spatially close
to each other should be collaboratively classified as the same
part label. The other constraint is used to enforce that no
pixel receive significant scores from more than one labels that
are semantically conflicting with each other. The proposed loss
function is differentiable with respect to network parameters and
hence can be optimized by standard stochastic gradient methods.
We evaluate the proposed method on two public image datasets
for hierarchical object parsing and compare it to the alternative
parsing methods. Extensive comparisons showed that our method
can achieve state-of-the-art performance while using 50% less
labeled training samples than the alternatives .

Index Terms—fully convolutional network, semi-supervised
learning, hierarchical models

I. INTRODUCTION

The goal of this work is to develop an effective approach
capable of segmenting objects, object parts (e.g. head, torso,
legs) and subparts (e.g. eyes, mouses) in images and generating
a hierarchical representation of objects. The outcomes of our
approach include a pixel-wise binary mask for each entity of
the hierarchy, which can be used to assist in high-level image
tasks, e.g., human pose recognition [15] or human interaction
recognition [1] [33]. In the past decade, the state of object
parsing has been rapidly evolving [39] [18] [13][14] [37],
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Fig. 1. Hierarchical object parsing. (a) Input images; (b)-(c): object masks
segmented by the proposed method for 2 labels (human and non-human), 6
human part labels, and 31 human subpart labels, respectively.

largely driven by the advances in statistical learning and
computer vision. In particular, the recently developed Fully
Convolutional Network (FCN) [27] is capable of end-to-end
learning multi-level feature representations for semantic image
segmentation. Multiple object parsing methods [31] [43] [9]
utilize FCN as basic networks and achieved encouraging re-
sults on multiple object detection benchmarks. The learning of
such deep representations, however, requires tens of thousands
of labeled samples and hence requires cost-intensive human
efforts to prepare training data. The situation becomes worse
while dealing with hierarchical object parsing, where an image
includes tens of part labels. Thus, there is a demand for
developing weakly supervised deep models for object parsing
in practical deployment.

Figure 1 shows two exemplar results of the proposed method
for hierarchical object parsing. Given a single image as the
input, our method can segment human region, human parts
(e.g. head), and human subparts (e.g. eyes), as shown in the
subfigures (b) - (d), respectively. These part labels are not
semantically independent with each other during inference
because, for example, a region of noses should be labeled as
heads as well, and a region of hands is part of the region of
upper-body. In addition to such coherences, two human part
labels might be exclusive from each other. For example, a
region cannot be classified as heads and torso simultaneously.
An effective hierarchical object parsing algorithm has to
respect both coherent and exclusive constraints between image
labels, which has not been systemically studied in the literature
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of deep representation learning [4].

In the proposed method, we consider each object part of
the hierarchy as a class label and aim to learn a multi-label
FCN from images. Hierarchical object parsing is essentially a
multi-label image segmentation problem which aims to assign
each pixel of the input image to multiple part labels, e.g., eye,
head, and upper-body. While the conventional neural network
methods [27] can be used for multi-label settings, their loss
functions cast image labels to be semantically independent
with each other and ignore their coherent relationships. For
example, an image pixel receiving the label of eye should be
classified as a head as well but not vice versa. In this work,
we propose to develop a multi-label softmax loss for FCN
to encourage compatibilities between the predicated labels
and ground-truth labels while respecting the above coherence
constraints between image labels.

We will learn the proposed model using a small number of
annotated images and a large amount of raw images without
annotations. This semi-supervised setting allows our model to
generalize to unseen data samples and avoid potential over-
fitting with the training data. Over-fitting is a serious issue
for modern neural network techniques [4], which have been
employing an increasingly large set of network parameters
(e.g., with deeper layers or more hidden units). To suppress
the effects of over-fitting, in this work, we develop two
regularization terms for the proposed semi-supervised model.

o Manifold regularization. We introduce a pixel-wise
manifold assumption over both the labeled and unlabeled
images, in order to enforce a smoothness constraint:
Image pixels that are visually and spatially close to each
other are coherent in the semantic space. We thus propose
to learn a manifold [50], [3] for representing all pixels so
as to preserve their relative spatial relationships. A classi-
cal method, for example, is the Laplacian Embedding [2].
Similar ideas have also been exploited by traditional
semi-supervised methods and most recently are integrated
with deep leaning representations [44]. In this work, we
generalize this methodology to learn a FCN for hierarchal
object parsing.

« Exclusive Constraints. We introduce a set of exclusive
constraints to regularize the FCN network: image pixels
with significant scores from a class (e.g. head) will not
be scored significantly for another exclusive class (e.g.,
torso). In multi-label settings, there are multiple exclusive
label lists and the labels in each list should be exclusively
assigned to an image pixel.

We integrate the above two types of constraints to define a
unified multi-label loss function. This function is differen-
tiable with respect to network parameters and hence can be
optimized by standard stochastic gradient methods [27]. Our
approach can take advantage of both labeled and unlabeled
images, providing a simple yet effective way to formulating
hierarchical object parsing in semi-supervised settings.

We evaluate the proposed method on two public image
datasets and compare it to the alternative object parsing meth-
ods. Experiments with comparisons showed that our method
can closely match the performance of fully-supervised systems
while using only 50% (or less) labeled images. Empirical anal-

ysis also validated the effectiveness of the proposed multi-label
loss function and regularization terms. Note that we pre-train
the proposed method on generic images with classification
labels (e.g., ImageNet), without accessing to pixel-wise image
labels.

The three Contributions of this paper include (i) an ef-
fective Multi-label FCN model for hierarchical object parsing
that can be trained over both labeled and unlabeled images;
(ii) a set of regularization terms, including manifold constraints
and exclusive constraints, which are applicable to other image
tasks; and (iii) a weakly supervised image parsing system that
can achieve state-of-the-art performance while using a small
number of fully annotated images.

II. RELATIONSHIPS TO PREVIOUS WORKS

The proposed research is closely related to four research
streams in computer vision and machine learning.

Object Part Detection has been extensively studied in com-
puter vision literature. The successful deformable part-based
model (DPM) [13] [37] and poselet model [5] can effectively
represent geometric relationships between object parts in 2D
and 3D, but are restricted to their shallow representations while
dealing with object instances with large variances. Chen et
al. [8] introduced rich contextual part relationships to boost
system robustness. Girshick et al. [14] re-formulated the DPM
model using convolution neural networks to favor end-to-
end learning of deep features. Song et al. [37] proposed to
discriminatively train a hierarchical graphical model to allow
fined-grained object detection. Wang et al. [43] proposed to
jointly segment objects and object parts through learning a
two-stream FCN in order to exploit the compositional relation-
ships between part labels. While achieving impressive results,
these algorithms did not explicitly formulate cooperative rela-
tionships between object parts. For example, an image pixel
classified as head should be recognized as ‘upper-body as well,
not vice versa; or that a pixel should not be simultaneously
assigned to upper-body and lower-body. In this work, we will
introduce an multi-label loss function to explicitly formulate
such coherence and exclusive constraints and use them to
guide the learning of deep features.

Semi-supervised methods [50] can be used to train machine
learning models using a small number of labeled data. It has
made use of embedding techniques [29], which aim to solve a
lower-dimensional data representation while preserving pair-
wise distances in the original feature space. Most embedding
algorithms utilize the structure assumption: points within the
same structure (or a manifold) are likely to have the same
label, and use unlabeled data to discover this structure. Suc-
cessful approaches include cluster kernels [23], label propa-
gation [30], LapSVM [48], MDSCAL [22], or ISOMAP [38].
Weston et al. [44] employed these embedding methods as
regularization terms to learn deep multi-layer neural networks
and achieved promising results. Similarly, this work presents a
multi-label convolutional network to learn deep features for hi-
erarchical object parsing. Our method explicitly enforces both
manifold assumption and coherence/exclusiveness constraints
between labels, and showed promising results in reducing the
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necessary amount of labeled data to achieve the same level of
performance.

Fully Convolution Networks (FCNs) [27] and its vari-
ants [7] [31] have been widely used to predict pixel-wise labels
and have shown compelling quality and efficiency on multiple
datasets [46] [26]. A FCN takes an image as the input, and
performs sliding-window-based classification at each pixel in
a local receptive field. The network can be trained end-to-
end given the pixel-wise semantic region labels. Pinheiro et
al. [35] utilizes a FCN to predict object segmentation masks
given an input image. To detect object instances, Dai et al. [9]
presented an instance-sensitive FCN to generate category-wise
instance score maps. All the above models are trained with full
supervisions to predict a single label for each pixel but are
not suitable for hierarchical object parsing. In this work, we
introduce a multi-label FCN in the semi-supervised setting,
which is a novel technique in the catalog of hierarchical
parsing methods.

Weakly Supervised Image Segmentation Methods in the
literature include two major categories. The first category uses
image-level labels and automatically reasons segment-label
correspondences during training [28], [40]. Popular techniques
include the Expectation-Maximization algorithm [11] [31],
Probabilistic Generative Models [41], Multi-Instance Meth-
ods [32] [34] and Latent Support Vector Machine [24] etc.
The second category [45] [49] [16] [6], [25] uses bounding
boxes around objects (e.g. humans, animals), instead of pixel-
wise image labels, to train image segmentation models. Box
inputs are also used as weak supervisions to guide interactive
image segmentation [36]. Kumar et al. [24], Xu et al. [47],
and Papandreou et al. [31] exploited both image labels and
bounding boxes as weak supervisions. In this work, we focus
on the semi-supervised image segmentation problem for which
a large number of training images are completely unlabeled
and aim to learn to hierarchically segment objects in the
multi-label setting. We propose to augment the popular FCN
model with both traditional semi-supervised regularizations
and multi-label exclusive constraints in order to guide the
training of deep features.

III. SEMI-SUPERVISED MULTI-LABEL FCN FOR
HIERARCHAL OBJECT PARSING

In this section we present a learning based hierarchical
object parsing algorithm built on top of the expressive Fully
Convolution Networks (FCNs) [27]. We focus on methods
for training the FCN parameters from both annotated and
unannotated images.

Notations We denote by C the total number of object parts
and sub parts. These parts form a hierarchy as graphically
shown in Figure 2. We denote by D = D/ UD* the set of
training images, including labeled images D’ and unlabeled
images D”. Let x € D denote a training image. For a labeled
image x € D!, we denote by y the segmentation map. Let
x; denote the image pixel at location 7, and y; € {1,...,C}
denote its pixel-wise semantic label. We assume that the
number of unlabeled samples in D* are much larger than that
of the labeled samples in D'. We denote the outputs of the
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Fig. 2. Hierarchy of human parts used in this paper. There are a total of 31
human parts forming a tree-like structure.

convolutional network by f(-), which can be considered as a
scoring function of the image x.

The rest of this section is organized as follows: In Subsec-
tion III-A, we formulate the problem of hierarchical object
parsing as a multi-label classification problem. In Subsec-
tion III-B, we introduce how to extend the proposed formula to
the semi-supervised setting. In Subsection III-C, we present a
set of regularizations to the proposed semi-supervised model.
In Subsection III-D, we specify the unified formula used in this
work. In Subsection III-E, we elaborate on the implementation
of the proposed algorithm.

A. Multi-label FCN with Unidirectionally Coherent Con-
straints

In our approach for hierarchical object parsing, we adopted
the fully convolutional network (FCN) proposed in [27] as
the basic network architecture and investigate ways to specify
effective loss functions in the multi-label setting. Our method
considers multiple part labels which form a tree-like structure,
as shown in Figure 2, and enforces the following coherence
constrains: for any image pixel x;, the prediction score for
label A should be at least equal to the score for any offspring
labels of A. These pair-wise coherence constraints are unidi-
rectional and should be satisfied during the learning of deep
features.

We augment the multi-label softmax loss [17], which can
be used for single-label predictions as well, with extra reg-
ularizations in order to enforce the proposed unidirectional
coherence constrains. Let f;(k) denote the k-th output layer
of the FCN Network, which is the activation value for an
image pixel x; and class k, and f;(k) denote corresponding
probability, obtained as:

explfi(k)]
S explfiD]
Let fl = [fl-(k)],k = 1,2,... assembles the probability of x;
belonging to every label. Let y; denote a C-dimensional label

vector, whose k-th component is 1 if x; belongs to the class k;
0, otherwise. We normalize y; so that its sum is unit 1, and use

filk) = (1)
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it as the ground-truth probability. Thus, given a set of labeled
images, we aim to learn a FCN so as to minimize the Kullback-
Leibler (KL) divergence from the prediction probability f;
to ground-truth probability y;. Such a loss function is also
regularized by the between-label coherence constraints. Let
P(k) denote the set of offspring labels of the label k. We
define the loss function over labeled images as follows,

Jxy = KL(filly) )
i=1
s.t, V1 e Pk), fi(k) > f:() (3)
kell,C] 4

where KL(f|lvi) = ¥ fi(k)log % Eq. (2) is a constrained
logarithm function and can be optimized using the standard
gradient method [21]. This supervised method requires a large
amount of labeled data, which is cost-intensive to prepare.
In the next subsection, we will introduce a semi-supervised

variant to take advantages of large-scale unlabeled images.

B. Manifold Regularization

We adopt the Eq. (2) to the semi-supervised setting in order
to learn a multi-label classifier capable of generalizing to
unseen testing images. Being similar to most semi-supervised
methods [50], we assume that the number of labeled samples
is much smaller than that of unlabeled samples, and that pixel-
wise features of the same image are drawn from one or mul-
tiple manifold subspaces. We employ a Laplacian graph [48]
to impose the above manifold regularizations. Let W;; denote
the similarity between the image pixels x; and x;. We define
the Laplacian matrix by L = W — D, where D;; = }; Wj;
is diagonal. Let f; denote the predicated label vector for the
image pixel i and F = [f;] the predicated label matrix. Thus,
we introduce the following regularization term,

Ux) = > > Wyllfi- £ (5)
i

= tr(F'LF) (6)

st. FIDF=1F'D1=0 (7)

where tr(-) represents the trace of a matrix, 1 indicates a full-
one matrix and the two constraints are used to avoid trivial
solutions [50].

C. Integrating Mutually Exclusive Constraints

In the proposed multi-label setting, an image pixel might be
assigned to multiple coherent labels, e.g., head and nose. In
the meantime, for example, the labels of head and torso should
be exclusively assigned to an image pixel. Such exclusive
constraints are mutually effective for part labels, and should
be satisfied during the training of deep features. Therefore,
we regularize the proposed FCN model with the following
constraint: if an image pixel x; receives a relatively large score
for a part label k, it is less likely for x; to receive significant
scores for and only for the part labels that are exclusive from
the label k. Figure 2 graphically shows the decomposition
relationships between part labels. The exclusive labels of a part

(e.g., arm) include the parts of the same level in the hierarchy
(e.g., head) and their offspring parts (e.g., eye, nose).

To enforce the above exclusive constraints, we impose
additional regularizations terms over network activities f(-).
Let C(k) denote the exclusive labels for the label k. For each
label k and image pixel x;, we utilize an unified function to
accumulate the output activities for the labels in C(k), denoted
as p(x;; k). We normalize p(x;; k) so that its sum is unit 1.
Being similar to [17], we specify a loss regularization over
both labeled and unlabeled images, which aims to minimizes
the entropy of the distribution p(x;; k):

C

Q) ==>" > pilis k) log pulxi; k) (8)

k=11eC(k)

Minimizing the above entropy will encourage sparsity over the
distribution p(x;; k) and thus directly encodes the proposed
exclusive constraints.

D. Unified formula: Semi-supervised Multi-label FCN

We define a unified loss function to integrate the objectives
in Egs. (2), (5), and (8):

LD)= Y ATy + ) [WUX) + 220 ©)

xeD! xeD

where A;, 4, and A, are constants and their sum is 1. Among
these terms, 7 (x) is the multi-label supervised loss, U is the
manifold regularization tem and Q(x) is the regularization tem
with exclusive constraints. These objectives are defined over
both labeled and unlabeled samples.

E. Network Architecture

Figure 3 graphically illustrates the network architecture of
the proposed semi-supervised multi-label fully convolutional
network. We use the VGG-16 network architecture, and em-
ploy the atrous algorithm [7] to generate dense pixel-wise
predictions. These convolutional layers are applied on the input
image to get a pixel-wise score map for each part label. We
pre-train the network on ImageNet with the cross-entropy loss
function [21], and fine-tune the network weights following
the procedure of Long et al. [27]. In particular, we replace
the 1000-way ImageNet classifier in the last layer of VGG-16
with a 32-way one, corresponding to the 31 human part labels
plus background label. On top of this pre-trained network, we
replace the last fully connected layers with two convolution
layers [9]: one layer uses 1Xx 1 kernels and the other layer uses
3 x 3 kernels to generate pixel-wise predictions. Like Long
et al. [27], we upsample and concatenate the intermediate
predictions to get pixel-wise scores and use them calculate
losses over training images.

The proposed loss function Eq. (9) is smooth and differ-
entiable, and can be effectively optimized using the standard
stochastic gradient descent algorithm [21]. In particular, we
run forward propagation on the input image, generating pixel-
wise score maps. Each image pixel is associated with a score
for each of the 32 labels. It takes a total of 0.18 seconds to
evaluate an image on a K40 GPU. With pixel-wise prediction
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Input Image x

Label 1

Label 32

Loss
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Fig. 3. Network architecture of the proposed semi-supervised multi-label fully convolutional network. The loss functions are defined over both labeled and
unlabeled data, and include three parts. J: multi-label softmax loss with unidirectional coherence constraints; U: loss over Laplacian graph; Q: loss over

mutually exclusive constraints.

maps, we use the fully connected Conditional Random Field
(CRF) model [7] to obtain the final label assignment. This
post-processing step is known to be effective for smoothing
regions and refining region boundaries. It is noted that learning
potential functions for the CRF models simultaneously can
bring extra improvements in performances [7].

IV. EXPERIMENTS

In this section, we test and evaluate the proposed semi-
supervised method for hierarchical object parsing using public
image benchmarks and compare it to the other popular meth-
ods.

A. Evaluation Protocols

Datasets We use two public datasets for object parsing.
The first one is the UCLA Human Part dataset, which is
a subset of the UCLA PASCAL Part Challenge [46]. The
dataset includes 1716 training images and 1817 testing images.
It provides pixel-wise part annotations of 31 human parts, as
shown in Figure 2. This challenge requires multi-level part
recognitions which are more challenging than the alternative
benchmarks [21] [26]. The second dataset is the PASCAL
Quadrupseds dataset [43], which includes images of five
animals, including cat, dog, sheep, cow and horse. There are
3120 training images and 294 testing images, annotated with
4 part labels (including head, body, leg and tail). Note that the
second dataset is provided with two-level of part annotations:
the whole object (level-1) and part labels (level-2), and the
proposed multi-label framework is still applicable. These two
image datasets include a variety of natural object images,
being used to test the generalization capability of the proposed
hierarchical object parsing algorithm.

Image Augmentation Using a sufficient amount of rep-
resentative training images is crucial to the success of deep
learning models. In this work, we resize each training image so
that its longer dimension is 500 pixels, and slide a subwindow
of 300 by 300 pixels with a step size of 20 pixels. For
each subwindow, we perform 4 additional croppings through
randomly selecting one of the following ways: (i) flipping,

with a probability 0.1; (i) changing color intensity by a
random scale in [0.7, 1.3], with a probability 0.4; (iii) rotating
a random degree between [-5, 5], with a probability 0.5.
We cropped 30-70 samples for each image. Similar cropping
protocol has been used in previous works, e.g., [43].

Implementation To measure the pair-wise distance between
image pixels, we extract the Histogram of Oriented Gradient
(HOGs) [10] from local regions centered at individual pixels,
and calculate their pair-wise Euclidean distance W;;. In the
loss function Eq 9, we set 4;, 4,, and A, to be 0.6, 0.3,
and 0.1, respectively. We train the semi-supervised multi-
label FCN using stochastic gradient descent methods with
mini-batches. Each mini-batch contains 30 images. The initial
learning rate is 0.001 and is decreased by a factor of 0.1 after
every 2000 iterations. We set the momentum to be 0.9 and
the weight decay to be 0.0005. The initialization model is
a modified VGG-16 network pre-trained on ImageNet. Fine-
tuning our network on the first UCLA Human Part dataset
takes about 30 hours on a NVIDIA Telsa K40 GPU. The
average inference time for one image is about 0.3 seconds.
While applying the proposed method over each of the three
datasets, we use the 10, 582 images from PASCAL VOC 2012
as unlabeled images. Being similarly to [7], we decouple the
DCNN and Dense CRF training stages and learn the CRF
parameters by cross validation to maximize IOU (intersection-
over-union) segmentation accuracy in a heldout set of 100
fully-annotated images. We use 10 mean-field iterations for
Dense CRF inference [20].

Baselines We compare our algorithm with three state-
of-the-art methods for part segmentation, including two
popular supervised methods: the Deep Hypercolumn (HC)
method [19], and the Joint Object and Part Segmentation
method by Wang et al. [43]. Both methods require fully
annotated training images. We also compare to the weakly
supervised method by Papandreou et al. [31] which can
automatically infer pixel-wise segmentation maps using an EM
method. We implemented and trained their models following
the suggested configurations/procedures.

Evaluation Metrics We evaluate the results of various
object parsing methods using IOU, i.e. intersection-over-union
between pixel-wise predictions and ground-truth labels. The
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proposed method might generate multiple label predictions
for every pixel. In the evaluation, we consider each part/sub-
part as a separate class, and compute IOU for each class. We
calculate the mean IOU across images and average over all
labels.

B. Results on the UCLA Human Part Dataset [46]

We apply the proposed semi-supervised method over the
UCLA Human Part dataset and evaluate it in both inductive
and transductive settings. The former studies how well the
learned model works on unseen examples, while the latter
studies how the learning procedure discovers labels for the
unlabeled training samples [50].

Table I reports the quantitative comparisons of all methods
in the inductive setting. We learn the proposed model from
both labeled and unlabeled data and test the learned model
over unseen testing samples. Among the 31 part labels, we
did not include the results for the six subparts of head (e.g.,
ear, eye, mouse, brow, nose, hair) since their instances are very
rare. We evaluated three variants of the proposed method: Our-
I, Our-II, Our-III, which used 30%, 50%, and 100% labeled
training samples, respectively. The three baseline methods
used 100% labeled training samples for fair comparisons
since the three implementations of our method access extra
unlabeled images. The semi-supervised method [31] used all
the unlabeled images. We implement another variant of the
proposed method, denoted as Our-IV, which does not utilize
exclusive label constraints. We set 4, = 0.4 and 1, = 0
for Our-IV. We use these variants to analyze the effects of
individual components of the proposed method.

From the comparisons of various labeling algorithms, we
can draw the following observations. First, the proposed
method can achieve equivalent performance to the three fully
supervised object parsing methods while only using 50% or
less labeled images. With only 30% labeled training images,
the proposed Our-I (IOU: 51.4%) can still outperform the
methods [19] (IOU: 48.3%) and [43](IOU: 50.2%), which is
an encouraging result considering it is cost-intensive to collect
hierarchical part annotations. Our semi-supervised method,
however, still needs a descent amount of supervisions to
be properly trained. Note that our method is different from
one-short learning algorithms [12] [42] that work on one
or a few labeled training samples. Second, with additional
use of unlabeled images the semi-supervised methods Our-
IIT and [31] can achieve equivalent performance as the fully
supervised methods. This observation is consistent with the
previous works [31] and demonstrates the great potential of
semi-supervised methods in conjunction with advanced deep
learning techniques. Third, the comparisons between Our-
IV and Our-III demonstrated the advantages of the proposed
exclusive constraints. In particular, our method obtained about
3 percentages improvements while additionally employing
such constraints.

Figure 4 visualizes exemplar results of transductive infer-
ence using the proposed method Our-I. For each unlabeled
training image, we run forward propagation over the learned
network to get label-wise prediction maps and employ the

densely connected CRF method [7] to obtain final labels.
For each image in the first-column, we visualize its label
map using using three figures for clarity. Column 1: human
and background; Column 2: torso, head, neck, arm, and leg;
Column 3: other part labels. Note that we change the color
codes used in different columns to highlight the semantic
regions obtained. These images include many challenges to
existing state of object parsing, including occlusions (row
1), complex interactions (row 2), lighting changes (row 3)
and scale change (row 4). With the proposed constraints, our
method achieved promising results considering that only a
small number of labeled images is used for training.

C. Results on the Quadrupeds dataset [43]

We further test and evaluate the proposed method over
the Quadrupeds dataset. We used the same baseline methods
as the previous experiment. Table III reports the quantitative
comparisons between all algorithms using IOU metrics. We
first calculate IOU for each label, and then average across part
labels to get the category-wise IOU. For every method, we also
average category-wise IOU over all object categories for com-
parisons. The comparisons between various methods clearly
demonstrate the advantages of the proposed method. Notably,
with 30% labeled training images, the proposed method Our-
I can achieve much better performance (49.6%) than two
state-of-the-art methods [19] (38.8%) and [43] (44.3%). It is
also comparable to the semi-supervised method [31] (51.7%),
which uses all the labeled training images. Moreover, we can
observe that Our-IV achieved a decent accuracy (52.0%) while
only using multi-label loss and Laplacian regularization, and
obtained a much better accuracy (56.6%) while additionally
using the proposed exclusive constraints.

Fig. 5 visualizes the results of various human part parsing
methods, including [19], [43] and Our-1. The three exemplar
images include cat, horse and cow, respectively. We show the
ground-truth label map in the last column for comparisons.
For the image of cat (row-1), [19] is less accurate than the
other two methods since the labeled region of legs include
many background pixels. For the other two images, only the
proposed method can identify the part of tail. Our method aims
to directly model the coherence and exclusive relationships in
the label space, and demonstrates much stronger generalization
capability than the alternatives.

V. CONCLUSIONS

This paper presented a multi-label fully convolutional net-
work (FCN) that can be effectively trained on semi-supervised
images for hierarchical object parsing. Our model is capable of
explicitly imposing the various constraints between image la-
bels and taking advantages of unlabeled images. In particular,
we introduced three types of constraints: (i) Pair-wise coher-
ences between part labels and their offspring labels, (ii) Pixel-
wise manifold regularization, and (iii) Exclusive constraints
between object parts labels. We formulated these objectives in
a unified loss function and use it to learn deep features in the
semi-supervised setting. The proposed model can be end-to-
end trained using the standard stochastic gradient algorithm.
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Fig. 4. Exemplar results of transductive learning. Column-1 shows the input images. Columns 2-4 show the predicted maps for binary labels (human and
others), five part labels (torso, head, neck, arm, leg), and the other subpart labels, respectively.

]

Fig. 5. Exemplar results of part parsing. Column 1: Input images; Column 2: results by [19]; Column 3: Results by [43] ; Column 4: Results by the proposed
method (Our-I); Column 5: groundtruth label map. Color codes are randomly generated to highlight the segmented regions.
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human | torso | head | neck | arm | leg | u-arm | l-arm | hand | u-leg | l-leg | foot | Avg.

[19] 77.6 782 | 76.2 | 385 | 41.7 | 354 | 37.6 53.1 | 489 | 38.1 | 254 | 29.3 | 483
[43] 79.4 81.2 | 75.8 | 42.8 | 425 | 38.8 | 393 543 | 504 | 38.7 | 27.2 | 319 | 50.2
[31] 81.9 82.4 | 81.2 | 403 | 432 | 425 | 482 612 | 51.8 | 42.7 | 294 | 314 | 53.0
Our-1 78.3 79.3 | 80.4 | 41.6 | 39.1 | 41.2 | 46.1 59.1 | 50.5 | 36.5 | 324 | 32.7 | 514
Our-II 83.5 81.4 | 825 | 433 | 41.3 | 43.7 | 50.2 63.7 | 563 | 45.1 | 33.5 | 345 | 549
Our-1II 86.1 845 | 879 | 452 | 47.8 | 52.1 | 554 | 65.2 | 584 | 48.5 | 36.5 | 42.1 | 59.1
Our-IV 83.1 823 | 84.7 | 44.1 | 423 | 485 | 514 | 62.8 | 543 | 47.6 | 34.1 | 38.7 | 56.0

TABLE T

PART PARSING RESULTS (I0U) ON THE UCLA HUMAN PART CHALLENGE [46]. THE PROPOSED SEMI-SUPERVISED METHOD OUR-I, OUR-II, AND
OUR-IIT USED 30%, 50%, AND 100% ANNOTATED TRAINING SAMPLES, RESPECTIVELY. THE METHOD OUR-IV USES 100% ANNOTATED IMAGES BUT
DOES NOT EMPLOYS THE EXCLUSIVE CONSTRAINTS BETWEEN LABELS. THE OTHER BASELINE METHODS USE ALL THE TRAINING SAMPLES.

Dog | Cat | Cow | Horse | Sheep | Avg.

[19] 42.1 | 440 | 355 38.6 33.8 38.8
[43] 45.6 | 47.8 | 42.7 | 49.6 35.7 443
[31] 542 | 534 | 46.8 55.7 44.1 50.8
Our-I | 503 | 542 | 459 | 53.1 443 49.6
Our-II | 524 | 55.6 | 46.7 55.8 48.1 51.7
Our-III | 57.9 | 63.2 | 524 | 583 55.1 57.4
Our-IV | 524 | 574 | 46.1 56.3 47.8 52.0

TABLE II

PART PARSING RESULTS (IOU) ON THE QUADRUPEDS DATASET. THE
PROPOSED SEMI-SUPERVISED METHOD OUR-I, OUR-II, AND OUR-III
USED 30%, 50%, AND 100% ANNOTATED TRAINING IMAGES,
RESPECTIVELY. THE OTHER BASELINE METHODS USED ALL THE LABELED
TRAINING IMAGES. THE METHOD OUR-IV USES 100% ANNOTATED
IMAGES BUT DOES NOT EMPLOYS THE EXCLUSIVE CONSTRAINTS
BETWEEN LABELS.

Dog | Cat | Cow | Horse | Sheep | Avg.

[19] 42.1 | 440 | 355 38.6 33.8 38.8
[43] 45.6 | 47.8 | 42.7 | 49.6 35.7 443
[31] 542 | 534 | 46.8 55.7 44.1 50.8
Our-I | 503 | 542 | 459 | 53.1 44.3 49.6
Our-II | 52.4 | 55.6 | 46.7 55.8 48.1 51.7
Our-III | 57.9 | 63.2 | 524 | 583 55.1 57.4
Our-IV | 524 | 574 | 46.1 56.3 47.8 52.0

TABLE III

RESULTS (IOU) ON THE QUADRUPEDS DATASET. THE PROPOSED
SEMI-SUPERVISED METHOD OUR-I, OUR-II, AND OUR-III USED 30%,
50%, AND 100% ANNOTATED TRAINING IMAGES, RESPECTIVELY. THE
BASELINE METHODS USED ALL THE LABELED TRAINING IMAGES. THE

METHOD OUR-IV USES 100% ANNOTATED IMAGES BUT DOES NOT

EMPLOYS THE EXCLUSIVE CONSTRAINTS BETWEEN LABELS.

Experiments with comparisons on public image datasets
showed that our method can achieve state-of-the results for
segmenting object parts of varying semantic levels in im-
ages. We empirically showed that: (i) Additional use of a
large amount of unlabeled images brought significant im-
provements in multi-level part segmentation; (ii) Our method
achieved comparable performance while using 50% or less
labeled samples than the alternatives; (iii) The proposed
coherence constrains and exclusive constraints resulted in
improved performance, respectively, and the integration of
these two constraints achieve state-of-the-art performance for
semi-supervised hierarchical object parsing.
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