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representation of multilinear, operator-valued singular inte-
grals in terms of operator-valued dyadic shifts and paraprod-
ucts, and studying the boundedness of these model operators 
via dyadic-probabilistic Banach space-valued analysis. In the 
bilinear case, we obtain a T (1)-type theorem without any ad-
ditional assumptions on the Banach spaces other than the nec-
essary UMD. Higher degrees of multilinearity are tackled via a 
new formulation of the Rademacher maximal function (RMF) 
condition. In addition to the natural UMD lattice cases, our 
RMF condition covers suitable tuples of non-commutative Lp-
spaces. We employ our operator-valued theory to obtain new 
multilinear, multi-parameter, operator-valued theorems in the 
natural setting of UMD spaces with property α.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Singular integral operators (SIOs) take the form

Tf(x) =
∫
Rd

K(x, y)f(y) dy, x /∈ spt f, (1.1)

and they are abundant in classical and applied harmonic analysis. On the other hand, 
the UMD (unconditionality of martingale differences) property of a Banach space X is 
a well-known necessary and sufficient condition for the boundedness of generic singular 
integrals on Lp(Rd; X), see Burkholder [2] and Bourgain [1], or the recent book [24, 
Sec. 5.2.c and the Notes to Sec. 5.2]. Further progress on Banach space-valued singular 
integrals in the linear setting has been intertwined with applications to rather disparate 
areas, such as the geometry of Banach spaces [29,30], the regularity theory of elliptic 
and parabolic equations [3,43], and the study of quasiconformal mappings [13].

In the literature, classical singular integral operators with scalar-valued kernels K
acting on X-valued functions are usually referred to as vector-valued, or Banach-valued, 
singular integral operators. On the other hand, operator-valued theory concerns the 
more general case, where the kernel K itself takes values in bounded linear operators 
between two Banach spaces X, Y . The systematic study of linear, operator-valued sin-
gular integrals was first sparked by the operator-valued Fourier multiplier theorem of 
Weis [43], which is the central tool in the author’s proof of maximal Lp-regularity 
for parabolic equations. In this setting, the requirement of uniform L(X, Y )-bounds 
of Hörmander-Mihlin type on the multiplier must be replaced with the stronger R-
boundedness condition; essentially, {T1, . . . , Tn} is an R-bounded set in L(X, Y ) if 
{fj : j = 1, . . . , n �→ Tjfj : j = 1, . . . , n} is a bounded operator from RadX to RadY , 
where Rad is the Rademacher space. This approach has been later recast by Hytönen 
and Weis [22] into a T (1)-type theorem for operator-valued kernels. Our broad goal is to 
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provide an extension of [22] to the multilinear case. Therefore, a first essential difficulty 
we must deal with is to find a natural multilinear analog of the R-boundedness condi-
tion. As we will see below, this requires additional care when dealing with linearities of 
degree three and higher.

We now come to a more detailed description of our main object of study. At least 
heuristically, we may think of an n-linear singular integral operator T acting on Rd as 
being given by,

T (f1, . . . , fn)(x) = U(f1 ⊗ · · · ⊗ fn)(x, . . . , x), x ∈ Rd, fi : Rd → C,

where U is a linear singular integral operator in Rnd. More precisely, an n-linear SIO T
has a kernel K satisfying natural estimates that can be deduced from the above heuristic 
via the linear estimates, and

T (f1, . . . , fn)(x) =
∫

Rnd

K(x, y)
n∏

i=1
fi(yi) dy, x /∈

n⋂
i=1

spt fi.

The study of multilinear singular multipliers and kernel operators began with the seminal 
articles of Coifman–Meyer [5] and Christ–Journé [4]. Motivation for this study comes 
from applications to elliptic and dispersive partial differential equations, ergodic theory 
and complex function theory, among others. We remark that the first general T (1)-type 
result for multilinear singular kernels, in the scalar case, is due to Grafakos–Torres [15].

1.1. Main results

Until recently, vector-valued extensions of multilinear Calderón-Zygmund operators 
had mostly been studied in the framework of �p spaces and function lattices, rather 
than general UMD spaces. Boundedness of �p extensions is classically obtained through 
weighted norm inequalities, more recently in connection with localized techniques such as 
sparse domination: see [14] and the more recent [6,35,34,38] for a non-exhaustive overview 
of their interplay. The paper [11] finally established Lp bounds for the extensions of n-
linear SIOs to tuples of UMD spaces tied by a natural product structure – for example, 
the composition of operators in the Schatten-von Neumann subclass of the algebra of 
bounded operators on a Hilbert space.

Before [11], Di Plinio and Y. Ou [10] considered operator-valued bilinear multiplier 
theorems that apply to certain non-lattice UMD spaces. The results of [10] may be 
thought of as a first attempt of generalization of Weis’ R-bounded multiplier theorem 
[43]; however, the treatment of [10] relies upon additional assumptions on the triple of 
Banach spaces involved – some bilinear variants of the RMF conditions appearing in 
[23]. We return to the role of RMF later. In the present article, we develop a complete 
multilinear operator-valued theory in the non-translation invariant setting and our as-
sumptions are less restrictive. Firstly, our bilinear theory is completely free of any RMF 
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assumptions, providing the following complete generalization of the T (1)-theorem of 
Hytönen and Weis [22], and in particular of [43], to the bilinear case. The key notion for 
our statement is the R-bound of a set of trilinear forms B ∈ B, B : X1 ×X2 ×X3 → C. 
This is defined as the best constant C such that

N∑
k=1

|Bk(x1,k, x2,k, x3)| + |Bk(x1, x2,k, x3,k)| + |Bk(x1,k, x2, x3,k)| ≤ C (1.2)

for all choices {B1, . . . , BN} ⊂ B and integers N , for all sequences {xj,k ∈ Xj : k =
1, . . . , N} with ‖xj,k‖Rad(Xj) ≤ 1 and vectors xj ∈ Xj with ‖xj‖Xj

≤ 1, for j = 1, 2, 3. A 
satisfactory analogy with the usual notion of R-boundedness of bilinear forms (adjoint 
to linear operators) [22] is the following: for each fixed x3 in the unit ball of X3, the 
bilinear forms B(·, ·, x3) are R-bounded on X1 ×X2 in the usual sense.

1.3 Theorem. Let X1, X2, X3 be UMD Banach spaces and Y3 be the Banach dual of 
X3. Let T be a bilinear SIO on Rd whose kernel K takes values in bounded bilinear 
operators from X1×X2 to Y3 and satisfies R-boundedness versions, in the sense of (1.2)
above, of the kernel smoothness and weak-boundedness properties, and some T (1) ∈ BMO
properties, see Definition 6.2. Then

‖T (f1, f2)‖Lq3 (Rd;Y3) �
2∏

m=1
‖fm‖Lpm (Rd;Xm),

∀1 < p1, p2 ≤ ∞, 1
2 < q3 < ∞, 1

p1
+ 1

p2
= 1

q3
.

Theorem 1.3 is a particular case of Theorem 6.4. For a detailed description of the 
assumptions as well as for stronger sparse bound type variants, the reader should consult 
these results in the main body of the article.

The RMF property of a Banach space X, involving Lp estimates for a certain analogue 
of the Hardy-Littlewood maximal operator obtained by replacing uniform bounds with 
R-bounds, dates back to the work of Hytönen, McIntosh and Portal on the vector-
valued Kato square root problem [23]: see also [21,31,32]. The recent multilinear vector-
valued (but not operator-valued) setup of [11] avoids the use of RMF assumptions in 
all linearities, arguing by induction on the multilinearity index. On the other hand, 
the inductive argument of [11] relies on an abstract assumption modelling the Hölder 
type structure typical of concrete examples of Banach n-tuples, such as that of non-
commutative Lp spaces with the exponents p satisfying the natural Hölder relation. 
Operator-valued analogs of the Hölder-type structures of [11] is left for future work. In 
the present article, the n ≥ 3 analog of Theorem 1.3 requires that the (n + 1)-tuple of 
spaces involved obeys to a multilinear version of the RMF assumption, which is described 
in detail in Subsection 3.2.

A precise statement of the T (1)-theorem for an n-linear SIO on Rd with L(X1 ×· · ·×
Xn, X∗

n+1)-valued kernel (see Section 2.3 for this notation), when n = 3 and higher, is 
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provided in Theorem 6.4. Here, we remark that the RMF setup of Subsection 3.2 applies 
in the following cases in addition to the trivial Xj = C for all 1 ≤ j ≤ n + 1, see 
Examples 3.27 and 3.28 for details:

• Xj = Lpj (Ω; Zj), whenever 1 < pj < ∞ for all 1 ≤ j ≤ n + 1 is a Hölder tuple 
and Zj is a tuple of UMD Banach spaces for which RMF holds; by iterating this 
observation, Xj may be any tuple of reflexive Banach mixed norm Lp spaces;

• let J ⊂ {1, . . . , n + 1} be a subset of cardinality 3, and for j ∈ J , let Xj = Lpj (A), 
where 1 < pj < ∞ are as before, and Lp(A) is the noncommutative Lp space 
associated to the von Neumann algebra A equipped with a normal, semifinite, faithful 
trace τ , while for j ∈ {1, . . . , n + 1} \ J , Xj = C.

The restriction to having at most three non-commutative spaces in the second example 
comes from the RMF assumption. Again, this is in contrast with in the recent vector-
valued (but not operator-valued) setting of [11] where such restriction is unnecessary 
regardless of the multilinearity index.

1.2. Tools and techniques

Dyadic analysis is an extremely flexible tool, for example, as shown by its role in 
the Banach space-valued singular integral theory [12], non-doubling singular integral 
theory [37], and sharp weighted inequalities [17]. The dyadic representation theorem of 
Hytönen [17], which extends the Hilbert transform case of Petermichl [39,40], yields a 
decomposition of the cancellative part of a singular integral into so-called dyadic shifts. 
These shifts have a very natural form generalising the Haar multipliers

f =
∑
Q∈D

〈f, hQ〉hQ �→
∑
Q∈D

λQ〈f, hQ〉hQ, |λQ| ≤ 1.

Hänninen and Hytönen [16] developed the theory of operator-valued shifts in their 
proof of a T1 theorem and a representation theorem for linear singular integrals on 
UMD spaces with operator-valued kernels. See also the paper by Hytönen, Martikainen 
and Vuorinen [26] for further theory and applications of operator-valued shifts in the 
multi-parameter setting. As an important technical component of this article, we prove 
an n-linear version of the operator-valued representation theorem, Theorem 6.3. The-
orem 6.3 is in fact a multilinear, operator-valued generalization of the bilinear, scalar-
valued representation theorem which appeared in [33] by Li, Martikainen, Y. Ou and 
Vuorinen.

The next step in our analysis is to show the boundedness of these various multilinear 
operator-valued dyadic model operators (Theorem 4.1 and Theorem 5.3). This is quite 
involved, particularly when working in higher linearities, and requires the development of 
new abstract theory concerning e.g. the correct notions of R-boundedness, cf. Section 3. 
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A combination of the representation theorem with bounds for the model operators yields 
our main result, Theorem 6.4, which is a boundedness criterion for operator-valued mul-
tilinear SIOs.

1.3. Applications to multiparameter theory

The size of the singularity of the kernel K in (1.1) is a fundamental classifying criteria 
for SIOs. In classical SIO theory, the appearing kernels are singular exactly when x = y. 
This one-parameter theory differs from the multi-parameter theory, where the singulari-
ties of the kernels are spread over all the hyperplanes of the form xi = yi, where x, y ∈ Rd

are written as x = (xi)ti=1 ∈ Rd1 × · · · ×Rdt for a given partition d = d1 + . . . + dt.
The basic philosophy of identifying bi-parameter operators as operator-valued one-

parameter operators dates back, at least, to Journé [27]. In general settings the R-
boundedness plays an important role. For instance, it is required as an input to apply the 
abstract results on operator-valued dyadic shifts. Indeed, the R-boundedness of families 
of one-parameter operators is necessary for the boundedness (both with or without R-) 
of the bi-parameter operators.

In the multilinear setting this general idea is more involved to execute due to the 
nature of the multilinear R-boundedness conditions – an interesting difference compared 
to the linear theory. In fact, the notions of multilinear R-boundedness we use in our 
previously discussed main results are so weak that they do not appear to be sufficient 
to conclude the R-boundedness for families of dyadic model operators. This is why we 
develop stronger R-boundedness notions in Section 7. These can be applied in the multi-
parameter context, as detailed in Section 8.

A somewhat loose description of our multi-parameter results is the following. Suppose 
X1, X2, Y3 are UMD spaces with Pisier’s property (α). Then bilinear multi-parameter 
operator-valued shifts (see Section 8) have the Lp1(Rd; X1) ×Lp2(Rd; X2) → Lq3(Rd; Y3)
bound whenever p1, p2, q3 ∈ (1, ∞) with 1/p1 + 1/p2 = 1/q3. While we do not anymore 
explicitly pursue the corresponding (paraproduct free) SIO theory in the bilinear multi-
parameter operator-valued setting, this would simply follow from our result on the shifts 
coupled with a suitable representation theorem.

2. Definitions and preliminaries

2.1. Dyadic notation

We begin by defining the random dyadic grids that are needed for the probabilistic–
dyadic techniques. These definitions are, for example, as in Nazarov–Treil–Volberg [37]
and Hytönen [18]. For each ω ∈ Ω, where Ω = ({0, 1}d)Z, we define the lattice

Dω = {Q + ω : Q ∈ D0},
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where D0 = {2−k([0, 1)d + m) : k ∈ Z, m ∈ Zd} is the standard dyadic lattice in Rd and

Q + ω := Q +
∑

k : 2−k<�(Q)

ωk2−k.

Here the side length of Q is denoted by �(Q). The randomness to ω �→ Dω is induced by 
equipping Ω with the natural probability product measure P .

Let X be a Banach space and D be some fixed dyadic lattice. Let Lp(X) = Lp(Rd; X), 
p ∈ (0, ∞], be the usual Bochner space of X-valued functions. For a fixed Q ∈ D and 
f ∈ L1

loc(X) we define as follows.

• If k ∈ Z, k ≥ 0, then Q(k) denotes the unique cube R ∈ D for which Q ⊂ R and 
�(Q) = 2−k�(R).

• The dyadic children of Q are denoted by ch(Q) = {Q′ ∈ D : (Q′)(1) = Q}.
• An average over Q is 〈f〉Q = 1

|Q|
∫
Q
f . We also write EQf = 〈f〉Q1Q.

• The martingale difference ΔQf is defined by ΔQf =
∑

Q′∈ch(Q) EQ′f − EQf .
• For k ∈ Z, k ≥ 0, we define the martingale difference and average blocks

Δk
Qf =

∑
R∈D

R(k)=Q

ΔRf and Ek
Qf =

∑
R∈D

R(k)=Q

ERf.

Haar functions. Haar functions are useful for further decomposing martingale differences 
ΔQf in terms of rank-one operators. If I ⊂ R is an interval, denote by Il and Ir the 
left and right halves of the interval I, respectively. We define h0

I = |I|−1/21I and h1
I =

|I|−1/2(1Il − 1Ir ). Let now Q = I1 × · · · × Id ∈ D, and define the Haar function hη
Q, 

η = (η1, . . . , ηd) ∈ {0, 1}d, by setting

hη
Q = hη1

I1
⊗ · · · ⊗ hηd

Id
.

If η �= 0 the Haar function is cancellative: 
∫
hη
Q = 0. We can now write ΔQf =∑

η �=0〈f, h
η
Q〉h

η
Q, where 〈f, hη

Q〉 =
∫
fhη

Q. Usually, we exploit notation by suppress-
ing the presence of η, and simply write hQ for some hη

Q, η �= 0. Similarly, we write 
ΔQf = 〈f, hQ〉hQ.

2.2. Definitions and properties related to Banach spaces

We present the required basics of Banach space theory now – for an extensive treat-
ment see the books [24,25] by Hytönen, van Neerven, Veraar and Weis.

We say that {εk}k is a collection of independent random signs, if the following holds. 
We have εk : M → {−1, 1}, where (M, ρ) is a measure space, the collection {εk}k is 
independent and ρ({εk = 1}) = ρ({εk = −1}) = 1/2. In what follows, {εk}k will always 
denote a collection of independent random signs.
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Suppose X, equipped with the norm | · |X , is a Banach space. For all x1, . . . , xM ∈ X

and p, q ∈ (0, ∞) there holds that

(
E
∣∣∣ M∑
m=1

εmxm

∣∣∣p
X

)1/p
∼
(
E
∣∣∣ M∑
m=1

εmxm

∣∣∣q
X

)1/q
(2.1)

by the Kahane-Khintchine inequality. Motivated by this we set

‖(xm)‖Rad(X) :=
(
E
∣∣∣∑ εmxm

∣∣∣2
X

)1/2
,

where the choice of the exponent is thus of no consequence. The Kahane contraction 
principle tells us that if (am)Mm=1 is a sequence of scalars and p ∈ (0, ∞], then we have

(
E
∣∣∣ M∑
m=1

εmamxm

∣∣∣p
X

)1/p
� max |am|

(
E
∣∣∣ M∑
m=1

εmxm

∣∣∣p
X

)1/p
. (2.2)

A minor remark is that (2.2) holds with “≤” in place of “�”, if p ∈ [1, ∞] and am ∈ R

(see [24]).
A Banach space X is said to be a UMD space, where UMD stands for unconditional 

martingale differences, if for all p ∈ (1, ∞), all X-valued Lp-martingale difference se-
quences (dj)kj=1 and signs εj ∈ {−1, 1} we have

∥∥∥ k∑
j=1

εjdj

∥∥∥
Lp(X)

�
∥∥∥ k∑

j=1
dj

∥∥∥
Lp(X)

. (2.3)

The Lp(X)-norm is with respect to the measure space where the martingale differences 
are defined. In fact, a standard property of UMD spaces is that if (2.3) holds for one 
p0 ∈ (1, ∞), then it holds for all p ∈ (1, ∞).

Sometimes, for example in multi-parameter analysis, the following property is also 
needed: for all N , all scalars ai,j and all ei,j ∈ X, 1 ≤ i, j ≤ N , there holds

(
EE′
∣∣∣ ∑
1≤i,j≤N

εiε
′
jai,jei,j

∣∣∣2
X

)1/2
� max

i,j
|ai,j |

(
EE′
∣∣∣ ∑
1≤i,j≤N

εiε
′
jei,j

∣∣∣2
X

)1/2
.

If this holds, the Banach space X is said to satisfy the property (α) of Pisier.

Random sums and duality. The reader can e.g. consult the section 7 of the book [25], if 
he or she is unfamiliar with the notions of type and cotype of a Banach space. What is 
important for us, though, is simply that all UMD spaces have non-trivial type. The next 
lemma appears in Section 7.4.f of [25].
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2.4 Lemma. Let X be a Banach space with non-trivial type and let F ⊂ X∗ be a closed 
subspace of X∗ which is norming for X. Then for all finite sequences e1, . . . , eN ∈ X we 
have

E
∣∣∣ N∑
i=1

εiei

∣∣∣
X

∼ sup
{∣∣∣ N∑

i=1
〈ei, e∗i 〉

∣∣∣},
where the supremum is taken over all choices (e∗i )Ni=1 in F such that

E
∣∣∣ N∑
i=1

εie
∗
i

∣∣∣
X∗

≤ 1.

The decoupling inequality. The following decoupling estimates originate from McConnell 
[36], but in their current form they essentially appear in Hytönen [18] and Hänninen–
Hytönen [16]. We record a special case of the decoupling estimate that is of relevance for 
us.

Let D be a dyadic lattice and Q ∈ D. With VQ we mean the probability measure 
space

VQ = (Q,Leb(Q), |Q|−1 dx�Q),

where |Q|−1 dx�Q is the normalized Lebesgue measure restricted to Q and Leb(Q) stands 
for the Lebesgue measurable subsets of Q. We define the product probability space 
V =

∏
Q∈D VQ, and let ν be the related measure. If y ∈ V, we denote the coordinate 

related to Q by yQ.
Let k ∈ {0, 1, 2, . . . }, j ∈ {0, . . . , k} and define the sub-lattice Dj,k ⊂ D by setting

Dj,k = {Q ∈ D : �(Q) = 2m(k+1)+j for some m ∈ Z}. (2.5)

If X is UMD, p ∈ (1, ∞) and f ∈ Lp(X), Theorem 6 in [16] implies that∫
Rd

∣∣∣ ∑
Q∈Dj,k

Δl
Qf(x)

∣∣∣p
X

dx ∼ E

∫
Rd

∫
V

∣∣∣ ∑
Q∈Dj,k

εQ1Q(x)Δl
Qf(yQ)

∣∣∣p
X

dν(y) dx (2.6)

for any l ∈ {0, 1, . . . , k}. The point of the subcollections Dj,k is that now Δl
Qf is constant 

on every Q′ ∈ Dj,k such that Q′ � Q. This is required by the abstract decoupling 
theorems.

Pythagoras’ theorem. A collection S of cubes in Rd is said to be η-sparse (or just sparse), 
η ∈ (0, 1), if the following holds. For all Q ∈ S there exists a subset EQ ⊂ Q so that 
|EQ| > η|Q| and the sets EQ are mutually disjoint. The point of the following theorem is 
that sparse collections are essentially as good as disjoint collections for some Lp estimates.
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Let D be a dyadic lattice, S ⊂ D be sparse and X be a Banach space, and suppose 
that for every S ∈ S we have a function fS : Rd → X such that fS is supported in S, ∫
fS dx = 0 and fS is constant on those S′ ∈ S such that S′ � S. Then, Lemma 4 in 

[16] – Pythagoras’ theorem for functions adapted to a sparse collection – says that∥∥∥∑
S∈S

fS

∥∥∥p
Lp(X)

∼
∑
S∈S

‖fS‖pLp(X). (2.7)

2.3. Multilinear operator-valued singular integrals

We specify the class of operators that we study. First, we define the operator-valued 
basic kernels. Let 2 ≤ n ∈ Z and let X1, . . . , Xn, Yn+1 be Banach spaces. We denote 
by L(X1 × · · · × Xn, Yn+1) the space of n-linear operators B : X1 × · · · × Xn → Yn+1
satisfying

|B(x1, . . . , xn)|Yn+1 ≤ C
n∏

m=1
|xm|Xm

,

and the best constant C is denoted by ‖B‖X1×···×Xn→Yn+1 . We will sometimes write B
acting on (x1, . . . , xn) as above and sometimes like B[x1, . . . , xn].

Suppose K is a function

K : Rd(n+1) \ Δ → L
( n∏

m=1
Xm, Yn+1

)
,

Δ = {(x1, . . . , xn+1) ∈ Rd(n+1) : x1 = · · · = xn+1},

such that for all em ∈ Xm, m ∈ {1, . . . , n}, the function

x �→ K(x)[e1, . . . , en] ∈ Yn+1

is strongly measurable. Define the collection of n-linear operators

Csize(K) =
{( n+1∑

m=2
|x1 − xm|

)dn
K(x1, . . . , xn+1) : (x1, . . . , xn+1) ∈ Rd(n+1) \ Δ

}
.

For α ∈ (0, 1] and j ∈ {1, . . . , n + 1} let Cα,j(K) be the collection of the operators

|xj − x′
j |−α

( n+1∑
m=2

|x1 − xm|
)dn+α

(K(x) −K(x′)), (2.8)

where x = (x1, . . . , xn+1) ∈ Rd(n+1) \ Δ and x′ = (x1, . . . , xj−1, x′
j , xj+1, . . . xn+1) ∈

Rd(n+1) satisfy
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|xj − x′
j | ≤ 2−1 max

2≤m≤n+1
|x1 − xm|.

We say that K is an operator-valued n-linear basic kernel if there exists α ∈ (0, 1] so 
that the families Csize(K) and Cα,m(K), m ∈ {1, . . . , n + 1}, are uniformly bounded. We 
also write CCZ,α(K) = Csize(K) ∩

⋂n+1
m=1 Cα,m(K).

If X is a Banach space, we denote by L∞
c (X) the functions in L∞(X) with compact 

support. Let K be an operator-valued basic kernel as above. Let T be an n-linear operator 
defined on tuples of functions (f1, . . . , fn), where fm ∈ L∞

c (Xm), so that T (f1, . . . , fn) ∈
L1

loc(Yn+1). We say that T is an n-linear operator-valued singular integral operator (SIO)
related to the kernel K if

〈T (f1, . . . , fn), fn+1〉 =
∫

Rd(n+1)

〈K(xn+1, x1, . . . , xn)[f1(x1), . . . , fn(xn)], fn+1(xn+1)〉 dx

whenever fm ∈ L∞
c (Xm), m = 1, . . . , n + 1, are such that spt fi ∩ spt fj = ∅ for some 

i �= j. Here we use the convention Xn+1 := Y ∗
n+1 that is in force from this point on. We 

are quite relaxed with the bracket notation 〈·, ·〉 – it means the natural duality pairing 
in each situation.

2.4. BMOp(X) and T (1)

The representation theorem involves a certain BMO assumption related to “T1”. Since, 
as usual, T1 is not necessarily well defined as a function the BMO condition is stated in 
terms of the pairings 〈T1, hQ〉 (we recall below how to define these pairings). Therefore, 
we define the BMO conditions for collections of elements of a Banach space.

Let X be a Banach space and D be a dyadic lattice. Suppose a = (aQ)Q∈D ⊂ X is a 
collection of elements of X and let D′ ⊂ D be a finite subcollection. Let p ∈ (0, ∞). We 
define

‖a‖BMOD′,p(X) = sup
Q0∈D

( 1
|Q0|

E
∥∥∥ ∑

Q∈D′

Q⊂Q0

εQaQ
1Q

|Q|1/2
∥∥∥p
Lp(X)

)1/p
,

and then we define ‖a‖BMOD,p(X) to be the supremum of ‖a‖BMOD′,p(X) over all finite 
subcollections D′ ⊂ D. Notice that if D′ and D′′ are two finite subcollections such that 
D′ ⊂ D′′, then by Kahane’s contraction principle (2.2) there holds that ‖a‖BMOD′,p(X) ≤
‖a‖BMOD′′,p(X).

The X-valued John-Nirenberg inequality for adapted sequences, Theorem 3.2.17 in 
[24], implies that

‖a‖BMOD,p(X) ∼ ‖a‖BMOD,q(X), 0 < p, q < ∞. (2.9)
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Indeed, let D′ ⊂ D be finite. Fix some 0 < q < p < ∞ such that p ≥ 1. Let {εQ}Q∈D be 
a collection of independent random signs on a probability space Ω. Let Y = Lp(Ω; X). 
From Theorem 3.2.17 in [24] we deduce that

sup
k∈Z

sup
Q0∈D

�(Q0)≥2−k

( 1
|Q0|

∫
Q0

∣∣∣ ∑
Q∈D′

Q⊂Q0
�(Q)≥2−k

εQaQ
1Q

|Q|1/2
∣∣∣p
Y

)1/p
(2.10)

is comparable to

sup
k∈Z

sup
Q0∈D

�(Q0)≥2−k

( 1
|Q0|

∫
Q0

∣∣∣ ∑
Q∈D′

Q⊂Q0
�(Q)≥2−k

εQaQ
1Q

|Q|1/2
∣∣∣q
Y

)1/q
. (2.11)

In view of Kahane’s contraction principle (2.2) (it allows to remove the restriction �(Q) ≥
2−k inside the Y -norm) we have that (2.10) is equal to ‖a‖BMOD′,p(X). Likewise, (2.11)
is equal to

sup
Q0∈D

( 1
|Q0|

∫
Q0

∣∣∣ ∑
Q∈D′

Q⊂Q0

εQaQ
1Q

|Q|1/2
∣∣∣q
Y

)1/q
∼ ‖a‖BMOD′,q(X),

where we applied the Kahane-Khintchine inequality (2.1).
Let X1, . . . , Xn and Yn+1 be Banach spaces. With respect to these spaces, suppose T

is an n-linear SIO with a basic kernel K as in Section 2.3. We turn to define the pairings 
〈T1, hQ〉 and other similar pairings.

Let Φ = (φ1, . . . , φn) be an n-tuple of scalar-valued bounded functions. Assume that 
Q ⊂ Rd is a cube, and that ϕQ : Rd → C is a bounded function supported in Q with ∫
ϕQ dx = 0. Let C ≥ 2

√
d. By CQ we denote the cube with the same centre as Q and 

with side length C�(Q). If em ∈ Xm, m ∈ {1, . . . , n}, we define

〈
T (φ1e1, . . . , φnen), ϕQ

〉
:=

n∑
m=1

〈
T (φ̃m

1 e1, . . . , φ̃
m
n en), ϕQ

〉
+
〈
T (1CQφ1e1, . . . , 1CQφnen), ϕQ

〉
,

(2.12)

where φ̃m
l = 1CQφl for 1 ≤ l < m, φ̃m

m = 1(CQ)cφm and φ̃m
l = φl for m < l ≤ n, and 〈

T (φ̃m
1 e1, . . . , φ̃m

n en), ϕQ

〉
∈ Yn+1 is defined using the kernel K by the formula

∫ ∫
(K(x, y) −K(cQ, y))[φ̃m

1 (y1)e1, . . . , φ̃
m
n (yn)en]ϕQ(x) dy dx.
Rd Rdn
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The uniform boundedness of the operators (2.8) combined with spt φ̃m
m ⊂ (CQ)c imply 

that this integral is absolutely convergent. The definition of 
〈
T (φ1e1, . . . , φnen), ϕQ

〉
is 

independent of the constant C ≥ 2
√
d.

Now, we define the n-linear operator 〈TΦ, ϕQ〉 : X1 × · · · ×Xn → Yn+1 by

〈TΦ, ϕQ〉[e1, . . . , en] :=
〈
T (φ1e1, . . . , φnen), ϕQ

〉
. (2.13)

By 〈T1, hQ〉 we mean the operator 〈TΦ, hQ〉 with Φ = (1, . . . , 1). The BMO condition 
related to the pairings 〈T1, hQ〉 which appears in the representation theorem will be 
formulated in Definition 6.2.

2.5. Multilinear operator-valued shifts

Let 2 ≤ n ∈ Z and suppose X1, . . . , Xn, Yn+1 are Banach spaces. Assume k =
(k1, . . . , kn+1), 0 ≤ ki ∈ Z. Let D be a dyadic lattice in Rd. An n-linear dyadic shift Sk

D
is an operator of the form

Sk
D(f1, . . . , fn) =

∑
K∈D

∑
Q1,...,Qn+1∈D

Q
(ki)
i =K

aK,(Qi)[〈f1, h̃Q1〉, . . . , 〈fn, h̃Qn
〉]h̃Qn+1 ,

where fm ∈ L1
loc(Xm) and aK,(Qi) := aK,Q1,...,Qn+1 ∈ L(

∏n
m=1 Xm, Yn+1). In addition, 

we demand the following. There exist two indices j0, j1 ∈ {1, . . . , n + 1}, j0 �= j1, so that 
h̃Qi

= hQi
if i ∈ {j0, j1} and h̃Qi

= h0
Qi

if i /∈ {j0, j1}; in other words there are two 
specified slots where the Haar functions are cancellative and in all the other slots they 
are non-cancellative. One may think that only finitely many of the operators aK,(Qi) are 
non-zero so that the shift is well defined for locally integrable functions. If Sk

D is a shift 
as above, we denote by C(Sk

D) the family of the normalized coefficient operators

C(Sk
D) =

{ |K|n∏n+1
m=1 |Qm|1/2

aK,(Qi) : K,Q1, . . . , Qn+1 ∈ D, Q
(ki)
i = K

}
. (2.14)

In Section 4 we show the boundedness of shifts under certain conditions on C(Sk
D) and 

the underlying Banach spaces.

2.6. Multilinear operator-valued paraproducts

Let D be a dyadic lattice in Rd. Suppose X1, . . . , Xn, Yn+1 are Banach spaces and 
aQ ∈ L(

∏n
m=1 Xm, Yn+1), Q ∈ D, are given. Let a = (aQ)Q∈D. An operator-valued 

n-linear paraproduct is an operator of the form

πD,a(f1, . . . , fn) :=
∑

aQ[〈f1〉Q, . . . , 〈fn〉Q]hQ,

Q∈D
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where fm ∈ L1
loc(Xm). As with dyadic shifts, this is well defined for example if only 

finitely many of the operators aQ are non-zero. In Section 5 we consider the boundedness 
of paraproducts.

2.7. Bounding dyadic operators by sparse operators

The boundedness of shifts and paraproducts will be considered in Sections 4 and 5. 
Here, we formulate an analogue of the sparse domination results of [6,7,33] in multilinear, 
operator-valued setting of Theorem 6.4 below. The proof follows exactly the outline of 
the multilinear version of [33]. We refer to the above references for the, by now standard, 
definitions and generalities on sparse collections and forms.

2.15 Lemma. Let 1 ≤ n ∈ Z. Let X1, . . . , Xn and Yn+1 be Banach spaces and Xn+1 :=
Y ∗
n+1. Suppose we have functions fm ∈ L∞

c (Xm), m = 1, . . . , n + 1. Let D be a dyadic 
grid and η ∈ (0, 1). Then there exists an η-sparse collection S = S((fm), η) ⊂ D so that 
the following holds.

Let k = (k1, . . . , kn+1), 0 ≤ ki ∈ Z, and assume p1, . . . , pn+1 ∈ (1, ∞) are such that ∑n+1
m=1 1/pm = 1. Suppose that we have operators aK,Q1,...,Qn+1 ∈ L(

∏n
m=1 Xm, Yn+1), 

where K, Q1, . . . , Qn+1 ∈ D and Q(ki)
i = K, such that aK,(Qi) := aK,Q1,...,Qn+1 satisfies

|〈aK,(Qi)[e1, . . . , en], en+1〉| ≤ A1

∏n+1
m=1 |Qm|1/2

|K|n
n+1∏
m=1

|em|Xm
.

Suppose further that for some scalar-valued functions um,Q =
∑

Q′∈ch(Q) cm,Q′1Q′ satis-
fying |um,Q| ≤ |Q|−1/2 the operators

UD′(g1, . . . , gn) :=
∑

K∈D′

∑
Q1,...,Qn+1∈D

Q
(ki)
i =K

aK,(Qi)[〈g1, u1,Q〉, . . . , 〈gn, un,Q〉]un+1,Q, D′ ⊂ D,

satisfy

|〈UD′(g1, . . . , gn), gn+1〉| ≤ A2

n+1∏
m=1

‖gm‖Lpi (Xm), g1, . . . , gn+1 ∈ Lpi(Xm).

Then we have

|〈UD(f1, . . . , fn), fn+1〉| �η (A1 + A1κ + A2)
∑
Q∈S

|Q|
n+1∏
m=1

〈
|fm|Xm

〉
Q
, (2.16)

where κ = max km.
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We conclude this preliminary section by recalling the well-known fact that (weighted) 
boundedness in the full range of expected exponents follows from a sparse estimate of 
the type stated in Lemma 2.15. A proof of this exact statement is given in [11], and 
further consequences in the weighted setting are formulated in [8,33] and references 
therein. Let X1, . . . , Xn and Yn+1 be Banach spaces. If T is an operator such that for all 
tuples fm ∈ L∞

c (Xm), there exists a dyadic lattice D = D((fm)) and a sparse collection 
S = S((fm)) ⊂ D so that

|〈T (f1, . . . , fn), fn+1〉| �
∑
Q∈S

|Q|
n+1∏
m=1

〈
|fm|Xm

〉
Q
,

then

‖T (f1, . . . , fn)‖Lqn+1 (Yn+1) �
n∏

m=1
‖fm‖Lpm (Xm), (2.17)

where pm ∈ (1, ∞] are such that 1/qn+1 :=
∑n

m=1 1/pm > 0.

3. Randomized boundedness and the RMF property

3.1. Randomized boundedness

In this section we discuss randomized boundedness conditions for families of mul-
tilinear operators. First, we recall the well-known concept of R-boundedness of linear 
operators. If X1 and Y2 are Banach spaces and T ⊂ L(X1, Y2), we say that T is R-
bounded if there exists a constant C such that for all integers l ≥ 1, all Tk ∈ T and for 
all ek,1 ∈ X1, ek,2 ∈ X2 := Y ∗

2 , k = 1, . . . , l, the inequality

∣∣∣ l∑
k=1

〈
Tkek,1, ek,2

〉∣∣∣ ≤ C‖(ek,1)‖Rad(X1)‖(ek,2)‖Rad(X2)

holds. The smallest constant C is denoted by R(T ), and called the R-boundedness 
constant of T . If T is not R-bounded we set R(T ) = ∞.

3.1 Remark. Suppose that Y2 has non-trivial type (e.g. Y2 is a UMD space). Let R̃(T )
denote the best constant C such that

(
E
∣∣∣ l∑
k=1

εkTkek

∣∣∣2
Y2

)1/2
≤ C

(
E
∣∣∣ l∑
k=1

εkek

∣∣∣2
X1

)1/2
(3.2)

holds for all ek ∈ X1. Then we have by Lemma 2.4 that
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R̃(T ) � R(T ) ≤ R̃(T ).

In fact, (3.2) is the most commonly appearing standard definition of R-boundedness.

For a positive integer n, we write Jn for the discrete interval {1, . . . , n +1}. Throughout 
this section, let X1, . . . , Xn, Xn+1 be reflexive Banach spaces and denote Yj = X∗

j . Below, 
we customarily enumerate J ⊂ Jn increasingly so that 1 ≤ j1 < · · · < j� ≤ n + 1. We 
use the tuple notation

(ej)j∈J := (ej1 , . . . , ej�) ∈ XJ :=
∏
j∈J

Xj .

The following discussion pertains to the case n ≥ 3. We set some notation for the 
multilinear R-boundedness condition associated to an (n + 1)-linear contraction

� : XJn
→ C, |�(e1, . . . , en+1)| ≤

n+1∏
m=1

|em|Xm
, em ∈ Xm. (3.3)

This condition will involve suitable partitions of the set of indices Jn. We say that P =
({jP}, PRad, PRM) is an admissible partition of Jn if {jP}, PRad, PRM ⊂ Jn are pairwise 
disjoint, their union is Jn and #PRM ≤ n − 2. Let now J ⊂ Jn with 1 ≤ #J ≤ n − 2
and v ∈ Jn \ J . For a set A ⊂ XJ , define

‖A‖RMv(�,J ) = sup
∣∣∣ K∑
k=1

�(e1,k, . . . , ev, . . . , en+1,k)
∣∣∣, (3.4)

where the supremum is taken over all K ∈ N and over all choices of

• tuples (ej,k)j∈J ∈ A, 1 ≤ k ≤ K,
• elements ev ∈ Xv with |ev|Xv

≤ 1,
• sequences (ej,k)Kk=1 ⊂ Xj with ‖(ej,k)Kk=1‖Rad(Xj) ≤ 1, where

j ∈ JRad := {1, . . . , n + 1} \ (J ∪ {v}).

Here (ej,k)Kk=1 denotes the sequence ej,1, . . . , ej,K of elements of Xj , and this should not 
be confused with the notation (ej,k)j∈J ∈ XJ meaning a tuple of elements; later, this 
distinction should be clear from the context. Let also ‖A‖RM′

v(�,J ) be defined just as 
‖A‖RMv(�,J ) in (3.4), except that in addition there is the requirement that the tuples 
(ej,k)j∈J ∈ A satisfy (ej,k)j∈J �= (ej,k′)j∈J if k �= k′.

3.5 Lemma. There holds that ‖A‖RM′
v(�,J ) = ‖A‖RMv(�,J ), that is, when testing the 

constant ‖A‖RMv(�,J ) it is enough to consider a sequence of distinct elements of A.
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Proof. Let P be the admissible partition with jP = v, PRM = J . Fix elements ej,k ∈
Xj , where k ∈ {1, . . . , K}, as in the definition (3.4). Write {1, . . . , K} as a disjoint 
union 

⋃M
m=1 Km, so that (ej,k)j∈J = (ej,k′)j∈J if k and k′ belong to the same Km, and 

(ej,k)j∈J �= (ej,k′)j∈J if k and k′ belong to different sets Km. If j ∈ J and k ∈ Km, we 
denote ej,k =: fj,m. Write PRad = {i1, . . . , iu}, where ij < ij+1. To ease the notation, for 
m ∈ {1, . . . , M} let Λm be the u-linear form obtained from � by keeping the elements 
fj,m, j ∈ J , and ev fixed. We have

K∑
k=1

�(e1,k, . . . , en+1,k) =
M∑

m=1

∑
k∈Km

Λm(ei1,k, . . . , eiu,k).

Fix one m for the moment. Let {εjk}Kk=1, j ∈ {1, . . . , u − 1}, be collections of indepen-
dent random signs. We denote the expectation with respect to the random variables εjk
by Ej , and write E = E1 · · ·Eu−1. Then we have the identity

∑
k∈Km

Λm(ei1,k, . . . , eiu,k)

= E
∑

k1,...,ku∈Km

ε1
k1
ε1
k2
ε2
k2
ε2
k3

· · · εu−1
ku−1

εu−1
ku

Λm(ei1,k1 , . . . , eiu,ku
)

= EΛm

( ∑
k1∈Km

ε1
k1
ei1,k1 ,

∑
k2∈Km

ε1
k2
ε2
k2
ei2,k2 , . . . ,

∑
ku∈Km

εu−1
ku

eiu,ku

)
.

(3.6)

Now, we combine the last two equations and use the definition of ‖A‖RM′
v(�,J ). This 

gives that

∣∣∣ K∑
k=1

�(e1,k, . . . , en+1,k)
∣∣∣

≤ ‖A‖RM′
v(�,J )E

∥∥∥( ∑
k∈Km

ε1
kei1,k

)M
m=1

∥∥∥
Rad(Xi1 )

u−1∏
j=2

∥∥∥( ∑
k∈Km

εj−1
k εjkeij ,k

)M
m=1

∥∥∥
Rad(Xij

)

×
∥∥∥( ∑

k∈Km

εu−1
k eiu,k

)M
m=1

∥∥∥
Rad(Xiu )

,

where the expectation is less than

(
E1
∥∥∥( ∑

k∈Km

ε1
kei1,k

)M
m=1

∥∥∥2
Rad(Xi1 )

)1/2 u−1∏
j=2

(
Ej−1Ej

∥∥∥( ∑
k∈Km

εj−1
k εjkeij ,k

)M
m=1

∥∥∥2
Rad(Xij

)

)1/2

×
(
Eu−1

∥∥∥( ∑ εu−1
k eiu,k

)M
m=1

∥∥∥2
Rad(Xiu )

)1/2
.

k∈Km
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Denote the expectation and the random signs related to the Rad-norms by Ẽ and 
{ε̃m}Mm=1. We have

Ej−1Ej
∥∥∥( ∑

k∈Km

εj−1
k εjkeij ,k

)M
m=1

∥∥∥2
Rad(Xij

)
= ẼEj−1Ej

∥∥∥ M∑
m=1

∑
k∈Km

ε̃mεj−1
k εjkeij ,k

∥∥∥2

Xij

= ‖(eij ,k)Kk=1‖2
Rad(Xij

) ≤ 1.

The remaining last two terms satisfy the corresponding estimate. Thus, we have finished 
the proof of ‖A‖RMv(�,J ) ≤ ‖A‖RM′

v(�,J ). As the reverse estimate is immediate, the 
conclusion of the lemma follows. �
3.7 Remark. We record an observation based on Lemma 3.5, which will later be used 
without explicit mention. Let again J ⊂ Jn, 1 ≤ #J ≤ n − 2 and v ∈ Jn \ J . Suppose 
that K ∈ N and we have elements ej,k ∈ Xj , j ∈ J , k ∈ {1, . . . , K}. Then

‖{(ej,k)j∈J }Kk=1‖RMv(�,J ) = sup
∣∣∣ K∑
k=1

�(e1,k, . . . , ev, . . . , en+1,k)
∣∣∣, (3.8)

where the supremum is taken over elements ej,k ∈ Xj , j ∈ Jn\(J ∪{v}), k ∈ {1, . . . , K}, 
such that ‖(ej,k)Kk=1‖Rad(Xj) ≤ 1 and over ev ∈ Xv with |ev|Xv

≤ 1. Indeed, “≥” is 
clear just by definition. On the other hand, the right hand side of (3.8) clearly satisfies 
RHS (3.8) ≥ ‖{(ej,k)j∈J }Kk=1‖RM′

v(�,J ).

3.9 Remark. In the same setup as in the previous remark, assume J = J0 ∪ J1, where 
J1 �= ∅ and J0 ∩ J1 = ∅. Suppose we have elements ej,k ∈ Xj , j ∈ J , k ∈ {1, . . . , K}. 
Then

‖{(ej,k)j∈J }Kk=1‖RMv(�,J ) ≤ ‖{(ej,k)j∈J0}Kk=1‖RMv(�,J0)
∏
j∈J1

‖(ej,k)Kk=1‖Rad(Xj).

(3.10)
To see this, we use Remark 3.7. Let P = {{v}, PRad, J } be the corresponding ad-

missible partition and ej,k ∈ Xj for j ∈ PRad ∪ {v}, k = 1, . . . , K, and assume that 
ev,k = ev,k′ =: ev.

Assume first that J0 �= ∅. Then, by definition, we have

∣∣∣ K∑
k=1

�(e1,k, . . . , en+1,k)
∣∣∣

≤ ‖{(ej,k)j∈J0}Kk=1‖RMv(�,J0)
∏

j∈J1∪PRad

‖(ej,k)Kk=1‖Rad(Xj)|ev|Xv
,

which proves the claim.
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On the contrary, if J0 = ∅, then using random signs as in (3.6) and boundedness of 
� (Equation (3.3)) we get that

∣∣∣ K∑
k=1

�(e1,k, . . . , en+1,k)
∣∣∣ ≤ ∏

j∈J∪PRad

‖(ej,k)Kk=1‖Rad(Xj)|ev|Xv
,

which gives the claim.

3.11 Example. Let (X1, . . . , Xn+1) be a tuple of reflexive Banach spaces and �0 : XJn
→

C be as in (3.3). Let (Ω, μ) be a measure space and associate the tuple

(Lp1(Ω;X1), . . . , Lpn+1(Ω;Xn+1)), pm ∈ (1,∞),
n+1∑
m=1

1/pm = 1,

with the (n + 1)-linear mapping � :
∏n+1

m=1 L
pm(Ω; Xm) → C,

�(f1, . . . , fn+1) :=
∫
Ω

�0(f1(ω), . . . , fn+1(ω)) dμ(ω). (3.12)

We obviously have

|�(f1, . . . , fn+1)| ≤
n+1∏
m=1

‖fm‖Lpm (Ω;Xm).

Suppose J ⊂ Jn, 1 ≤ #J ≤ n − 2 and v ∈ Jn \ J . It is not hard to see that

‖{(fj,k)j∈J }∞k=1‖RMv(�,J ) �
∥∥ω �→ ‖{(fj,k(ω))j∈J }∞k=1‖RMv(�0,J )

∥∥
Lp(J )(Ω),

where

1/p(J ) =
∑
j∈J

1/pj .

We now demonstrate that the corresponding lower bound also holds. We will show that

‖{(fj,k)j∈J }Kk=1‖RMv(�,J ) �
∥∥‖{(fj,k(ω))j∈J }Kk=1‖RMv(�0,J )

∥∥
Lp(J )(Ω) (3.13)

and the claim follows by monotone convergence.
Write I = Jn\J . Using Remark 3.7, for ω ∈ Ω let ϕi,k(ω) ∈ Xi, i ∈ I, k ∈ {1, . . . , K}, 

be such that ‖(ϕi,k(ω))Kk=1‖Rad(Xi) ≤ 1 for i �= v and ϕv,k(ω) = ϕv,k′(ω) =: ϕv(ω)
satisfies |ϕv(ω)|Xv

≤ 1. Furthermore, let the elements ϕi,k(ω) be such that �0 acting 
on fj,k(ω) and ϕi,k(ω) is non-negative for all k and such that the sum over k of these is 
� ‖{(fj,k(ω))j∈J }Kk=1‖RMv(�0,J ). For i ∈ I write
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Bi :=
∥∥‖{(fj,k(ω))j∈J }Kk=1‖RMv(�0,J )

∥∥p(J )/pi

Lp(J )(Ω),

define

fi,k(ω) := B−1
i ϕi,k(ω)‖{(fj,k(ω))j∈J }Kk=1‖

p(J )/pi

RMv(�0,J )

and write fv = fv,k. For i ∈ I \ {v} there holds that

‖(fi,k)Kk=1‖Rad(Lpi (Ω;X)) ∼
∥∥‖(fi,k(ω))Kk=1‖Rad(Xi)

∥∥
Lpi (Ω) ≤ 1

and ‖fv‖Lpv (Ω;Xv) ≤ 1. Define the exponent p(I) by 1/p(I) =
∑

i∈I 1/pi. We also have 
that

∣∣∣ K∑
k=1

�(f1,k, . . . , fn+1,k)
∣∣∣ = ∫

Ω

K∑
k=1

�0(f1,k(ω), . . . , fn+1,k(ω))

�
∏
i∈I

B−1
i

∫
Ω

‖{(fj,k(ω))j∈J }Kk=1‖
1+p(J )/p(I)
RMv(�0,J )

=
∥∥‖{(fj,k(ω))j∈J }Kk=1‖RMv(�0,J )

∥∥
Lp(J )(Ω).

This proves (3.13) concluding our demonstration.
In the special case that X1 = · · · = Xn+1 = C and �0(e1, . . . , en+1) =

∏n+1
m=1 em it is 

not hard to see that

‖{(ej,k)j∈J }∞k=1‖RMv(�0,J ) = sup
k

∏
j∈J

|ej,k|.

Therefore, the above gives in this case that

‖{(fj,k)j∈J }∞k=1‖RMv(�,J ) ∼
∥∥∥ sup

k

∏
j∈J

|fj,k(ω)|
∥∥∥
Lp(J )(Ω)

. (3.14)

Next, we define a related multilinear R�-boundedness condition for families of oper-
ators. Due to the invariance under permutation of the spaces Xj, j ∈ Jn of the previous 
and upcoming definitions, we do not lose in generality by working with n-linear operators 
on 
∏n

j=1 Xj with range in Yn+1. Also, it will be convenient to define the notion of tight 
admissible partition P: an admissible partition P of Jn is tight if #PRad = 2.

3.15 Definition. Let n ≥ 2 and suppose that T ⊂ L(
∏n

m=1 Xm, Yn+1) is a family of 
operators. Assume that � is an (n + 1)-linear mapping satisfying (3.3) and P is a tight 
admissible partition. We say that T is R�,P -bounded if there exists a finite constant C
so that
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∣∣∣ K∑
k=1

〈Tk[e1,k . . . , en,k], en+1,k〉
∣∣∣

≤ C‖{(ej,k)j∈PRM}Kk=1‖RMjP (�,PRM)
∏

j∈PRad

‖(ej,k)Kk=1‖Rad(Xj)|ejP |XjP

holds for all K ∈ N, all choices of Tk ∈ T , {ej,k : k = 1, . . . , K} ⊂ Xj , j ∈ Jn, such that 
ejP ,k = ejP ,k′ := ejP for all k and k′. The smallest possible constant C is denoted by 
R�,P(T ). If T is R�,P -bounded for all tight admissible partitions P, we say that T is 
R�-bounded and write R�(T ) for the supremum over all tight admissible partitions P
of R�,P(T ). Otherwise, we set R�(T ) = ∞.

Notice that if n = 2, then the R�-boundedness condition does not depend on � at 
all, and it reduces to a more simple estimate as in Equation (1.2). Therefore, in the case 
n = 2 we will just talk about R-boundedness.

3.16 Remark. Suppose T ⊂ L(
∏n

m=1 Xm, Yn+1) is an R�-bounded family. Suppose P
is a non-tight admissible partition. Let Tk ∈ T and ej,k ∈ Xj for k = 1, . . . , K, and as 
usual assume that ejP := ejP ,k = ejP ,k′ . Write PRad = J0 ∪ J1, where #J1 = 2. Then

∣∣∣ K∑
k=1

〈Tk[e1,k, . . . , en,k], en+1,k〉
∣∣∣

≤ R�(T )‖{(ej,k)j∈PRM∪J0}Kk=1‖RMjP (�,PRM∪J0)
∏
j∈J1

‖(ej,k)Kk=1‖Rad(Xj)|ejP |XjP

≤ R�(T )‖{(ej,k)j∈PRM}Kk=1‖RMjP (�,PRM)
∏

j∈PRad

‖(ej,k)Kk=1‖Rad(Xj)|ejP |XjP
,

(3.17)

where in the last step we applied Equation (3.10). We will apply this form of the R�-
boundedness (where not necessarily P is a tight partition) later.

In the representation theorem we will need the fact that R�-boundedness is preserved 
under averages in the sense of the following lemma.

3.18 Lemma. Let T ⊂ L(
∏n

m=1 Xm, Yn+1) be an R�-bounded family of operators. Let 
A(T ) ⊂ L(

∏n
m=1 Xm, Yn+1) be the collection of operators of the form∫

Rd(n+1)

L(y)λ(y) dy,

where L : Rd(n+1) → L(
∏n

m=1 Xm, Yn+1) is such that L(y) ∈ T for a.e. y and 
λ : Rd(n+1) → C satisfies 

∫
|λ| ≤ 1. Then we have

R�(A(T )) � R�(T ).
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3.19 Remark. The space Rd(n+1) plays no role here (it could be some measure space), 
but this is what appears later. Moreover, we have by definition that

( ∫
Rd(n+1)

L(y)λ(y) dy
)
[e1, . . . , en] :=

∫
Rd(n+1)

L(y)[e1, . . . , en]λ(y) dy,

and the assumption on L is that the mappings

y �→ L(y)[e1, . . . , en]

are strongly measurable.

Proof of Lemma 3.18. This result could be reduced to the corresponding linear result. 
For the linear theorem, see for example Theorem 8.5.2 in [25]. We give another self 
contained proof.

Suppose Tk =
∫
Lkλk ∈ A(T ) for k = 1, . . . , K. We may assume that Lk(y) ∈ T for 

every y ∈ Rd(n+1) and that 
∫
|λk| = 1 for every k. For each k define the probability 

space Yk := (Rd(n+1), μk), where μk := |λk| dy. Let (Y, μ) be the product probability 

space 
(∏K

k=1 Yk, 
∏K

k=1 μk

)
.

Fix a tight admissible partition P, and let {ej,k}Kk=1 ⊂ Xj be such that ejP := ejP ,k =
ejP ,k′ . Now, we have that

K∑
k=1

〈Tk[e1,k, . . . , en,k], en+1,k〉 =
K∑

k=1

∫
Yk

〈 λk(y)
|λk(y)|

Lk(y)[e1,k, . . . , en,k], en+1,k

〉
dμk(y)

=
∫
Y

K∑
k=1

〈 λk(yk)
|λk(yk)|

Lk(yk)[e1,k, . . . , en,k], en+1,k

〉
dμ(y),

where in the last line we denoted by yk the coordinate of y ∈ Y related to Yk. For each 
y ∈ Y the absolute value of the integrand in the last line is dominated by

R�,P(T )‖{(ej,k)j∈PRM}Kk=1‖RMjP (�,PRM)
∏

j∈PRad

‖(ej,k)Kk=1‖Rad(Xj)|ejP |XjP
.

Since (Y, μ) is a probability space this proves the claim. �
3.2. The RMF� property

Related to the R� condition we will need a certain RMF� condition of the tuple of 
spaces (X1, . . . , Xn+1). This condition is only defined when n > 2.

Suppose � is an (n + 1)-linear contraction as in (3.3). Let J ⊂ Jn be such that 
1 ≤ #J ≤ n − 2. Suppose fj ∈ L1

loc(Xj) for all j ∈ J . Denote by (fj)j∈J the tuple of 
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functions (fj1 , . . . , fj�). Let D be a dyadic lattice in Rd. For v ∈ Jn \ J , we define the 
multilinear Rademacher maximal function RMD,�,J ,v[(fj)j∈J ] by

RMD,�,J ,v[(fj)j∈J ](x) =
∥∥∥{(〈fj〉Q)j∈J : x ∈ Q ∈ D

}∥∥∥
RMv(�,J )

.

Let pj ∈ (1, ∞) for j ∈ Jn and define for all J ⊂ Jn with 1 ≤ #J ≤ n − 2 the exponent 
p(J ) by 1/p(J ) =

∑
j∈J 1/pj . We say that (X1, . . . , Xn+1) has the RMF� property 

relatively to a given dyadic lattice D in Rd and the tuple of exponents (pj) if

max
j1,j2∈Jn
j1 �=j2

min
v∈Jn\{j1,j2}

max
J⊂Jn\{j1,j2,v}

∥∥∥RMD,�,J ,v :
∏
j∈J

Lpj (Xj) → Lp(J )(Rd)
∥∥∥ < ∞.

(3.20)
The number defined in (3.20) will be referred to as the RMF�(D, (pj)) constant of the 
tuple (X1, . . . , Xn+1).

Independence of the RMF� property (3.20) on the dimension d and the lattice D
can be proved with the same procedure used for the linear case by Kemppainen [32]. In 
particular, this means that if we have two lattices D and D′ in Rd, then RMF�(D, (pj)) =
RMF�(D′, (pj)). On the other hand, Lemma 3.22 implies that the RMF� condition is 
independent of the tuple of exponents in the sense that if (qj) is another set of exponents 
then RMF�(D, (pj)) ∼ RMF�(D, (qj)). Lemma 3.22 also shows that it is not important 
to have a fixed tuple (pj) in (3.20); for each J appearing in (3.20) we could have related 
exponents pJj ∈ (1, ∞], j ∈ J , such that the corresponding target exponent is finite. 
Henceforth, we are authorized to not mention the dimension d, the choice of the lattice 
D and of the exponents, and refer to a tuple (X1, . . . , Xn+1) enjoying (3.20) as a tuple 
of spaces with the RMF� property.

3.21 Remark. The original definition of an RMF property of a Banach space X is in 
Hytönen-McIntosh-Portal [23]. If A ⊂ X, then define

‖A‖RM := supE‖
K∑

k=1

εkλkak‖X ,

where the supremum is over K ∈ N, ak ∈ A and over scalars λk such that 
∑K

k=1 |λk|2 ≤ 1. 
In [23] the Rademacher maximal function MR was defined by

MR,D0f(x) := MRf(x) := ‖{〈f〉Q : x ∈ Q ∈ D0}‖RM,

where D0 is the standard lattice in Rd and f ∈ L1
loc(X), and it was defined that X

has the RMF property if MR : L2(X) → L2 is bounded. The Rademacher maximal 
function has further been studied for example by Kemppainen [31,32]. The boundedness 
of MR : Lp(X) → Lp is independent of the dimension d and the lattice D used in the 



24 F. Di Plinio et al. / Journal of Functional Analysis 279 (2020) 108666
definition, as well as of the exponent p ∈ (1, ∞). A definition akin to the one given in 
this article was previously given in [10].

The proof of the next lemma is a twist on a sparse domination argument presented 
in [8] by Culiuc, Di Plinio and Ou.

3.22 Lemma. Let D be a dyadic lattice in Rd. Let n ≥ 3 and let J ⊂ Jn with 1 ≤
#J ≤ n − 2. Suppose v ∈ Jn \ J . Assume that for some qj ∈ (1, ∞], j ∈ J , such that 
q :=

(∑
j∈J 1/qj

)−1
< ∞ the estimate

‖RMD,�,J ,v[(fj)j∈J ]‖Lq �
∏
j∈J

‖fj‖Lqj (Xj)

holds. Then, for all pj ∈ (1, ∞], j ∈ J , such that p :=
(∑

j∈J 1/pj
)−1

< ∞ we have the 
estimate

‖RMD,�,J ,v[(fj)j∈J ]‖Lp �
∏
j∈J

‖fj‖Lpj (Xj).

Proof. We abbreviate RM := RMD,�,J ,v. First, we prove the weak type boundedness 
RM:

∏
j∈J L1(Xj) → L

1
� ,∞, where � := #J . Then, we show that it implies a suitable 

pointwise sparse domination for certain finite maximal functions, from which the claim 
follows.

We turn to the weak type estimate. Let fj ∈ L1(Xj), j ∈ J , and fix some λ > 0. It 
is enough to assume that ‖fj‖L1(Xj) = 1 and show that

|{RM[(fj)j∈J ] > λ}| � λ− 1
� .

We perform the usual Calderón-Zygmund decomposition. Let Dj,λ denote the col-
lection of the maximal cubes Q ∈ D such that 〈|fj |Xj

〉Q > λ
1
� . As usual, we write 

fj = gj + bj , where

gj = 1⋃Dj,λ
fj +

∑
Q∈Dj,λ

〈fj〉Q1Q and bj =
∑

Q∈Dj,λ

(fj − 〈fj〉Q)1Q.

Write J = {j1, . . . , j�}. We have

RM[(fj)j∈J ] ≤
�∑

i=1
RM[(gj1 , . . . , gji−1 , bji , fji+1 , . . . , fj�)] + RM[(gj1 , . . . , gj�)]. (3.23)

The assumed boundedness gives that

∣∣∣{RM[(gj1 , . . . , gj�)] >
λ

� + 1

}∣∣∣ � λ−q
�∏
‖gj‖qLqj (Xj) � λ−q

�∏
λ

q(qj−1)
lqj ‖fj‖q/qjL1(Xj) ≤ λ− 1

� ,

j=1 j=1
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where we used the facts that ‖gj‖L∞(Xj) � λ
1
� and ‖gj‖L1(Xj) ≤ ‖fj‖L1(Xj) = 1.

Fix some i ∈ {1, . . . , l} and consider the corresponding function from the sum in the 
right hand side of (3.23). Since | 

⋃
Dji,λ| ≤ λ− 1

� , it is enough to consider

{
x /∈

⋃
Dji,λ : RM[(gj1 , . . . , gji−1 , bji , fji+1 , . . . , fj�)](x) > λ

� + 1

}
. (3.24)

Suppose x /∈
⋃

Dji,λ. If Q ∈ D and Q′ ∈ Dji,λ are such that x ∈ Q and Q ∩ Q′ �= ∅, 
then Q′ ⊂ Q. Using this and the zero integral of bji in the cubes Q′ ∈ Dji,λ we see that 
RM[(gj1 , . . . , gji−1 , bji , fji+1 , . . . , fj�)](x) = 0. Thus, the set in (3.24) is actually empty. 
This finishes the proof of the weak type estimate.

We move on to prove the sparse domination. Let C ⊂ D be any finite collection such 
that there exists a cube Q0 ∈ D so that Q ⊂ Q0 for every Q ∈ C . We consider the 
related maximal function

RMC [(fj)j∈J ](x) =
∥∥∥{(〈fj〉Q)j∈J : x ∈ Q ∈ C

}∥∥∥
RMv(�,J )

.

Define the related truncated versions for every Q′ ∈ D by

RMC ,Q′ [(fj)j∈J ](x) =
∥∥∥{(〈fj〉Q)j∈J : x ∈ Q ∈ C , Q ⊂ Q′}∥∥∥

RMv(�,J )
,

and also the numbers

RMQ′

C [(fj)j∈J ] =
∥∥∥{(〈fj〉Q)j∈J : Q ∈ C , Q ⊃ Q′}∥∥∥

RMv(�,J )
.

Notice that RMC ,Q0 = RMC .
Fix some functions fj ∈ L1

loc(Xj). Let B denote the weak type norm of RM. We show 
that there exists a sparse collection S = S((fj)j∈J ) ⊂ D of subcubes of Q0 so that

RMC [(fj)j∈J ] ≤ 2lB
∑
Q∈S

∏
j∈J

〈|fj |Xj
〉Q1Q. (3.25)

This follows via iteration from the estimate

RMC [(fj)j∈J ] ≤ 2lB
∏
j∈J

〈|fj |Xj
〉Q01Q0 +

∑
Q∈E(Q0)

RMC ,Q[(fj)j∈J ], (3.26)

where E(Q0) is a collection of pairwise disjoint cubes Q ⊂ Q0 such that 
∑

Q∈E(Q0) |Q| ≤
|Q0|/2.

We prove (3.26). Define the collection E(Q0) to be the set of the maximal cubes Q ∈ D, 
Q ⊂ Q0, such that

RMQ
C [(fj)j∈J ] > 2lB

∏
〈|fj |Xj

〉Q0 .

j∈J
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If Q ∈ E(Q0), then RMC [(fj1Q0)j∈J ](x) = RMC [(fj)j∈J ](x) > 2lB
∏

j∈J 〈|fj |Xj
〉Q0 for 

all x ∈ Q. Therefore, applying the weak type boundedness, we have that

∑
Q∈E(Q0)

|Q| ≤ 2−1
( ∏

j∈J
〈|fj |Xj

〉Q0

)− 1
�
∏
j∈J

‖fj1Q0‖
1
�

L1(Xj) = 2−1|Q|.

If x ∈ Q0 \
⋃
E(Q0), then RMC [(fj)j∈J ](x) ≤ 2lB

∏
j∈J 〈|fj |Xj

〉Q0 . On the other 
hand, if x ∈ Q ∈ E(Q0), then

RMC [(fj)j∈J ](x) ≤ RMQ(1)

C [(fj)j∈J ] + RMC ,Q[(fj)j∈J ](x),

where RMQ(1)

C [(fj)j∈J ] ≤ 2lB
∏

j∈J 〈|fj |Xj
〉Q0 by the stopping condition. Thus, we have 

proved (3.26), and therefore also (3.25).
From (3.25) it follows that each RMC :

∏
j∈J Lpj (Xj) → Lp is bounded for all pj

as in the statement. There exist cubes Qi,N ∈ D, where 1 ≤ i ≤ m for some m ≤ 2d
and N ∈ N, so that �(Qi,N ) = 2N , Qi,N ⊂ Qi,N+1, Qi,N ∩ Qi′,N = ∅ if i �= i′, and ⋃

i

⋃
N Qi,N = Rd. What the number m is depends on the lattice D. Let Ci,N := {Q ∈

D : Q ⊂ Qi,N , �(Q) ≥ 2−N}. Then,

m∑
i=1

RMCi,N
[(fj)j∈J ](x) ↗ RM[(fj)j∈J ](x), N → ∞,

for every x. Thus, by monotone convergence, we have that RM is also bounded. �
3.27 Example (The RMF� property in the function lattice case). We continue with the 
setting and notation of Example 3.11. We also assume that (X1, . . . , Xn+1) has the 
RMF�0 property. Suppose J ⊂ Jn, 1 ≤ #J ≤ n − 2 and v ∈ Jn \ J . Suppose 
fj ∈ Lpj (Rd; Lpj (Ω; Xj)) = Lpj (Rd × Ω; Xj) for all j ∈ J , and fix a dyadic lattice 
D. We have by Example 3.11 that

RMD,�,J ,v[(fj)j∈J ](x) �
∥∥ω �→ RMD,�0,J ,v[(fj(·, ω))j∈J ](x)

∥∥
Lp(J )(Ω),

so that∥∥RMD,�,J ,v[(fj)j∈J ](x)
∥∥
Lp(J )(Rd) �

∥∥∥∥RMD,�0,J ,v[(fj(·, ω))j∈J ](x)
∥∥
Lp(J )(Rd)

∥∥
Lp(J )(Ω)

�
∥∥∥ ∏

j∈J
‖fj(x, ω)‖Lpj (Rd;Xj)

∥∥∥
Lp(J )(Ω)

≤
∏
j∈J

‖fj‖Lpj (Rd×Ω;Xj).

This shows that (Lp1(Ω; X1), . . . , Lpn+1(Ω; Xn+1)) has the RMF� property. In particular, 
by iterating the previous we have obtained that any Hölder tuple of iterated Banach 
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function lattice spaces (Lp1
1

μ1 · · ·L
pm
1

μm , . . . , L
p1
n+1

μ1 · · ·Lpm
n+1

μ1 ) enjoys the RMF� property with 
respect to

� (f1, . . . , fn+1) =
∫ n+1∏

j=1
fj(t1, . . . , tm) dμ1(t1) · · ·dμm(tm).

3.28 Example (Noncommutative RMF property). We are interested in operator valued, 
multilinear singular integrals acting on products of noncommutative Lp-spaces; to this 
purpose, we need to study the corresponding Rademacher maximal function theory. We 
begin with a quick summary of the relevant definitions. For comprehensive background 
material on noncommutative Lp spaces and their role in noncommutative probability 
and operator algebras we refer to the classical survey by Pisier and Xu [42], to the recent 
monograph [41] by Pisier and references therein.

Consider a von Neumann algebra A equipped with a normal, semifinite, faithful trace 
τ . For 1 ≤ p < ∞, the corresponding noncommutative space Lp(A) is defined by the 
norm

‖ξ‖Lp(A) =
[
τ
(
(ξ�ξ)

p
2
)] 1

p

.

Notice that Lp(A) is a UMD space for all 1 < p < ∞. An enlightening example is 
obtained by choosing A = B(H), the space of bounded linear operators on a complex 
separable Hilbert space H with orthonormal basis {ej : j ∈ N} equipped with the usual 
trace

τ(ξ) =
∞∑
j=1

〈ξei, ei〉

In this case Lp(A) is usually referred to as the p-th Schatten class and denoted by Sp.
Let now (Ω, μ) be a σ-finite measure space and A a von Neumann algebra as above. 

We conveniently recall that M = L∞(Ω) ⊗ A is also a von Neumann algebra equipped 
with normal semifinite faithful trace

ν(f ⊗ ξ) =

⎛⎝∫
Ω

f dμ

⎞⎠ τ(ξ),

and that we have the isometrically isomorphic identification Lp(M) ∼ Lp(Ω; Lp(A)).
We turn to the study of noncommutative multilinear Rademacher maximal functions. 

This concept was first explored in the bilinear setting in [10]. Let 2 ≤ κ ≤ n + 1, and 
p1, . . . , pκ ∈ (1, ∞) be a Hölder tuple of exponents. We are interested in the Rademacher 
maximal functions associated to the tuple of spaces X1, . . . , Xn+1, where

• Xj = Lpj (A) for 1 ≤ j ≤ κ,
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• Xj = C for κ < j ≤ n + 1,

equipped with the (n + 1)-linear contraction

�(ξ1, . . . , ξn+1) = τ

⎛⎝ κ∏
j=1

ξj

⎞⎠ n+1∏
j=κ+1

ξj

We are able to establish a satisfactory multilinear Rademacher maximal function es-
timate for the above tuple of spaces when κ ≤ 3. This is an improvement over the 
results of [10], where the restriction κ = 2 was imposed. Notice that the analysis of 
[10] concerned the nontangential version of the Rademacher maximal function, but the 
arguments therein can be recast in the dyadic setting as well.

3.29 Proposition. Suppose κ = 2 or κ = 3. Then the above defined tuple of spaces 
X1, . . . , Xn+1 has the RMF� property.

Proof. We work with the dyadic lattice D0 in dimension d and therefore make use of the 
identification Lp(M) ∼ Lp(Rd; Lp(A)), where M = L∞(Rd) ⊗A. The proof is split into 
several cases, all of which will make use of the following celebrated result of Junge [28]: 
if f ∈ Lp(M), we may find af , bf ∈ L2p(M) and contractions y�,f ∈ M such that

‖af‖L2p(M)‖bf‖L2p(M) � ‖f‖Lp(M) (3.30)

and

E�f :=
∑

Q∈D0
�(Q)=2−�

EQf = afy�,f bf . (3.31)

By the definition of RMF� (3.20), we will prove the result according to the following 
cases:

(i) {j1, j2} ∩ {1, . . . , κ} = ∅;
(ii) #{j1, j2} ∩ {1, . . . , κ} = 1;
(iii) #{j1, j2} ∩ {1, . . . , κ} = 2.

In case (i), we will take jP = 1, so that #J ∩ {1, . . . , κ} can be 0, 1 or 2 (if κ = 3). In 
case (ii), without loss of generality, we can assume that 1 /∈ {j1, j2} so that we can still 
take jP = 1, then #J ∩ {1, . . . , κ} can be 0 or 1 (if κ = 3). In case (iii), if κ = 3, again 
we can assume 1 /∈ {j1, j2} and take jP = 1, then #J ∩ {1, . . . , κ} = 0; if κ = 2 we will 
take jP = 3 and in this case #J ∩{1, . . . , κ} = 0. Let us consider the last situation first. 
We have
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RMD0,�,J ,3[(fj)j∈J ](x) =
∥∥∥{(〈fj〉Q)j∈J : x ∈ Q ∈ D0

}∥∥∥
RM3(�,J )

≤ sup
‖ξ�,u‖Rad(Lpu (A))=1

u=1,2

sup
i∈PRad\{1,2}

‖ξi‖�2=1

∣∣∣∑
�

τ (ξ�,1ξ�,2)
∏

i∈PRad\{1,2}
ξ�,i
∏
j∈J

E�fj(x)
∣∣∣

= sup
‖ξ�,u‖Rad(Lpu (A))=1

u=1,2

sup
i∈PRad\{1,2}

‖ξi‖�2=1

E
∣∣∣τ(∑

k

εkξk,1
∑
�

ε�ξ�,2
∏

i∈PRad\{1,2}
ξ�,i
∏
j∈J

E�fj(x)
)∣∣∣

≤ sup
�

∏
j∈J

|E�fj(x)| ≤
∏
j∈J

Mfj(x),

where we have used Hölder’s inequality and Kahane contraction principle. We conclude 
this case by using the boundedness of 

∏
j∈J Mfj(x). Now we are left to deal with the 

remaining cases, keep in mind that we always have jP = 1.

Case #J ∩ {1, . . . , κ} = 2. This forces that κ = 3. We are then allowed to estimate

RMD0,�,J ,1[(fj)j∈J ](x) =
∥∥∥{(〈fj〉Q)j∈J : x ∈ Q ∈ D0

}∥∥∥
RM1(�,J )

≤ sup
|ξ1|Lp1 (A)=1

sup
�

|τ (f1(x)E�f2(x)E�ξ3)|
∏

j∈J\{2,3}
Mfj

�
3∏

j=2
‖afj (x)‖L2pj (A)‖bfj (x)‖L2pj (A)

∏
j∈J\{2,3}

Mfj

where the first inequality follows from the definition and the second by (3.31) and 
Hölder’s inequality. For q1 = (p1)′ Holder’s inequality yields

‖RMD0,�,J ,1[(fj)j∈J ]‖Lq1 (Rd) �
3∏

j=2
‖afj‖L2pj (M)‖bfj‖L2pj (M)

∏
j∈J\{2,3}

‖Mfj‖L∞(Rd)

�
3∏

j=2
‖fj‖Lpj (M)

∏
j∈J\{2,3}

‖fj‖L∞(Rd).

In view of (3.30), we obtain the bound

RMD0,�,J :

⎛⎝ 3∏
j=2

Lpj (Rd;Lpj (A))

⎞⎠×

⎛⎝ ∏
j∈J\{2,3}

L∞(Rd)

⎞⎠→ Lq1(Rd)

and conclude the required condition for this class of J by means of Lemma 3.22.

Case #J ∩ {1, . . . , κ} = 1. This is actually the most complex case. If κ = 2, we may 
proceed similar as in the previous case, details are omitted. We are therefore left with 
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treating the case where κ = 3 and without loss of generality we assume 2 ∈ Jn \ J . We 
may estimate the Rademacher maximal function corresponding to the RM1(�,J ) norm

RMD0,�,J ,1[(fj)j∈J ](x) =
∥∥∥{(〈fj〉Q)j∈J : x ∈ Q ∈ D0

}∥∥∥
RM1(�,J )

≤ sup
‖ξ�,u‖Rad(Lpu (A))=1

u=1,2

sup
i∈PRad\{2}
‖λ�,i‖Rad=1

∣∣∣∣∣∣
∑
�

τ

⎛⎝ξ1(x)ξ�,2E�f3
∏

i∈PRad\{2}
λ�,i

⎞⎠ ∏
j∈J\{3}

E�fj(x)

∣∣∣∣∣∣
≤
(

sup
‖λ�‖Rad=1

‖λ�E�f3(x)‖Rad(Lp3 (A))

) ∏
j∈J\{3}

Mfj ,

where the second step is obtained via Hölder’s inequality and the Kahane contraction 
principle. Now using (3.31), we obtain

‖λ�E�f3(x)‖Rad(Lp3 (A)) � ‖af3(x)‖L2p3 (A) ‖λ�y�,f3(x)bf3(x)‖Rad(L2p3 (A))

� ‖af3(x)‖L2p3 (A)

(∑
�

|λ2
� |‖y�,f3(x)bf3(x)‖2

L2p3 (A))

) 1
2

� ‖af3(x)‖L2p3 (A)‖bf3(x)‖L2p3 (A).

We have crucially used type 2 of L2p3(A) when passing to the second line. Taking Lp3(Rd)
norm and using (3.30), we realize that we have proved the estimate

RMD0,�,J ,1 : Lp3(Rd;Lp3(A)) ×
∏

j∈J\{3}
L∞(Rd) → Lp3(Rd)

which completes the proof of this case.

Case J ∩ {1, . . . , κ} = ∅. This is the easiest case. If κ = 2 it can be proved similarly as 
the previous case (even easier as we don’t need to deal with E�f3). And if κ = 3, it can 
be proved similarly as at the very beginning. �
4. Operator-valued multilinear shifts

Our basic result concerning the boundedness of n-linear operator-valued dyadic shifts 
is summarized by the following sparse domination principle.

4.1 Theorem. Let n ≥ 2, suppose X1, . . . , Xn, Yn+1 are UMD spaces and denote Xn+1 =
Y ∗
n+1. Assume that (X1, . . . , Xn+1) has the RMF� property with some � as described 

in Section 3.2. Let fm ∈ L∞
c (Xm) for m = 1, . . . , n + 1. Suppose D is a dyadic grid 

and η ∈ (0, 1). Then there exists an η-sparse collection S = S((fm), η) ⊂ D so that the 
following holds.

Suppose Sk := Sk
D, k = (k1, . . . , kn+1), 0 ≤ ki ∈ Z, is an n-linear dyadic shift with 

complexity k and with coefficient operators aK,(Qi) ∈ L(
∏n

m=1 Xm, Yn+1). Recall the 
collection C(Sk) of normalized coefficients from (2.14). We have
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|〈Sk(f1, . . . , fn), fn+1〉| �η (1 + κ)n−1R�(C(Sk))
∑
Q∈S

|Q|
n+1∏
m=1

〈
|fm|Xm

〉
Q
, (4.2)

where κ = max km.
In particular, if p1, . . . , pn ∈ (1, ∞], qn+1 ∈ (1/n, ∞) and 

∑n
m=1 1/pm = 1/qn+1, then

‖Sk(f1, . . . , fn)‖Lqn+1 (Yn+1) � (1 + κ)n−1R�(C(Sk))
n∏

m=1
‖fm‖Lpm (Xm). (4.3)

Proof. The estimate

|〈aK,(Qi)[e1, . . . , en], en+1〉| ≤ R�(C(Sk))
∏n+1

m=1 |Qm|1/2
|K|n

n+1∏
m=1

|em|Xm

follows directly from the definition. We are considering a shift

Sk(f1, . . . , fn) =
∑
K∈D

AK(f1, . . . , fn),

where

AK(f1, . . . , fn) =
∑

Q1,...,Qn+1∈D
Q

(ki)
i =K

aK,(Qi)[〈f1, h̃Q1〉, . . . , 〈fn, h̃Qn
〉]h̃Qn+1 .

By Lemma 2.15 it remains to prove that

|〈Sk(f1, . . . , fn), fn+1〉| � (1 + κ)n−1R�(C(Sk))
n+1∏
m=1

‖fm‖Lpm (Xm) (4.4)

for some pm ∈ (1, ∞) satisfying 
∑n+1

m=1 1/pm = 1. Notice that by proving this, we also 
prove the corresponding estimate for all subshifts Sk

D′ =
∑

K∈D′ AK , where D′ ⊂ D. 
This is required in the assumptions of Lemma 2.15.

If n ≥ 3 we assume the following. Let j0, j1 ∈ Jn be the indices such that the 
corresponding Haar functions of the shift Sk are cancellative. Then, since (X1, . . . , Xn+1)
is assumed to have the RMF� property there exists a v ∈ Jn\{j0, j1} so that the maximal 
functions RMD,�,J ,v are bounded for all J ⊂ Jn \ (J ∪{j0, j1}), see (3.20). Notice that 
h̃Qv

= h0
Qv

. For convenience of notation we assume that v = n + 1 but the general case 
is handled similarly. If n = 2 there are no RMF� assumptions involved and we assume 
for convenience that h̃Q3 = h0

Q3
.

Having made the initial assumptions we proceed with an arbitrary n ≥ 2. We let 
{{n + 1}, J 0

Rad, J 0
RM} be the admissible partition such that #J 0

Rad = 2 and h̃Qj
= hQj

for j ∈ J 0
Rad; for j ∈ J 0

RM we have h̃Qj
= h0

Q . If m ∈ J 0
Rad, then 〈fm, ̃hQm

〉 =

j
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〈Δkm

K fm, hQm
〉, and if m ∈ J 0

RM, then 〈fm, ̃hQm
〉 = 〈Ekm

K fm, h0
Qm

〉. By writing for m ∈
J 0

RM that

Ekm

K fm =
km−1∑
l=0

Δl
Kfm + EKfm,

we see that the shift Sk can be split into at most (1 + κ)n−2 operators of the form∑
K∈D

AK(P l1
K f1, . . . , P

ln
K fn),

where the following holds. We have 0 ≤ lm ∈ Z and lm ≤ km. If lm �= 0 then P lm
K = Δlm

K , 
and if lm = 0 then P lm

K = PK can be either ΔK or EK . For m ∈ J 0
Rad we have 

lm = km and P lm
K = Δlm

K . Now we fix one such operator and show that it is bounded as 
desired. Let J ′

RM ⊂ J 0
RM be the subset of those indices m such that P lm

K = EK , and set 
J ′

Rad = {1, . . . , n} \ J ′
RM. Recall the lattices Dj,κ, j ∈ {0, . . . , κ}, from (2.5). We fix one 

j and start to consider the term〈 ∑
K∈Dj,κ

AK(P l1
K f1, . . . , P

ln
K fn), fn+1

〉
. (4.5)

We prove an estimate that is independent of j.
Let K ∈ Dj,κ. Define an operator-valued kernel aK : Rd(n+1) → L(

∏n
m=1 Xm, Yn+1)

by

aK(x, y1, . . . , yn) =
∑

Q1,...,Qn+1∈D
Q

(ki)
i =K

|K|naK,(Qi)h̃Q1(y1) · · · h̃Qn
(yn)h̃Qn+1(x).

Notice that aK is supported in Kn+1 and that if x, y1, . . . , yn ∈ K, then for some 
ε ∈ {−1, 1} we have εaK(x, y1, . . . , yn) ∈ C(Sk). Thus, there holds

R�({aK(x, y1, . . . , yn) : K ∈ Dj,κ, x, y1, . . . , yn ∈ Rd}) ≤ R�(C(Sk)).

Below we write aK(x, y) = aK(x, y1, . . . , yn) for y = (y1, . . . , yn) ∈ Rdn. We have that

AK(P l1
K f1, . . . , P

ln
K fn)(x) = 1

|K|n
∫
Kn

aK(x, y)[P l1
K f1(y1), . . . , P ln

K fn(yn)] dy. (4.6)

Let (V, ν) be the space related to decoupling, see Section 2.2. Let also Vn be the n-fold 
product of these, and let νn be the related measure. If y = (y1, . . . , yn) ∈ Vn, then ym,K

for m ∈ {1, . . . , n} and K ∈ D denotes the coordinate of ym related to K. If y ∈ Vn, we 
write yK to mean the tuple (y1,K , . . . , yn,K). If K ∈ Dj,κ then we can rewrite (4.6) as
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AK(P l1
K f1, . . . , P

ln
K fn)(x) =

∫
Vn

aK(x, yK)[P l1
K f1(y1,K), . . . , P ln

K fn(yn,K)] dνn(y). (4.7)

Applying (4.7) it is seen that (4.5) equals∫
Rd

∫
Vn

∑
K∈Dj,κ

〈aK(x, yK)[P l1
K f1(y1,K), . . . , P ln

K fn(yn,K)], fn+1(x)〉 dνn(y) dx.

Notice that here we may multiply each of the functions inside aK(x, yK) by 1K(x), since 
aK(x, ·) = 0 unless x ∈ K. Applying the R�-boundedness (see Remark 3.16) of the 
kernels gives that the absolute value of (4.5) is dominated by∫
Rd

∫
Vn

∏
m∈J ′

Rad

‖(1K(x)Δlm
K fm(ym,K))K∈Dj,κ

‖Rad(Xm)

×
∥∥∥{(1K(x)EKfm(ym,K)

)
m∈J ′

RM

: K ∈ Dj,κ

}∥∥∥
RM(�,J ′

RM,n+1)
|fn+1(x)|Xn+1 dνn(y) dx.

(4.8)

Let FJ ′
RM

be the tuple of the functions fm with indices m ∈ J ′
RM. We notice that for 

all x ∈ Rd and y ∈ Vn there holds that∥∥∥{(1K(x)EKfm(ym,K)
)
m∈J ′

RM

: K ∈ Dj,κ

}∥∥∥
RM(�,J ′

RM,n+1)
≤ RMD,�,J ′

RM,n+1(FJ ′
RM

)(x),

and by assumption we have that( ∫
Rd

∫
Vn

RMD,�,J ′
RM,n+1(FJ ′

RM
)(x)r dνn(y) dx

)1/r
�

∏
m∈J ′

RM

‖fm‖Lpm (Xm). (4.9)

Here r is the exponent defined by 1/r =
∑

m∈J ′
RM

1/pm.
Let m ∈ J ′

Rad. Then Kahane-Khintchine inequality (2.1) shows that∫
Rd

∫
Vn

‖(1K(x)Δlm
K fm(ym,K))K∈Dj,κ

‖pm

Rad(Xm) dνn(y) dx

∼ E

∫
Rd

∫
V

∣∣∣ ∑
K∈Dj,κ

εK1K(x)Δlm
K fm(ym,K)

∣∣∣pm

Xm

dx dν(y) � ‖f‖pm

Lpm (Xm).

(4.10)

The last step is based on the decoupling estimate (2.6).
Now, if we use Hölder’s inequality in (4.8) and combine the result with (4.9) and 

(4.10), we finally see that

|(4.5)| �
n+1∏
m=1

‖fm‖Lpm (Xm).

This concludes the proof. �
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5. Operator-valued multilinear paraproducts

We begin with some definitions. Suppose X1, . . . , Xn, Yn+1 are Banach spaces. Sup-
pose T ∈ L(

∏n
m=1 Xm, Yn+1). Let k ∈ {2, . . . , n} and em ∈ Xm for m ∈ {k, . . . , n}. 

Define the operator T [ek, . . . , en] ∈ L(
∏k−1

m=1 Xm, Yn+1) by

(T [ek, . . . , en])[e1, . . . , ek−1] := T [e1, . . . , en],

where em ∈ Xm, m ∈ {1, . . . , k− 1}. We see that for k ∈ {2, . . . , n − 1} there holds that

‖T [ek, . . . , en]‖L(
∏k−1

m=1 Xm,Yn+1) ≤ |ek|Xk
‖T [ek+1, . . . , en]‖L(

∏k
m=1 Xm,Yn+1) (5.1)

and that ∥∥T [en]
∥∥
L(
∏n−1

m=1 Xm,Yn+1)
≤ |en|Xn

‖T‖L(
∏n

m=1 Xm,Yn+1). (5.2)

Let a = (aQ)Q∈D, where

aQ ∈ L
( n∏

m=1
Xm, Yn+1

)
.

Assume that there exists a UMD subspace Tk ⊂ L(
∏k

m=1 Xm, Yn+1) for every k ∈ In−1
so that

aQ ∈ Tn

and for k < n

aQ[ek+1, . . . , en] ∈ Tk, for every ek+1 ∈ Xk+1, . . . , en ∈ Xn.

If these conditions are satisfied, we say that a satisfies the UMD subspace condition.
The next theorem generalises the result about boundedness of operator-valued para-

products from [16] to the multilinear context.

5.3 Theorem. Let n ≥ 2, X1, . . . , Xn be Banach spaces, Yn+1 be a UMD space and 
Xn+1 := Y ∗

n+1. Let fm ∈ L∞
c (Xm) for m = 1, . . . , n + 1. Suppose D is a dyadic grid 

and η ∈ (0, 1). Then there exists an η-sparse collection S = S((fm), η) ⊂ D so that the 
following holds.

Suppose a = (aQ)Q∈D satisfies the UMD subspace condition as above. For a paraprod-
uct π := πD,a we have for all r ∈ (0, ∞) that

|〈π(f1, . . . , fn), fn+1〉| �η ‖a‖BMOD,r(Tn)
∑

|Q|
n+1∏ 〈

|fm|Xm

〉
Q
. (5.4)
Q∈S m=1
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In particular, if p1, . . . , pn ∈ (1, ∞], qn+1 ∈ (1/n, ∞) and 
∑n

m=1 1/pm = 1/qn+1, then

‖π(f1, . . . , fn)‖Lqn+1 (Yn+1) � ‖a‖BMOD,r(Tn)

n∏
m=1

‖fm‖Lpm (Xm). (5.5)

Proof. We first fix r ∈ (1, ∞) and assume that ‖a‖BMOD,r(Tn) = 1. We will use 
Lemma 2.15 again. First, the correctly normalized estimate

∣∣∣ 1
|Q|n/2 〈aQ[e1, . . . , en], en+1〉

∣∣∣ ≤ |Q|n/2+1/2

|Q|n
n+1∏
m=1

|em|Xm

follows directly from the BMO assumption.
Choose pm ∈ (1, ∞) so that 

∑n
m=1 1/pm = 1/r. We show that

∥∥∥ ∑
Q∈D
Q⊂Q0

aQ[〈F 〉Q]hQ

∥∥∥
Lr(Yn+1)

�
n∏

m=1
‖fm‖Lpm (Xm), (5.6)

where Q0 ∈ D is arbitrary and 〈F 〉Q := (〈f1〉Q, . . . , 〈fn〉Q). We denote by D(Q0) the set 
of cubes Q ∈ D such that Q ⊂ Q0.

We begin by constructing a collection of stopping cubes. Set S0 := {Q0}, and suppose 
that S0, . . . , Sk are defined for some k. If S ∈ Sk, we define chS(S) to be the collection 
of the maximal cubes Q ∈ D such that Q ⊂ S and

max
( 〈|f1|X1〉Q
〈|f1|X1〉S

, . . . ,
〈|fn|Xn

〉Q
〈|fn|Xn

〉S

)
> 2n. (5.7)

Then, we define Sk+1 :=
⋃

S∈Sk
chS(S) and finally S :=

⋃∞
k=0 Sk. If Q ∈ D and Q ⊂ Q0, 

then the unique minimal cube S ∈ S containing Q is denoted by πS(Q). If S ∈ S we 
define E(S) := S \

⋃
S′∈chS(S) S

′.
It follows from the construction that S is a sparse collection. For S ∈ S define FS :=

(f1,S , . . . , fn,S), where

fm,S :=
∑

S′∈chS(S)

〈fm〉S′1S′ + 1E(S)fm. (5.8)

From the stopping condition (5.7) it is deduced that

‖fm,S‖L∞(Xm) � 〈|fm|Xm
〉S . (5.9)

Equation (5.8) implies that

〈F 〉Q = 〈FS〉Q (5.10)
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for all Q ∈ D(Q0) such that πSQ = S.
Pythagoras’ theorem (2.7) and Equation (5.10) give that

∥∥∥ ∑
Q∈D(Q0)

aQ[〈F 〉Q]hQ

∥∥∥
Lr(Yn+1)

∼
(∑

S∈S

∥∥∥ ∑
Q∈D(Q0)
πSQ=S

aQ[〈FS〉Q]hQ

∥∥∥r
Lr(Yn+1)

)1/r
.

(5.11)

It will be shown that for all S ∈ S there holds that

∥∥∥ ∑
Q∈D(Q0)
πSQ=S

aQ[〈g1〉Q, . . . , 〈gn〉Q]hQ

∥∥∥
Lr(Yn+1)

�
n∏

m=1
‖gm‖L∞(Xm)|S|1/r (5.12)

for all gm ∈ L∞(Xm), m ∈ {1, . . . , n}. This combined with (5.9) and (5.11) implies that 
the left hand side of (5.11) satisfies

LHS(5.11) �
(∑

S∈S

n∏
m=1

〈|fm|Xm
〉rS |S|

)1/r
≤

n∏
m=1

(∑
S∈S

〈|fm|Xm
〉pm

S |S|
)1/pm

�
n∏

m=1
‖fm‖Lpm (Xm),

where the last step followed from an application of the Carleson embedding theorem 
based on the sparseness of S.

Fix S ∈ S and suppose gm ∈ L∞(Xm), m ∈ {1, . . . , n}. Let {εQ}Q∈D be a collec-
tion of independent random signs. For all x ∈ Rd the collections of random variables 
{εQhQ(x)}Q∈D and {εQ|hQ(x)|}Q∈D are identically distributed. This gives, using the 
UMD property of Yn+1, that

∥∥∥ ∑
Q∈D(Q0)
πSQ=S

aQ[〈g1〉Q, . . . , 〈gn〉Q]hQ

∥∥∥
Lr(Yn+1)

∼ E
∥∥∥ ∑

Q∈D(Q0)
πSQ=S

εQaQ[〈g1〉Q, . . . , 〈gn〉Q]|hQ|
∥∥∥
Lr(Yn+1)

.
(5.13)

Notice that |hQ| = 1Q/|Q|1/2. This allows us to use Stein’s inequality in the next esti-
mate. The UMD-valued version of Stein’s inequality is due to Bourgain, for a proof see 
e.g. Theorem 4.2.23 in the book [24].
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The right hand side of (5.13) satisfies

RHS (5.13) = E
∥∥∥ ∑

Q∈D(Q0)
πSQ=S

εQ

〈
aQ[g1(·), . . . , 〈gn〉Q]

〉
Q
|hQ|

∥∥∥
Lr(Yn+1)

� E
∥∥∥ ∑

Q∈D(Q0)
πSQ=S

εQaQ[g1(·), . . . , 〈gn〉Q]|hQ(·)|
∥∥∥
Lr(Yn+1)

≤ E
∥∥∥|g1|X1

∥∥∥ ∑
Q∈D(Q0)
πSQ=S

εQaQ[〈g2〉Q, . . . , 〈gn〉Q]|hQ|
∥∥∥
T1

∥∥∥
Lr

≤ ‖g1‖L∞(X1)E
∥∥∥ ∑

Q∈D(Q0)
πSQ=S

εQaQ[〈g2〉Q, . . . , 〈gn〉Q]|hQ|
∥∥∥
Lr(T1)

.

Because T1 is assumed to be a UMD space we can repeat the above estimate with g2
in place of g1. In course of doing so, after applying Stein’s inequality, we use the estimate∥∥∥ ∑

Q∈D(Q0)
πSQ=S

εQaQ[g2(x), 〈g3〉Q, . . . , 〈gn〉Q]|hQ(x)|
∥∥∥
T1

≤ |g2(x)|X2

∥∥∥ ∑
Q∈D(Q0)
πSQ=S

εQaQ[〈g3〉Q, . . . , 〈gn〉Q]|hQ(x)|
∥∥∥
T2
,

see (5.1) and (5.2). Iterating this we arrive at

RHS (5.13) �
n∏

m=1
‖gm‖L∞(Xm)E

∥∥∥ ∑
Q∈D(Q0)
πSQ=S

εQaQ|hQ|
∥∥∥
Lr(Tn)

.

Finally, the BMO assumption gives that

E
∥∥∥ ∑

Q∈D(Q0)
πSQ=S

εQaQ|hQ|
∥∥∥
Lr(Tn)

� ‖a‖BMOD,r(Tn)|S|1/r = |S|1/r.

This concludes the proof of (5.12), and hence of (5.6). Lemma 2.15 now gives (5.4). It 
remains to recall the John–Nirenberg inequality (2.9). �
6. The representation theorem

Let n ≥ 2 and let X1, . . . , Xn, Yn+1 be UMD-spaces. With respect to these spaces, 
suppose that T is an n-linear operator-valued SIO with a basic kernel K. In addition, 
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Tm∗ denotes the mth adjoint of T for m ∈ {1, . . . , n} – that is, there are n-linear 
operator-valued SIOs Tm∗ satisfying the identity

〈T (f1, . . . , fn), fn+1〉 = 〈Tm∗(f1, . . . , fm−1, fn+1, fm+1, . . . , fn), fm〉.

Assume that there exist UMD subspaces Tk ⊂ L(
∏k

m=1 Xm, Yn+1) so that for all 
dyadic lattices D the sequence [T1]D := (〈T1, hQ〉)Q∈D satisfies the UMD subspace 
condition (see Section 5) with these spaces. Recall that the operators 〈T1, hQ〉 were 
defined in Section 2.4. We abbreviate this by saying that T1 satisfies the UMD subspace 
condition. Let m ∈ {1, . . . , n}. Likewise, we say that Tm∗1 satisfies the UMD subspace 
condition if the corresponding UMD subspaces T m

k exist. Notice that here the spaces 
Xm change places, so that for instance

T m
n ⊂ L

(m−1∏
k=1

Xk ×Xn+1 ×
n∏

k=m+1

Xk, X
∗
m

)
.

If φm : Rd → C, m = 1, . . . , n + 1, are bounded and compactly supported and Φ =
(φ1, . . . , φn), then we can define the n-linear operator

〈TΦ, φn+1〉 :
n∏

m=1
Xm → Yn+1

by setting

〈TΦ, φn+1〉[e1, . . . , en] :=
〈
T (φ1e1, . . . , φnen), φn+1

〉
, em ∈ Xm. (6.1)

We define the following collection of n-linear operators 
∏n

m=1 Xm → Yn+1 by setting

Cweak(T ) = {|Q|−1〈T (1Q, . . . , 1Q), 1Q〉 : Q ⊂ Rd is a cube}.

6.2 Definition. Let n ≥ 2, X1, . . . , Xn, Yn+1 be UMD spaces and Xn+1 = Y ∗
n+1. With 

respect to these spaces, suppose that T is an n-linear operator-valued SIO with a basic 
kernel K. Suppose that � : X1 × · · · × Xn+1 → C is an n + 1-linear contraction as in 
(3.3). We say that T satisfies T1 type testing conditions if:

(1) We have

‖K‖CZα,� := R�(CCZ,α(K)) < ∞.

(2) We have

‖T‖WBP,� := R�(Cweak(T )) < ∞.
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(3) For all m ∈ {0, 1, . . . , n} the UMD subspace condition for Tm∗1 holds, and there 
exist exponents r0, r1, . . . , rn ∈ (0, ∞) so that

‖Tm∗1‖BMOrm (T m
n ) := sup

D
‖(〈Tm∗1, hQ〉)Q∈D‖BMOD,rm (T m

n ) < ∞,

where the supremum is over dyadic lattices on Rd.

Good and bad cubes. Recall the random dyadic lattices from Section 2.1. We introduce 
the good and bad dyadic cubes of Nazarov–Treil–Volberg [37]. Let γ ∈ (0, 1) and r ∈
{1, 2, 3, . . . }. We say that a cube Q ∈ D, where D is a dyadic lattice, is (γ, r)-good if for 
all R ∈ D with �(R) ≥ 2r�(Q) there holds that

d(Q, ∂R) > �(Q)γ�(R)1−γ ,

where ∂R is the boundary of R. If Q is not (γ, r)-good, we say that it is (γ, r)-bad. Let 
Q ∈ D0 (where D0 is the standard dyadic grid) and define the probability

Pbad(γ, r) = P ({ω ∈ Ω: Q + ω is (γ, r)-bad}).

This probability is independent of the cube Q ∈ D0 and Pbad(γ, r) → 0, as r → ∞. In 
what follows we make the explicit choice γ(dn +α) = α/2 and then fix r large enough – at 
least so large that Pgood = Pgood(γ, r) = 1 −Pbad(γ, r) > 0, and that certain calculations 
below are legitimate. Now that γ and r are fixed we simply write Dgood and Dbad for 
the good and bad cubes of a given lattice D.

6.3 Theorem. Let n ≥ 2 and let X1, . . . , Xn, Yn+1 be UMD spaces. Denote Xn+1 = Y ∗
n+1. 

Suppose that (X1, . . . , Xn+1) satisfies the RMF� property with some �, as in Section 3.2. 
With respect to these spaces, suppose that T is an n-linear operator-valued SIO with a 
basic kernel K as in Section 2.3. Suppose that T satisfies the T1 type testing conditions 
of Definition 6.2.

Let fm : Rd → Xm, m = 1, . . . , n + 1, be compactly supported and bounded functions. 
Then we have the representation

〈T (f1, . . . , fn), fn+1〉

= C
[
‖K‖CZα,� + ‖T‖WBP,� +

n∑
m=0

‖Tm∗1‖BMOrm (T m
n )

]
×
[
Eω

∑
k∈Zn+1

+

2−αmax km/2
∑
u

〈Sk
ω,u(f1, . . . , fn), fn+1〉 +

n∑
m=0

〈πm∗
ω,Tm∗1(f1, . . . , fn), fn+1〉

]
.

Here C � 1 and the sum over u is a finite summation. The operators Sk
ω,u are dyadic 

shifts of complexity k defined in the grid Dω and satisfy R�(C(Sk
ω,u)) � 1. The operator 

πω,Tm∗1 is the paraproduct πDω,[Tm∗1]D related to [Tm∗1]Dω,good .
ω,good
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Using Theorem 4.1, Theorem 5.3 and (2.17) we get:

6.4 Theorem. There exist dyadic grids Di, i = 1, . . . , 3d, with the following property. 
Let η ∈ (0, 1). Let X1, . . . , Xn and Yn+1 be Banach spaces and fm : Rd → Xm, m =
1, . . . , n +1, be compactly supported and bounded functions. Then for some i there exists 
an η-sparse collection S = S((fm), η) ⊂ Di with the following property.

If T is an operator-valued n-linear singular integral satisfying the T1 type testing 
conditions, then

|〈T (f1, . . . , fn), fn+1〉| �η

[
‖K‖CZα,� + ‖T‖WBP,� +

n∑
m=0

‖Tm∗1‖BMOrm (T m
n )

]

×
∑
Q∈S

|Q|
n+1∏
m=1

〈
|fm|Xm

〉
Q
.

(6.5)

In particular, if p1, . . . , pn ∈ (1, ∞], qn+1 ∈ (1/n, ∞) and 
∑n

m=1 1/pm = 1/qn+1, then

‖T (f1, . . . , fn)‖Lqn+1 (Yn+1) �
[
‖K‖CZα,� + ‖T‖WBP,� +

n∑
m=0

‖Tm∗1‖BMOrm (T m
n )

]
×

n∏
m=1

‖fm‖Lpm (Xm).

(6.6)

Proof of Theorem 6.3. We show the proof under the additional assumption that T is a 
priori bounded, say from 

∏n
m=1 L

n+1(Xm) to L(n+1)/n(Yn+1). At the end we comment 
why this is enough. With this assumption, all the steps in this subsection can be made 
rigorous.

For every m ∈ {1, . . . , n + 1} suppose fm is a Xm-valued, bounded and compactly 
supported strongly measurable function. Write F = (f1, . . . , fn). We start considering 
the pairing 〈T [F ], fn+1〉.

Multilinear reduction to good cubes. Fix for the moment a random parameter ω ∈ Ω. 
Writing the functions as fm =

∑
Qm∈Dω

ΔQm
fm we have

〈T (f1, . . . , fn), fn+1〉
=

∑
Q1,...,Qn+1∈Dω

〈
T (ΔQ1f1, . . . ,ΔQn

fn),ΔQn+1fn+1
〉

=
n+1∑
m=1

∑
Q1,...,Qn+1∈Dω

�(Q1),...,�(Qm−1)>�(Qm)

〈
T (ΔQ1f1, . . . ,ΔQn

fn),ΔQn+1fn+1
〉
.

�(Qm+1),...,�(Qn+1)≥�(Qm)
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For k ∈ Z there holds that∑
Q∈Dω

�(Q)>2k

ΔQg = Eω,2kg, Eω,2kg :=
∑

Q∈Dω

�(Q)=2k

〈g〉Q1Q.

Thus, for m ∈ {1, . . . , n} we have∑
Q1,...,Qn+1∈Dω

�(Q1),...,�(Qm−1)>�(Qm)
�(Qm+1),...,�(Qn+1)≥�(Qm)

〈
T (ΔQ1f1, . . . ,ΔQn

fn),ΔQn+1fn+1
〉

=
∑

Q∈Dω

Λ̃m(Q),

where Λ̃m(Q) is defined, for Q ∈ Dω, to be〈
Tm∗(Eω,�(Q)f1, . . . , Eω,�(Q)fm−1, Eω, �(Q)

2
fn+1, Eω, �(Q)

2
fm+1, . . . , Eω, �(Q)

2
fn
)
,ΔQfm

〉
.

Similarly, for m = n + 1 we have∑
Q1,...,Qn+1∈Dω

�(Q1),...,�(Qn)>�(Qn+1)

〈
T (ΔQ1f1, . . . ,ΔQn

fn),ΔQn+1fn+1
〉

=:
∑

Q∈Dω

Λn+1(Q),

where

Λn+1(Q) :=
〈
T
(
Eω,�(Q)f1, . . . , Eω,�(Q)fn

)
,ΔQfn+1

〉
, Q ∈ Dω. (6.7)

Recall that Dω is the lattice {Q + ω : Q ∈ D0}. Hence, the average over ω ∈ Ω of ∑
Q∈Dω

Λn+1(Q) can be written as

Eω

∑
Q∈D0

Λn+1(Q + ω) = 1
Pgood

∑
Q∈D0

Eω[1good(Q + ω)]EωΛn+1(Q + ω)

= 1
Pgood

Eω

∑
Q∈D0

1good(Q + ω)Λn+1(Q + ω)

= 1
Pgood

Eω

∑
Q∈Dω,good

Λn+1(Q),

where independence of the functions ω �→ 1good(Q + ω) and ω �→ Λn+1(Q + ω) was 
used in the second identity. Since the same argument can be clearly made for every ∑

Q∈Dω
Λ̃m(Q), we have shown that

〈T [F ], fn+1〉 = 1
Pgood

Eω

[ n∑ ∑
Λ̃m(Q) +

∑
Λn+1(Q)

]
. (6.8)
m=1 Q∈Dω,good Q∈Dω,good
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Expansion back to martingale differences. Now that the probabilistic reduction is done, 
we fix one ω ∈ Ω and suppress ω from the notation; all the dyadic concepts are with 
respect to the lattice D := Dω. Let first m ∈ {1, . . . , n} and Q ∈ D, and consider the 
pairing Λ̃m(Q). Just for notational convenience define for the moment

gmj :=

⎧⎪⎪⎨⎪⎪⎩
fj , j ∈ {1, . . . , n} \ {m},
fn+1, j = m,

fm, j = n + 1.
(6.9)

By writing E �(Q)
2

gmm = D�(Q)g
m
m + E�(Q)g

m
m , where D2kg =

∑
Q : �(Q)=2k ΔQg, we have

Λ̃m(Q) =
〈
Tm∗(E�(Q)g

m
1 , . . . , E�(Q)g

m
m−1, D�(Q)g

m
m , E �(Q)

2
gmm+1, . . . , E �(Q)

2
gmn
)
,ΔQg

m
n+1

〉
+
〈
Tm∗(E�(Q)g

m
1 , . . . , E�(Q)g

m
m , E �(Q)

2
gmm+1, . . . , E �(Q)

2
gmn
)
,ΔQg

m
n+1

〉
.

Continuing in the same way with the second term on the right hand side, it is seen that

Λ̃m(Q)

=
n∑

j=m

〈
Tm∗(E�(Q)g

m
1 , . . . , E�(Q)g

m
j−1, D�(Q)g

m
j , E �(Q)

2
gmj+1, . . . , E �(Q)

2
gmn
)
,ΔQg

m
n+1

〉
+ Λm(Q),

where we have defined

Λm(Q) :=
〈
Tm∗(E�(Q)g

m
1 , . . . , E�(Q)g

m
n

)
,ΔQg

m
n+1

〉
. (6.10)

The terms Λm(Q), m ∈ {1, . . . , n}, are completely symmetric with the term Λn+1(Q)
in (6.7). Hence, we will concentrate on finding the model operator structure for the sum∑

Q∈Dgood

Λn+1(Q). (6.11)

The terms∑
Q∈Dgood

〈
Tm∗(E�(Q)g

m
1 , . . . , E�(Q)g

m
j−1, D�(Q)g

m
j , E �(Q)

2
gmj+1, . . . , E �(Q)

2
gmn
)
,ΔQg

m
n+1

〉
,

(6.12)
where m ∈ {1, . . . , n} and j ∈ {m, . . . , n}, will be handled separately in Section 6.6. 
Apart from a certain diagonal part, the shift structure for these will follow from our 
arguments concerning (6.11).

Now we start to consider the term (6.11). Fix the cube Q ∈ Dgood for the moment. 
Since by a priori boundedness there holds
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T
(
E2kf1, . . . , E2kfn

)
→ 0, as k → ∞,

we have〈
T
(
E�(Q)f1, . . . , E�(Q)fn

)
,ΔQfn+1

〉
=

∑
k∈Z

2k≥�(Q)

[〈
T
(
E2kf1, . . . , E2kfn

)
,ΔQfn+1

〉

−
〈
T
(
E2k+1f1, . . . , E2k+1fn

)
,ΔQfn+1

〉]
.

Let k ∈ Z be such that 2k ≥ �(Q). Then〈
T
(
E2kf1, . . . , E2kfn

)
,ΔQfn+1

〉
−
〈
T
(
E2k+1f1, . . . , E2k+1fn

)
,ΔQfn+1

〉
=

n∑
i=1

〈
T
(
E2k+1f1, . . . , E2k+1fi−1, D2k+1fi, E2kfi+1, . . . , E2kfn

)
,ΔQfn+1

〉
.

For i ∈ {1, . . . , n} the corresponding term in this sum can further be written as∑
Q1,...,Qn∈D

�(Q1)=···=�(Qi)=2k+1

�(Qi+1)=···=�(Qn)=2k

〈
T
(
EQ1f1, . . . , EQi−1fi−1,ΔQi

fi, EQi+1fi+1, . . . , EQn
fn
)
,ΔQfn+1

〉
.

Let us agree on the following conventions. Let Di, i = 1, . . . , n, be defined by

Di :=
{
R := Q1 × · · · ×Qn : Q1, . . . , Qn ∈ D,

�(Q1) = · · · = �(Qi) = 2�(Qi+1) = · · · = 2�(Qn)
}
.

Suppose R = Q1 × · · · ×Qn ∈ Di and Q ∈ D. Define �(R) := �(Q1) and

d(Q,R) = max
m

d(Q,Qm).

Set V i
RF to be the n-tuple of functions

V i
RF := (EQ1f1, . . . , EQi−1fi−1,ΔQi

fi, EQi+1fi+1, . . . , EQn
fn).

Using the above splitting we have

∑
Q∈Dgood

Λn+1(Q) =
n∑

i=1

∑
Q∈Dgood

∑
R∈Di

�(R)>�(Q)

〈T [V i
RF ],ΔQfn+1〉. (6.13)

Most of the time we will consider each i separately. However, related to every i there 
will be a paraproduct type term. These will be summed together in Section 6.4 giving 
one simple paraproduct.
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Let us rewrite the pairings 〈T [V i
RF ], ΔQfn+1〉 using Haar functions. Expanding

ΔQfn+1 = 〈fn+1, hQ〉hQ

there holds

〈T [V i
RF ],ΔQfn+1〉 = 〈〈T [V i

RF ], hQ〉, 〈fn+1, hQ〉〉.

Related to the set R = Q1 × · · · ×Qn ∈ Di, define the n-tuple

hR,i = (h0
Q1

, . . . , h0
Qi−1

, hQi
, h0

Qi+1
, . . . , h0

Qn
). (6.14)

Using hR,i we can write

〈T [V i
RF ], hQ〉 = 〈ThR,i, hQ〉[〈F, hR,i〉],

where 〈ThR,i, hQ〉 is the natural operator defined using (6.1) and

〈F, hR,i〉 := (〈f1, h
0
Q1

〉, . . . , 〈fi−1, h
0
Qi−1

〉, 〈fi, hQi
〉, 〈fi+1, h

0
Qi+1

〉, . . . , 〈fn, h0
Qn

〉).

Altogether, we have

〈T [V i
RF ],ΔQfn+1〉 = 〈〈ThR,i, hQ〉[〈F, hR,i〉], 〈fn+1, hQ〉〉.

We now fix one i in (6.13) and start to study the related term∑
Q∈Dgood

∑
R∈Di

�(R)>�(Q)

〈〈ThR,i, hQ〉[〈F, hR,i〉], 〈fn+1, hQ〉〉. (6.15)

6.1. Step I: separated cubes

Here the part

σi
1 =

∑
Q∈Dgood

∑
R∈Di

�(R)>�(Q)
d(Q,R)>�(Q)γ(�(R)/2)1−γ

〈〈ThR,i, hQ〉[〈F, hR,i〉], 〈fn+1, hQ〉〉

of (6.15) is considered. We begin with the following lemma on the existence of nice 
common parents. A short proof is given, albeit it is morally the same as in the case 
n = 1 in [19]. If R = Q1 × · · · × Qn ∈ Di and Q ∈ D are such that there exists a cube 
K ∈ D so that Q, Q1, . . . , Qn ⊂ K, then the minimal such K is denoted by Q ∨R.



F. Di Plinio et al. / Journal of Functional Analysis 279 (2020) 108666 45
6.16 Lemma. Suppose R = Q1 × · · · ×Qn ∈ Di and Q ∈ Dgood are such that there holds 
d(Q, R) > �(Q)γ(�(R)/2)1−γ . Then there exists K ∈ D so that Q1 ∪ · · · ∪ Qn ∪ Q ⊂ K

and

d(Q,R) � �(Q)γ�(K)1−γ .

Proof. Let K ∈ D be the minimal parent of Q for which both of the following two 
conditions hold:

• �(K) ≥ 2r�(Q);
• d(Q, R) ≤ �(Q)γ�(K)1−γ .

If we had that Qm ⊂ Kc for some m, we would get by the goodness of the cube Q that

�(Q)γ�(K)1−γ < d(Q,R) ≤ �(Q)γ�(K)1−γ ,

which is a contradiction. Moreover, we have

�(Q)γ(�(R)/2)1−γ < d(Q,R) ≤ �(Q)γ�(K)1−γ

implying that �(K) ≥ �(R). Thus, there holds Q1 ∪ · · · ∪Qn ∪Q ⊂ K.
It remains to note that the estimate d(Q, R) � �(Q)γ�(K)1−γ is a trivial consequence 

of the minimality of K. There is something to check only if �(K) = 2r�(Q). But then 
�(K) � �(R) and so

d(Q,R) � �(Q)γ�(R)1−γ � �(Q)γ�(K)1−γ . �
We use the common parents to organize σi

1 as

∑
Q∈Dgood

∑
R∈Di

�(R)>�(Q)
d(Q,R)>�(Q)γ(�(R)/2)1−γ

=
∞∑

j1=2

j1−1∑
j2=1

∑
K∈D

∑
Q∈Dgood,R∈Di

d(Q,R)>�(Q)γ(�(R)/2)1−γ

2j1 �(Q)=2j2�(R)=�(K)
Q∨R=K

. (6.17)

Suppose j1, j2, K, Q and R are as in the above sum. We will show that for some large 
enough constant C there holds that

2αj1/2

C

|K|n∏n
m=1 |Qm|1/2|Q|1/2 〈ThR,i, hQ〉 ∈ A(CCZ,α(K)). (6.18)

Here we are using the notation defined in Lemma 3.18. This then implies that for fixed 
j1 and j2 the inner double sum in (6.17) multiplied by



46 F. Di Plinio et al. / Journal of Functional Analysis 279 (2020) 108666
2αj1/2

C
[
‖K‖CZα,� + ‖T‖WBP,� +

∑n
m=0 ‖Tm∗1‖BMOrm (T m

n )

]
is an operator-valued n-linear shift as in the representation theorem acting on f1, . . . , fn
and paired with fn+1. The complexity of this shift is k = (k1, . . . , kn+1), where k1 =
· · · = ki = 2ki+1 = · · · = 2kn = j2 and kn+1 = j1. Therefore, (6.17) is of the right form 
for the representation theorem.

We turn to prove (6.18). We write R = Q1×· · ·×Qn, and suppose first that d(Q, R) ≤
Cd�(Q), where Cd is a dimensional constant. From the proof of Lemma 6.16 it is clear 
that, if r is fixed large enough, then K ⊂ Q(r) implying that �(K) ∼ �(Q) and j1 ≤ r � 1.

If x ∈ Rd and y = (y1, . . . , yn) ∈ Rdn are such that (x, y1, . . . , yn) ∈ Rd(n+1) \ Δ, 
where Δ consists of the diagonal points (x, . . . , x), define

λ(x, y) =
( n∑

m=1
|x− ym|

)−dn

. (6.19)

By slight abuse of notation we write

hR,i(y) = h0
Q1

(y1) · · ·h0
Qi−1

(yi−1)hQi
(yi)h0

Qi+1
(yi+1) · · ·h0

Qn
(yn).

In (6.14) we gave a different definition for hR,i, but it should be clear from the context 
which one we use (see the next equation, for instance).

We write out 〈ThR,i, hQ〉 as

〈ThR,i, hQ〉 =
∫
Rd

∫
Rdn

K(x, y)
λ(x, y) λ(x, y)hR,i(y)hQ(x) dy dx. (6.20)

Notice that this integral does not make sense as such, but has to be interpreted as in 
(2.13). There holds that K(x, y)/λ(x, y) ∈ CCZ,α(K). Because d(Q, R) > �(Q), there also 
holds that∫

Rd

∫
Rdn

|hR,i(y)hQ(x)|(∑n
m=1 |x− ym|

)dn dy dx ≤ |R|1/2|Q|1/2
�(Q)dn ∼ 2−αj1/2

∏n
m=1 |Qm|1/2|Q|1/2

|K|n .

This together with (6.20) proves (6.18) in the case d(Q, R) ≤ Cd�(Q).
Consider then the case d(Q, R) > Cd�(Q). If (cQ, y1, . . . , yn) /∈ Δ, define

λQ(x, y) = |x− cQ|α
( n∑

m=1
|cQ − ym|

)−(dn+α)
. (6.21)

The zero average of hQ allows us to write
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〈ThR,i, hQ〉 =
∫
Rd

∫
Rdn

K(x, y) −K(cQ, y)
λQ(x, y) λQ(x, y)hR,i(y)hQ(x) dy dx.

Since d(Q, R) > Cd�(Q), it holds that here (K(x, y) −K(cQ, y))/λQ(x, y) ∈ CCZ,α(K). In 
addition, using the fact d(Q, R) � �(Q)γ�(K)1−γ from Lemma 6.16 we have the estimate∫

Rd

∫
Rdn

|x− cQ|α|hR,i(y)hQ(x)|(∑n
m=1 |cQ − ym|

)dn+α
dy dx � �(Q)α|R|1/2|Q|1/2

(�(Q)γ�(K)1−γ)dn+α
= |R|1/2|Q|1/2

2αj1/2|K|n ,

where we recalled that γ(dn +α) = α/2. This proves (6.18) in the case d(Q, R) > Cd�(Q). 
We are done with Step I.

6.2. Step II: nearby cubes

We now look at the sum

σi
2 =

∑
Q∈Dgood

∑
R=Q1×···×Qn∈Di

�(R)>�(Q)
d(Q,R)≤�(Q)γ(�(R)/2)1−γ

Qm∩Q=∅ for some m

〈〈ThR,i, hQ〉[〈F, hR,i〉], 〈fn+1, hQ〉〉.

Let Q ∈ D and R = Q1 × · · · ×Qn ∈ Di be as in σi
2. Suppose Qm0 is a cube such that 

Qm0 ∩Q = ∅. If �(Qm0) ≥ �(Q(r)), then the goodness of the cube Q implies that

d(Q,R) ≥ d(Q,Qm0) > �(Q)γ�(Qm0)1−γ ≥ �(Q)γ(�(R)/2)1−γ ,

which is a contradiction. Thus, we have �(R) ≤ 2�(Qm0) ≤ �(Q(r)). Suppose Qm∩Q(r) =
∅ for some m. Then

d(Q,R) ≥ d(Q, (Q(r))c) > �(Q)γ�(Q(r))1−γ > �(Q)γ(�(R)/2)1−γ ,

which is again a contradiction. We conclude that Q ∨R ⊂ Q(r).
These observations show that

σi
2 =

r∑
j1=1

j1−1∑
j2=0

∑
K∈D

∑
Q∈Dgood,R∈Di

d(Q,R)≤�(Q)γ(�(R)/2)1−γ

Qm∩Q=∅ for some m
2j1 �(Q)=2j2 �(R)=�(K)

Q∨R=K

〈〈ThR,i, hQ〉[〈F, hR,i〉], 〈fn+1, hQ〉〉.

Similarly as in Step I, we need to show that if j1, j2, Q, R and K are as in σi
2, then

2αj1/2 |K|n∏n 1/2 1/2 〈ThR,i, hQ〉 ∈ A(CCZ,α(K)).

C m=1 |Qm| |Q|
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Recall the function λ(x, y) =
(∑n

m=1 |x − ym|
)−dn and write

〈ThR,i, hQ〉 =
∫
Rd

∫
Rdn

K(x, y)
λ(x, y) λ(x, y)hR,i(y)hQ(x) dy dx.

Here we have K(x, y)/λ(x, y) ∈ CCZ,α(K). Let m0 ∈ {1, . . . , n} be such that Qm0∩Q = ∅. 
Then, using the estimate 

∫
Rd(c + |x − y|)−d−β dy �d,β c−β , where c, β > 0, we have∫

Rd

∫
Rdn

|hR,i(y)hQ(x)|(∑n
m=1 |x− ym|

)dn dy dx � |R|−1/2|Q|−1/2
∫
Q

∫
Q(r)\Q

1
|x− ym0 |d

dym0 dx

� |R|−1/2|Q|−1/2|Q| ∼ 2−αj1/2 |R|1/2|Q|1/2
|K|n .

(6.22)

This concludes Step II.

6.3. Step III: error terms

We start working with the sum

σi
3 =

∑
Q∈Dgood

∑
R∈Di

R=(Q(k))i×(Q(k−1))n−i for some k≥1

〈〈ThR,i, hQ〉[〈F, hR,i〉], 〈fn+1, hQ〉〉,

which is what is left after Step I and Step II. Here and in what follows Qi = Q ×· · ·×Q, 
where there are i members in the Cartesian product. First, we define abbreviations 
related to certain error terms. Let Q ∈ Dgood and 1 ≤ k ∈ Z. We will define the function 
tuple ΦQ,k,i,j = (φ1

Q,k,i,j , . . . , φ
n
Q,k,i,j) for every j = 1, . . . , n. If j ≤ i − 1 we set

φ1
Q,k,i,j = · · · = φj−1

Q,k,i,j ≡ |Q(k)|−1/2, φj
Q,k,i,j = |Q(k)|−1/21(Q(k))c ,

φj+1
Q,k,i,j = · · · = φi−1

Q,k,i,j = |Q(k)|−1/21Q(k) , φi
Q,k,i,j = hQ(k) ,

φi+1
Q,k,i,j = · · · = φn

Q,k,i,j = |Q(k−1)|−1/21Q(k−1) .

If j = i we set

φ1
Q,k,i,i = · · · = φi−1

Q,k,i,i ≡ |Q(k)|−1/2, φi
Q,k,i,i = 1(Q(k−1))c [−hQ(k) + 〈hQ(k)〉Q(k−1) ],

φi+1
Q,k,i,i = · · · = φn

Q,k,i,i = |Q(k−1)|−1/21Q(k−1) .

Finally, for j ∈ {i + 1, . . . , n} we set

φ1
Q,k,i,j = · · · = φi−1

Q,k,i,j ≡ |Q(k)|−1/2, φi
Q,k,i,j ≡ 〈hQ(k)〉Q(k−1) ,

φi+1
Q,k,i,j = · · · = φj−1

Q,k,i,j ≡ |Q(k−1)|−1/2, φj
Q,k,i,j = |Q(k−1)|−1/21(Q(k−1))c ,
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φj+1
Q,k,i,j = · · · = φn

Q,k,i,j = |Q(k−1)|−1/21Q(k−1) .

With the same abuse of notation as with hR,i we set for y = (y1, . . . , yn) ∈ Rdn that

ΦQ,k,i,j(y) =
n∏

m=1
φm
Q,k,i,j(ym).

We are ready to move forward. Suppose Q and R are as in σi
3 with �(R) = 2k�(Q). We 

will denote the function hR,i also by uQ,k,i. Note that if y = (y1, . . . , yn) with ym ∈ Q(k−1)

for all m, then uQ,k,i(y) = 〈uQ,k,i〉Qn . With the previous definitions we have the identity

〈ThR,i, hQ〉 = 〈uQ,k,i〉Qn〈T1, hQ〉 −
n∑

j=1
〈TΦQ,k,i,j , hQ〉,

where we recall that the operators 〈T1, hQ〉 and 〈TΦQ,k,i,j , hQ〉 are interpreted as in 
(2.13). This gives that σi

3 = σi
3,π −

∑n
j=1 σ

i
3,e,j , where

σi
3,π :=

∑
Q∈Dgood

∞∑
k=1

〈uQ,k,i〉Qn〈〈T1, hQ〉[〈F, uQ,k,i〉], 〈fn+1, hQ〉〉 (6.23)

and

σi
3,e,j :=

∑
Q∈Dgood

∞∑
k=1

〈〈TΦQ,k,i,j , hQ〉[〈F, uQ,k,i〉], 〈fn+1, hQ〉〉.

The term σi
3,π will become part of the paraproduct that is considered in the next 

section. Now we look at the error terms σi
3,e,j . We consider each of them separately, so 

we fix j ∈ {1, . . . , n}.
The term σi

3,e,j can be written as

σi
3,e,j =

∞∑
k=1

∑
K∈D

∑
Q∈Dgood

Q(k)=K

〈〈TΦQ,k,i,j , hQ〉[〈F, uQ,k,i〉], 〈fn+1, hQ〉〉.

From here it is seen that this produces a series of shifts that satisfy the requirements of 
the representation theorem once we have shown that if k, K and Q are as in σi

3,e,j , then

C−12αk/2|K|n/2|Q|−1/2〈TΦQ,k,i,j , hQ〉 ∈ A(CCZ,α(K)). (6.24)

Notice that we have the right normalisation since

|K|n/2|Q|−1/2 ∼ |Q(k)|−i/2|Q(k−1)|−(n−i)/2|Q|−1/2|K|n.
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Recall the functions λ and λQ from (6.19) and (6.21). Notice that the j-coordinate of 
ΦQ,k,i,j is supported in the complement of Q. Therefore, using the definition (2.13) of 
〈TΦQ,k,i,j , hQ〉, we have that 〈TΦQ,k,i,j , hQ〉 is the sum of

∫
Rd

∫
(CdQ)n

K(x, y)
λ(x, y) λ(x, y)ΦQ,k,i,j(y)hQ(x) dy dx (6.25)

and ∫
Rd

∫
((CdQ)n)c

K(x, y) −K(cQ, y)
λQ(x, y) λQ(x, y)ΦQ,k,i,j(y)hQ(x) dy dx. (6.26)

Let us first consider the case k ≤ r. Using the pointwise normalisation |ΦQ,k,i,j(y)| �
|Q(k)|−n/2 = |K|−n/2 we get, similarly as in (6.22), that

∫
Rd

∫
(CdQ)n

|ΦQ,k,i,j(y)hQ(x)|(∑n
m=1 |x− ym|

)dn dy dx � |K|−n/2|Q|−1/2
∫
Q

∫
CdQ\Q

1
|x− yj |d

dyj dx

� |K|−n/2|Q|1/2.

In the same way, there holds that

∫
Rd

∫
((CdQ)n)c

|x− cQ|α|ΦQ,k,i,j(y)hQ(x)|(∑n
m=1 |cQ − ym|

)dn+α
dy dx � |Q|1/2

|K|n/2
∫
Qc

�(Q)α

|cQ − yj |d+α
dyj

� |K|−n/2|Q|1/2.

These estimates prove (6.24) in the case k ≤ r.
Assume then that k > r. The j-coordinate of ΦQ,k,i,j is supported in (Q(k−1))c. 

Because Q is a good cube, we have Q(k−1) ⊃ Q(r) ⊃ CdQ, which uses the fact that r
is large enough. Thus, the integral (6.25) is zero. Related to (6.26) there holds by the 
goodness of the cube Q that

∫
Rd

∫
Rdn

|x− cQ|α|ΦQ,k,i,j(y)hQ(x)|(∑n
m=1 |cQ − ym|

)dn+α
dy dx � |Q|1/2

|K|n/2
∫

(Q(k−1))c

�(Q)α

|cQ − yj |d+α
dyj

� |Q|1/2
|K|n/2

�(Q)α

(�(Q)γ�(K)1−γ)α .

Since 1 − γ ≥ 1/2, we also get the right geometric decay. We have proved (6.24) also in 
the case k > r.
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6.4. Step IV: paraproduct

We consider the term

σi
3,π :=

∑
Q∈Dgood

∞∑
k=1

〈uQ,k,i〉Qn〈〈T1, hQ〉[〈F, uQ,k,i〉], 〈fn+1, hQ〉〉

from (6.23). Here we will sum up the corresponding terms σi
3,π, i ∈ {1, . . . , n}, to get 

one paraproduct.
Recalling the implicit summation over the cancellative Haar functions we have that

〈uQ,k,i〉Qn〈T1, hQ〉[〈F, uQ,k,i〉]
= 〈T1, hQ〉[(〈f1〉Q(k) , . . . , 〈fi−1〉Q(k) , 〈ΔQ(k)fi〉Q(k−1) , 〈fi+1〉Q(k−1) , . . . , 〈fn〉Q(k−1))].

Summing these together over i ∈ {1, . . . , n} yields

n∑
i=1

〈uQ,k,i〉Qn〈T1, hQ〉[〈F, uQ,k,i〉] = 〈T1, hQ〉[〈F 〉Q(k−1) ] − 〈T1, hQ〉[〈F 〉Q(k) ],

where 〈F 〉Q denotes (〈f1〉Q, . . . , 〈fn〉Q). Finally, we get the desired paraproduct:

n∑
i=1

σi
3,π =

∑
Q∈Dgood

∞∑
k=1

〈
〈T1, hQ〉[〈F 〉Q(k−1) ] − 〈T1, hQ〉[〈F 〉Q(k) ], 〈fn+1, hQ〉

〉
=

∑
Q∈Dgood

〈〈T1, hQ〉[〈F 〉Q], 〈fn+1, hQ〉〉 = 〈πD,[T1]Dgood
[F ], fn+1〉.

6.5. Synthesis of the steps I-IV

We summarize what we have done so far. We have shown that the terms σi
1, σi

2 and 
σi

3,e,j , where i, j ∈ {1, . . . , n}, can be represented in terms of shifts. Also, we proved that 
the sum 

∑n
i=1 σ

i
3,π produces a paraproduct. Therefore, one of the main terms

∑
Q∈Dgood

Λn+1(Q) =
n∑

i=1

[
σi

1 + σi
2 +

n∑
j=1

σi
3,e,j + σi

3,π

]

satisfies the required identity for the representation theorem. By symmetry, this gives 
the corresponding identity for the terms 

∑
Q∈D Λm(Q), m ∈ {1, . . . , n}.
good
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6.6. Step V: diagonal

To finish the proof of Theorem 6.3 it remains to consider the term∑
Q∈Dgood

〈
Tm∗(E�(Q)g

m
1 , . . . ,E�(Q)g

m
j−1, D�(Q)g

m
j , E �(Q)

2
gmj+1, . . . , E �(Q)

2
gmn
)
,ΔQg

m
n+1

〉
,

where m ∈ {1, . . . , n} and j ∈ {m, . . . , n}. This is the term from (6.12). For notational 
convenience write gj := gmj and G = (g1, . . . , gn). The term under consideration can be 
written as∑

Q∈Dgood

∑
R∈Dj

�(R)=�(Q)

〈
Tm∗[V j

RG],ΔQgn+1
〉

=
∞∑
j=0

∑
K∈D

∑
Q∈Dgood,R∈Dj

2j�(Q)=2j�(R)=�(K)
Q∨R=K

〈〈Tm∗hR,j , hQ〉[〈G, hR,j〉], 〈gn+1, hQ〉〉.

Notice that the common parents exist since the cubes Q are good. Those pairs (Q, R), 
R = Q1 × · · · ×Qn, where Q ∩Qu = ∅ for some u, can be handled with the arguments 
presented above: either Q and R are separated as in Step I, or then Q and R are close 
to each other as in Step II. So the new part here is∑

Q∈Dgood

∑
R=Q1×···×Qn∈Dj

Q1=···=Qj=Q
Qj+1,...,Qn∈ch(Q)

〈〈Tm∗hR,j , hQ〉[〈G, hR,j〉], 〈gn+1, hQ〉〉

=
∑
Q∈D

∑
Q1,...,Qn∈D

Q1=···=Qj=Qn+1=Q
Qj+1,...,Qn∈ch(Q)

〈aQ,Q1...,Qn+1 [〈f1, h̃Q1〉, . . . , 〈fn, h̃Qn
〉], 〈fn+1, h̃Qn+1〉〉,

(6.27)

where aQ,(Qi) := aQ,Q1...,Qn+1 = 1good(Q)〈T [h̃Q1 , . . . , ̃hQn
], ̃hQn+1〉. We defined for Q ∈

D that 1good(Q) = 1 if Q is good and 1good(Q) = 0 if Q is not good. If j = m, then 
h̃Qi

= h0
Qj

for i ∈ {1, . . . , n} \{m} and ̃hQi
= hQi

for i ∈ {m, n +1}. If j ∈ {m +1, . . . , n}, 
then h̃Qi

= h0
Qj

for i ∈ {1, . . . , n + 1} \ {m, j} and h̃Qi
= hQi

for i ∈ {m, j}. We divide 
(6.27) into two by splitting the coefficients as aQ,(Qi) = aQ,(Qi),1 + aQ,(Qi),2, where

aQ,(Qi),1 = 1good(Q)
∑

Q′
1,...,Q

′
n+1∈ch(Q)

Q′
u �=Q′

l for some u and l

〈T [1Q′
1
h̃Q1 , . . . , 1Q′

n
h̃Qn

], 1Q′
n+1

h̃Qn+1〉

and

aQ,(Qi),2 = 1good(Q)
∑

′

〈T [1Q′ h̃Q1 , . . . , 1Q′ h̃Qn
], 1Q′ h̃Qn+1〉.
Q ∈ch(Q)
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Let Q1 = · · · = Qj = Qn+1 = Q ∈ D and Qj+1, . . . , Qn ∈ ch(Q). Consider first the 
coefficient aQ,(Qi),1. Suppose Q′

1, . . . , Q
′
n+1 ∈ ch(Q) are such that Q′

u �= Q′
l for some u

and l. Recall the function λ(x, y) =
(∑n

m=1 |x − ym|
)−dn. Then

〈T [1Q′
1
h̃Q1 , . . . , 1Q′

n
h̃Qn

], 1Q′
n+1

h̃Qn+1〉 =
∫
Rd

∫
Rdn

K(x, y)
λ(x, y) ϕ(x, y) dy dx, (6.28)

where

ϕ(x, y) = λ(x, y)
n∏

m=1
1Q′

m
(ym)h̃Qm

(ym)1Q′
n+1

(x)h̃Qn+1(x).

Similarly as in (6.22) we see that 
∫∫

|ϕ(x, y)| dx dy � |Q|−(n+1)/2|Q|. Since aQ,(Qi),1 is a 
finite sum of terms of the form (6.28), this shows that

C−1
n+1∏
m=1

|Qm|−1/2|Q|naQ,(Qi),1 ∈ A(CCZ,α(K)).

Consider then the coefficient aQ,(Qi),2. Suppose Q′ ∈ ch(Q). We may obviously suppose 
that Qj+1 = · · · = Qn = Q′. Then, we have

〈T [1Q′ h̃Q1 , . . . , 1Q′ h̃Qn
], 1Q′ h̃Qn+1〉 = ± |Q′|∏n+1

m=1 |Qm|1/2
〈T [1Q′ , . . . , 1Q′ ], 1Q′〉

|Q′| ,

where 〈T [1Q′ , . . . , 1Q′ ], 1Q′〉/|Q′| ∈ Cweak(T ). Since aQ,(Qi),2 is a finite sum of operators 
of this type, we are done with Step V.

6.7. Step VI: T is not a priori bounded

It is possible to first prove a representation theorem in a certain finite set up, where no 
a priori boundedness is needed to make the calculations legitimate (as all the sums are 
finite to begin with). The proof is similar to the above except for some initial probabilistic 
preparations related to the finite setup inside a given fixed cube. Reductions of this type 
appear e.g. in [9] and [20]. We omit the technical details in our setting as they are 
similar. A corollary of such a special representation is the boundedness of T , say from ∏n

m=1 L
n+1(Xm) to L(n+1)/n(Yn+1). After this, we can run the above argument. We are 

done with the proof. �
6.29 Remark. We make a remark here about the WBP in the linear setting, and describe 
a seemingly weaker condition in that setting, which can still be used to estimate the 
“diagonal” in the T1 argument.

Suppose X1, X2 are UMD spaces and 1 < p < ∞. Let T : Lp(X1) → Lp(X∗
2 ) be a 

bounded linear operator. Then, for {eQ}Q∈D ⊂ X1, we have
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E
∥∥∥ ∑

Q∈D
εQ〈T (eQ1Q)〉Q1Q

∥∥∥
Lp(X∗

2 )
� ‖T‖Lp(X1)→Lp(X∗

2 )E
∥∥∥ ∑

Q∈D
εQeQ1Q

∥∥∥
Lp(X1)

. (6.30)

Indeed, the left hand side is dominated by

E
∥∥∥ ∑

Q∈D
εQT (eQ1Q)

∥∥∥
Lp(X∗

2 )

by Stein’s inequality, from which the claim follows using linearity. We denote the smallest 
possible constant in (6.30) by Rweak (which may depend on the exponent p).

We recall that our usual WBP means the R-boundedness of the operators

|Q|−1〈T1Q, 1Q〉 = 〈T1Q〉Q,

which means the estimate

E
∥∥∥ ∑

Q∈D
εQ〈T (eQ1Q)〉Q

∥∥∥
X∗

2

≤ CWBPE
∥∥∥ ∑

Q∈D
εQeQ

∥∥∥
X1

. (6.31)

We show that Rweak � CWBP. Actually, there holds that

CWBP ≥ sup
x∈Rd

R({〈T1Q〉Q : x ∈ Q ∈ D}) =: C̃WBP,

and we show that Rweak � C̃WBP. The proof is quite immediate. Raising the left hand 
side of (6.30) to power p and using Kahane-Khintchine inequality we are left with

E

∫
Rd

∥∥∥ ∑
Q∈D

εQ〈T (eQ1Q)〉Q1Q(x)
∥∥∥p
X∗

2

dx

�
∫
Rd

ER({〈T1Q〉Q : x ∈ Q ∈ D})p
∥∥∥ ∑

Q∈D
εQeQ1Q(x)

∥∥∥p
X1

dx

≤ C̃p
WBPE

∫
Rd

∥∥∥ ∑
Q∈D

εQeQ1Q(x)
∥∥∥p
X1

dx,

which gives the proof.
We then look at how the Rweak-condition handles the diagonal in the T1 argument. 

We consider a zero complexity shift whose coefficient operators {aQ}Q∈D satisfy the 
estimate (6.30) (so aQ in place of 〈T (1Q)〉Q). Then we simply have:∥∥∥ ∑

Q∈D
aQ〈f, hQ〉hQ

∥∥∥
Lp(X∗

2 )
∼ E

∥∥∥ ∑
Q∈D

εQaQ〈f, hQ〉1Q/|Q|1/2
∥∥∥
Lp(X∗

2 )

� E
∥∥∥ ∑ εQ〈f, hQ〉1Q/|Q|1/2

∥∥∥
Lp(X1)

� ‖f‖Lp(X).
(6.32)
Q∈D
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Finally, we remark that we do not know how to formulate a similar weak boundedness 
condition in the multilinear setting.

7. R-boundedness of bilinear shifts

In this section we consider the R-boundedness properties of families of shifts. Let 
X1 . . . , Xn, Yn+1 be UMD spaces, Xn+1 = Y ∗

n+1 and let �0 :
∏

m Xm → C be a con-
traction as in (3.3). Fix some exponents pm ∈ (1, ∞) such that 

∑n+1
m=1 1/pm = 1 and let 

� :
∏

m Lpm(Xm) → C be as in (3.12).
Suppose {Sj}j is a family of shifts, all of them defined with respect to a grid D

and having a fixed complexity k. Recall the families C(Sj) from (2.14) that consist of the 
normalized coefficients. It seems that the R�-boundedness condition from Definition 3.15
is not suitable for proving that

R�

({
Sj :

n∏
m=1

Lpm(Xm) → Lp′
n+1(Yn+1)

}
j

)
is dominated by R�0(

⋃
j C(Sj)), that is, we can not prove that if the family of coefficients ⋃

j C(Sj) is R�0 -bounded, then {Sj}j is R�-bounded.
Currently, we are only able to come up with a suitable R-boundedness condition that 

works for families of shifts in the bilinear case. But even here we need to modify the one 
we used previously: we need a somewhat stronger condition, but then also the conclusion 
is stronger – i.e., the families of shits will satisfy the said stronger condition. We now 
start considering the bilinear case, and here, as usual, no contraction � is needed.

We now introduce this stronger bilinear R-boundedness condition, which we call R̂-
boundedness. After this we will show that if the spaces Xm have Pisier’s property (α), 
then R̂({Sj}j) � R̂(

⋃
j C(Sj)).

We denote by Rad2(X) the space of those doubly indexed sequences (el,m)∞l,m=1 of 
elements of X such that

‖(el,m)∞l,m=1‖Rad2(X) :=
(
E
∥∥∥ ∞∑

l,m=1

εl,mel,m

∥∥∥2

X

)1/2
< ∞.

7.1 Definition. Let X1, X2 and Y3 be Banach spaces and write X3 = Y ∗
3 . Suppose 

T ⊂ L(X1 ×X2, Y3) is a family of operators. We say that T is R̂-bounded if there exists 
a constant C such that for all N ∈ N, Tt,u,v ∈ T , e1

t,u ∈ X1, e2
u,v ∈ X2 and e3

t,v ∈ X3, 
where t, u, v ∈ {1, . . . , N}, there holds that

N∑
t,u,v=1

|〈Tt,u,v[e1
t,u, e

2
u,v], e3

t,v〉| ≤ C
3∏

i=1
‖(eil,m)Nl,m=1‖Rad2(Xi).

The smallest possible constant C is denoted by R̂(T ).
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7.2 Theorem. Let X1, X2 and Y3 be UMD spaces with Pisier’s property (α) and suppose 
p1, p2, p3 ∈ (1, ∞) satisfy 

∑
m 1/pm = 1. Let D be a dyadic lattice in Rd and fix some 

complexity k = (k1, k2, k3), 0 ≤ ki ∈ Z. Suppose {Sj}j∈J is a family of operator-valued 
bilinear dyadic shifts with respect to the spaces X1, X2 and Y3, where each Sj = Sk

D,j is 
a shift of complexity k with respect to the lattice D. Then

R̂({Sj : Lp1(X1) × Lp2(X2) → Lp′
3(Y3) : j ∈ J }) � (1 + max

j
kj) R̂

(⋃
j

C(Sj)
)
.

Proof. We divide the collection {Sj}j∈J into three subcollections according to the type 
of the shifts, that is, according to the place of the non-cancellative Haar function. We 
show that each of these subcollections satisfies the required estimate, and therefore their 
union satisfies it also. Thus, we assume that each Sj is of the form

Sj(f1, f2) =
∑
K∈D

∑
Ii∈D

I
(ki)
i =K

ajK,(Ii)[〈f1, hI1〉, 〈f2, h
0
I2〉]hI3 .

The other two cases are handled symmetrically.
Let N ∈ N and suppose St,u,v ∈ {Sj}j∈J , f1

t,u ∈ Lp1(X1), f2
u,v ∈ Lp2(X2) and 

f3
t,v ∈ Lp3(X3) for t, u, v ∈ {1, . . . , N}. Abbreviate C :=

⋃
j C(Sj). We need to show that 

for arbitrary εt,u,v ∈ C with |εt,u,v| = 1 there holds that

∣∣∣ N∑
t,u,v=1

εt,u,v〈St,u,v[f1
t,u, f

2
u,v], f3

t,v〉
∣∣∣

� R̂(C)‖(f1
t,u)t,u‖Rad2(Lp1 (X1))‖(f2

u,v)u,v‖Rad2(Lp2 (X2))‖(f3
t,v)t,v‖Rad2(Lp3 (X3))

∼ R̂(C)‖F1‖Lp1 (Rad2(X1))‖F2‖Lp2 (Rad2(X2))‖F3‖Lp3 (Rad2(X3)),
(7.3)

where F1 : Rd → Rad2(X1), F1(x) = (ft,u(x))t,u, and similarly F2 = (f2
u,v)u,v, F3 =

(f3
t,v)t,v. The last step was obtained using the Kahane-Khintchine inequality. We will 

now construct a new shift S so that

N∑
t,u,v=1

εt,u,v〈St,u,v[f1
t,u, f

2
u,v], f3

t,v〉 = 〈S(F1, F2), F3〉. (7.4)

Then we show that

|〈S(F1, F2), F3〉| � R̂(C)
∏
i

‖Fi‖Lpi (Rad2(Xi)),

from which the desired estimate (7.3) follows.
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Denote the coefficients of St,u,v by at,u,vK,(Ii). Let I1, I2, I3, K ∈ D be such that I(ki)
i = K. 

Define the operator aK,(Ii) ∈ L(Rad2(X1) × Rad2(X2), Rad2(Y3)) by

〈aK,(Ii)[e
1, e2], e3〉 =

N∑
t,u,v=1

εt,u,v〈at,u,vK,(Ii)[e
1
t,u, e

2
u,v], e3

t,v〉,

where ei = (eil,m)l,m ∈ Rad2(Xi). The shift S is defined with these coefficients by

S(G1, G2) :=
∑
K∈D

∑
Ii∈D

I
(ki)
i =K

aK,(Ii)[〈G1, hI1〉, 〈G2, h
0
I2〉]hI3 ,

where Gi ∈ Lpi(Rad2(Xi)), i = 1, 2. We see that (7.4) is satisfied.
It remains to show that the shift S is bounded, which follows by Theorem 4.1 from 

the R-boundedness of the family of coefficients {aK,(Ii)}K,(Ii) (notice that Rad(X) is 
UMD if X is). To check this, let the admissible partition be for example {{1}, {2, 3}}. 
Choose some W ∈ N. For each w = 1, . . . , W let aw := aK(w),(Ii(w)) be one of the 
coefficients of S, and accordingly write at,u,vw := at,u,vK(w),(Ii(w)). Also, let e1 ∈ Rad2(X1)
and ei,w = (ei,wl,m)l,m ∈ Rad2(Xi) for i = 2, 3 and w = 1, . . . , W . Then

∣∣∣ W∑
w=1

〈aw[e1, e2,w], e3,w〉
∣∣∣ = ∣∣∣ W∑

w=1

N∑
t,u,v=1

εt,u,v〈at,u,vw [e1
t,u, e

2,w
u,v ], e3,w

t,v 〉
∣∣∣.

We see that the pairs (v, w) appear in at,u,vw , e2,w
u,v and e3,w

t,v . Therefore, we look at the 
last sum as a sum over triples (t, u, (v, w)). Thus, we see that

∣∣∣ W∑
w=1

〈aw[e1, e2,w], e3,w〉
∣∣∣ ≤ R̂(C)‖(e1

t,u)t,u‖Rad2(X1)

×
(
E
∥∥∥ ∑

u,v=1,...,N
w=1,...,W

εu,v,we
2,w
u,v

∥∥∥2
X2

)1/2(
E
∥∥∥ ∑

t,v=1,...,N
w=1,...,W

εt,v,we
3,w
t,v

∥∥∥2

X3

)1/2
.

Using the fact that X2 has Pisier’s property (α), we have that

(
E
∥∥∥ ∑

u,v=1,...,N
w=1,...,W

εu,v,we
2,w
u,v

∥∥∥2

X2

)1/2
∼
(
EE′
∥∥∥ ∑

u,v=1,...,N
w=1,...,W

εwε
′
u,ve

2,w
u,v

∥∥∥2

X2

)1/2

=
(
E
∥∥∥ W∑

w=1
εwe

2,w
∥∥∥2

Rad2(X2)

)1/2
.

Doing the same estimate for the term related to X3 we have shown that
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∣∣∣ W∑
w=1

〈aw[e1, e2,w], e3,w〉
∣∣∣

� ‖e1‖Rad2(X1)‖(e2,w)Ww=1‖Rad(Rad2(X2))‖(e3,w)Ww=1‖Rad(Rad2(X3)),

which is what we wanted to show. This concludes the proof. �
8. Multi-linear multi-parameter analysis

In this section we apply our operator-valued theory to prove multi-parameter esti-
mates in our multilinear setup. Such a strategy requires R-boundedness estimates, so 
in light of the previous section we will eventually have to restrict to the fundamental 
bilinear case. Focusing only on the essentials, we will simply prove estimates for dyadic 
shifts. After this, the full paraproduct free singular integral theory in the same bilin-
ear multi-parameter operator-valued generality would only require the development of 
the corresponding representation theory. We do not anymore pursue this rather lengthy 
avenue here.

We define an n-linear m-parameter operator-valued dyadic shift in

Rd =
m∏
i=1

Rdi , di ≥ 1.

Suppose X1, . . . , Xn, Yn+1 are Banach spaces. Let also D =
∏m

i=1 Ddi , where Ddi is a 
dyadic grid in Rdi , i = 1, . . . , m. Fix the complexity k = (kj)n+1

j=1 , kj = (kij)mi=1, kij ≥ 0. 
In what follows h̃I ∈ {hI , h0

I} if I ∈ Ddi for some i.
An n-linear m-parameter operator-valued shift Sk = Sk

D has the form

Sk(f1, . . . , fn) =
∑

K=
∏m

i=1 Ki∈D
Ak

K(f1, . . . , fn),

where

Ak
K(f1, . . . , fn) =

∑
Q1,...,Qn+1∈D

Q
(kj)
j =K

aK,(Qj)
[〈
f1, h̃Q1

〉
, . . . ,

〈
fn, h̃Qn

〉]
h̃Qn+1 .

Here fj ∈ L1
loc(Rd; Xj),

aK,(Qj) = aK,Q1,...,Qn+1 ∈ L
( n∏

j=1
Xj , Yn+1

)
,

Qj =
m∏

Qi
j , Qi

j ∈ Ddi , Q
(kj)
j :=

m∏
(Qi

j)(k
i
j) and h̃Qj

= ⊗m
i=1h̃Qi

j
.

i=1 i=1
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We assume that for all K and the related (Q1, . . . , Qn+1) we have for every i = 1, . . . , m
that in exactly two fixed positions, depending on i (but on nothing else), of the tuple 
(h̃Qi

j
)n+1
j=1 we have cancellative Haar functions, e.g. that

(h̃Qi
j
)n+1
j=1 = (hQi

1
, hQi

2
, h0

Qi
3
, . . . , h0

Qi
n+1

).

Moreover, we form the collection

C(Sk) =
{ |K|n∏n+1

j=1 |Qj |1/2
aK,(Qj) : K,Q1, . . . , Qn+1 ∈ D, Q

(kj)
j = K

}
. (8.1)

Define D>t := Ddt+1×· · ·×Ddm , t = 1, . . . , m −1, so that we can write D = D≤t×D>t. 
Define similarly e.g. Rd

>t = Rdt+1 ×· · ·×Rdm , kj,>t = (kij)mi=t+1. For K1, Q1
1, . . . , Q

1
n+1 ∈

Dd1 and functions gj : Rd
>1 → Xj define

SK1,(Q1
j )(g1, . . . , gn)

:=
∑

K>1=
∏m

i=2 Ki∈D>1

∑
Q1,>1,...,Qn+1,>1∈D>1

Q
(kj,>1)
j,>1 =K>1

aK,(Qj)
[〈
g1, h̃Q1,>1

〉
, . . . ,

〈
gn, h̃Qn,>1

〉]
h̃Qn+1,>1 ,

where K := K1 ×K>1, Qj = Q1
j ×Qj,>1. Notice that we can write

Sk(f1, . . . , fn) =
∑

K1∈Dd1

∑
Q1

1,...,Q
1
n+1∈Dd1

(Q1
j )

(k1
j )=K1

SK1,(Q1
j )[〈f1, h̃Q1

1
〉, . . . , 〈fn, h̃Q1

n
〉]h̃Q1

n+1
.

Let � :
∏n+1

i=1 Xi → C be a contraction as in (3.3) and suppose (X1, . . . , Xn+1), where 
Xn+1 := Y ∗

n+1, satisfies the RMF� condition. Fix pj ∈ (1, ∞) so that 
∑n+1

j=1 1/pj = 1
and let �>1 :

∏n+1
j=1 Lpj (Rd

>1; Xj) → C be as in (3.12). Example 3.27 says that the tuple 
of UMD spaces (Lp1(Rd

>1; X1), . . . , Lpn+1(Rd
>1; Xn+1)) satisfies the RMF�>1 condition. 

Viewing Sk as an n-linear operator-valued shift of complexity (k1
j )n+1

j=1 acting on functions 
fj ∈ Lpj (Rd1 ; Lpj (Rd

>1; Xj)) = Lpj (Rd; Xj) Theorem 4.1 says that

‖Sk(f1, . . . , fn)‖Lqn+1 (Rd;Yn+1) � (1 + max
j

k1
j )n−1R>1

n∏
j=1

‖fj‖Lpj (Rd;Xj),

where

R>1 := R�>1

({ |K1|∏n+1
j=1 |Q1

j |1/2
SK1,(Q1

j ) :
n∏

j=1
Lpj (Rd

>1;Xj) → Lp′
n+1(Rd

>1;Yn+1) :

K1, Q1
j ∈ Dd1 , (Q1

j )(k
1
j ) = K1

})
.



60 F. Di Plinio et al. / Journal of Functional Analysis 279 (2020) 108666
Now we need to revert to the bilinear setting, since as explained in Section 7, we do not 
have a suitable theory for the R-boundedness of n-linear shifts if n > 2.

8.1. Boundedness of bilinear multi-parameter operator-valued shifts

Suppose we have a family {Sk
u}u∈U of bilinear multi-parameter operator-valued shifts 

as above. Suppose X1, X2, Y3 are UMD spaces with Pisier’s property (α). Recall that 
spaces of the form Lp(Ω; X) are UMD and have Pisier’s property (α) if X is UMD and 
has Pisier’s property (α). Therefore, we can iterate the above scheme using Theorem 7.2
to get that given p1, p2, q3 ∈ (1, ∞) with 1/p1 + 1/p2 = 1/q3 we have

R̂({Sk
u : Lp1(Rd;X1) × Lp2(Rd;X2) → Lq3(Rd;Y3) : u ∈ U})

�
m∏
i=1

(1 + max
j

kij) R̂
( ⋃

u∈U
C(Sk

u)
)
.
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