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MSC- representation of multilinear, operator-valued singular inte-
49B20 grals in terms of operator-valued dyadic shifts and paraprod-

ucts, and studying the boundedness of these model operators
Keywords: via dyadic-probabilistic Banach space-valued analysis. In the
Calderén—Zygmund operators bilinear case, we obtain a T'(1)-type theorem without any ad-
Operator-valued analysis ditional assumptions on the Banach spaces other than the nec-
Multilinear analysis essary UMD. Higher degrees of multilinearity are tackled via a
UMD spaces new formulation of the Rademacher maximal function (RMF)

condition. In addition to the natural UMD lattice cases, our
RMF condition covers suitable tuples of non-commutative LP-
spaces. We employ our operator-valued theory to obtain new
multilinear, multi-parameter, operator-valued theorems in the
natural setting of UMD spaces with property «.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Singular integral operators (SIOs) take the form

Tf(z) = / K@) dy, o ¢spt, (L1)
Rd

and they are abundant in classical and applied harmonic analysis. On the other hand,
the UMD (unconditionality of martingale differences) property of a Banach space X is
a well-known necessary and sufficient condition for the boundedness of generic singular
integrals on LP(R%; X), see Burkholder [2] and Bourgain [1], or the recent book [24,
Sec. 5.2.c and the Notes to Sec. 5.2]. Further progress on Banach space-valued singular
integrals in the linear setting has been intertwined with applications to rather disparate
areas, such as the geometry of Banach spaces [29,30], the regularity theory of elliptic
and parabolic equations [3,43], and the study of quasiconformal mappings [13].

In the literature, classical singular integral operators with scalar-valued kernels K
acting on X-valued functions are usually referred to as vector-valued, or Banach-valued,
singular integral operators. On the other hand, operator-valued theory concerns the
more general case, where the kernel K itself takes values in bounded linear operators
between two Banach spaces X,Y. The systematic study of linear, operator-valued sin-
gular integrals was first sparked by the operator-valued Fourier multiplier theorem of
Weis [43], which is the central tool in the author’s proof of maximal LP-regularity
for parabolic equations. In this setting, the requirement of uniform £(X,Y)-bounds
of Hérmander-Mihlin type on the multiplier must be replaced with the stronger R-
boundedness condition; essentially, {77,...,T,} is an R-bounded set in L(X,Y) if
{fi:j=1,...,n—=T;f; : 5 =1,...,n} is a bounded operator from RadX to RadY’,
where Rad is the Rademacher space. This approach has been later recast by Hyténen
and Weis [22] into a T'(1)-type theorem for operator-valued kernels. Our broad goal is to
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provide an extension of [22] to the multilinear case. Therefore, a first essential difficulty
we must deal with is to find a natural multilinear analog of the R-boundedness condi-
tion. As we will see below, this requires additional care when dealing with linearities of
degree three and higher.

We now come to a more detailed description of our main object of study. At least
heuristically, we may think of an n-linear singular integral operator T acting on R¢ as
being given by,

T(fi,o s fo)(@) =U(fLi® - ® fu)(@,...,2), weRY, fi:R=C,

where U is a linear singular integral operator in R™?. More precisely, an n-linear SIO T
has a kernel K satisfying natural estimates that can be deduced from the above heuristic
via the linear estimates, and

T(f1,... fa)(x) = / Ko []fwdy, o ¢ (spis:

Rnd

The study of multilinear singular multipliers and kernel operators began with the seminal
articles of Coifman-Meyer [5] and Christ—Journé [4]. Motivation for this study comes
from applications to elliptic and dispersive partial differential equations, ergodic theory
and complex function theory, among others. We remark that the first general T'(1)-type
result for multilinear singular kernels, in the scalar case, is due to Grafakos—Torres [15].

1.1. Main results

Until recently, vector-valued extensions of multilinear Calderén-Zygmund operators
had mostly been studied in the framework of /P spaces and function lattices, rather
than general UMD spaces. Boundedness of /P extensions is classically obtained through
weighted norm inequalities, more recently in connection with localized techniques such as
sparse domination: see [14] and the more recent [6,35,34,38] for a non-exhaustive overview
of their interplay. The paper [11] finally established L? bounds for the extensions of n-
linear SIOs to tuples of UMD spaces tied by a natural product structure — for example,
the composition of operators in the Schatten-von Neumann subclass of the algebra of
bounded operators on a Hilbert space.

Before [11], Di Plinio and Y. Ou [10] considered operator-valued bilinear multiplier
theorems that apply to certain non-lattice UMD spaces. The results of [10] may be
thought of as a first attempt of generalization of Weis” R-bounded multiplier theorem
[43]; however, the treatment of [10] relies upon additional assumptions on the triple of
Banach spaces involved — some bilinear variants of the RMF conditions appearing in
[23]. We return to the role of RMF later. In the present article, we develop a complete
multilinear operator-valued theory in the non-translation invariant setting and our as-
sumptions are less restrictive. Firstly, our bilinear theory is completely free of any RMF



4 F. Di Plinio et al. / Journal of Functional Analysis 279 (2020) 108666

assumptions, providing the following complete generalization of the T'(1)-theorem of
Hytonen and Weis [22], and in particular of [43], to the bilinear case. The key notion for
our statement is the R-bound of a set of trilinear forms B € B, B : X; x X5 x X3 — C.
This is defined as the best constant C' such that

N

> Br(@1 s w2, w3)| + [ Br(z1, 220, 234)| + [ Br(1m 22, 230) <C - (1.2)
k=1

for all choices {By,...,Bx} C B and integers N, for all sequences {z;, € X; : k =
1,...,N} with ||z,
satisfactory analogy with the usual notion of R-boundedness of bilinear forms (adjoint

|Rad(Xj) < 1 and vectors Tj € Xj with ||-rj||Xj < 1, fOI"j = 1,2,3. A

to linear operators) [22] is the following: for each fixed z3 in the unit ball of X3, the
bilinear forms B(-, -, z3) are R-bounded on X; x X3 in the usual sense.

1.3 Theorem. Let X1, X5, X3 be UMD Banach spaces and Ys be the Banach dual of
Xs. Let T be a bilinear SIO on R?® whose kernel K takes values in bounded bilinear
operators from X1 x Xy to Ys and satisfies R-boundedness versions, in the sense of (1.2)
above, of the kernel smoothness and weak-boundedness properties, and some T(1) € BMO
properties, see Definition 6.2. Then

2
1T (f1, f2)ll Los (Resvs) S H I fnll Lom (R0
m=1

_ 1

1 1 1
V1<p17p2§oo, §<QJ<OO7 p_1+p_2 s

Theorem 1.3 is a particular case of Theorem 6.4. For a detailed description of the
assumptions as well as for stronger sparse bound type variants, the reader should consult
these results in the main body of the article.

The RMF property of a Banach space X, involving LP estimates for a certain analogue
of the Hardy-Littlewood maximal operator obtained by replacing uniform bounds with
R-bounds, dates back to the work of Hyténen, McIntosh and Portal on the vector-
valued Kato square root problem [23]: see also [21,31,32]. The recent multilinear vector-
valued (but not operator-valued) setup of [11] avoids the use of RMF assumptions in
all linearities, arguing by induction on the multilinearity index. On the other hand,
the inductive argument of [11] relies on an abstract assumption modelling the Holder
type structure typical of concrete examples of Banach n-tuples, such as that of non-
commutative LP spaces with the exponents p satisfying the natural Holder relation.
Operator-valued analogs of the Holder-type structures of [11] is left for future work. In
the present article, the n > 3 analog of Theorem 1.3 requires that the (n 4 1)-tuple of
spaces involved obeys to a multilinear version of the RMF assumption, which is described
in detail in Subsection 3.2.

A precise statement of the T'(1)-theorem for an n-linear SIO on R with £(X; x - - - x
Xy, X, 1)-valued kernel (see Section 2.3 for this notation), when n = 3 and higher, is
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provided in Theorem 6.4. Here, we remark that the RMF setup of Subsection 3.2 applies
in the following cases in addition to the trivial X; = C for all 1 < j < n + 1, see
Examples 3.27 and 3.28 for details:

o« X; = LPi(Q;Z;), whenever 1 < p; < oo for all 1 < j < n+1is a Holder tuple
and Z; is a tuple of UMD Banach spaces for which RMF holds; by iterating this
observation, X; may be any tuple of reflexive Banach mixed norm L” spaces;

o let J C{1,...,n+ 1} be a subset of cardinality 3, and for j € J, let X; = LPi(A),
where 1 < p; < oo are as before, and L”(A) is the noncommutative L” space
associated to the von Neumann algebra A equipped with a normal, semifinite, faithful
trace 7, while for j € {1,...,n+1}\ J, X, =C.

The restriction to having at most three non-commutative spaces in the second example
comes from the RMF assumption. Again, this is in contrast with in the recent vector-
valued (but not operator-valued) setting of [11] where such restriction is unnecessary
regardless of the multilinearity index.

1.2. Tools and techniques

Dyadic analysis is an extremely flexible tool, for example, as shown by its role in
the Banach space-valued singular integral theory [12], non-doubling singular integral
theory [37], and sharp weighted inequalities [17]. The dyadic representation theorem of
Hytonen [17], which extends the Hilbert transform case of Petermichl [39,40], yields a
decomposition of the cancellative part of a singular integral into so-called dyadic shifts.
These shifts have a very natural form generalising the Haar multipliers

=Y (Fhodhg = Y Aol hhg, Mol < 1.

QeED QeD

Hénninen and Hytonen [16] developed the theory of operator-valued shifts in their
proof of a T1 theorem and a representation theorem for linear singular integrals on
UMD spaces with operator-valued kernels. See also the paper by Hytoénen, Martikainen
and Vuorinen [26] for further theory and applications of operator-valued shifts in the
multi-parameter setting. As an important technical component of this article, we prove
an n-linear version of the operator-valued representation theorem, Theorem 6.3. The-
orem 6.3 is in fact a multilinear, operator-valued generalization of the bilinear, scalar-
valued representation theorem which appeared in [33] by Li, Martikainen, Y. Ou and
Vuorinen.

The next step in our analysis is to show the boundedness of these various multilinear
operator-valued dyadic model operators (Theorem 4.1 and Theorem 5.3). This is quite
involved, particularly when working in higher linearities, and requires the development of
new abstract theory concerning e.g. the correct notions of R-boundedness, cf. Section 3.
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A combination of the representation theorem with bounds for the model operators yields
our main result, Theorem 6.4, which is a boundedness criterion for operator-valued mul-
tilinear SIOs.

1.8. Applications to multiparameter theory

The size of the singularity of the kernel K in (1.1) is a fundamental classifying criteria
for SIOs. In classical SIO theory, the appearing kernels are singular exactly when =z = y.
This one-parameter theory differs from the multi-parameter theory, where the singulari-
ties of the kernels are spread over all the hyperplanes of the form x; = y;, where z,y € R¢
are written as x = (z;)i_; € R4 x ... x R% for a given partition d = d; + ... + d;.

The basic philosophy of identifying bi-parameter operators as operator-valued one-
parameter operators dates back, at least, to Journé [27]. In general settings the R-
boundedness plays an important role. For instance, it is required as an input to apply the
abstract results on operator-valued dyadic shifts. Indeed, the R-boundedness of families
of one-parameter operators is necessary for the boundedness (both with or without R-)
of the bi-parameter operators.

In the multilinear setting this general idea is more involved to execute due to the
nature of the multilinear R-boundedness conditions — an interesting difference compared
to the linear theory. In fact, the notions of multilinear R-boundedness we use in our
previously discussed main results are so weak that they do not appear to be sufficient
to conclude the R-boundedness for families of dyadic model operators. This is why we
develop stronger R-boundedness notions in Section 7. These can be applied in the multi-
parameter context, as detailed in Section 8.

A somewhat loose description of our multi-parameter results is the following. Suppose
X1, X2,Y5 are UMD spaces with Pisier’s property («). Then bilinear multi-parameter
operator-valued shifts (see Section 8) have the LP1(R%; X7) x LP2(R%; Xo) — L% (R%;Y3)
bound whenever p1,pa, g3 € (1,00) with 1/p; + 1/p2 = 1/g3. While we do not anymore
explicitly pursue the corresponding (paraproduct free) SIO theory in the bilinear multi-
parameter operator-valued setting, this would simply follow from our result on the shifts
coupled with a suitable representation theorem.

2. Definitions and preliminaries
2.1. Dyadic notation

We begin by defining the random dyadic grids that are needed for the probabilistic—
dyadic techniques. These definitions are, for example, as in Nazarov—Treil-Volberg [37]
and Hyténen [18]. For each w € Q, where Q = ({0,1}%)%, we define the lattice

Dw :{Q+w: QEDQ},
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where Dy = {27%([0, 1) + m): k € Z,m € Z%} is the standard dyadic lattice in R? and

Q+w:==0Q+ Z w2 "

k: 2=k <l(Q)

Here the side length of @ is denoted by ¢(Q). The randomness to w — D,, is induced by
equipping ) with the natural probability product measure P.
Let X be a Banach space and D be some fixed dyadic lattice. Let LP(X) = LP(R%; X),

p € (0,00], be the usual Bochner space of X-valued functions. For a fixed Q € D and
f € L, .(X) we define as follows.

e« Ifk € Z, k>0, then Q¥ denotes the unique cube R € D for which Q C R and

0(Q) =27 (R).

+ The dyadic children of Q are denoted by ch(Q) = {Q’ € D: (Q")") = Q}.

o An average over () is (f)g = ﬁ fQ f. We also write Egf = (f)olo.

o The martingale difference Ag f is defined by Ag f = ZQ’GCh(Q) Eg f—Eqf.

e For k € Z, k > 0, we define the martingale difference and average blocks

Abf= Y Agrf and Ejf= > Egf
ReD ReD
R(k):Q R(k‘):Q

Haar functions. Haar functions are useful for further decomposing martingale differences
Aqf in terms of rank-one operators. If I C R is an interval, denote by I; and I, the
left and right halves of the interval I, respectively. We define hY = [I|~/21; and h} =
|I|7*/2(1y, — 11,). Let now Q = I x --- x I; € D, and define the Haar function hp,
n=(n,...,n4) € {0,1}%, by setting

h =hi; ® - @ hi;.

If n # 0 the Haar function is cancellative: [ hg = 0. We can now write Agf =
>onzolfsh)hey, where (f,hly) = [ fhe). Usually, we exploit notation by suppress-
ing the presence of 1, and simply write hg for some th, n # 0. Similarly, we write
Aqf = (fihQ)hg.

2.2. Definitions and properties related to Banach spaces

We present the required basics of Banach space theory now — for an extensive treat-
ment see the books [24,25] by Hytonen, van Neerven, Veraar and Weis.

We say that {e}1 is a collection of independent random signs, if the following holds.
We have ¢,: M — {—1,1}, where (M, p) is a measure space, the collection {e}; is
independent and p({ex, = 1}) = p({ex, = —1}) = 1/2. In what follows, {ej}+ will always
denote a collection of independent random signs.
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Suppose X, equipped with the norm |- |x, is a Banach space. For all z1,...,z) € X
and p, q € (0,00) there holds that

1)1/‘1 (2.1)

M p\1/p M
(E] X2 emem| ) ~ (B] X emm
m=1 m=1

by the Kahane-Khintchine inequality. Motivated by this we set

) Irsace) = (B S e )

where the choice of the exponent is thus of no consequence. The Kahane contraction
principle tells us that if (a,, )M

m_, is a sequence of scalars and p € (0, oo], then we have

P 1/p< E M p\1/p 59
X) Nmax|am|( ’mz_:lamxm X) . (2.2)

M
(]E‘ E EmAmTm
m=1

A minor remark is that (2.2) holds with “<” in place of “<” if p € [1,00] and a,, € R
(see [24]).

A Banach space X is said to be a UMD space, where UMD stands for unconditional
martingale differences, if for all p € (1,00), all X-valued LP-martingale difference se-
quences (d;)¥_, and signs ¢; € {—1,1} we have

: 2.
) (2:3)

k
|
j=1

k
s a4
Lr(X) ;’

The LP(X)-norm is with respect to the measure space where the martingale differences
are defined. In fact, a standard property of UMD spaces is that if (2.3) holds for one
po € (1,00), then it holds for all p € (1, c0).

Sometimes, for example in multi-parameter analysis, the following property is also
needed: for all IV, all scalars a; ; and all ¢; ; € X, 1 <+¢,5 < N, there holds

2.1/2
X) '

If this holds, the Banach space X is said to satisfy the property («) of Pisier.

2\ 1/2
/ / ’ ,
(E]E Z €i€;Qi, ;€5 X) S max |ai | (]EE ’ E Ei€5€i ]

1<i,j<N 1<ij<N

Random sums and duality. The reader can e.g. consult the section 7 of the book [25], if
he or she is unfamiliar with the notions of type and cotype of a Banach space. What is
important for us, though, is simply that all UMD spaces have non-trivial type. The next
lemma appears in Section 7.4.f of [25].
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2.4 Lemma. Let X be a Banach space with non-trivial type and let ¥ C X™* be a closed
subspace of X* which is norming for X. Then for all finite sequences ey, ...,ey € X we

b

where the supremum is taken over all choices (ef)N., in F such that

have

N N
]E‘ Z&‘@z‘ o sup {‘ Z(ei,eﬁ
i=1 i=1

N
§ : *
]E’ €i€i
‘ X
i=1

The decoupling inequality. The following decoupling estimates originate from McConnell
[36], but in their current form they essentially appear in Hyténen [18] and Hanninen—
Hytonen [16]. We record a special case of the decoupling estimate that is of relevance for
us.

Let D be a dyadic lattice and @ € D. With Vg we mean the probability measure
space

Vo = (Q,Leb(Q),|Q|™" dz[Q),

where |Q| ™! dz|Q is the normalized Lebesgue measure restricted to @ and Leb(Q) stands
for the Lebesgue measurable subsets of (). We define the product probability space
V= HQeD Vo, and let v be the related measure. If y € V, we denote the coordinate
related to @ by yq.

Let k € {0,1,2,...}, j € {0,...,k} and define the sub-lattice D,  C D by setting

D ={Q € D: 4(Q) = 2m*+DI for some m € Z}. (2.5)

If X is UMD, p € (1,00) and f € LP(X), Theorem 6 in [16] implies that

/‘ > AL deE//‘ eqlol@ )Alcgf(yQ)idV(y)dx (2.6)

Re QEDjk Rd Y QE€Djx

for any [ € {0,1,...,k}. The point of the subcollections D, ;. is that now Al o/ is constant
on every Q) € D]Jc such that Q" C Q. This is required by the abstract decoupling
theorems.

Pythagoras’ theorem. A collection S of cubes in R? is said to be 7-sparse (or just sparse),

€ (0,1), if the following holds. For all Q € S there exists a subset Eg C @ so that
|Eq| > n|@| and the sets E¢g are mutually disjoint. The point of the following theorem is
that sparse collections are essentially as good as disjoint collections for some LP estimates.
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Let D be a dyadic lattice, S C D be sparse and X be a Banach space, and suppose
that for every S € S we have a function fg: R? — X such that fg is supported in S,
J fsdz = 0 and fg is constant on those S’ € S such that S’ C S. Then, Lemma 4 in
[16] — Pythagoras’ theorem for functions adapted to a sparse collection — says that

p
IS ss]],, o~ D s I (2.7)
Ses Lp(X) Ses

2.8. Multilinear operator-valued singular integrals

We specify the class of operators that we study. First, we define the operator-valued
basic kernels. Let 2 < n € Z and let X;,...,X,,Y,+1 be Banach spaces. We denote
by £(X71 x --- x X,,,Y,+1) the space of n-linear operators B: X1 X -+ x X;, — Y11
satisfying

n
|B(1‘1,...,xn)|yn+1 < C H |J?m|Xm,
m=1

and the best constant C' is denoted by ||B||x,x...x X, —Y,..- We will sometimes write B
acting on (z1,...,2,) as above and sometimes like Blz1,...,z,].
Suppose K is a function

K:RIHD\ A ,c( 11 Xm,Yn+1>,
m=1
A={(z1,...,7p41) € R 3y = = Tpy1},
such that for all e, € X,,, m € {1,...,n}, the function
z— K(z)[e1,...,en] € Vi1

is strongly measurable. Define the collection of n-linear operators

n+1 n
Csize<K> = {( Z |$1 — l‘m‘)d K(xl, . ,.Z‘n+1): (1}1, . ,{L‘n+1) S Rd(n+1) \A}
m=2

For v € (0,1] and j € {1,...,n+ 1} let Co ;(K) be the collection of the operators

n+1

|xj - x;“ia( Z |x1 — T
m=2

dn+a
) (K@) - K@), (2:8)

where = (21,...,2n,41) € RHD\ A and 2/ = (z1,.. TG, T Tty Tny1) €
RA+1) gatisfy
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|z; —af] <277 max |71 — T

2<m<n

We say that K is an operator-valued n-linear basic kernel if there exists a € (0,1] so
that the families Cgjue(K) and Co m(K), m € {1,...,n+ 1}, are uniformly bounded. We
also write Coz o (K) = Csize(K) N ﬂ;ill Com(K).

If X is a Banach space, we denote by L3°(X) the functions in L>°(X) with compact
support. Let K be an operator-valued basic kernel as above. Let T be an n-linear operator
defined on tuples of functions (fi,..., fn), where f,, € L°(X,,), so that T'(f1,...,fn) €
L (Yn41). We say that T is an n-linear operator-valued singular integral operator (SI0)
related to the kernel K if

(T(frs--os fn)s frr1) = /<K($n+1»$1»«-«7ffn)[f1($1)w~7fn($n)]afn+1($n+1)>dff

Rd(n+1)

whenever f,, € L°(X,,), m = 1,...,n + 1, are such that spt f; N spt f; = 0 for some
i # j. Here we use the convention X,,; := Y7, ; that is in force from this point on. We
are quite relaxed with the bracket notation (-,-) — it means the natural duality pairing
in each situation.

2.4. BMO,(X) and T'(1)

The representation theorem involves a certain BMO assumption related to “T'1”. Since,
as usual, T'1 is not necessarily well defined as a function the BMO condition is stated in
terms of the pairings (T'1, hg) (we recall below how to define these pairings). Therefore,
we define the BMO conditions for collections of elements of a Banach space.

Let X be a Banach space and D be a dyadic lattice. Suppose a = (ag)gep C X is a
collection of elements of X and let D’ C D be a finite subcollection. Let p € (0, 00). We
define

1 1
lallBmo,, (x) = sup (—EH Z eQaQ—?ﬁ‘
. @l 2, ")

P )1/p
QoeD r(x)/
QCQo

and then we define ||a|lsmo, ,(x) to be the supremum of ||a||BMOD,‘p(X) over all finite
subcollections D’ C D. Notice that if D’ and D" are two finite subcollections such that
D’ C D", then by Kahane’s contraction principle (2.2) there holds that ||a||BMOD,,p(X) <
HGHBMOD/,J(Xy

The X-valued John-Nirenberg inequality for adapted sequences, Theorem 3.2.17 in
[24], implies that

lallBros ,x) ~ lallBymop ,(x), 0 <p, g < oo (2.9)
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Indeed, let D’ C D be finite. Fix some 0 < ¢ < p < oo such that p > 1. Let {eg}gep be
a collection of independent random signs on a probability space Q. Let Y = LP(Q; X).
From Theorem 3.2.17 in [24] we deduce that

1 1/p
sup  sup /‘ EQaQ—‘ ) (2.10)
K€Z QoeD |Q0| Gerr Q2 1y
£Qo)>27" QCQo
20Q)>27F
is comparable to
1Q 1/q
sup  sup /’ eqa —‘ ) . (2.11)
k€Z  QoeD |Q0\ y N Q|Q\1/2 Y
£(Qo)>27F QCQO
2(Q)>27F

In view of Kahane’s contraction principle (2.2) (it allows to remove the restriction £(Q) >
2% inside the Y-norm) we have that (2.10) is equal to lallBmo,, , (x)- Likewise, (2.11)
is equal to

a\1/
)~ llallso, ).

lg
sup /‘ E
QveD IQo TTE
Qo Q€D
QCQo

where we applied the Kahane-Khintchine inequality (2.1).

Let X1,...,X, and Y,, 41 be Banach spaces. With respect to these spaces, suppose T’
is an n-linear SIO with a basic kernel K as in Section 2.3. We turn to define the pairings
(T'1, hg) and other similar pairings.

Let ® = (¢1,...,¢n) be an n-tuple of scalar-valued bounded functions. Assume that
Q C R?is a cube, and that pQ: R¢ — C is a bounded function supported in @ with
Jpgdz =0. Let C > 2v/d. By CQ we denote the cube with the same centre as Q and
with side length C¢(Q). If e, € X, m € {1,...,n}, we define

n

(T(¢1€1,...,bnen), 0Q) = mZ::l (T(@T'ers- . dfi'en), 0Q) (2.12)

+(T(1cqorer, .- logdnen), ©q);

where (Ef” = leg¢i for 1 <1 < m, gz?ﬁ = 1(c@)-¢m and gz~5;” = ¢ for m <l < n, and
<T(¢)§”el, e Pren), <pQ> € Y,,4+1 is defined using the kernel K by the formula

/ (K(2,y) — K(couu) [0 (w)ers .. 3 (um)enlo () dy da.
Rd Rdn
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The uniform boundedness of the operators (2.8) combined with spt (75% C (CQ)° imply
that this integral is absolutely convergent. The definition of <T(¢161, ooy Onen), ch> is
independent of the constant C' > 2v/d.

Now, we define the n-linear operator (T'®, pg): X1 x --- x X, = Y41 by

(TP, 0q)er, ... en) = (T (dre1,...,bnen),9q)- (2.13)

By (T'1,hqg) we mean the operator (T'®, hg) with ® = (1,...,1). The BMO condition
related to the pairings (T'1, hg) which appears in the representation theorem will be
formulated in Definition 6.2.

2.5. Multilinear operator-valued shifts

Let 2 < n € Z and suppose Xi,...,X,,Y,+1 are Banach spaces. Assume k =
(k1,... knt1), 0 < k; € Z. Let D be a dyadic lattice in R?. An n-linear dyadic shift S&
is an operator of the form

X ~ -~

SD(flv-"’fTL> = Z Z aK,(Qi)[<f17hQ1>7"'7<fnahQn>]hQn+17

KED Q1,..,Qni1€D
Qiki):K

where f,, € Ll (Xm) and ag,(0,) := ak,qQy,....Qns1 € L(ITmi Xm, Ynt1). In addition,
we demand the following. There exist two indices jg,j1 € {1,...,n+ 1}, jo # j1, so that
hq, = hq, if i € {jo,j1} and hq, = h¢, if i ¢ {jo,j1}; in other words there are two
specified slots where the Haar functions are cancellative and in all the other slots they
are non-cancellative. One may think that only finitely many of the operators ag (g, are
non-zero so that the shift is well defined for locally integrable functions. If S is a shift
as above, we denote by C(S%) the family of the normalized coefficient operators

LY

ky\ _
¢lo) = {H;;ti Q|12

aK,(Ql) Kan)"'7Qn+l €D,Q£kl) :K} (214)

In Section 4 we show the boundedness of shifts under certain conditions on C(S%) and
the underlying Banach spaces.

2.6. Multilinear operator-valued paraproducts

Let D be a dyadic lattice in R?. Suppose X1, ..., X,,Y, 1 are Banach spaces and
ag € LT —1 Xm,Ynt1), Q € D, are given. Let a = (ag)gep. An operator-valued

m=1
n-linear paraproduct is an operator of the form

7T'D,a(f17"'7fn) = Z aQ[<f1>Q""a<fn>Q]hQ’

QeD
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where f, € Li .(X,,). As with dyadic shifts, this is well defined for example if only
finitely many of the operators ag are non-zero. In Section 5 we consider the boundedness

of paraproducts.
2.7. Bounding dyadic operators by sparse operators

The boundedness of shifts and paraproducts will be considered in Sections 4 and 5.
Here, we formulate an analogue of the sparse domination results of [6,7,33] in multilinear,
operator-valued setting of Theorem 6.4 below. The proof follows exactly the outline of
the multilinear version of [33]. We refer to the above references for the, by now standard,
definitions and generalities on sparse collections and forms.

2.15 Lemma. Let 1 < n € Z. Let X4,...,X,, and Y41 be Banach spaces and X, 1 :=
Y5 1. Suppose we have functions fn, € L°(X,,), m =1,...,n+ 1. Let D be a dyadic
grid and n € (0,1). Then there exists an n-sparse collection S = S((fm),n) C D so that
the following holds.

Let k = (k1,...,kny1), 0 < k; € Z, and assume p1,...,pnt1 € (1,00) are such that
Zzill 1/pm = 1. Suppose that we have operators ar q,,..qniy € LI T0—1 Xm:Ynt1),

where K,Q1,...,Qn+1 € D and ngi) = K, such that ax (Q,) = aK,q,.. satisfies

~7Qn+1

Hntll |Qm‘1/2 n+1
Llm=1lwml| H lem|x,. -

Vet el ens)| < A
‘<G/K’(QI)[61, , € ] € +1>| > A7 |K|n

m=1

Suppose further that for some scalar-valued functions um, g = ZQ/ech(Q) cm,q'1gr satis-
fying |um ol < |Q|7Y/? the operators

UD’(gla~~~;gn) = Z Z aK,(Qi)[(gl,uLQ%...,(gn,un@ﬂunﬂg, D/ C D,

KeD’ Q1,...,Qn4+1€D
(kq)

Qi V=K
satisfy
n+1
(Up (g1, -2 9n)s gni)| < A [ Ngmllzrixnys 9150 gnt1 € L7 (Xom).
m=1
Then we have
n+1
‘<UD(fla . '7fn)afn+1>| 57] (Al +A1’</+ A?) Z |Q| H <|fm Xm>Q7 (216)
QEeS m=1

where kK = max ki, .
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We conclude this preliminary section by recalling the well-known fact that (weighted)
boundedness in the full range of expected exponents follows from a sparse estimate of
the type stated in Lemma 2.15. A proof of this exact statement is given in [11], and
further consequences in the weighted setting are formulated in [8,33] and references
therein. Let X7, ..., X, and Y;, ;1 be Banach spaces. If T' is an operator such that for all
tuples fy, € L°(X,,), there exists a dyadic lattice D = D((f,)) and a sparse collection
S =8((fm)) C D so that

n+1
(T (froeo s fa)s Far)] S D0 1R TT (il g
QEeS m=1
then
T Fdlzonss vy S T 1fmll om0 (2.17)
m=1

where p,, € (1, 00| are such that 1/g,+1:=> " _; 1/pm > 0.
3. Randomized boundedness and the RMF property
3.1. Randomized boundedness

In this section we discuss randomized boundedness conditions for families of mul-
tilinear operators. First, we recall the well-known concept of R-boundedness of linear
operators. If X7 and Y are Banach spaces and 7 C L£(X1,Y2), we say that 7 is R-
bounded if there exists a constant C' such that for all integers [ > 1, all Ty, € T and for
all ex1 € X1, ep2 € Xo : =Yy, k=1,...,1, the inequality

l
| > (Tienas ex)| < Cliter)lImacn o2 laacea)
k=1

holds. The smallest constant C' is denoted by R(7T), and called the R-boundedness
constant of 7. If 7 is not R-bounded we set R(T) = .

3.1 Remark. Suppose that Y5 has non-trivial type (e.g. Y2 is a UMD space). Let 75,(7')
denote the best constant C' such that

l l
(E‘Z&kaek‘i)l/z §C<E’Z€kek’1 )1/2 (32)
k=1 2 k=1 !

holds for all e, € X;. Then we have by Lemma 2.4 that
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R(T) SR(T) <R(T).
In fact, (3.2) is the most commonly appearing standard definition of R-boundedness.

For a positive integer n, we write 7, for the discrete interval {1, ...,n+1}. Throughout
this section, let X1, ..., X,,, X;,41 be reflexive Banach spaces and denote Y; = X7. Below,
we customarily enumerate J C J, increasingly so that 1 < j; < --- <5, <n+1. We
use the tuple notation

(ej)jes = (€, re5,) € Xg =[] X
jeT

The following discussion pertains to the case n > 3. We set some notation for the
multilinear R-boundedness condition associated to an (n + 1)-linear contraction

n+1
@: Xz, > C,  wler,..ent)| < ] lemlx,,  €m € Xom. (3.3)

m=1

This condition will involve suitable partitions of the set of indices J,,. We say that P =
({52}, Prad, PrMm) is an admissible partition of 7, if {jp}, Prad, Prm C Jn are pairwise
disjoint, their union is J,, and #Prm < n — 2. Let now J C J, with 1 < #J <n —2
and v € J,\ J. For a set A C X7, define

K
l Al o) = 5D | D wersr o wn s enian)], (3.4)
k=1

where the supremum is taken over all K € N and over all choices of

o tuples (ejr)jes € A, 1<k <K,
o elements e, € X, with |e,|x, <1,
+ sequences (e; )i, C X; with [|(ejx)f—; lraa(x,) < 1, where

jejRad :{1,,n+1}\(JU{U})

Here (e;)X | denotes the sequence e; 1,...,e;j i of elements of X;, and this should not
be confused with the notation (e;)jes € X7 meaning a tuple of elements; later, this
distinction should be clear from the context. Let also ||Al|rm (w,s7) be defined just as
| AllRa, (w,7) in (3.4), except that in addition there is the requirement that the tuples

(ejr)jes € A satisty (ejr)jes # (ejn)jes it kb # K.

3.5 Lemma. There holds that ||Allrm (w,7) = [ AlljM, (w,7), that is, when testing the
constant ||Al|rm, (w,7) it is enough to consider a sequence of distinct elements of A.
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Proof. Let P be the admissible partition with jp = v, Prm = J. Fix elements e;; €
X, where k € {1,...,K}, as in the definition (3.4). Write {1,...,K} as a disjoint
union Unj\i{:l K, so that (ejr)jeq = (ejr)jes if k and k' belong to the same K,,, and
(ejk)jeq # (ejr)jes if k and k' belong to different sets ICp,. If j € J and k € K,,,, we
denote e =: fjm. Write Praa = {41, ..,y }, where ij < tj4+1. To ease the notation, for
m € {1,..., M} let A,, be the u-linear form obtained from w by keeping the elements
fim,» J € T, and e, fixed. We have

K M
> w@lernseniik) = > Y Al s €ik):
k=1 m=1keK,,
Fix one m for the moment. Let {Ei}le, j€{l,...,u—1}, be collections of indepen-

dent random signs. We denote the expectation with respect to the random variables ei
by E7, and write E = E'---E%~!. Then we have the identity

S Anleino o €ruk)

kekm
— § 1 .1 .2 .2 u—1 u—l
_]E 5k1€k25k2€k3 €k ku Am(€i1,1ﬁ7...,€iu7ku) (36)
K1,k €K
1 1 2 u—1
E €k, Cir ks E €koCkyCin,kay - - E €. Ciyk u)'
k1€ ko€ ku ELm

Now, we combine the last two equations and use the definition of || A||ry/ (w,7)- This
gives that

K
‘ Z w(ele sy en—i—l,k:)‘
k=1
1 M
< Wl o B 3 ) o, HH( > ), |

ke ke

Rad(Xij )

=11lRad(X;,)’

where the expectation is less than

M
. L
ECS ctens)) ) TLE2 S )|

keKm Jj=2 keKm

()

kEKm

2 1/2
Rad(X,-j)>
e

2 1/2
=11lRad(X;, )) '
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Denote the expectation and the random signs related to the Rad-norms by E and
{Em}M_|. We have

L L M2 L o 2
E/~'EY g el el ek =EE’~'E’ E E Emel Telei i
ke SRR ) Rad(X;.) ko TRTE]
kEKm K m=1kek,, K

K 2
= H(eij,k)k:l”Rad(Xij) <L
The remaining last two terms satisfy the corresponding estimate. Thus, we have finished
the proof of ||Allrm, (w,7) < || AllRM (w,7)- As the reverse estimate is immediate, the
conclusion of the lemma follows. O

3.7 Remark. We record an observation based on Lemma 3.5, which will later be used
without explicit mention. Let again J C T, 1 < #J <n—2and v € J, \ J. Suppose
that K € N and we have elements e; , € X, j € J, k€ {1,...,K}. Then

K
I{(ej.0)jeq iz ImM, (w,.) = sUP ) D w(erhs s lus s enti); (3.8)
k=1

where the supremum is taken over elements e; , € X, j € J,\(JU{v}), k € {1,..., K},
such that [|(ejr)fe;llRaa(x;) < 1 and over e, € X, with |e,|x, < 1. Indeed, “>” is
clear just by definition. On the other hand, the right hand side of (3.8) clearly satisfies
RHS (3.8) > |{(ejk)jeq toer IR (.-

3.9 Remark. In the same setup as in the previous remark, assume J = Jy U J1, where
Jh # @ and Jp N J1 = . Suppose we have elements e, € X;,j € J, ke {l,...,K}.
Then

1{(ej.x) e Harllrat, .7y < I{(€50)ie g0 o lrat, o) | 1106500020 [ Radcx,)-
Jj€TL
(3.10)
To see this, we use Remark 3.7. Let P = {{v}, Praa, J} be the corresponding ad-
missible partition and e;, € X; for j € Praa U {v}, k = 1,..., K, and assume that
€v,k = €k’ =: Ey-
Assume first that Jy # &. Then, by definition, we have

K
’Zw(el,k7~-~7€n+1,k)‘
k=1

< Hlemieaticillrn @ ] 1emizillradce)levlx,
JETJ1UPRad

which proves the claim.
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On the contrary, if Jy = &, then using random signs as in (3.6) and boundedness of
w (Equation (3.3)) we get that

K
Y @ern e € TT Mem)ialinac leolx.
k=1 JETUPRaa

which gives the claim.

3.11 Example. Let (X1,..., X,,+1) be a tuple of reflexive Banach spaces and wy: X7, —
C be as in (3.3). Let (€, 1) be a measure space and associate the tuple

n+1
(Lpl (Q§ X1)7 B Lpn“(ﬂ; Xn+1))v Pm € (17 OO), Z 1/pm =1,
m=1
with the (n + 1)-linear mapping w: [}, LPm(Q; X,,,) — C,
(frre 1) = /wo(fl(w)7...,an(w))d,u(w). (3.12)
Q

We obviously have
n+1

(@ (frves Furt) € [T Wmllzom @i
m=1

Suppose J C Jn, L <#J <n—2and v € J, \ J. It is not hard to see that

{(fi)ieq i lr, o) S [l = LU @))jes i lrm, (mo.2) | oo 0y

where

1/p(T)=>_1/p;.

JjeJ

We now demonstrate that the corresponding lower bound also holds. We will show that

I{(fir)iea trmr lRM, (,7) 2 H||{(fj,k(w))je.7}kK:1||RMv(wO,J)HLM)(Q) (3.13)

and the claim follows by monotone convergence.

Write Z = 7, \J . Using Remark 3.7, forw € Qlet ¢, x(w) € X;, i € T,k € {1,..., K},
be such that ||(<pi7k(w))£(:1\|Rad(Xi) < 1 for i # v and @, k(W) = Pu (W) = @u(w)
satisfies |¢,(w)|x, < 1. Furthermore, let the elements ¢; ;(w) be such that wy acting
on f;r(w) and ¢; k(w) is non-negative for all £ and such that the sum over k of these is

2 I{(fin(@))jeq i IRa, (o, - For i € T write
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(7)/ps
B; = H ||{(fj,k(w))jej}£<:1 ”RMU(WO,J) ’ iP(])fQ)?
define
_ J)/pi
Fik(@) = By Y0k (@) {(f56 @) er HoA IRSTE )
and write f, = f, 5. For i € 7\ {v} there holds that

LPi(2) =1

1(Fie )it IRaaczrs @:x)) ~ 1 (fi(@))i=1 IRaacx,)

and || fu |l ro (0;x,) < 1. Define the exponent p(Z) by 1/p(Z) = ;.7 1/pi. We also have
that

K K
‘Zw(fl,kw'wfnJrl,k)‘ :/Zwo(f1,k(w)7-~-7fn+1,k:(w))
o k=1

k=1

_ 1 J T
2T1B [ Ma@)ea oIt s
i€l Q

= HH{(fj,k(w))jej}gﬂHRMv(woJ)HLp(J)(Q)-

This proves (3.13) concluding our demonstration.
In the special case that X1 = -+ = X, 41 = C and wp(eq,...,enq1) = Hz:;ll em it is
not hard to see that

[{(ej,6)jer trzillRM, (wo,0) = sup IT lexl-
jeT

Therefore, the above gives in this case that

H{(s)sea Vil ) ~ | sup T (@) (3.14)
JjeJ

Lr((Q)

Next, we define a related multilinear R -boundedness condition for families of oper-
ators. Due to the invariance under permutation of the spaces X, j € J,, of the previous
and upcoming definitions, we do not lose in generality by working with n-linear operators
on H?:1 X; with range in Y, ;. Also, it will be convenient to define the notion of tight
admissible partition P: an admissible partition P of 7, is tight if #Pgraq = 2.

3.15 Definition. Let n > 2 and suppose that 7 C L([],,_; X, Ynt1) is a family of
operators. Assume that w is an (n + 1)-linear mapping satisfying (3.3) and P is a tight
admissible partition. We say that 7 is R p-bounded if there exists a finite constant C

so that
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]~

(Tilevk - enls nrin)

ES
Il

1

K K
< Cl{(€5,%) jePrat tr=1lIRM; , (=, Prur) I | [(ej,1) k=1 Rad(x;) l€jm | x5,
JEPRad

holds for all K € N, all choices of T, € T, {ejx: k=1,..., K} C Xj, j € Jn, such that
€jpk = €jp k= €, for all k and k’. The smallest possible constant C' is denoted by
Reop(T). If T is Ry p-bounded for all tight admissible partitions P, we say that T is
Ro-bounded and write R (7) for the supremum over all tight admissible partitions P
of Ry p(T). Otherwise, we set R (T) = occ.

Notice that if n = 2, then the R-boundedness condition does not depend on w at
all, and it reduces to a more simple estimate as in Equation (1.2). Therefore, in the case
n = 2 we will just talk about R-boundedness.

3.16 Remark. Suppose 7 C L([] _; X, Yn11) is an Ro-bounded family. Suppose P
is a non-tight admissible partition. Let T, € 7 and e; € X; for k =1,..., K, and as
usual assume that e;, := €, p = €, k. Write Praq = Jo U J1, where #J1 = 2. Then

K
‘ Z<Tk [e1,ks - - - s €n k], €n+1,k>‘
k—

—

< R (T (e).0) jePraiugo Het v, (. pawvge) 1] (€008 IRad(x)l€5m 1,0
jeT

SRw(T)||{(€j,k)jePnM}kK:1HRMjp(w,PRM) H ||(ej,k)£<:1”Rad(Xj)|ejP‘ijv
JE€EPRad

(3.17)

where in the last step we applied Equation (3.10). We will apply this form of the R -
boundedness (where not necessarily P is a tight partition) later.

In the representation theorem we will need the fact that R -boundedness is preserved
under averages in the sense of the following lemma.

3.18 Lemma. Let T C LI} _; X, Ynt1) be an R -bounded family of operators. Let

m=1

A(T) € L(T1% _; Xom, Yai1) be the collection of operators of the form

m=1
L(y)A(y) dy,
Rd(n+1)

where L: RYU™TY — £(T" _, Xon, Yoi1) is such that L(y) € T for a.e. y and

m=1

A RAHY 5 C satisfies [|A| < 1. Then we have

Re(A(T)) S Ro(T).
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3.19 Remark. The space R+ plays no role here (it could be some measure space),
but this is what appears later. Moreover, we have by definition that

(] tonw)eal= [ L. ed,

Rd(n+1) Rd(n+1)

and the assumption on L is that the mappings

Y= L(y)[elv SERE) Gn]
are strongly measurable.

Proof of Lemma 3.18. This result could be reduced to the corresponding linear result.
For the linear theorem, see for example Theorem 8.5.2 in [25]. We give another self
contained proof.

Suppose Ty, = [ LyAp € A(T) for k = 1,..., K. We may assume that Ly(y) € T for
every y € R4t and that JIAe] = 1 for every k. For each k define the probability
space Vi = (RX™D) 1), where gy, := |A\x|dy. Let (Y, 1) be the product probability
space (Hszl Ve, Hllc(:l /“c)-

Fix a tight admissible partition P, and let {e; x}5_, C X; be such that e, = €;, =
€jp k- Now, we have that

M=

K
A
(Tlev ks s enklsentrn) = D /< k(y) Lk(y)[el,k,...,en,k],en+1,k>duk(y)
k:lyk

= ()]
) A
i !kzl < |)\:(y:)|Lk(yk)[el’k’ o Cnkl; €n+1,k> du(y),

where in the last line we denoted by y; the coordinate of y € ) related to )j. For each
y € Y the absolute value of the integrand in the last line is dominated by

RW,P(T)”{(eLk)jEPRM}5:1”RMJ-,,(wﬂ’RM) H H(ejqk)§:1||Rad(Xj)‘ej’P|Xj7>'
jEPRad

Since (), p) is a probability space this proves the claim. O
3.2. The RMF, property

Related to the R, condition we will need a certain RMF, condition of the tuple of
spaces (X1,...,X,+1). This condition is only defined when n > 2.

Suppose w is an (n + 1)-linear contraction as in (3.3). Let J C J, be such that
1 < #J <n—2. Suppose f; € Li (X;) for all j € J. Denote by (f;)jes the tuple of

loc
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functions (fj,, ..., fj,). Let D be a dyadic lattice in R For v € J,, \ J, we define the
multilinear Rademacher maximal function RMp 7 .[(f;)jes] by

RMp =, 7.0[(fj)jes)(x) = H{ (fida)jer: erQD}H S T)
Let p; € (1,00) for j € J,, and define for all J C J,, with 1 < #J < n — 2 the exponent
p(J) by 1/p(T) = > ;e 1/pj. We say that (Xi,...,X,41) has the RMFg property
relatively to a given dyadic lattice D in R¢ and the tuple of exponents (p;) if

max min RMp o 70 : LPi(X;) — LPY)(R? H < o0
J1,J2€Tn vETn \{j1 J2}JCJn\{]17J27U} ‘ P, H ( ]) ( )
J1#7j2 JjeT

(3.20)
The number defined in (3.20) will be referred to as the RMF (D, (p;)) constant of the
tuple (X1,..., Xnt1).

Independence of the RMF, property (3.20) on the dimension d and the lattice D
can be proved with the same procedure used for the linear case by Kemppainen [32]. In
particular, this means that if we have two lattices D and D’ in R¢, then RMF (D, (p;)) =
RMF (D', (p;)). On the other hand, Lemma 3.22 implies that the RMF, condition is
independent of the tuple of exponents in the sense that if (¢;) is another set of exponents
then RMF (D, (pj)) ~ RMF (D, (¢;)). Lemma 3.22 also shows that it is not important
to have a fixed tuple (p;) in (3.20); for each J appearing in (3.20) we could have related
exponents p37 € (1,0¢], j € J, such that the corresponding target exponent is finite.
Henceforth, we are authorized to not mention the dimension d, the choice of the lattice
D and of the exponents, and refer to a tuple (Xi,...,X,+1) enjoying (3.20) as a tuple
of spaces with the RMF, property.

3.21 Remark. The original definition of an RMF property of a Banach space X is in
Hytonen-McIntosh-Portal [23]. If A C X, then define

K

[ Allra == sup E[| Y " exdna | x,
k=1

where the supremum is over K € N, a; € A and over scalars A\ such that Zszl A2 < 1.
In [23] the Rademacher maximal function Mg was defined by

Mg, f(z) == Mpf(z) = [{(flqg: z € Q@ € Do}|lrm,

where Dy is the standard lattice in R? and f € L _(X), and it was defined that X
has the RMF property if Mp: L?(X) — L? is bounded. The Rademacher maximal
function has further been studied for example by Kemppainen [31,32]. The boundedness
of Mp: LP(X) — LP is independent of the dimension d and the lattice D used in the



24 F. Di Plinio et al. / Journal of Functional Analysis 279 (2020) 108666

definition, as well as of the exponent p € (1,00). A definition akin to the one given in
this article was previously given in [10].

The proof of the next lemma is a twist on a sparse domination argument presented
n [8] by Culiue, Di Plinio and Ou.

3.22 Lemma. Let D be a dyadic lattice in R Letn > 3 and let J C J,, with 1 <
#T <n—2. Suppose v e T\ J. Assume that for some q; € (1,00], j € J, such that
q:=(2;cr l/qj)_ < oo the estimate

IRMp o, 7.0[(fi)jealllce S T Il x,)
JjeJ

holds. Then, for allp; € (1,00], j € J, such that p := (Zjej 1/17]')71 < oo we have the
estimate

IRMp..75[(fi)jealllee S [T 1fillees x;)
JjeT
Proof. We abbreviate RM := RMp o 7,. First, we prove the weak type boundedness
RM: [[;es LY(X;) — L#°°, where ¢ := #.7. Then, we show that it implies a suitable
pointwise sparse domination for certain finite maximal functions, from which the claim
follows.

We turn to the weak type estimate. Let f; € L*(X}), j € J, and fix some A > 0. It
is enough to assume that || f;[|1(x,) = 1 and show that

{RM[(f;)jeq] > M S A7

We perform the usual Calderén-Zygmund decomposition. Let D; x denote the col-
lection of the maximal cubes @@ € D such that (|fj[x,)q > A7, As usual, we write
fi = g; + b;, where

9 =1lup,. fi+ Y, (fJele and b= > (fi—(fe)le
QEDj,x QEDj,x

Write J = {j1,...,je}. We have

14
M((f)jeq] <D BMUgju 3G biis Fiins -5 f5)] + RM{(g51, 193] (3:23)

=1

The assumed boundedness gives that

\\»—A

(it 001> 5} 5 ‘qHHnglex =2 "HA BRI, <A

9
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where we used the facts that [|g;[|z~(x,) S < A* and lgillerx,) < fillrx,) = 1.
Fix some 7 € {1,...,1} and consider the corresponding function from the sum in the
right hand side of (3.23). Since ||JDj, x| <A77, it is enough to consider

{.’E ¢ UD‘i,)\: RM[<gj17 951 bji’fji+1 1 sz)}(m) > HLI} (324)
Suppose z ¢ |JDj, ». If Q € D and Q' € Dj, » are such that € Q and Q N Q" # 2,
then @’ C Q. Using this and the zero integral of b;, in the cubes Q' € Dj, » we see that
RM[(gj,+---+95i_1> 05> fiias---» f.)](x) = 0. Thus, the set in (3.24) is actually empty.
This finishes the proof of the weak type estimate.

We move on to prove the sparse domination. Let ¥ C D be any finite collection such
that there exists a cube Q¢ € D so that @ C Qg for every Q € €. We consider the
related maximal function

RM = H €EQe? H .
<[(fj)jesl(z { (fi)@lieg:x€Q } RM, (25.7)
Define the related truncated versions for every Q' € D by
RMe o/ [(f5)jeq](x) = H{ (fila )
and also the numbers
Q' _
ME [(f)ieq) = [{({fi)e) (o’

Notice that RM« g, = RM«.
Fix some functions f; € L} (X;). Let B denote the weak type norm of RM. We show
that there exists a sparse collection S = S((f;);es) C D of subcubes of Qg so that

RMe[(f)jes] <2'B Y [[{4ilx,)ele- (3.25)

QeS jeJ

This follows via iteration from the estimate

RMy[(f))jeq] < 2B [[(filx)alae+ D>, RMygol(fj)jes); (3.26)
jeJ QEE(Qo)

where £(Qo) is a collection of pairwise disjoint cubes @ C Qo such that -5 ce(q,) [Qf <

|Qol/2-
We prove (3.26). Define the collection £(Qp) to be the set of the maximal cubes @ € D,

@ C Qq, such that

RMZ[(f)jeq] > 2'B [ [ (£ilx,)q0
JET
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If Q € £(Qo), then RM«[(f1q,)jes](x) = RM[(f;)jer(x) > 2'B1,c 7 (I filx;)q, for
all x € Q). Therefore, applying the weak type boundedness, we have that

> lr<2 (TH0Axe) T Iftali,) =271

Q€eE&(Qo) jeg jieg

If 2 € Qo \ UE(Qo), then RM¢[(f;)jerl(z) < 2ZBHj€J<|fj‘Xj>QO' On the other
hand, if z € Q € £(Qo), then

RMy[(f;)je0)(2) < RM2 " [(£;)5e7] + RMy ol (f;)je5)(x),

where RM%O) [(fj)jes] <2'B [1;e7(Ifilx;)q, by the stopping condition. Thus, we have
proved (3.26), and therefore also (3.25).

From (3.25) it follows that each RM«: [[;c ; LP/(X;) — L” is bounded for all p;
as in the statement. There exist cubes Q; v € D, where 1 < ¢ < m for some m < 2d
and N € N, so that £(Q; n) = 2V, Qin C Qin+1, Qin NQy N = 0 if i # 4/, and
U, Uy Qi,n = R%. What the number m is depends on the lattice D. Let 6; ny := {Q €
D:Q C Qin,lQ) >27N}. Then,

ZRM%N[(fj)jeJ](l“) / RM[(fj)jes](z), N — oo,

for every x. Thus, by monotone convergence, we have that RM is also bounded. O

3.27 Example (The RMF., property in the function lattice case). We continue with the
setting and notation of Example 3.11. We also assume that (Xi,...,X,4+1) has the
RMF,, property. Suppose J C Jpn, 1 < #J < n—2and v € J, \ J. Suppose
fi € LPi(R% LPi(Q; X;)) = LPi(R? x Q; X;) for all j € J, and fix a dyadic lattice
D. We have by Example 3.11 that

RMp .7, v[(f])JGJ] ) S Hw = RMp .7, v[(f]( ))jEJKm)HLp(J)(Q)a

so that
H RMD,W,J,v[(fj)jEJKx)HLp(y)(]Rd) 5 H || RMD,WO,J,v[(fj('a W))jGJ](x)HLp(J)(]Rd) ||Lp(J)(Q)

s L5

< H I £illrs Raxosx,)-

JjET

LT’(J)( )

This shows that (LP* (; X1), ..., LP»+1(Q; X,,+1)) has the RMF, property. In particular,
by iterating the previous we have obtained that any Hoélder tuple of iterated Banach
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1 1 m
function lattice spaces (LJ,} - - Lﬁin, o Ly L) enjoys the RMF, property with
respect to

n+1

(fh e 7fn+1 / H fj tlv s 7tm) d:u’l(tl) o de(tm)

3.28 Example (Noncommutative RMF property). We are interested in operator valued,
multilinear singular integrals acting on products of noncommutative LP-spaces; to this
purpose, we need to study the corresponding Rademacher maximal function theory. We
begin with a quick summary of the relevant definitions. For comprehensive background
material on noncommutative LP spaces and their role in noncommutative probability
and operator algebras we refer to the classical survey by Pisier and Xu [42], to the recent
monograph [41] by Pisier and references therein.

Consider a von Neumann algebra A equipped with a normal, semifinite, faithful trace
7. For 1 < p < o0, the corresponding noncommutative space LP(A) is defined by the
norm

€l = [« (€]

Notice that LP(A) is a UMD space for all 1 < p < oo. An enlightening example is
obtained by choosing A = B(H), the space of bounded linear operators on a complex
separable Hilbert space H with orthonormal basis {e; : j € N} equipped with the usual
trace

o
Z 567467,
Jj=1

In this case LP(A) is usually referred to as the p-th Schatten class and denoted by S?P.

Let now (€2, i) be a o-finite measure space and A a von Neumann algebra as above.
We conveniently recall that M = L*°(Q) ® A is also a von Neumann algebra equipped
with normal semifinite faithful trace

v(f @ €)= /fdu G

and that we have the isometrically isomorphic identification LP(M) ~ LP(Q; LP(A)).

We turn to the study of noncommutative multilinear Rademacher maximal functions.
This concept was first explored in the bilinear setting in [10]. Let 2 < k < n 4+ 1, and
D1y, Pk € (1,00) be a Holder tuple of exponents. We are interested in the Rademacher
maximal functions associated to the tuple of spaces Xq, ..., X, 1+1, where

o X;=1LPi(A)forl<j <k,



28 F. Di Plinio et al. / Journal of Functional Analysis 279 (2020) 108666

e Xj=Cfors<j<n+1,

equipped with the (n + 1)-linear contraction

K n+1
@&, q) =7 [[& )] TI &
j=1 j=r+1

We are able to establish a satisfactory multilinear Rademacher maximal function es-
timate for the above tuple of spaces when x« < 3. This is an improvement over the
results of [10], where the restriction k = 2 was imposed. Notice that the analysis of
[10] concerned the nontangential version of the Rademacher maximal function, but the
arguments therein can be recast in the dyadic setting as well.

3.29 Proposition. Suppose k = 2 or k = 3. Then the above defined tuple of spaces
Xi,...,Xnt1 has the RMF, property.

Proof. We work with the dyadic lattice Dy in dimension d and therefore make use of the
identification LP(M) ~ LP(R%; LP(A)), where M = L>=(R%) ® A. The proof is split into
several cases, all of which will make use of the following celebrated result of Junge [28]:
if f € LP(M), we may find ay,by € L??(M) and contractions yy r € M such that

llagllzzeamyllofllze () S I FllLean) (3.30)
and
ng = Z EQf = afygwfbf. (3.31)
Q€EDo
(Q)=2""

By the definition of RMF,, (3.20), we will prove the result according to the following

(i) {jlan}m{lﬁ"WK}:@;
(ii) #{j17j2}m{1"""‘€} =1
(iii) #{j1,723 N{L,..., Kk} =2.

In case (i), we will take jp = 1, so that #7 N{l,...,k} can be 0, 1 or 2 (if kK = 3). In
case (ii), without loss of generality, we can assume that 1 ¢ {j1, 72} so that we can still
take jp = 1, then #J N{1,...,k} can be 0 or 1 (if K = 3). In case (iii), if K = 3, again
we can assume 1 € {jq,j2} and take jp = 1, then #7 N {1,...,xk} = 0; if Kk = 2 we will
take jp = 3 and in this case #J N{1,...,x} = 0. Let us consider the last situation first.
We have
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RMp, w,7.3[(fj)jerl(z) = H{ (fi)o)jeg:r€QE D()}HRM3 )
< sup sup ’ > mabe2) I €Il Eefj(ff)’
1€e,ullRad(Pu (a)) =1 1€PRaa\{1,2} ) ,
¢ Ruﬂllpo Aan=1le ng“; L 1€PRraa\{1,2} JjET
= sup sup E’T( E Ekﬁk,1 E Eefzﬁz H fg,i H ngj(x))‘
€. ullraaczru (a))=11€PRaa\{1,2} & ¢ i€Praa\{1,2})  JET
u=12 leillya=1 s\ {1,

< sup I 1Besi(@)) < T Mfi()

JjeJ JjeT

where we have used Hoélder’s inequality and Kahane contraction principle. We conclude
this case by using the boundedness of [[,. ; M f;(z). Now we are left to deal with the
remaining cases, keep in mind that we always have jp = 1.

Case #J N{1,...,k} = 2. This forces that kK = 3. We are then allowed to estimate

RMpy . 7.1[(fi)jeql(®) = H{ {fi)Qlies: erEDO}HRM (@)
< sup  suplr(f(@)Ecfa(e)Egs) [ M
[€1]pp1 (ay=1 ¢ JjeT\{2,3}

<Huaf, D)oo b, @ ooy [I MF

j€IT\{2,3}

where the first inequality follows from the definition and the second by (3.31) and
Holder’s inequality. For ¢; = (p1)’ Holder’s inequality yields

3
| RMpy,w,7,1[(fi)jes]lLa ray S H lag; 1 p2es (g 105 1 L2054 H | M £l Lo (R
j=2 jeq\(2.,3}
3
S H 1 £ill 2P () H | £l Loo (R)-
j=2 jeq\{2,3}

In view of (3.30), we obtain the bound

3
RMp, o7 | [] 27 (R%LPI(A)) | x I r=®Yy] - Lo ®?
Jj=2 j€T\{2,3}

and conclude the required condition for this class of J by means of Lemma 3.22.

Case #J N{1,...,x} = 1. This is actually the most complex case. If kK = 2, we may
proceed similar as in the previous case, details are omitted. We are therefore left with
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treating the case where k = 3 and without loss of generality we assume 2 € 7, \ J. We
may estimate the Rademacher maximal function corresponding to the RM; (w, J) norm

RMp,,w,7.1[(fj)jes](x) = H{ (fi)Qlieg:r€Q € DO}HRM (o)
1(w,
< sup ZT §1(2)&e2Eef3 H At H Eyfj(z)
[I&e, u”Rad(Ll”u(.A)) 1 ZGPRad\{Q} 1€PRraa \{2} JET\{3}

IAe,illRaa=1

S(l sup IIAzEefs(ﬂ?)HRad(Lps(A))) [T My

‘)‘ZHRad:l jGJ\{3}

where the second step is obtained via Holder’s inequality and the Kahane contraction
principle. Now using (3.31), we obtain

[AeEef3(2) | Raacrrsay) S llags (@)l L2es ) [Aeye, 5 (2)b s () [ Raar2ms ()

1

2

S llags (@)l z2vs () (Z A7 llye. s ()br, (x)||2L2P3(A))> S llags (@)l 2es () 105 ()] 205 (4)-
¢

We have crucially used type 2 of L3 (A) when passing to the second line. Taking L3 (R¢)
norm and using (3.30), we realize that we have proved the estimate

RMpy, w710 LP(RELP(A) x [ L®(R?) — LP*(RY)
jeT\{3}

which completes the proof of this case.

Case J N{l,...,k} = &. This is the easiest case. If k = 2 it can be proved similarly as
the previous case (even easier as we don’t need to deal with Eyf3). And if x = 3, it can
be proved similarly as at the very beginning. O

4. Operator-valued multilinear shifts

Our basic result concerning the boundedness of n-linear operator-valued dyadic shifts
is summarized by the following sparse domination principle.

4.1 Theorem. Let n > 2, suppose X1, ..., Xy, Y,4+1 are UMD spaces and denote X, 41 =
Y5 . Assume that (Xi,..., X5 41) has the RMF, property with some w as described
in Section 3.2. Let f,, € L?"( X)) form =1,....,n+ 1. Suppose D is a dyadic grid
and n € (0,1). Then there exists an n-sparse collection S = S((fm),n) C D so that the
following holds.
Suppose S* := SE k= (ki,....kns1), 0 < k; € Z, is an n-linear dyadic shift with
complexity k and with coefficient operators ax (q,) € L([In—1 Xm,Yn+1). Recall the
collection C(S*) of normalized coefficients from (2.14). We have
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n+1
(S (froe s s fur)] Sn (LK) T R(CSM) Y 1QITT (fmlxn)gr  (42)
QEeS m=1

where k = max k,,.
In particular, if p1,...,pn € (1,00, gni1 € (1/n,00) and Y 1 1/pm = 1/qnt1, then

IS (1o fallponsn vy S (L4 8" R (C(SF) TT I1fmllom (x,)- (4.3)

m=1

Proof. The estimate

[15 @l Tr
Llm=1 llwml = H lem|x,,

|<aK7(Q'i)[617 ey en]v e7l+1>| S RW(C(S]C)) |K|n

m=1

follows directly from the definition. We are considering a shift

SE(froeei fa) = Y Ax(frse s ),

KeD

where

AK(f1>~-~7fn): Z aK,(Qi)[<f1’TLQ1>7'"7<f7l7EQn>]}~LQn+1'

By Lemma 2.15 it remains to prove that

n+1
(S (o f)s Fns)] S A+ 8)" TR (CS™) T Wfmlliomx,y  (44)
m=1

for some p,, € (1,00) satisfying 22;11 1/pm = 1. Notice that by proving this, we also
prove the corresponding estimate for all subshifts S, = > kep Ax, where D' C D.
This is required in the assumptions of Lemma 2.15.

If n > 3 we assume the following. Let jg,j1 € J,. be the indices such that the
corresponding Haar functions of the shift S* are cancellative. Then, since (X1,..., X, 1)
is assumed to have the RMF, property there exists a v € J,\{Jo, j1} so that the maximal
functions RMp o 7., are bounded for all 7 C J, \ (J U {jo, j1}), see (3.20). Notice that
EQv = h% For convenience of notation we assume that v = n 4 1 but the general case
is handled similarly. If n = 2 there are no RMF, assumptions involved and we assume
for convenience that EQ3 = hOQS.

Having made the initial assumptions we proceed with an arbitrary n > 2. We let
{{n+ 1}, I2.4, T8} be the admissible partition such that #J8,, = 2 and lNLQj = hq,
for j € J9.q; for j € Ty we have hg, = hy,- I m € JR,q, then (fmr ho,) =



32 F. Di Plinio et al. / Journal of Functional Analysis 279 (2020) 108666

(A];(m fm,hq,.), and if m € jlgM, then <fm,?LQm> = <Ef<mfm, h?;,m>. By writing for m €
T\ that

km—1

By fm =Y Aifm + Ex fm,
=0

we see that the shift S*¥ can be split into at most (1 + x)"~2 operators of the form

Z AK(P}l{lf177P[l€fn)7

KeD

where the following holds. We have 0 < I, € Z and Ly, < k. If I,5, # 0 then Pl = ALz
and if [,,, = 0 then Pflg” = Pk can be either Ag or Ex. For m € Jf{ad we have
ly, =k, and Pflg” = AZK’". Now we fix one such operator and show that it is bounded as
desired. Let jﬁM C ngM be the subset of those indices m such that PIIQL = Fk, and set
Thaa = {1,...,n} \ Thn- Recall the lattices D, ., j € {0,...,x}, from (2.5). We fix one
7 and start to consider the term

Z AK(PJZ;(lflw-~7P}l€fn)afn+1>- (4.5)

KeDj

We prove an estimate that is independent of j.
Let K € Dj . Define an operator-valued kernel ax : R4 — £(TT" _, X, YVii1)

m=1
by
aK(xaylv""yn) = Z |K|na’K,(Qi)hQ1(yl> "'hQn (yn)hQn+1 (l‘)
Q1,--,Qn+1€D
ngi):K

Notice that ayx is supported in K™™' and that if z,y1,...,y, € K, then for some
€ € {—1,1} we have eax (x,y1,...,yn) € C(S¥). Thus, there holds

R‘W({G’K('r7y17~ .. 7yn): K e Dj,lwm7y1a ey Yn S Rd}) S R‘W(C(Sk))

Below we write ax (z,y) = ax (2, y1,---,Yn) for y = (y1,--.,yn) € R¥. We have that

1

A(PRf1,.. PR fo)(@) = TG

/aK(x,y)[P}éfl(yl),~-~7P§€fn(yn)] dy- (4.6
Fon

Let (V,v) be the space related to decoupling, see Section 2.2. Let also V™ be the n-fold
product of these, and let v, be the related measure. If y = (y1,...,yn) € V", then yn, i
for m € {1,...,n} and K € D denotes the coordinate of y,, related to K. If y € V", we
write yx to mean the tuple (y1.x,--.,Yn k). If K € D; , then we can rewrite (4.6) as
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Ag (P fi,... Pl fu) (@) = / ax (2, yx) (PR LWLk )5 PR (o) dvn(y). (4.7)
V'n

Applying (4.7) it is seen that (4.5) equals

Z <CLK(£C, yK)[P;(lfl(yl,K)a sy P[l?fn(yn,K)]a fn+1(x)> an(y) dx.
Rd vV KE€Dix

Notice that here we may multiply each of the functions inside ax (z,yx) by 1k (z), since
ag(z,-) = 0 unless z € K. Applying the Ry -boundedness (see Remark 3.16) of the
kernels gives that the absolute value of (4.5) is dominated by

H H(lK(x)Al}?fm(ym,K))KeDj,nHRad(Xm)
Rd Vn MmEThaq

< [{ (k@B fnlomi)) K eD;)

| fnt1(2)]x,,, dvn(y) d.
(4.8)

meETfn ’RM(w,Jf{M,n-&-l)

Let Fi7, =~ be the tuple of the functions f,, with indices m € Jhim- We notice that for
all z € R? and y € V" there holds that

H{(lK(x)EKfm(ym,K)> K e Dj,n}

‘ < RMp o 74, mt1 (Fg,, ) (@),

meThm RM(w,Jhaon+1)

and by assumption we have that

, 1/r
([ [ R0 e g (P )@ da)de) 5 TT Il (a9)

Rd Vn m€L7F/{M

Here r is the exponent defined by 1/r = ZmejlgM 1/pm.
Let m € Jf,q- Then Kahane-Khintchine inequality (2.1) shows that

J 1@l fom i) cep, W,y ) da

RV (4.10)

”E/ / | > eIk @AY fulgmsc)|, v dv(y) S 1715,
K Jmim K)o ~ W Lem ()

R v K€D«

The last step is based on the decoupling estimate (2.6).
Now, if we use Holder’s inequality in (4.8) and combine the result with (4.9) and
(4.10), we finally see that
n+1

|(4'5)‘ S H ”meLPm(Xm)-
m=1

This concludes the proof. O
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5. Operator-valued multilinear paraproducts

We begin with some definitions. Suppose X, ..., X,, ¥,+1 are Banach spaces. Sup-
pose T € L([T}_; X, Ynt1). Let k € {2,...,n} and e,, € X,,, for m € {k,...,n}.
Define the operator T[eg, ..., e,] € ,/U”(l_[fn_:l1 Xm, Ynt+1) by

(Tlek,---,en))er, .- ex—1] :=Tle1, ..., en],
where e,, € X,,, m € {1,...,k —1}. We see that for k € {2,...,n — 1} there holds that

ITleks- s enlll ot xoys ey < lerlx I Tlekrn, o ovenlleqr . xuvary (1)

and that

HT[en]H[;(sz—:ll X Yng1) < |en|Xn||T||£( N1 XmYng1): (52)

Let a = (ag)gep, Where

ag € E( f[ Xm,Yn+1).

m=1

Assume that there exists a UMD subspace T C E(Hfmzl X, Y1) for every k € 7,4
so that
ag € Tn
and for k <n
agler+1,---.en] € Te, for every exsq1 € Xpy1,...,6n € X,

If these conditions are satisfied, we say that a satisfies the UMD subspace condition.
The next theorem generalises the result about boundedness of operator-valued para-
products from [16] to the multilinear context.

5.3 Theorem. Let n > 2, Xy,...,X,, be Banach spaces, Y,+1 be a UMD space and
Xoy1 =Y. Let fr, € L°(Xy,) for m = 1,...,n+ 1. Suppose D is a dyadic grid
and n € (0,1). Then there exists an n-sparse collection S = S((fm),n) C D so that the
following holds.

Suppose a = (ag)gep satisfies the UMD subspace condition as above. For a paraprod-
uct = mp 4 we have for all r € (0,00) that

n+1

K (fiyees fn)y Fut)| S ||a||BMoD‘T(Tn) Z Q) H <|fm|Xm>Q~ (5.4)

QeS m=1
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In particular, if p1,...,pn € (1,00, gnt1 € (1/n,00) and 3" _1 1/pm = 1/qn11, then

7w (frs s Fa)lonsr vy S llallsyon, () [T Ifmllzem x (5.5)
m=1
Proof. We first fix r € (1,00) and assume that |alpmop, () = 1. We will use

Lemma 2.15 again. First, the correctly normalized estimate

|Q‘n/2+1/2 ntl

Q"

<aQ[elv""6n]aen+l> < |6m‘Xm

1
‘Q|n/2

m=1

follows directly from the BMO assumption.
Choose p,, € (1,00) so that " _ 1/py, = 1/r. We show that

n

| 3 aqltF)alng| < T Wl cx,, (5.6)
QeD Lr¥ned) = 05
QCQo
where Qo € D is arbitrary and (F)g = ({(fi)q, .-, (fn)q). We denote by D(Qo) the set

of cubes @ € D such that Q C Q.

We begin by constructing a collection of stopping cubes. Set Sp := {Qo}, and suppose
that Sp, ..., S are defined for some k. If S € S, we define chs(S) to be the collection
of the maximal cubes () € D such that  C S and

(Ifilx:)e ([fnlx.)e
(filx)s™ 7 I fulx,)s

Then, we define Sy.11 := Jges, chs(S) and finally S := ;2 Si- If @ € D and Q C Qo,
then the unique minimal cube S € S containing @ is denoted by 75(Q). If S € S we

define E(S) := S\ Ugrceng(s) S
It follows from the construction that S is a sparse collection. For S € S define Fg :=

(f1,85-- -5 fn,s), where

max ( ) > 2n. (5.7)

fm,s = Z (fm)s'ls: 4+ 1gs) fm- (5.8)

S’echs(S)

From the stopping condition (5.7) it is deduced that

| frm.slloe (x0) S (| fmlx,)s- (5.9)

Equation (5.8) implies that

(Flg = (Fs)q (5.10)
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for all @ € D(Qp) such that 7sQ = S.
Pythagoras’ theorem (2.7) and Equation (5.10) give that

| > aeltF

QED(Qy) (¥ata)
vl )
Ses  QeD( QO) Lr(¥n+1)
TsQ=
It will be shown that for all S € S there holds that
n
| Y aellonatalhe||,. S T lgmli=xnlSI™ (512)
T(Ynt1) i
QeD(Qo) m=1

TsQ=S

for all g, € L>®(X,,), m € {1,...,n}. This combined with (5.9) and (5.11) implies that
the left hand side of (5.11) satlsﬁes

n

215611 5 (3 T Ufalsl8l)” < T1 (Sl

sesSm=1 Ses

S|>1/;Dm

3
s i
I,

<

~

| frnll Lom (X5

m=1

where the last step followed from an application of the Carleson embedding theorem
based on the sparseness of S.

Fix S € S and suppose g, € L>®(X,,), m € {1,...,n}. Let {eg}gep be a collec-
tion of independent random signs. For all z € R? the collections of random variables
{eqhg(z)}gep and {eg|hg(z)|}gep are identically distributed. This gives, using the
UMD property of Y, 11, that

| > aglignas - fglalhel

QE%(_QSO) Fre)
o (5.13)
~E| ¥ cqnelioe. - tandelinal |,

QED(Qo) "

TsQ=S

Notice that |hg| = 1g/|Q|'/2. This allows us to use Stein’s inequality in the next esti-
mate. The UMD-valued version of Stein’s inequality is due to Bourgain, for a proof see
e.g. Theorem 4.2.23 in the book [24].



F. Di Plinio et al. / Journal of Functional Analysis 279 (2020) 108666 37

The right hand side of (5.13) satisfies

RHS (5.13) =E[| 3" ca{acloi(),- - (onlal) Ihelf,
QED(Qo) e
TsQ=S

SE[ Y coaolan(),- - lgadallho]|,
"(Yny1)
QED(Qo)
TsSQ=S
<E|lalx|| Y ceualiar--- mbellhal| ||,
QED(Qo) '
TsQ=S
<lolexoBl| 3 cqaallela, - oadallkel]
QED(Qo) '
TSQ=S

Because 7T is assumed to be a UMD space we can repeat the above estimate with go
in place of g;. In course of doing so, after applying Stein’s inequality, we use the estimate

| > cetole@: o mallho@]

QED(Qo)
TsQ=S

<loe@lx| Y <couallwse.. - gdallha@)l]| .

QED(Qo)
TsQ=S

see (5.1) and (5.2). Iterating this we arrive at

RHS (513) S [] lgmllzecenB| Y =qaalhall

m=1 QED(Qo) LT
TsQ=S
Finally, the BMO assumption gives that
E| 3 coualhall,, . S lalmon, IS =S
QED(Qo) "
TsQ=S

This concludes the proof of (5.12), and hence of (5.6). Lemma 2.15 now gives (5.4). It
remains to recall the John—Nirenberg inequality (2.9). O

6. The representation theorem

Let n > 2 and let Xi,...,X,, Y1 be UMD-spaces. With respect to these spaces,
suppose that T is an n-linear operator-valued SIO with a basic kernel K. In addition,
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T™* denotes the mth adjoint of T for m € {1,...,n} — that is, there are n-linear
operator-valued SIOs T™* satisfying the identity

<T(f1a' "afn)afn-i-l) = <Tm*(f13"'afm—lafn+1afm+17"'7fn)7fm>'

Assume that there exist UMD subspaces T C E(Hm 1 Xm, Ynt1) so that for all
dyadic lattices D the sequence [T'1l]p := ((T'1,hg))gep satisfies the UMD subspace
condition (see Section 5) with these spaces. Recall that the operators (T'1,hg) were
defined in Section 2.4. We abbreviate this by saying that T'1 satisfies the UMD subspace
condition. Let m € {1,...,n}. Likewise, we say that T™*1 satisfies the UMD subspace
condition if the corresponding UMD subspaces 7, exist. Notice that here the spaces
X, change places, so that for instance

m—1
" Cﬁ(kl_[le X Xpg1 X kl;[Jrle, )

If ¢,: RY = C, m =1,...,n+ 1, are bounded and compactly supported and ® =
(d1,- .-, ¢n), then we can deﬁne the n-linear operator

(TP, pry1): H Xm — Yo
m=1

by setting

<T®7¢n+1>[61;---76n] = <T(¢161,...,¢n6n)7¢n+1>, em € Xm (61)
We define the following collection of n-linear operators [ _; X,, — Y,,41 by setting

Cweak(T) = {|Q|71<T(1Q, o 1g),1g):Q C R? is a cube}.
6.2 Definition. Let n > 2, Xy,..., X,,,Y,;1 be UMD spaces and X1 = Y7, ;. With
respect to these spaces, suppose that T is an n-linear operator-valued SIO with a basic
kernel K. Suppose that w: X7 X -+ x X471 — C is an n + 1-linear contraction as in
(3.3). We say that T satisfies T'1 type testing conditions if:
(1) We have
[K[cza,@ = R (Coz,a(K)) < oo.

(2) We have

IT|weP,= = R (Cweax(T')) < 00.
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(3) For all m € {0,1,...,n} the UMD subspace condition for T"*1 holds, and there
exist exponents rg,r1,...,r, € (0,00) so that

1T 1|B™mo,,, (T = Sup (T 1, hq))qepllBMOn ), (T3m) < 00,
where the supremum is over dyadic lattices on R,

Good and bad cubes. Recall the random dyadic lattices from Section 2.1. We introduce
the good and bad dyadic cubes of Nazarov—Treil-Volberg [37]. Let v € (0,1) and r €
{1,2,3,...}. We say that a cube Q € D, where D is a dyadic lattice, is (v, r)-good if for
all R € D with ¢(R) > 27¢(Q) there holds that

d(Q,0R) > ((Q)"U(R)'~

where OR is the boundary of R. If @ is not (v, 7)-good, we say that it is (v,r)-bad. Let
Q € Dy (where Dy is the standard dyadic grid) and define the probability

Praa(7,7) = P{w € Q: Q + w is (y,7)-bad}).

This probability is independent of the cube @ € Dy and Ppaa(y,r) — 0, as r — co. In
what follows we make the explicit choice y(dn+a) = /2 and then fix r large enough — at
least so large that Pgood = Pgood (v,7) = 1=Praa(7,7) > 0, and that certain calculations
below are legitimate. Now that « and r are fixed we simply write Dgooq and Dpag for
the good and bad cubes of a given lattice D.
6.3 Theorem. Letn > 2 and let X1,..., Xy, Y,p1 be UMD spaces. Denote X1 =Y, 1.
Suppose that (X1, ..., X,11) satisfies the RMF o, property with some w, as in Section 3.2.
With respect to these spaces, suppose that T is an n-linear operator-valued SIO with a
basic kernel K as in Section 2.3. Suppose that T satisfies the T'1 type testing conditions
of Definition 0.2.

Let fr: RT = X,,, m=1,...,n+ 1, be compactly supported and bounded functions.
Then we have the representation

<T(f17 ceey fn)7fn+1>

= O[IK 7, + ITlwpo + 3 1T Ulsnio,, (70 |

m=0

|: Z 2_amanM/QZ<S£,u(fl7-~-afn fn+1 + Z T"’*l f1,...,fn)7fn+1> .
m=0

kezyt!

Here C < 1 and the sum over u is a finite summation. The operators S* « are dyadic

shifts of complexity k defined in the grid D, and satisfy RW(C(S&U)) < 1. The operator

Tw,rm=1 48 the paraproduct wp,, [rm~1),  related to [T™*1]p
w.go0

w,good *
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Using Theorem 4.1, Theorem 5.3 and (2.17) we get:

6.4 Theorem. There exist dyadic grids D;, i = 1,...,3%, with the following property.
Let n € (0,1). Let Xq,...,X, and Y41 be Banach spaces and fp,: R® — X,,, m =
1,...,n+1, be compactly supported and bounded functions. Then for some i there exists
an n-sparse collection S = S((fm),n) C D; with the following property.

If T is an operator-valued n-linear singular integral satisfying the T'1 type testing
conditions, then

KT (f1, -5 fn)s far)| Sn [HKHCZa,w + || T||wBP,w + Z ”Tm*l”BMOr,,L(T,{”)}

m=0
n+1
< S0 (il )
QEeS m=1

(6.5)

In particular, if p1,...,pn € (1,00], gny1 € (1/n,00) and >0 1/pm = 1/qp41, then

IT(frs s f)ll Lo (v S [IIKllcza,w + I Tlwsp,o + Z 1T 1[B7mo

m=0

o (T J

n
X H ”fm”me Xom)*

m=1
(6.6)

Proof of Theorem 6.3. We show the proof under the additional assumption that T is a
priori bounded, say from [ _, L"*1(X,,) to L"*V/™(Y,,,1). At the end we comment
why this is enough. With this assumption, all the steps in this subsection can be made
rigorous.

For every m € {1,...,n + 1} suppose f,, is a X,,-valued, bounded and compactly
supported strongly measurable function. Write F' = (f1,..., fn). We start considering

the pairing <T[F]7 fn+1>'

Multilinear reduction to good cubes. Fix for the moment a random parameter w € €.
Writing the functions as f,,, = ZQmeDw AQ,, fm we have

<T<f1a . 'afn)7 fn+1>
= Z <T(AQ1fl7 cee Aan'IL)a AQn+1f7L+1>

Q1,--,Qn+1€Dy,

n+1
=y > (T(Ag fry - Dgy fn)s Do s Frit).
m=1 1, aQ1z+1€D

é(Ql% é(Qm 1)>4(Qm)
UQm+1)s-- £ (Qn+1)2€(Qm)
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For k € Z there holds that

Z AQQZEwgkg, Ew,zkgiz Z <g>Q1Q‘

Q€D Q€D
2(Q)>2" 2Q)=2"
Thus, for m € {1,...,n} we have
Z <T(AQ1fl’""Aann)vAQn+1fn+1>: Z Am(Q)

17 7QrL+16D QEDUJ
K(Ql)) 7Z(Q7n 1)>€(Qm)
LQm1)r £ (Qny1) 2L(Qm)

where A,,(Q) is defined, for Q € D,,, to be

<Tm* (Buwe@)f1s- s Bu @) fm-1, E, 1@ far1, B, 1@ fmt1s - B, w@ fn)s AQfm>-

Similarly, for m = n 4+ 1 we have

Z <T(AQ1f17--'aAQ7Lfn)7AQn+1fn+l> = Z An-i—l(Q)a
7Q71+1€D QGDW
[(Ql)v“'v[(Qn)>€(Qn+l)

where

An+1(Q) = <T(Ew,Z(Q)f1a e ;EW,Z(Q)fn)vAan+1>v Q € D,. (67)

Recall that D, is the lattice {Q + w: @ € Dy}. Hence, the average over w € Q of
>-gep, Mn+1(Q) can be written as

E Z An+1 Q+w ,P Z ]E good Q+W)]E An+1(Q+w)
QeDy good ep,
,P E Z 1good Q + w) n+1(Q + w)
good Q€EDy
1
= Ew Z An+1(Q)7
Pgood Q€D o0d

where independence of the functions w — 1lgo0d(Q + w) and w — A, 41(Q + w) was
used in the second identity. Since the same argument can be clearly made for every
>-gep, Am(Q), we have shown that

(TF], frs1) =

good

{Z Z Am(Q) + Z An+1(Q)] (6.8)
m=1QeD,,

good QEDy good
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Expansion back to martingale differences. Now that the probabilistic reduction is done,
we fix one w € ) and suppress w from the notation; all the dyadic concepts are with
respect to the lattice D := D,,. Let first m € {1,...,n} and Q € D, and consider the
pairing A, (Q). Just for notational convenience define for the moment

fj7 je{la""n}\{m}’
g;n = fn+17 j:ma (69)
Jm, J=n+1

By writing E@gz = Dy@)9m + Ee@)9m» where Dorg = ZQ: 0(Q)=2% Agg, we have

An(Q) = <Tm* (Be) g, - -+ Ee@)9m—1: Do) g Euo ity E@QZL%AQQZZJ
+ <Tm* (Eyy gt - - Evgygm. E@gﬁﬂ, ey E@Q?%AQ%@J-

Continuing in the same way with the second term on the right hand side, it is seen that
A (Q)

= Z <Tm* (Ee(Q)gin,-~~,Ee(Q)!J}"_uDe(Q)QT,E@Qﬂu . ~,E@9?),AQ921+1>

J=m

+ A (Q),

where we have defined

A (Q) = <Tm* (Byyat®, - - Ee(Q)gyT)7AQQTT+1>- (6.10)

The terms A,,,(Q), m € {1,...,n}, are completely symmetric with the term A, 11(Q)
n (6.7). Hence, we will concentrate on finding the model operator structure for the sum

> A (Q) (6.11)

QEDgoo0d

The terms

> <Tm* (Ee@ai"s > Bu@ 91 De@) 95" Euo 641 - - - E@Q?%AQQZ&Q»
Q€EDgood
(6.12)
where m € {1,...,n} and j € {m,...,n}, will be handled separately in Section 6.6.
Apart from a certain diagonal part, the shift structure for these will follow from our
arguments concerning (6.11).
Now we start to consider the term (6.11). Fix the cube @ € Dgooq for the moment.
Since by a priori boundedness there holds
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T(EQkfl,...,EQkfn) — 0, ask— oo,
we have

<T(EZ(Q)f17 v 7EZ(Q)fn)7Aan+1> = Z {<T(E2kfla SRR E2kfn)7Aan+1>
2"?@%@

—AT(Byess fu, ..., E2k+1fn)7Aan+1>} .
Let k € Z be such that 28 > ¢(Q). Then
<T(E2k:f1, ceey EQk fn),Aan+1> — <T(E2k+1 fl, ceey E2k+1 fn),Aan+1>

=Y (T (Bawirf1,. .., Egerr fio1, Dowss fi, Bor fist, -, Bar ), A fnga)-

i=1
For i € {1,...,n} the corresponding term in this sum can further be written as
Z <T(EQ1f17 R EQi—lf’i_l’ AQifi’ EQ¢+1fi+1’ R Eann)a Aan-‘r1>'
Q1,..,Qn€D

UQu)==H(Q)) =24+
UQi41)="=£(Qn)=2F

Let us agree on the following conventions. Let Z;, i = 1,...,n, be defined by

D; = {R:le X XQp: Q1,...,Q, €D,
UQ) =+ =0Q:) =20(Qiz1) = -+ =20(Qn) }.

Suppose R=Q1 X -+- X Q, € Z; and Q € D. Define ¢(R) := ¢(Q1) and
AQ, R) = maxd(Q. Q).
Set VA F to be the n-tuple of functions
VEF == (Eg, f1,.- Eg, , fi—1, Q. fi Eo,, fit1s - EQ, fn)-

Using the above splitting we have

n

Z A1 (Q) = Z Z (TIVEF, Ag frtr)- (6.13)
QEDgood 1=1 Q€EDgooa RED;
LR)>4(Q)

Most of the time we will consider each i separately. However, related to every i there
will be a paraproduct type term. These will be summed together in Section 6.4 giving
one simple paraproduct.
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Let us rewrite the pairings (T[VAF], Ag fnt1) using Haar functions. Expanding

AanH = <fn+17 hQ>hQ
there holds
(TIVRF], Aq fa+1) = ((TIVRF], hq), (fat1,hq))-
Related to the set R = Q1 X -+ X Q,, € Z;, define the n-tuple
hri=(hgy,s- - hg, 1 hQi h - R (6.14)

Using hr,; we can write

(TV&F], hq) = (Thri, h@)[(F, hr)l,
where (Thr;, hg) is the natural operator defined using (6.1) and

(Fohrg) = ((fr,hg,)s o {fimr b, ) (fishQu)s (fiens B,y ) (Fns B,
Altogether, we have
(TIVEF], A fat1) = (Thris h)[(F hri)), (fas1: ha))-

We now fix one 4 in (6.13) and start to study the related term

YooY (Thrih@)UE AR, (far1,he)). (6.15)
QEDgood Re9;
L(R)>4(Q)

6.1. Step I: separated cubes

Here the part

O'i = Z Z <<ThR,i7hQ>[<Fa hR7i>]7<fn+17hQ>>
QGDgood RE@i
L(R)>4(Q)

d(Q,R)>£(Q)7 (L(R)/2)t 7

of (6.15) is considered. We begin with the following lemma on the existence of nice
common parents. A short proof is given, albeit it is morally the same as in the case
n=1in[19.fR=0Q1 X - xQn € Z; and Q € D are such that there exists a cube
K € D so that Q,Q1,...,Q, C K, then the minimal such K is denoted by @ V R.
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6.16 Lemma. Suppose R = Q1 X -+ X Qn € Z; and Q) € Dyooa are such that there holds
d(Q,R) > £(Q)"(L(R)/2)1=7. Then there exists K € D so that Q1 U---UQ,UQ C K

and

d(Q,R) 2 U(Q) U(K)' .

Proof. Let K € D be the minimal parent of () for which both of the following two
conditions hold:

« UK)=27(Q);
« d(Q,R) < L(Q)UK) .

If we had that @,, C K¢ for some m, we would get by the goodness of the cube @ that
Q)U(K)TT < d(Q, R) < Q) UK)' ™,
which is a contradiction. Moreover, we have
UQ)(U(R)/2)' ™7 < d(Q, R) < UQ)UK) ™

implying that ¢(K) > £(R). Thus, there holds Q; U---UQ,UQ C K.

It remains to note that the estimate d(Q, R) = ¢(Q)7¢(K)'~7 is a trivial consequence
of the minimality of K. There is something to check only if /(K) = 2"¢(Q). But then
(K) < 4(R) and so

d(Q.R) 2 (Q)UR)'™ 2 U@ UK)' 7. O

We use the common parents to organize o} as

oo ji1—1
> > =22 2 > . (6a7)
QEDgood ReP; J1=2j2=1 KeD QEDgo0d,RED;
£(R)>£(Q) d(Q,R)>£(Q)7 (¢((R)/2)1
d(Q,R)>£(Q)Y (¢(R)/2)* 2014(Q)=2924(R)=£(K)

QVR=K

Suppose j1, jo, K, @ and R are as in the above sum. We will show that for some large
enough constant C' there holds that

2aj1/2 ‘K‘n
C Lz Q' /21QI2

(Thpr:, hg) € A(Ccz,a(K)). (6.18)

Here we are using the notation defined in Lemma 3.18. This then implies that for fixed
j1 and jo the inner double sum in (6.17) multiplied by
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2aj1/2

C’[HKHCZQ,W + 17|l wep,= + >0 HTm*l”BMo,,m(T,r)}

is an operator-valued n-linear shift as in the representation theorem acting on fi,..., f,
and paired with f,4+1. The complexity of this shift is k = (ki,...,knt1), where k1 =
s =k; =2kjy1 = -+ =2k, = jo and k11 = j1. Therefore, (6.17) is of the right form
for the representation theorem.

We turn to prove (6.18). We write R = Q1 X - - - X Q,,, and suppose first that d(Q, R) <
Cyl(Q), where Cy is a dimensional constant. From the proof of Lemma 6.16 it is clear
that, if r is fixed large enough, then K C Q") implying that £(K) ~ £(Q) and j; <r < 1.

Ifz € RYand y = (y1,...,yn) € R are such that (z,y1,...,9,) € RUTD\ A
where A consists of the diagonal points (z,...,z), define

n —dn
Ney) = (D e =yml) (6.19)
m=1
By slight abuse of notation we write

hri(y) = hgy, (1) - by, Wim1)ho, Wihd,,, (Wis1) - hdy, (Yn)-

In (6.14) we gave a different definition for hg ;, but it should be clear from the context
which one we use (see the next equation, for instance).
We write out (Thg, hqg) as

Thesine) = [ [ 52w i o (o) dyda, (6.20)
Rd Rdn

Notice that this integral does not make sense as such, but has to be interpreted as in
(2.13). There holds that K(z,y)/A(z,y) € Ccz,o(K). Because d(Q, R) > £(Q), there also
holds that

hraho@)] 0 RMRIQM o oy 1@l 21QI2
(o le—ya)™ O HQ™ I

Rd Rdn

This together with (6.20) proves (6.18) in the case d(Q, R) < Cq(Q).
Consider then the case d(Q, R) > Cyl(Q). If (cq,y1,...,yn) ¢ A, define

n —(dn+a)
Noe.y) = e —eql*( Y leg —uml) (621)
m=1

The zero average of hg allows us to write
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K(x (co,y
(Theishe) = [ [ FERELLI r g )l (e) dy
Rd Rdn Q

Since d(Q, R) > C4¢(Q), it holds that here (K (x,y) — K(cq,v))/ o(z,y) € Coz,o(K). In
addition, using the fact d(Q, R) = ¢(Q)"¢(K)'~" from Lemma 6.16 we have the estimate

o — ol lhmiho(@) | - UQPIRIZIQ _ |RQP?
n dn+a ~ 1—y)dnt+a = 9aji/2 n’
Lo (Sniea—m) QUK )e ~ 2o IK]

where we recalled that y(dn+a) = «/2. This proves (6.18) in the case d(Q, R) > Cqal(Q).
We are done with Step I.

6.2. Step II: nearby cubes

We now look at the sum

Ué - Z Z <<ThR,ith>[<Fv hR,i>]a (fn+1,hqQ))
QEDgood R:QIX"‘XQnEQi
HR)>HQ)

d(Q,R)<L(Q)V(E(R)/2) =
QmNQ=0 for some m

Let Qe Dand R=Q1 X --- X Qn € 9; be as in 0i. Suppose Q,,, is a cube such that
Qme NQ =0. If Q) > E(Q )), then the goodness of the cube Q implies that

d(Q, R) > d(Q, Qmy) > Q) U(Qum,)' 7 = UQ) (U(R)/2)'~

which is a contradiction. Thus, we have £(R) < 26(Q,,,) < £(Q(™). Suppose Q,, Q") =
() for some m. Then

d(Q.R) > d(Q,(Q")%) > (@) Q") ™ > £(Q)(¢(R)/2)*~

which is again a contradiction. We conclude that Q V R ¢ Q")
These observations show that

r ji—1
ZEDIDIDS > (Thr.i, ho)[(F, hri)l; (fat1, ha))-
j1=1j2=0 KeD QEDgo0d,RED;

d(Q,R)<L(Q)Y (L(R)/2)* 7
QmNQ=0 for some m

291 4(Q)=2724(R)=£(K)
QVR=K

Similarly as in Step I, we need to show that if ji, j2, Q, R and K are as in o}, then

2aj1/2 ‘K‘n

¢ T, Qmiigps (This ha) € AlCcza(K)).
m=1 m
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Recall the function A(z,y) = (>0 |z — ym|)_dn and write

Thriste) = [ [ D@ sto)hote) dyda.

Rd Rdn

Here we have K (z,y)/M(z,y) € Ccz.o(K). Let mg € {1,...,n} be such that Q,,,NQ = 0.
Then, using the estimate fRd(c + |z —y[) 74P dy Sap ¢, where ¢, B > 0, we have

hri(y)h 1
| R, (y) Q(.’L‘)‘ — dydfl’ S |R‘—1/2‘Q|—1/2/ / | |d dymo dz
n — T = Ym
goge (Zme1 |2 = yml) Q QM@ i (6.22)
1/2()|1/2
< |R‘71/2‘Q|71/2|Q‘ ~ 27&]'1/2 |R‘ / ‘Q| /
K"
This concludes Step II.
6.3. Step III: error terms
We start working with the sum
O'iii = Z Z <<ThR7i7hQ>[<Fa hR,i>]7<fn+17hQ>>v

QGDgood Re9;
R=(Q®))ix(Q*—~1)n—i for some k>1

which is what is left after Step I and Step II. Here and in what follows Q" = Q x - -- X Q,
where there are i members in the Cartesian product. First, we define abbreviations
related to certain error terms. Let () € Dgooq and 1 < k € Z. We will define the function
tuple ®Q ki = (PG i+ Pokiy) forevery j=1,... n If j <i—1 we set

L L —oWk)=1/2 4 k)|—1/2
¢Q»k’i,j = (ij ki ‘ ( )‘ / ) é,k,i,j = |Q( )| / ].(Q(lc))c,
i+1 _ )
¢é2+,k,i,j - ¢’ =1Q" 1/21Q<k>, PQrig = how,
i+1 k—1)|—1/2
¢ka,i,j - (bQJw’,j = Q" VT g0

If j =i we set

¢1Q,k,i,i = |Qk)|~1/2

s B0 kii = Ligu-v)e[—hgw + (how)gu-n],
|Q(k—1)|—1/2

¢lez

¢l+1 _

— U3 —
Qi = = PQkii = Lou-1.

Finally, for j € {i +1,...,n} we set
|Q(k)|71/2

1
Pokig =" = PGk P ki = (hou)gu-n,

= ‘Q(k_1)|_1/2 Jj | (k— 1)| 1/21 (QF—1Yes

¢z+1 T
Qk,i,j — T PQkig Q.k,i,j
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¢j+1 _

k—1)|—1/2
Okij =" "= ¢5’k,i’j — |Q( )| /

1Q(k—1) .
With the same abuse of notation as with hg; we set for y = (y1,...,yn) € R4 that
n
(I)QJ%LJ H ¢Q k,i,7 ym
m=1

We are ready to move forward. Suppose @ and R are as in o} with /(R) = 284(Q). We
will denote the function hg ; also by ug k.;. Note that if y = (y1,...,yn) with y,, € Q-1
for all m, then ug k. (y) = (uQ.k,i)on. With the previous definitions we have the identity

(Thii hg) = (ugki)or (T1,hq) = > (TPq ki ha),
=1

where we recall that the operators (T'1,hg) and (T'®q k., hg) are interpreted as in
(2.13). This gives that o} = o} . — >, 0} ., where

o= > > (ugrien((T1hg)[(F uqki), (fas1, ho)) (6.23)
QEDgooa k=1

and

Oheii= Y. Z (TPq ki, h) [(F, uq k)], (frt1,h@))-

Q€EDgooa k=1

The term 0'§7Tr will become part of the paraproduct that is considered in the next
section. Now we look at the error terms o} ;- We consider each of them separately, so
we fix j € {1,...,n}.

The term o , ; can be written as

Ghei =Y > ((T®qrizhe)[(Fuqril (fai1,he))-

k=1 K€D QE€Dgood
Q(k):K

From here it is seen that this produces a series of shifts that satisfy the requirements of
the representation theorem once we have shown that if k, K and @ are as in O’é’e’ ;» then

CTRR PR |M21QI VA (T Rq ki, hg) € A(Coza(K)). (6.24)
Notice that we have the right normalisation since

|K|n/2|Q|—1/2 ~ |Q(k)|_i/2|Q(k_1)|_(n_i)/2|Q|_1/2|K|n.
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Recall the functions A and A from (6.19) and (6.21). Notice that the j-coordinate of
D@ k,i,; is supported in the complement of Q. Therefore, using the definition (2.13) of
(T®Q ki,j, hq), we have that (T'®q i ;,hq) is the sum of

K
/ / (2,1) P .05 (1) h(x) dy dz (6.25)
Rd C’dQ)TL
and
K(z,y) — K(cq,
/ / (€Q:9) 5 (0. ) Do s (1) ho(x) dy da. (6.26)
>‘Q r,y)

R4 ((Ca@Q)™)®

Let us first consider the case k < r. Using the pointwise normalisation |®g k., ;(y)| S
|QU)|=7/2 = |K|~™/2 we get, similarly as in (6.22), that

Do rii(y)h 1
| %k, \j (y) Q(x)d|n dyda < |K|_n/2|Q\_1/2/ / m dyj dz
RY (CaQ)" (Xin=t | = yml) Q CaQ\Q ’

SIK|ITQM2.

In the same way, there holds that

|£17 — CQ‘a|®Q,k,i,j(y)hQ(x)| d e |Q|1/2 / é(Q)a 4
(S leg — yml) ™™ . |K|"/2 ) eq — y;ldte

S IKI‘"/QIQ\”2~

R4 ((Ca@Q)™)e

These estimates prove (6.24) in the case k < r.

Assume then that k& > r. The j-coordinate of ®¢ . ;; is supported in (Q*~Y)e.
Because Q is a good cube, we have Q¥*~1) > Q") 5 C4Q, which uses the fact that r
is large enough. Thus, the integral (6.25) is zero. Related to (6.26) there holds by the
goodness of the cube @ that

el o hal g, [ M@,
Rd Rdn (Zm:l ‘CQ - ym|) |K|

_ler ue
S K[ Q) ) )

Since 1 — > 1/2, we also get the right geometric decay. We have proved (6.24) also in
the case k > r.
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6.4. Step IV: paraproduct

We consider the term

0% = Z Z(UQ,k,z‘>Q"<<T1,hQ>[<F,UQ,m>]7<fn+1,hQ>>

QEDgooa k=1

from (6.23). Here we will sum up the corresponding terms aé,,r, 1 €{1,...,n}, to get
one paraproduct.
Recalling the implicit summation over the cancellative Haar functions we have that

(uq,k,i) @ (T'L, hq) [((F, uq k,i)]
= (T1,hQ)[({fi)guw, - (fim1)gus (Agw fi) -1y s (fi1) Q=15 - - -5 (fn) Que—1))]-

Summing these together over i € {1,...,n} yields

n

> (ugridon(T1hQ)[(F ug.ki)] = (T1,hg)[(F)qu-n] — (T1,h) [(F)om],
i=1

where (F)¢g denotes ((f1)q, .., (fn)q). Finally, we get the desired paraproduct:

ZU@,WZ > D TR (F)gu-n] = (T1,hQ) [(F)gw), (fat1, b))

QEDgood k=1

= Y (TLAQUF)Ql (far1:h@)) = (mp (r1j,, , [F], fat1)-
Q€EDgood

6.5. Synthesis of the steps I-1V

We summarize what we have done so far. We have shown that the terms o}, 0% and
0§’e7j, where i,j € {1,...,n}, can be represented in terms of shifts. Also, we proved that
the sum ) 7" | 0% - produces a paraproduct. Therefore, one of the main terms

n

Z Api1(Q) = Z {ai +ob + Z aé,ed + agm]

QEDgo0a i=1 j=1

satisfies the required identity for the representation theorem. By symmetry, this gives

the corresponding identity for the terms > ocp — An(Q), m € {1,...,n}.

good
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6.6. Step V: diagonal

To finish the proof of Theorem 6.3 it remains to consider the term

2: <7m”(fkumg?ﬁ--wfkumgﬁqalbamgfvEﬁ§Mﬁ11w~-,EQ%QQT),AQ9211»
QEDgood

where m € {1,...,n} and j € {m,...,n}. This is the term from (6.12). For notational
convenience write g; := g7* and G = (g1,---+9n). The term under consideration can be
written as

Z Z <Tm*[V}%G]7 Aan+1>

= > (T™ hr.j, hQ) (G, hr )], (gns1, ha))-

j=0 KeD ) QeDgonvRegj
270(Q)=27 6(R)=£(K)
QVR=K

Notice that the common parents exist since the cubes @ are good. Those pairs (@, R),
R=Q; x -+ xQ,, where Q N Q, = () for some u, can be handled with the arguments
presented above: either Q and R are separated as in Step I, or then ) and R are close
to each other as in Step II. So the new part here is

> > (T™ hr.j: h) (G, hr ), (gnt1: ha))

QGDgood RZQI X"'XQne@j

1==Q;=

Qj+1,~~~,Q7Léch(Q)
= Z Z <aQ’Q1---,Qn+1[<f17EQ1>a~'~a<fn7EQn>]a<fn+17?LQn+1>>a

QeD Q1,...,Qn €D
Q1==Q;=Qn1=0Q
Qj+1---,Qn€ch(Q)

(6.27)

where aq,(Q,) = 0Q.Q1....Qns1 = 1good(Q)<T[ﬁQl,...,EQH],EQHH). We defined for @ €
D that 1g004(Q) = 1 if @ is good and 1g04(Q) = 0 if @ is not good. If j = m, then
ho, =~h22]_ fori e {1,...,n}\{m} and hg, = ho, forNi € {m,n+1}.If j € {m+1,...,n},
then hqg, = h%j fori e {1,...,n+1}\ {m,j} and hq, = hq, for i € {m,j}. We divide
(6.27) into two by splitting the coefficients as ag (g,) = ag,(@.),1 + @q,(Q,),2, Where

i

aQ.(@:)1 = lgood (@) > (Tgrhgys-- - 1g,he.) 1, hgais)

Qs Q41 €ch(Q)
Q!,#Q; for some u and !

and

Q.02 = lgooa(Q) > (Tllghg,,-- 1o, ] 1o, )-
Q’€ch(Q)
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Let Q1 = =Qj = Qn41 = Q € D and Qj11,...,Qn € ch(Q). Consider first the
coefficient ag (,),1- Suppose Q1,...,Q; ., € ch(Q) are such that @, # Q; for some u

and [. Recall the function A(z,y) = (> _, |z — ym|)7dn. Then

. . . K(z,
Tlaian-- dasha oy Te) = [ [ 3 pepayds, (629

Rd Rdn

where

o(x,y) = Mz, y) H lgn, (ym)h,. (ym)1q,,, (@)hq, ,, (2).

Similarly as in (6.22) we see that [[ |¢(z,y)|dzdy < |Q|~"T1/2|Q). Since ag (g1 is a
finite sum of terms of the form (6.28), this shows that

n+1

CHT 1@ml 211" a1y € AlCoz.a(K)).

m=1

Consider then the coefficient ag (,),2- Suppose Q" € ch(Q). We may obviously suppose
that Q41 =--- = @y = Q. Then, we have

~ ~ ~ Q' (T[lgr,...,1g/],1g)
Tloho,,- . loho. ], 1ok -+ ,
(Tllghe, @ha.) 1o hq. ) T Q172 0
where (T'[1q/,...,1¢/],1¢/)/|Q’'| € Cyeax(T). Since ag (,),2 is a finite sum of operators

of this type, we are done with Step V.
6.7. Step VI: T is not a priori bounded

It is possible to first prove a representation theorem in a certain finite set up, where no
a priori boundedness is needed to make the calculations legitimate (as all the sums are
finite to begin with). The proof is similar to the above except for some initial probabilistic
preparations related to the finite setup inside a given fixed cube. Reductions of this type
appear e.g. in [9] and [20]. We omit the technical details in our setting as they are
similar. A corollary of such a special representation is the boundedness of T, say from
[, L™ (X,,) to LOHD/(Y,, ). After this, we can run the above argument. We are

done with the proof. O

6.29 Remark. We make a remark here about the WBP in the linear setting, and describe
a seemingly weaker condition in that setting, which can still be used to estimate the
“diagonal” in the T'1 argument.

Suppose X7, Xs are UMD spaces and 1 < p < oo. Let T: LP(X;) — LP(X3) be a
bounded linear operator. Then, for {eg}gep C X1, we have
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EH > €Q<T(€Q1Q)>Q1QH (6.30)

QeD Lr(X)

. S ||T||LP(X1)—>LP(X;)EH Z €QeQ1Q’
Lr(X3) Gep

Indeed, the left hand side is dominated by

EH > 5QT(€Q1Q)‘

e Lv(X3)

by Stein’s inequality, from which the claim follows using linearity. We denote the smallest
possible constant in (6.30) by Ryeax (which may depend on the exponent p).
We recall that our usual WBP means the R-boundedness of the operators

Q" (T1q,1q) = (T1gQ)q,

which means the estimate

(6.31)

]EH Z €Q<T(€Q1Q)>Q’ o < CWBP]EH Z €Q€Q‘ x .
QeD : QeD !

We show that Ryeak < Cwsp. Actually, there holds that

Cwep > sup. R({(T1g)q: = € Q € D}) =: Cwgp,
z€eR

and we show that Ryeax S éwgp. The proof is quite immediate. Raising the left hand
side of (6.30) to power p and using Kahane-Khintchine inequality we are left with

P
E R/ |3 sotrtcaranatatof e
< /ER({<T1Q>Q: reQe D})pH 3 sQteQ(x)‘ i da
Ra QeD
< G%BPE/ H Z EQteQ(x)H; dz,

Ra Q€D

which gives the proof.

We then look at how the Ryecak-condition handles the diagonal in the T'1 argument.
We consider a zero complexity shift whose coefficient operators {ag}gep satisfy the
estimate (6.30) (so aq in place of (T'(1g))q). Then we simply have:

| 3 aatrhadhal,, . ~E[ X cancls haro/i |
QeD 2 QEeD

LP(X3)
(6.32)

SE| Y cotfha)ia/lQ2| SISl
OeD (X1)
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Finally, we remark that we do not know how to formulate a similar weak boundedness
condition in the multilinear setting.

7. R-boundedness of bilinear shifts

In this section we consider the R-boundedness properties of families of shifts. Let
X1...,X,, Y1 be UMD spaces, X1 = Y,y and let wq: Hm X,, — C be a con-
traction as in (3.3). Fix some exponents p,, € (1,00) such that Z:;;ll 1/pm =1 and let
w: [[,, LP"(Xy,) = C be as in (3.12).

Suppose {S;}; is a family of shifts, all of them defined with respect to a grid D
and having a fixed complexity k. Recall the families C(S;) from (2.14) that consist of the
normalized coeflicients. It seems that the R -boundedness condition from Definition 3.15
is not suitable for proving that

R ({Sj : wﬁl L (X)) — LPusr (Yn+1)}j)

is dominated by R, (U, C(S;)), that is, we can not prove that if the family of coefficients
U; C(S)) is Re,-bounded, then {S;}; is R-bounded.

Currently, we are only able to come up with a suitable R-boundedness condition that
works for families of shifts in the bilinear case. But even here we need to modify the one
we used previously: we need a somewhat stronger condition, but then also the conclusion
is stronger — i.e., the families of shits will satisfy the said stronger condition. We now
start considering the bilinear case, and here, as usual, no contraction w is needed.

We now introduce this stronger bilinear R-boundedness condition, which we call R-
boundAedness. Afte}: this we will show that if the spaces X,,, have Pisier’s property («),
then R({S;};) S R(U, C(S)).

We denote by Rada(X) the space of those doubly indexed sequences (e;m);5,—; of
elements of X such that

- > 2\ 1/2
et Iraasc) = (E|| D2 ctmern|| ) < oo

l,m=1

7.1 Definition. Let X;, X and Y3 be Banach spaces and write X3 = Y3°. Suppose
T C L(X1 x X2,Y3) is a family of operators. We say that T is R-bounded if there exists
a constant C' such that for al N € N, T}, , € T, e;u e Xy, efw € X5 and ef”v € Xs,
where t,u,v € {1,..., N}, there holds that

N 3
Z |<Tt,u,v [etl,u’ 6121,,1)]’ e?,v>| <C H || (ei,m)IIYmZI HRadQ(Xi) :
t,u,v=1 1=1

The smallest possible constant C' is denoted by R(T).
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7.2 Theorem. Let X, X5 and Y3 be UMD spaces with Pisier’s property () and suppose
p1,p2,p3 € (1,00) satisfy ., 1/pm = 1. Let D be a dyadic lattice in R? and fix some
complezity k = (ki1, ks, k3), 0 < k; € Z. Suppose {S;}jes is a family of operator-valued
bilinear dyadic shifts with respect to the spaces X1, Xo and Y3, where each S; = ng 18
a shift of complexity k with respect to the lattice D. Then

ﬁ({Sj: LPY(Xy) x LP2(X3) — Lpg(Y?)): jeJhH s —I—mjaxkj)ﬁ (UC(Sj)).

Proof. We divide the collection {S;};c 7 into three subcollections according to the type
of the shifts, that is, according to the place of the non-cancellative Haar function. We
show that each of these subcollections satisfies the required estimate, and therefore their
union satisfies it also. Thus, we assume that each S; is of the form

f17f2 Z Z CLK(I) f17h11> <f27h12>]h13

KeD I,eD
10 g

The other two cases are handled symmetrically.
Let N € N and suppose Syuw € {Sj}jes, fl, € LP*(X1), f2, € LP*(X3) and

u,v

3, € LP3(X3) for t,u,v € {1,...,N}. Abbreviate C := U; C(S;). We need to show that
for arbitrary €, € C with |€t,u,'u| = 1 there holds that

N

‘ Z 6tuv Stuv ftua u"u]ﬂff,v>

t,u,v=1

ROON(fE )l Rads (o1 (x| (20w | Rada (292 (a1 (FE )0 | Rads (272 (X))

RECF1| rr (Rads (x0)) |1 F2 ] Lr2 (Rads (x2)) | F3] 273 (Rada (X5)) 5 (73)
7.3

where Fy: R4 — Rad(X1), Fi(z) = (fr,u(2))t, and similarly Fo = (f2,)ue, F3 =
( ft?:v)t,v' The last step was obtained using the Kahane-Khintchine inequality. We will
now construct a new shift .S so that

N
Z €t,u,v<St,u,v[ft1,uv 5,'u]7f2v> = <S(F17F2)7F3>~ (7-4)

tau,v=1

Then we show that

[(S(F1. ), F5)| S RC) [T I1Fill e (Radax:))-

from which the desired estimate (7.3) follows.
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Denote the coefficients of Sy 4, » by a}”(; ) Let I, I, I3, K € D be such that Ii(k”’) =K.
Define the operator ak (;,) € £L(Rada(X1) x Rada(X2), Rada(Y3)) by

N
axaolels €l e’y = 3 eunlail iy letu cul el
t,u,v=1

where ¢’ = (e}, )i.m € Rady(X;). The shift S is defined with these coefficients by

S(GlaGQ) = Z Z aK,(Ii)[<G17h11>a<G2’h92>]h13a

KeD I,eD
Ii(ki):K

where G; € LPi(Rad2(X;)), i = 1,2. We see that (7.4) is satisfied.

It remains to show that the shift S is bounded, which follows by Theorem 4.1 from
the R-boundedness of the family of coefficients {a (1,)}x (1,) (notice that Rad(X) is
UMD if X is). To check this, let the admissible partition be for example {{1},{2,3}}.
Choose some W € N. For each w = 1,..., W let ay, = ag(w),(1,(w) be one of the
coefficients of S, and accordingly write al;*V := a';(’zqz) (Ii(w))- Also, let el € Rady(X1)

and bV = (egﬂ)z,m € Rada(X;) for i =2,3 and w=1,...,W. Then

w w N
7w 3w\ | __ tuv 1 2w 3,w
‘ E ,e , € >‘—) E E €tuv €tu,€uv] etv>'
w=1 w=1

We see that the pairs (v,w) appear in af)*" ez’fq‘,’ and et » - Therefore, we look at the

last sum as a sum over triples (¢, u, (v, w)). Thus we see that

w
| D" (aulet €], )| < RO (e} w)enllmads (x)

w=1
2 \1/2
§ 2w § 3,w
x (EH Fuv,wCuo X ) (EH Etowlt
u,v=1,...,N 2 t,v=1,...,N
w=1,....W w=1,...,\W

2 \1/2
X3) '

Using the fact that X5 has Pisier’s property («), we have that

2 2 1/2 / / 2

w ,w

(EH E Euv,wEyy . ) ~ (IEIE E EwEy vCin
u,v=1,...,N 2 u,v=1,...,.N

w=1,....W w=1,...,W

w 2
el
w=1

1/2
RadQ(XQ)) '

Doing the same estimate for the term related to X3 we have shown that



58 F. Di Plinio et al. / Journal of Functional Analysis 279 (2020) 108666

w
‘E ayplel, e®v], e )
w=1

< He ||Rad2(X1)||(627w)Z‘J/:1HRad(RadQ(Xg))||(63’w)Z;V:1”Rad(Radg(Xg));

which is what we wanted to show. This concludes the proof. O
8. Multi-linear multi-parameter analysis

In this section we apply our operator-valued theory to prove multi-parameter esti-
mates in our multilinear setup. Such a strategy requires R-boundedness estimates, so
in light of the previous section we will eventually have to restrict to the fundamental
bilinear case. Focusing only on the essentials, we will simply prove estimates for dyadic
shifts. After this, the full paraproduct free singular integral theory in the same bilin-
ear multi-parameter operator-valued generality would only require the development of
the corresponding representation theory. We do not anymore pursue this rather lengthy
avenue here.

We define an n-linear m-parameter operator-valued dyadic shift in

d:ﬁlei, d; > 1.

Suppose X1,...,X,,Y,41 are Banach spaces. Let also D = [[-, D% where D% is a
dyadic grid in R%, i = 1,...,m. Fix the complexity k = (k; );LJrll, k; = (k})?;l, k; > 0.
In what follows h; € {hs, h } if I € D% for some i.

An n-linear m-parameter operator-valued shift S¥ = S¥ has the form

Sk(flv"'?fn): Z A]Ic((fl""vfn)v

K=[[}", K'eD

where

Allg((fl?'-wfn): Z aK,(Qj)[<f1>iLQ1>a'"7<fn7ilQn>]iLQn+1'

le---in+1eD

QM=K

Here f; € Li (R%; X;),

n
aK7(Qj) = aKVQlﬂ”-in+1 € ﬁ( H Xj7Y’I’L+1>7
J=1

m

s 7 i : k; i i ~ m i
Qj = HQj’ Qj S ,Ddl, Qg ]) = H(Qj)(k]) and th = ®z:1hQ;
i=1

i=1
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We assume that for all K and the related (Q1,...,Qn+1) we have for every i =1,...,m
that in exactly two fixed positions, depending on ¢ (but on nothing else), of the tuple
(hQ7 )”ir ! we have cancellative Haar functions, e.g. that

(hgs )2t = (hay by by, - h -

Moreover, we form the collection

K" ks
C(Sk){W K(Q)" Kana~'~aQn+1€D7Q§J):K}' (8.1)
Define Dy := D¥+1 x...xD% t =1,...,m—1, so that we can write D = D<i xDsy.

Define similarly e.g. RZ, = R¥+1 x ... x Rdm ko = (k;);’;Hl. For K',Q1,...,QL,, €
D% and functions g;: R, — X; define

SKl,(Q;)(gla e ,gn)

= Z Z aK7(Qj)[<glviLQ1,>1>7'"’<gn7iLQn,>1>]iLQn+1,>17
K>1=[[1, K‘€D>1 Q1, >17 Qnt+1,>1€D>1

)
QMY ok,

where K := K' x K1, Q;j = Q) x Q; >1. Notice that we can write

S (frrnfa) = > > Sk @y [(Fishgi)s s (fnshgi)lhar
KleDd1 Qif“'vQ:H»lefDdl
@H") =K'

Let w: HnH X; — C be a contraction as in (3.3) and suppose (X7, ..., X, 11), where
Xny1 = Y, satisfies the RMF condition. Fix p; € (1,00) so that ZnH 1/p; =1
and let w1 : ]_[n+1 Lri(R4,; X;) — C be as in (3.12). Example 3.27 says that the tuple
of UMD spaces (L”1 (RLy5X4), ..., LPr+1 (R 5 X, 41)) satisfies the RMF,_, condition.
Viewing S* as an n-linear operator—valued shift of complexity (kl)n+1

f; € LPi(R%; LPi(RY 15 X)) = LPi(R% X;) Theorem 4.1 says that

acting on functions

IS5 (f1s oo Fu)llpants Rav 0y S (1+maxk )" 1R>1H||fj||LpJ(R‘1X )
j=1

where

K
= isz>1({W L@ HLP] S5 X —>L1"n+1(]R>1,Y 1):

K',Qle D™, (@h)*) = K'}).
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Now we need to revert to the bilinear setting, since as explained in Section 7, we do not
have a suitable theory for the R-boundedness of n-linear shifts if n > 2.

8.1. Boundedness of bilinear multi-parameter operator-valued shifts

Suppose we have a family {S¥}, ¢y of bilinear multi-parameter operator-valued shifts
as above. Suppose X1, Xo,Y3 are UMD spaces with Pisier’s property («). Recall that
spaces of the form LP(; X) are UMD and have Pisier’s property () if X is UMD and
has Pisier’s property («). Therefore, we can iterate the above scheme using Theorem 7.2
to get that given p1,ps2,qs3 € (1,00) with 1/p; + 1/ps = 1/g5 we have

R{S%: LP (R% X7) x LP2 (R X)) — L% (R%Y3): uw € UY)

< ﬁ(l + mjaxk;)ﬁ( U C(&’f))

=1 u€eU
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