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We establish the sharp growth rate, in terms of cardinality, of the Lp norms of the

maximal Hilbert transform H� along finite subsets of a finite order lacunary set of

directions � ⊂ R
3, answering a question of Parcet and Rogers in dimension n =

3. Our result is the first sharp estimate for maximal directional singular integrals

in dimensions greater than 2. The proof relies on a representation of the maximal

directional Hilbert transform in terms of a model maximal operator associated to

compositions of 2D angular multipliers, as well as on the usage of weighted norm

inequalities, and their extrapolation, in the directional setting.

1 Introduction

Let n ≥ 2. The Hilbert transform along a direction ω ∈ Sn−1 acts on Schwartz functions

on R
n by the principal value integral

Hωf (x) := p.v.
∫
R

f (x + tω)
dt

t
, x ∈ R

n.
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2 F. Di Plinio and I. Parissis

If � ⊂ Sn−1, we may define the corresponding maximal directional Hilbert transform

H�f := sup
ω∈�

|Hωf |. (1.1)

The main result of this paper is the following sharp estimate in the three-dimensional

case.

Theorem 1.1. Let � ⊂ S2 be a finite order lacunary set [28]. Then for all 1 < p <∞

sup
O⊂�
#O≤N

‖HO‖Lp(R3)→Lp(R3) ≤ C
√

log N. (1.2)

The positive constant C may depend on 1 < p <∞ and on the lacunary order of � only.

We stress that the supremum in Theorem (1.1) is taken over all subsets O

having finite cardinality N of a given finite order lacunary set �, which may be infinite.

Theorem 1.1 is in fact the Lebesgue measure case of a more general sharp weighted

norm inequality, which is a natural by-product of our proof techniques and is detailed

in Corollary 1 for the interested reader. In [22] Labaet al. have extended to dimensions

n ≥ 2 the lower bound (due to Karagulyan [19] in the case n = 2)

inf
#�=N

‖H�‖L2(Rn)→L2(Rn) = cn
√

log N, (1.3)

where the infimum is taken over all sets � ⊂ Sn−1 of finite cardinality N. A comparison

with the upper bound of Theorem 1.1 and interpolation reveals that the dependence on

the cardinality of the set of directions in our theorem is sharp for all 1 < p <∞. In fact,

[22] proves the analog of (1.3) for all 1 < p <∞.

1.1 Maximal and singular integrals along sets of directions

The study of cardinality-free or sharp bounds for the companion directional maximal

operator to (1.1)

M�f (x) = sup
ω∈�

Mωf (x), Mωf (x) := sup
ε>0

1

2ε

∫ ε

−ε

|f (x + tω)|dt, x ∈ R
n (1.4)

is a classical subject in real and harmonic analysis, with deep connections to multiplier

theorems, Radon transforms, and the Kakeya problem, to name a few. The seminal
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Maximal Directional Hilbert Transform 3

article by Nagel et al. [26] contains a proof that the projection on Sn−1 of the set of

directions

�λ := {(λkα1 , . . . , λkαn) : k ≥ 1}, 0 < λ < 1,

gives rise to a bounded maximal operator M�λ in any dimension n ≥ 2. Besides

providing the 1st higher-dimensional example of such a set of directions, article [26]

contains the important novelty of treating the geometric maximal operator M� through

Fourier analytic tools. This allowed the authors to break the barrier p = 2 that was

present in previous works of Córdoba and Fefferman [7] and Strömberg [31], where the

authors used mostly geometric arguments.

Sjögren and Sjölin [29] proved that, in dimension n = 2, a sufficient condition

for the Lp-boundedness of M� for some (equivalently for all) 1 < p < ∞ is that � is a

lacunary set of finite order; loosely speaking, in dimension n = 2, a lacunary set �′ of

order L is obtained from a lacunary set � of order L − 1 by inserting within each gap

between two consecutive elements a, b ∈ � two subsequences of suitably rotated copies

of �1 having a, b as limit points.

Bateman [2] subsequently showed that (up to finite unions) finite order lacu-

narity of � is necessary in order for M� to admit nontrivial Lp-bounds when � is an

infinite set. While the counterexample by Bateman is highly nontrivial and employs a

probabilistic construction based upon tree percolation, it is rather easy to see that the

Lp norm of M� must depend on N if � is, say, the set of N-th roots of unity. In fact, the

sharp dependence

‖M�‖L2(R2)→L2(R2) ∼ log N (1.5)

for sets of this type was proved by Strömberg [31]; in [20], the structural restriction on

� was lifted and the upper bound in (1.5) was shown to hold for all finite � ⊂ S1 with

cardinality N. Further results concerning maximal operators along directions coming

from sets with intermediate Hausdorff and fractal dimension can be found in [15, 17].

We already reviewed that, in all dimensions n ≥ 2, [26] provides us with an

example of a lacunary set of directions �λ for which M�λ is bounded on Lp(Rn) for all

1 < p < ∞. Another significant higher-dimensional example is given in the article of

Carbery, [5], where the author considers the projection on Sn−1 of the infinite set

�n−1 :=
{
(2k1 , . . . , 2kn) : (k1, . . . , kn) ∈ Z

}
,

and proves that M�n−1 is bounded on Lp(Rn) for all 1 < p < ∞. In dimension n = 2

the set �1 is the paradigmatic example of lacunary subset of S1. By the same token, the
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4 F. Di Plinio and I. Parissis

Carbery set �n−1 can be considered as the canonical example of a higher-order, higher-

dimensional lacunary set. More precisely (cf. Definition 2.2) �n−1 is a lacunary set of

order n− 1 with exactly one direction in each cell of the dissection.

In dimensions n ≥ 3, a general sufficient characterization of those infinite � ⊂
Sn−1 giving rise to bounded directional maximal operators, subsuming those of [5, 26],

was recently established by Parcet and Rogers [28] via an almost-orthogonality principle

for the Lp norms of M�, resembling in spirit that of [1] by Alfonseca et al. in the 2D case.

This principle leads naturally to the notion of a lacunary subset of Sn−1 when n ≥ 3,

which is a sufficient condition for nontrivial Lp-bounds of (1.4). Again loosely speaking,

� ⊂ Sn−1 is lacunary of order 1 if there exists a choice of orthonormal basis (ONB)—in

the language of [28], a dissection of the sphere Sn−1—such that for all pairs of coordinate

vectors ej, ek the projection of � on the linear span of ej, ek is a 2D lacunary set; higher-

order lacunary sets are defined inductively in the natural way. The authors of [28] also

provide a necessary condition that is slightly less restrictive than finite order lacunarity;

we send to their article for a precise definition.

As (1.3) shows, if � ⊂ Sn−1 is infinite, H� is necessarily unbounded. Therefore,

the question of sharp quantitative bounds for H� in terms of the (finite) cardinality

of the set � arises as a natural substitute of uniform bounds. In dimension n = 2,

several sharp or near-sharp results of this type have been obtained by Demeter [8],

Demeter and the 1st author [9], and the authors in [10]. We choose to send to these

references for detailed statements and just mention the quantitative bounds that are

the closest precursors of our Theorem 1.1. To begin with, the 2D analog of (1.2), with

the same O(
√

log N) quantitative dependence, was proved by the authors in [10]. The

methods of [10] are essentially relying on the fact that (lacunary) directions in n = 2

can be naturally ordered and that this order yields a telescopic representation of H� as

a maximal partial sum of Fourier restrictions to disjoint (lacunary) cones: see also [8,

19]. These methods do not extend to dimensions three and higher, where no ordering is

possible in general. On the other hand, in [28, Corollary 4.1], following the ideas of [9,

Theorem 1], the authors derive the quantitative estimate

sup
O⊂�
#O≤N

‖HO‖Lp(Rn)→Lp(Rn) ≤ C log N ‖M�‖Lp(Rn)→Lp(Rn) (1.6)

at the root of which lies Hunt’s exponential good-λ comparison principle between

maximal and singular integrals [18]. Coupling (1.6) with the main result of [28] yields

that the norms of the maximal Hilbert transform over finite subsets of a given finite
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Maximal Directional Hilbert Transform 5

order lacunary set in any dimension grow at most logarithmically with the cardinality

of the subset. When n = 3, Theorem 1.1 improves this result to the sharp O(
√

log N)

quantitative dependence, answering the question posed by Parcet and Rogers in [28,

Section 4]. The estimate of Theorem 1.1 appears to be the 1st sharp quantitative estimate

for directional singular integrals in dimension n ≥ 3.

1.3 Techniques of proof

The key observation leading to the Parcet–Rogers theorem [28] is that the Fourier

support of the single scale distribution

f �→
∫
R

f (x − tω)ψ(t) dt,

where ψ is a Schwartz function on R, is covered by a union of 2D wedges �σ ,ω over

pairs σ of coordinate directions, provided that a suitable smooth n-dimensional average

of f at the same scale is subtracted off; the latter piece is controlled by the strong

maximal function of f . While these wedges heavily overlap with respect to σ , see

for example Figure 2, the authors use the inclusion–exclusion principle to reduce to

a square function estimate for compositions of 2D multipliers adapted to the wedges

�σ ,ω. The fact that this square function is a bounded operator on Lp follows from the

bounded overlap, for fixed σ , as ω ranges over a lacunary set �, of the associated wedges

�σ ,ω. The proof of our Theorem 1.1 is also based on a representation of the directional

Hilbert transform Hω involving 2D wedge multipliers, which splits Hω into an inner and

an outer part: cf. Lemma 3.2.

The inner part, which is supported on the union of the wedges �σ ,ω, is amenable

to a square function treatment; however, additional difficulties are encountered in

comparison to [28] as H� is not a positive operator and does not obey a trivial L∞-

estimate. We circumvent this difficulty by aiming for the stronger L2-weighted norm

inequality and relying on extrapolation theory for suitable weights in the natural

directional A2 classes. This requires extending the maximal inequality of [28] to the

weighted setting; while this extension does not require substantial additional efforts

we wrote out the proofs in detail for future reference. As we previously remarked, it also

has the pleasant effect of giving a much more general weighted version of Theorem 1.1:

see Corollary 1, Section 5.

Unlike the single-scale operator, the outer part of the decomposition is

nontrivial and is actually the one introducing the dependence on the cardinality of
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6 F. Di Plinio and I. Parissis

the set of directions. It is a signed sum of 2n terms, which are compositions of 2D

angular multipliers; in general, we cannot do better than estimating the maximal

operator associated to each summand. The key observation of our analysis at this

point is that these compositions can be bounded pointwise by (compositions of) strong

maximal operators, upon pre-composition with at most 
n
2 � directional Littlewood–

Paley projections; see Lemma 3.3 and Remark 6.4. An application of at most 
n
2 � Chang–

Wilson–Wolff decouplings, see Proposition 5.2, then reduces the maximal estimate to

a square function estimate upon loss of 
n
2 � factors of order

√
log N. This is enough to

obtain the sharp result for n = 2, 3 (and, less interestingly, recover (1.6) when n = 4, 5),

hinting on the other hand that this approach is not feasible in general dimensions.

In fact, perhaps surprisingly, we show with a counterexample that this growth

rate, worse than that of H� whenever n ≥ 6, is actually achieved by the maximal operator

associated to the outer parts. This phenomenon displays how the model operator of

Lemma 3.2, based on the combinatorics of 2D wedges, is not subtle enough to completely

capture the cancelation present in H�.

1.4 Relation to the Hilbert transform along vector fields

In addition to their intrinsic interest, Theorem 1.1 and predecessors may be seen as

building blocks toward the resolution of the following question, apocryphally attributed

to E. Stein and often referred to as the vector field problem: if v : Rn → Sn−1 is a vector

field with Lipschitz constant equal to 1 and pointing within a small neighborhood of

(1/
√

n, . . . , 1/
√

n), prove or disprove that the truncated directional Hilbert transform

along v

Hvf (x) = p.v.
∫
|t|<ε0

f (x − tv(x))
dt

t

for ε0 > 0 small enough, is a bounded operator from L2(Rn) into L2,∞(Rn). The partial

progress in dimension n = 2, beginning with the work of Lacey and Li [24, 25] and

continued in for example [3, 11, 14] by several authors, rests upon using the Lipschitz

property to achieve decoupling of the full maximal operator into a Littlewood–Paley

square function similar in spirit to the one appearing in (5.6). The estimation of a

single Littlewood–Paley piece in the vector field case is more difficult than the pointwise

estimate available to us in Lemma 3.3 and involves, in dimension n = 2, time-frequency

analysis of roughly the same parametric complexity as of that appearing in the Lacey–

Thiele proof of Carleson’s theorem [23]. Lemma 3.3 in this context may be interpreted as
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Maximal Directional Hilbert Transform 7

a single tree estimate (cf. [23, 24]), showing that the annular estimate for n = 3 might

display the same essential complexity as the n = 2 case.

1.5 Plan of the article

In the forthcoming Section 2, we set up the notation for the remainder of the article and

provide the precise definition of finite order lacunary sets in R
n. Section 3 contains the

reduction of H� to the above-mentioned model operators, Lemma 3.2 as well as their

single tree estimate of Lemma 3.3. In Section 4, after the necessary setup for directional

weighted classes, we prove a weighted version of the Parcet–Rogers maximal estimate

in Theorem 4.6 which, together with the extrapolation techniques of Lemma 4.3, is

relied upon in the proof of our main result. Theorem 1.1 is derived in Section 5 as

the Lebesgue measure case of a more general sharp weighted estimate, Corollary 1.

This corollary in turn descends from Theorem 5.1, a L2-weighted almost-orthogonality

principle for H� in the vein of [1, 28]. The final Section 6 contains the above-mentioned

sharp counterexamples for the model operator of Lemma 3.2 in dimension 4 and higher:

the main result of this section is the lower bound of Theorem 6.3.

2 Lacunary Sets of Directions: Definitions and Notation

In this section, we give a rigorous definition of finite order lacunary sets that will be

used throughout the article. In essence, our definition is the same as the one given by

Parcet and Rogers in [28].

2.1 Lacunary sets of directions of finite order

For convenience we keep most of the notational conventions of [28]. Throughout the

paper we work in R
n and consider sets of directions � ⊂ Sn−1. We allow the possibility

that span(�) = R
d for some nonnegative integer d ≤ n and write 
(d) := {( j, k) : 1 ≤ j <

k ≤ d}; we will drop the dependence on d and just write 
 when there is no ambiguity.

We typically denote the members of � as ω and the members of 
 as σ = ( j, k). Note

that |
(d)| = d(d− 1)/2.

With the roles of n, d, and � as above we assume that for each σ = ( j, k) ∈ 
(d)

we are given a sequence {θσ ,� : � ∈ Z} with the property that there exists λσ ∈ (0, 1) such

that

θσ ,�+1 ≤ λσ θσ ,�, θσ ,0 = θ0, ∀σ . (2.1)
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8 F. Di Plinio and I. Parissis

Here we set λ := maxσ∈
 λσ and throughout the paper we will fix a numerical value

of λ ∈ (0, 1) and we will adopt the convention that all sequences θσ ,λ have lacunarity

constants uniformly bounded by the same number λ. A choice of ONB of span(�) ≡ R
d

B := {ej : j = 1, . . . , d} (2.2)

and of lacunary sequences {θσ ,�} as above induces for each σ ∈ 
(d) a partition of the

sphere Sd−1 into sectors Sσ ,�:

Sd−1 =
⋃
�∈Z

Sσ ,�, Sσ ,� = S(j,k),� :=
{
ω ∈ Sd−1 : θσ ,�+1 ≤ |ω · ek|

|ω · ej|
< θσ ,�

}
. (2.3)

We will henceforth write ωj := ω · ej for 1 ≤ j ≤ d once the coordinate system is clear

from context. The partition above is completed by adding the set Sσ ,∞ = S(j,k),∞ :=
Sd−1 ∩ (e⊥j ∪ e⊥k ). We henceforth write Z

∗ := Z ∪ {∞}. Now such a partition of the sphere

immediately gives a partition of � by setting

�σ ,� := � ∩ Sσ ,�, σ ∈ 
, � ∈ Z
∗. (2.4)

The family of
(d

2

) = d(d− 1)/2 partitions indexed by σ ∈ 
(d),

� =
⋃
�∈Z

�σ ,�,

will be called a lacunary dissection of �, with parameters such as an ONB B as in (2.2)

and a choice of sequences {θσ ,�} as in (2.1). Note that
{{Sσ ,�}�∈Z∗ : σ ∈ 
(d)

}
is a lacunary

dissection of Sd−1.

We will refer to sets of the type Sσ ,� and �σ ,� as sectors of the lacunary

dissection. We will also work with the partition of � into disjoint cells induced by a

dissection, namely, intersections of sectors �σ ,�σ . More precisely, let B be a choice of

ONB as in (2.2). Given � = {�σ : σ ∈ 
(d)} ∈ Z

 we define the �-cell of the dissection

corresponding to B as

S� :=
⋂
σ∈


Sσ ,�σ , �� :=
⋂
σ∈


�σ ,�σ .

Observe that this provides the finer partition of Sd−1 and �, respectively, into cells

Sd−1 =
⋃

�∈Z


S�, � =
⋃

�∈Z


��.
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Maximal Directional Hilbert Transform 9

The following definition, which is the principal assumption in our main results,

was given in [28, p. 1537].

Definition 2.2. (Lacunary set) Let � ⊂ Sn−1 be a set of directions with span(�) = R
d.

Then

· � is a lacunary set of order 0 if it consists of a single direction;

· if L is a positive integer, then � is lacunary of order L if there exist an ONB

B as in (2.2) and a choice of sequences {θσ ,�} as in (2.1) with the property that

for each σ ∈ 
(d) and each � ∈ Z
∗ the sector �σ ,� in (2.4) is a lacunary set of

order L− 1.

A set � will be called lacunary if it is a finite union of lacunary sets of finite order.

For example, � is 1-lacunary if there exists a dissection such that, for each σ ∈

(d) and � ∈ N, the set �σ ,� contains at most one direction.

Remark 2.3. Let � be a lacunary set of directions and β ∈ (0, 1). Then � is a lacunary

set of directions with respect to dissections given by the sequence θσ ,� := β�. This is

automatic if β ≥ λ while in the case β < λ it follows easily by suitably splitting the set

� into O(log β/ minσ log λσ ) congruence classes. Unless explicitly mentioned otherwise,

all lacunary sets in this paper are given with respect to the sequence

θσ ,� = 2−�, � ∈ Z.

As our choice of sequences {θσ ,�} is universal, prescribing a lacunary dissection amounts

to fixing an ONB B as in (2.2). It is also clear that for all proofs in this paper it

suffices to consider the case that � is contained in the open positive 2d-tant of the

sphere Sd−1
+ := Sd−1 ∩ R

d+. While there are different coordinate systems involved in the

definition of a lacunary set �, by splitting any lacunary set into finitely many pieces

we can assume this property for all dissections that come into play. Furthermore, by

standard approximation arguments (e.g., monotone convergence) we can assume that �

has empty intersection with all coordinate hyperplanes. These conventions allow us to

only consider sectors Sσ ,�, �σ ,� with � ∈ Z instead of � ∈ Z
∗.

On the other hand, and in contrast with the previous conventions concerning

the proofs, in the statements of our theorems we always assume that the set � is closed.

Furthermore, the basis vectors of any dissection used in the definition of a lacunary

set of any order are assumed to be contained in the set. We adopt these conventions

throughout the paper without further mention.
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10 F. Di Plinio and I. Parissis

Remark 2.4. Although it is necessary to distinguish the case span� = R
d with d < n in

the definitions, in the proofs of our estimates we will argue with d = n without explicit

mention; by Fubini’s theorem, this is without loss of generality.

3 Model Operators

For ω ∈ Sn−1 (re)define the directional Hilbert transform on R
n

Hωf (x) =
∫
Rn

f̂ (ξ)sign(ξ · ω)eix·ξ dξ . (3.1)

In this section we set up a representation formula for (3.1). The central result is

Lemma 3.2 below. Before the statement we need to introduce some additional notation

and auxiliary functions. For � ∈ Z and γ > 0 we consider the 2D wedges

�σ ,�,γ :=
{

ξ ∈ R
n \ (eσ(2))

⊥ :
2−(�+1)

γ
≤ −ξσ(1)

ξσ(2)

< γ 2−�

}
.

We are interested in the particular cases γ ∈ {n, n + 1} for which we use the special

notations

�σ ,�,n =: �σ ,�, �σ ,�,n+1 =: �̃σ ,�. (3.2)

Furthermore, let φ+, φ− : R→ [0, 1] be smooth functions satisfying

φ+(x) :=
⎧⎨
⎩

0, x < −(n+ 1),

1, x > −n,
φ−(x) :=

⎧⎨
⎩

1, x < − 1
2n ,

0, x > − 1
2(n+1)

.

We now use the functions φ+, φ− in order to define the essentially 2D angular

Fourier multiplier operators

̂K±σ ,�σ
(ξ) = κ±σ ,�σ

(ξσ(1), ξσ(2)) := φ±
(

2�σ
ξσ(1)

ξσ(2)

)
,

K̂◦σ ,�σ
(ξ) = κ◦σ ,�σ

(ξ) := κ+σ ,�σ
(ξ)κ−σ ,�σ

(ξ), (3.3)

and their compositions

Kε
U,� :=

∏
σ∈U

Kεσ

σ ,�σ
, ∅ � U ⊆ 
, ε ∈ {+, ◦,−}U ; (3.4)

when εσ = ◦ for all σ ∈ U we simply write KU,� in place of Kε
U,�.
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Maximal Directional Hilbert Transform 11

Fig. 1. The Fourier support of the multipliers K◦
(1,2),σ , K−

(1,2),σ , and K+
(1,2),σ .

Remark 3.1. Let ε ∈ {+,−, ◦}. We record the support conditions (see Figure 1)

(∇ξ κ
ε
σ ,�σ

)
1�σ ,� ≡

(∇ξ κ
ε
σ ,�σ

)
1
Rn\�̃σ ,�

≡ 0, κε
σ ,�σ

1�σ ,� ≡ 1, κ◦σ ,�σ
1
Rn\�̃σ ,�

≡ 0. (3.5)

Moreover, we have the derivative estimates

sup
|α|≤10n

sup
ξ∈Rn

|ξσ(1)|α1 |ξσ(2)|α2
∣∣∂α1

ξσ(1)
∂

α2
ξσ(2)

κε
σ ,�σ

(ξ)
∣∣ � 1, |α| = α1 + α2. (3.6)

We will also use below that if ξ �∈ �̃σ ,�σ , then κε
σ ,�σ

is constant in a neighborhood of ξ .

Lemma 3.2. Suppose ω ∈ S�, the cell of Sn−1 with lacunary parameters � = {�σ : σ ∈ 
}.
Then we have the pointwise bound

|Hωf | � |f | + sup
∅�U⊆


∣∣HωKU,�f
∣∣+ sup

ε∈{+,−}

sup

∅�U⊆


∣∣Kε
U,�f

∣∣.

Proof. As

Id =
[ ∑
∅�U⊆


(−1)#U+1KU,�

]
+
[ ∏

σ∈


(
Id− Kσ ,�σ

) ]

we write

Hωf =
[ ∑
∅�U⊆


(−1)#U+1HωKU,�f
]
+ Tf (3.7)

where T is the Fourier multiplier with symbol

m(ξ) = T̂(ξ) = sign(ω · ξ)
∏
σ∈


(
1− κ◦σ ,�σ

(ξ)
)
. (3.8)
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12 F. Di Plinio and I. Parissis

Fig. 2. Suppose ω belongs to the cell S�. The red line is the intersection with the sphere S2 of the

singularity ξ ·ω = 0 of Hω. The blue and yellow wedges are �(1,2),�(1,2)
and �(2,3),�(2,3)

, respectively,

from (3.2). As in the depicted octant ξ1 and ξ3 have the same sign, �(1,3),�(1,3)
is not visualized.

We have to treat the term T. First of all, we check that

Cω :=
{
ξ ∈ R

n : |ξ · ω| < 1

n
max
1≤j≤n

|ωjξj|
}
⊂ D� :=

⋃
σ∈


�σ ,�σ . (3.9)

This is essentially depicted in Figure 2 and is a sharpening of the argument in [28, Proof

of Theorem A]. We prove (3.9) by showing that Rn\D� ⊆ R
n\Cω. To that end let ξ ∈ R

n\D�.

Writing ηj := ωjξj and remembering the convention ωj > 0 for all j we then have that

−ησ(1)

ησ(2)

�∈ [ 1
n , n

] ∀σ ∈ 
.

Choose j� such that |ηj� | = max1≤j≤n |ηj|. Now we note that if ηjηj� ≥ 0 for all

j ∈ {1, . . . , n} \ {j�} then ξ /∈ Cω so we are done. Otherwise we define k� by means of

|ηk�
| := maxj:ηj�ηj<0 |ηj|; as |ηj� | ≥ n|ηk�

| we end up with

|ξ · ω| =
∣∣∣ ∑

1≤j≤n

ηj

∣∣∣ ≥ |ηj� | − (n− 1)|ηk�
| ≥ |ηj� |

n
= max

1≤j≤n
|ωjξj|,

which is the claim (3.9). Noting that

supp m = R
n \

⋃
σ∈


�σ ,�σ = R
n \ D�
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Maximal Directional Hilbert Transform 13

this claim tells us that supp m ∩ Cω = ∅ whence if ξ ∈ supp m the signum of (ω · ξ) is

constant in a neighborhood of ξ . Now using the easy-to-verify fact that (1 − φ+φ−) =
(1 − φ+) + (1 − φ−) and the two summands are supported in disjoint intervals we can

rewrite (3.8) as

m(ξ) =
∑

ε∈{+,−}

sign(ω · ξ)κε(ξ), κε(ξ) :=

∏
σ∈


(
1− κ

εσ

σ ,�σ

)
,

for ε = {εσ : σ ∈ 
}. As supp κε is a connected set not intersecting Cω we conclude that

sign(ω · ξ) is constant on supp κε. Therefore, if Tε is the Fourier multiplier with symbol

κε

|Tf | ≤
∑

ε∈{+,−}

|Tεf |. (3.10)

Now we observe that the symbol of Id− Tε is equal to

1−
∏
σ∈


(
1− κ

εσ

σ ,�σ

) = ∑
∅�U⊆


(−1)#U+1
∏
σ∈U

κ
εσ

σ ,�σ
,

and putting together the last display with (3.7) and (3.10) we achieve the pointwise

estimate claimed in the lemma. �

In the next lemma we prove an annular estimate for the multiplier operators of

(3.4). To do so we will need to precompose these operators with suitable Littlewood–

Paley projections that we now define. Let p, q be smooth functions on R with

supp p ⊂ {
ξ ∈ R : 1

2 < |ξ | < 2
}

,
∑
t∈Z

p(2−tξ) = 1, ξ �= 0,

supp q ⊂ {
ξ ∈ R : 1

4 <|ξ | < 4
}

, q = 1 on
{
ξ ∈ R : 1

2 < |ξ | < 2
}

.

Now for υ ∈ {1, . . . , n} we define the Fourier multiplier operators on R
n

P̂υ
t f (ξ) := f̂ (ξ)p(2−tξ · eυ), Q̂υ

t f (ξ) := f̂ (ξ)q(2−tξ · eυ).

Thus {Pυ
t }t is a one-dimensional Littlewood–Paley decomposition, acting on the υ-th

variable only, and being the identity with respect to all other frequency variables.

Here and in the rest of the paper we write Ms for the strong maximal function and

M2
s := Ms ◦Ms.

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny138/5042919
by University of Virginia user
on 03 September 2018



14 F. Di Plinio and I. Parissis

Lemma 3.3. Let supp f̂ ⊂ Q where Q is any of the 23 octants of R
3. Let ∅ � U ⊆ 
, ε ∈

{+,−}U . There is a choice υ = υ(U, ε, Q) ∈ {1, . . . , n} such that the pointwise estimate

∣∣Kε
U,�

(
Pυ

t f
)
(x)

∣∣ � M2
s
(
Pυ

t f
)
(x), x ∈ R

3,

holds uniformly over all t ∈ R.

Proof. As ε, � are fixed throughout the proof and in order to avoid proliferation of

indices, we shall write below

κ
εσ

σ ,�σ
= κσ , Kεσ

σ ,�σ
= Kσ , Kε

U,� = KU ,

when these parameters are unimportant. As we are working with the strong maximal

function, by rescaling on the sphere we may assume �σ = 0 for all σ ∈ 
; this is just for

convenience of notation as we shall see. We divide the proof to different cases according

to the cardinality of the set U ⊆ 
.

Case #U = 1. In this case there exists σ ∈ 
(3) such that U = {σ }, KU = Kσ ,

and we may choose either υ = σ(1) or υ = σ(2). The choice does not depend on the

quadrant Q. To fix ideas, we work with σ = (1, 2) and choose υ = 1. By the observation

(3.5) of Remark 3.1, we know that κσ is constant in a neighborhood of ξ unless ξ ∈ �̃σ ,0,

in which case |ξσ(1)| ∼ |ξσ(2)|. Therefore, if ξ ∈ �̃σ ,0 and 2t−2 < |ξ1| < 2t+2, there holds

2t ∼ |ξυ | ∼ |ξσ(2)| and

∣∣∂α1
ξσ(1)

∂
α2
ξσ(2)

κσ (ξ)
∣∣ � |ξσ(1)|−α1 |ξσ(2)|−α2 � 2−tα, α = α1 + α2.

Using the above inequality for α = 0, . . . , 10 · 3, it follows that

�σ (xσ(1), xσ(2)) :=
∫
R2

κσ (ξσ(1), ξσ(2))q(2−tξυ)ei(xσ(1)ξσ(1)+xσ(2)ξσ(2)) dξσ(1)dξσ(2) (3.11)

satisfies

|�σ (xσ(1), xσ(2))| � 22t (1+ 2t|xσ(1)| + 2t|xσ(2)|
)−(3+1)

. (3.12)

We now write ft = Pυ
t f . Denoting convolution in the variables σ(1), σ(2) by ∗σ we have

that

Kσ ft =
(
Kσ Qυ

t

)
( ft) = �σ ∗σ ft.
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Maximal Directional Hilbert Transform 15

Hence using (3.12) we see that

|KUft(x)| ≤
∫
R2
| ft(x1 − y1, x2 − y2, x3)||�σ (y1, y2)|dy � Ms( ft)(x)

as claimed.

Case #U = 2. In this case U = {σ , τ } for some σ , τ ∈ 
(3) and necessarily σ ,

τ must have a common component. We choose υ to be this common component. This

choice also does not depend on the quadrant Q. To fix ideas σ = (1, 2), τ = (1, 3) and we

choose υ = 1. Note that in this case KU = K(1,2)K(1,3). With the same notation of (3.11)

from the previous case we have the equality

KUft =
(
K(1,2)Q

υ
t

) ◦ (K(2,3)Q
υ
t

)
(ft) = �(1,2) ∗(1,2) �(1,3) ∗(1,3) ft

so using (3.12) again we see that

|KUft(x)| ≤
∫
R2×R2

|ft(x1 − y1 − z1, x2 − y2, x3 − z3)||�(1,2)(y1, y2)||�(1,3)(z1, z3)|dy dz

� M2
s(ft)(x)

as claimed.

Case #U = 3. We show that this case reduces to the preceding ones, with choice

of υ depending on the quadrant Q. Let

Qσ = {ξ ∈ R
3 : ξσ(1)ξσ(2) ≥ 0}.

Notice that the constraints on the supports of φ± imply that

κ−σ ,�σ
1Qσ ≡ 0, κ+σ ,�σ

1Qσ ≡ 1, ∀σ ∈ 
.

As for each of the eight quadrants Q of R
3 there exists (at least one) σQ ∈ 
 such that

Q ⊂ QσQ , we see that

Kε
U,� 1Q =

⎧⎨
⎩

0, if ∃σ ∈ U with εσ = −,

Kε
U\{σQ},� 1Q, otherwise.

As #{U \ {σQ}} = 2 for each quadrant Q the proof follows by the cases #U ∈ {1, 2}
considered above. �
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16 F. Di Plinio and I. Parissis

4 Weighted Norm Inequalities for Directional Maximal Operators

We dedicate this section to the discussion of weighted norm inequalities for the

maximal directional operator. These will serve as a tool for the proof of Theorem 1.1;

in fact, they will be used to prove a weighted almost-orthogonality principle that

subsumes both Theorem 1.1 and its weighted analog, which will be stated at the end

of this section. However, we do think they are also of independent interest.

The weighted theory of the directional maximal operator has been studied, at

least in the 2D case, in [13], for the case of 1-lacunary sets of directions. Here we recall

all the basic definitions and tools and then proceed to prove weighted norm inequalities

for the directional maximal function M� associated to a finite order lacunary set

� ⊂ Sn−1. In essence, the main result of this section, Theorem 4.3, is a weighted

generalization of the main result of [28] by Parcet and Rogers.

4.1 Directional Ap weights

We begin by defining the appropriate directional Ap classes. The easiest way to define

the appropriate class is to ask for nonnegative, locally integrable functions w (we will

refer to such functions as weights) such that for all nice functions f we have

‖M�f ‖Lp(w) � ‖ f ‖Lp(w), ‖ f ‖Lp(w) :=
( ∫

| f |pw
) 1

p
, 1 < p <∞,

where � is a set of directions such that M� is bounded on Lp(Rn). Without explicit

mention, we work under the purely qualitative assumptions that all weights appearing

below will be continuous and nonvanishing functions on R
n; this assumption may

be removed via a standard approximation procedure that we omit. We will very soon

specialize to sets � that are lacunary of finite order so we encourage the reader to keep

this example in mind. Note that for smooth functions f we have M�� f = M� f . We can

then assume that � is closed when deriving necessary conditions for w.

For ω ∈ �, x ∈ R
n, and η > 0 we then define segments and corresponding one-

dimensional averages of f ∈ C(Rd) as follows

I(x, η, ω) := {x + tω : |t| < η}, 〈 f 〉I(x,η,ω) := 1

2η

∫ η

−η

f (x + tω) dt.

We set I� := {I(x, η, ω) : x ∈ R
d, η > 0, ω ∈ �} and for p ∈ (1,∞) we adopt the usual

notation for the dual weight σ := w− 1
p−1 . Now the Lp(Rn)-boundedness of M� clearly

implies the boundedness of Mω on Lp(I(x, ω)), where I(x, ω) := {x+ tω : t ∈ R}, uniformly

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny138/5042919
by University of Virginia user
on 03 September 2018



Maximal Directional Hilbert Transform 17

in x ∈ R
n and ω ∈ �. Now testing this one-dimensional boundedness property Mω for

some fixed p ∈ (1,∞) against functions of the form σ1I(x,η,ω) shows the necessity of the

directional Ap condition

[w]A�
p

:= sup
I∈I�

∫
I
w

( ∫
I
σ
)p−1

<∞;

here we remember that we have made the qualitative assumption that w is a continuous

nonvanishing function.

Note that if we write w(x) = w(x · ω, x · ω⊥), the previous condition means that

for almost every x ∈ R
n and ω ∈ �, the one-dimensional weight vx,ω(s) := w(s, x · ω⊥),

s ∈ R, is in Ap(R), with uniformly bounded Ap constant:

sup
x∈Rn, ω∈�

[vx,ω]Ap = [w]A�
p

<∞.

We complete the set of definitions by defining A�
1 to be the class of weights w such that

[w]A�
1

:= sup
x∈Rn

M�w(x)

w(x)
<∞.

A well-known class of Muckenhoupt weights is produced considering � = {e1, . . . , en};
then A�

p is just the class A∗p of strong or n-parameter Muckenhoupt weights. We also

note that an obvious corollary of one-dimensional theory is that

‖Mω‖Lp(w)→Lp(w) � [w]
1

p−1

A�
p

, ω ∈ �,

and the implicit constant is independent of w and ω. We refer to [4] for the sharp one-

dimensional weighted bound for Mω.

4.2 Extrapolation for A�
p weights

Having established the appropriate A�
p classes, we now proceed to proving one of the

most useful properties of weighted norm inequalities, that of extrapolation.

We begin by noting that, as in the case of classical Ap weights, it is easy to create

A�
p -weights by using the Rubio de Francia method and factorization; see [12, Lemmata

2.1,2.2]. We omit the proofs that are essentially identical to the one-directional case.
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18 F. Di Plinio and I. Parissis

Lemma 4.3. Let w ∈ A�
p . For a nonnegative function g ∈ Lp(w) we define

Eg :=
∞∑

k=0

M(k)
� g

2k‖M�‖k
Lp(w)

.

Then Eg satisfies the following properties:

(i) g ≤ Eg.

(ii) For every g ∈ Lp(w) we have ‖Eg‖Lp(w) ≤ 2‖g‖Lp(w).

(iii) If ‖M�‖Lp(w)→Lp(w) <∞ then Eg is an A�
1 weight with constant

[Eg]A�
1
≤ 2‖M�‖Lp(w)→Lp(w).

Furthermore for all exponents 1 ≤ p <∞, 1 < p0 <∞ and weights u, w there holds

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[wup−p0 ]A�
p0
≤ [w]A�

p
[u]A�

1
, p ≤ p0

[
w

p0−1
p−1 u

p−p0
p−1

]
A�

p0

≤ [w]
p0−1
p−1

A�
p

[w]
p−p0
p−1

A�
p

, p > p0.

We now provide the basic extrapolation result for A�
p weights, which will be

our main tool for passing from L2(w) estimates to Lp(w) estimates for all p ∈ (1,∞).

This result and its proof are completely analogous to [12, Theorem 3.1], making use of

Lemma 4.3 as the analogous of [12, Lemmata 2.1 and 2.2].

Lemma 4.4. Let � ⊂ Sn−1 be a set of directions such that for all 1 < p < ∞ and for all

w ∈ A�
p we have the weighted boundedness property M� : Lp(w) → Lp(w). Assume that

for some family of pairs of nonnegative functions, (f , g), for some p0 ∈ [1,∞] and for all

w ∈ Ap0 we have

( ∫
Rn

gp0w
) 1

p0 ≤ CP([w]A�
p0

)
( ∫

Rn
f p0w

) 1
p0 ,

where P : R+ → R+ is a an increasing function and C > 0 does not depend on w or the

pairs (f , g). Then for all 1 < p <∞ we have

( ∫
Rn

gpw
) 1

p ≤ CK(w)
( ∫

Rn
f pw

) 1
p
,
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Maximal Directional Hilbert Transform 19

with

K(w) :=

⎧⎪⎨
⎪⎩
P([w]A�

p
(2‖M�‖Lp(w))

p0−p), p < p0,

P([w]
p0−1
p−1

A�
p

(2‖M�‖Lp′ (σ )
)

p−p0
p−1 ), p > p0.

4.5 Weighted inequalities for the lacunary directional maximal operator

In this subsection, we consider directional maximal operators associated to lacunary

sets of order L.

According to the previous discussion, the condition w ∈ A�
p is necessary for

the boundedness property M� : Lp(w) → Lp(w). In this paragraph we also show the

sufficiency of condition A�
p , thus giving a characterization of the A�

p class in terms of

M�.

Theorem 4.6. Let � ⊂ Sn−1 be a lacunary set of directions of order L, where L is a

positive integer, and w be a weight. For every 1 < p <∞, the following are equivalent.

(i) For all f ∈ Lp(w) we have ‖M�f ‖Lp(w) � ‖f ‖Lp(w), with implicit constant

depending on w, the dimension, and the lacunarity constants of �.

(ii) We have that w ∈ A�
p .

Furthermore, if w ∈ A�
p then we have the estimate ‖M�‖Lp(w)→Lp(w) � [w]δL

A�
p

for some

exponent δ = δ(p, n) > 0 and implicit constant independent of w.

Remark 4.7. We note here that in dimension n = 2 and for L = 1 this theorem was

known and contained in [13, Theorem 4].

4.8 Proof of Theorem 4.6

Recall from Section 2 that a set � ⊂ Sn−1 is called lacunary of order L, where L ≥ 1 is a

positive integer, if there exists a dissection as in (2.3) such that for each σ ∈ 
(n) and

� ∈ N, the sets �σ ,� are lacunary of order L − 1. As mentioned before, cf. Remark 2.3,

we assume that � is closed and that the axes {e1, . . . , en} of the dissection of order L are

contained in �. Then, the inclusion A�
p ⊂ A∗p holds, the latter being the class of strong

Ap weights with respect to these coordinate axes. In consequence, the strong maximal

function Ms is automatically bounded on Lp(w) for w ∈ A�
p .

As in the proof of [27, Theorem A] we rely on the covering of the singularity

hyperplane ξ · ω = 0 by finitely overlapping unions of 2D wedges {�σ ,�σ : σ ∈ 
} defined

in (3.2), where � = (�σ : σ ∈ 
) is the unique index in Z

 such that ω belongs to the cell
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20 F. Di Plinio and I. Parissis

��. The core of the proof is contained in the following two lemmata, which are weighted

versions of the corresponding results from [27].

The 1st result we need is a weighted analog of [27, Lemma 1.1]. Note that it does

not require the lacunarity assumption on � and the weight class needed is just the usual

class of strong Muckenhoupt weights A∗p.

Lemma 4.9. Let p > 1 and w ∈ A∗p be a weight. There holds

‖M�f ‖Lp(w) � [w]
n

p−1

A∗p
sup

∅ �=U⊆


∥∥ sup
�∈Z


M��
KU,�f

∥∥
Lp(w)

,

with the implicit constant depending upon dimension and p.

Proof. The proof follows from the arguments in the proof of [27, Lemma 1.1]. Indeed,

one just needs to note that the corresponding unweighted estimate in [27] is proved

via the use of pointwise estimates, which of course are independent of the underlying

measure, and the boundedness of the strong maximal function Msf on Lp(Rn). The latter

fact is replaced by the observation that Ms maps Lp(w) to itself whenever w ∈ A∗p and

satisfies the quantitative norm estimate

‖Ms‖Lp(w)→Lp(w) � [w]
n

p−1

A∗p
.

Here again we use the one-dimensional sharp weighted estimate for the Hardy–

Littlewood maximal operator from [4]. �

The 2nd result is a weighted square function estimate for the angular multipliers

KU,� associated to a lacunary dissection of the sphere.

Lemma 4.10. Let 1 < p < ∞ and 
 corresponding to a given dissection of the sphere.

Then for all w ∈ A∗p we have

sup
U⊆


∥∥∥
( ∑

�∈ZU

∣∣KU,� f
∣∣2) 1

2
∥∥∥

Lp(w)
� [w]βA∗p‖ f ‖Lp(w).

The implicit constant depends upon dimension n, p, and β > 0 depends on p and n.
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Proof. As in the proof of [27, Lemma 1.2] we note that it will be enough to prove the

Lp(w)-boundedness of the randomized map T given as

f �→
( ∑

�∈ZS

ε�

∏
σ∈U

κ◦σ ,�σ
f̂
)∨ =: (mf̂ )∨,

uniformly over choices of signs {ε�}�∈ZU . The unweighted L2(Rn)-boundedness of this

map follows simply by Plancherel and the finite overlap property of the supports

{�̃σ ,� : � ∈ N}, which shows that m ∈ L∞, uniformly over choices of signs. For Lp(w)-

bounds, we need an A∗p-weighted version of the standard Marcinkiewicz multiplier

theorem. This can be found for example in [21, Theorem 3] so the proof of the lemma

reduces to checking a number of conditions on averaged derivatives of m. In fact these

conditions are identical to the hypothesis of the unweighted Marcinkiewicz multiplier

theorem, as can be found for example in [30, p. 109] and can be verified by using

estimates (3.6) for each single multiplier K◦σ ,�. An inspection of the proof, which relies

on the weighted vector valued boundedness of frequency projections on rectangles, and

the weighted multiparameter Littlewood–Paley inequalities show that there exists a

constant β depending on n and p such that ‖T‖Lp(w)→Lp(w) � [w]βA∗p . �

We now give the conclusion of the proof of Theorem 4.6.

Proof. Conclusion of the Proof of Theorem 4.6. The key step is the estimate

‖M�‖Lp(w)→Lp(w) � [w]δA∗p sup
σ∈


sup
�∈Z

‖M�σ ,�‖Lp(w)→Lp(w), (4.1)

for some exponent δ > 0 depending on the dimension n and on p. Indeed, if L = 1,

each sector �σ ,� contains at most one direction, whence using the well-known weighted

maximal inequality for each such direction and the obvious inequality [w]A{ω}p
≤ [w]A�

p

for ω ∈ �,

sup
σ∈


sup
�∈Z

‖M�σ ,�‖Lp(w)→Lp(w) � sup
ω∈�

‖M{ω}‖Lp(w)→Lp(w).

Coupling the latter display with (4.1) yields the claimed estimate in Theorem 4.6. We

now proceed by induction and derive the L-lacunary case assuming the L−1 holds true.

Estimate (4.1) and the inductive assumption read

‖M�‖Lp(w)→Lp(w) � [w]δA∗p sup
σ∈


sup
�∈Z

‖M�σ ,�‖Lp(w)→Lp(w) � [w]δA∗p sup
σ∈


sup
�∈Z

[w]δ(L−1)

A
�σ ,�
p

� [w]δL
A�

p
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22 F. Di Plinio and I. Parissis

where in the last inequality we have used the obvious fact that supσ ,�[w]
A

�σ ,�
p

≤ [w]A�
p

and [w]A∗p ≤ [w]A�
p

. This completes the proof of the theorem up to showing estimate (4.1)

holds true. �

Proof of (4.1). We first perform the proof in the case p ≥ 2. Let us for a moment fix a

U ⊆ 
 and write Z

 = Z

U ⊗ Z

\U so that given � = {�σ }σ∈
 we decompose � = τ × t with

τ = {τσ : σ ∈ U}. Replacing the supremum by an �p function gives

∥∥∥∥∥sup
�∈Z


M��
fτ

∥∥∥∥∥
Lp(w)

≤ sup
σ∈


sup
�∈Z

‖M�σ ,�‖Lp(w)→Lp(w)

∥∥∥∥∥∥∥

⎛
⎝∑

τ∈ZU

| fτ |p
⎞
⎠

1
p

∥∥∥∥∥∥∥
L2(w)

. (4.2)

As p ≥ 2 estimate (4.2) implies

∥∥∥∥∥sup
�∈Z


M��
fτ

∥∥∥∥∥
Lp(w)

≤ sup
σ∈


sup
�∈N

‖M�σ ,�‖Lp(w)→Lp(w)

∥∥∥∥∥∥∥

⎛
⎝∑

τ∈ZS

| fτ |2
⎞
⎠

1
2

∥∥∥∥∥∥∥
Lp(w)

.

Now (4.1) follows by taking fτ := KU,τ where τ = {τσ : σ ∈ U} and bounding the right-

hand side in the last display, from above, by Lemma 4.10, and the left-hand side of

the last display, from below, by Lemma 4.9. For 1 < p < 2 we note that, by monotone

convergence, it suffices to show the estimate for every finite subset of �, which we still

call �. Then ‖M�‖Lp(w)→Lp(w) <∞, w ∈ A�
p , so we can interpolate between the estimates

∥∥∥∥∥sup
�∈Z


M��
fτ

∥∥∥∥∥
Lp(w)

≤ ‖M��
‖Lp(w)→Lp(w)

∥∥∥∥∥sup
�∈Z


| fτ |
∥∥∥∥∥

Lp(w)

and (4.2) to conclude

∥∥∥∥∥sup
�∈Z


M��
fτ

∥∥∥∥∥
Lp(w)

≤ ‖M�‖1− p
2

Lp(w)→Lp(w)

(
sup
σ∈


sup
�∈Z

‖M�σ ,�‖Lp(w)→Lp(w)

) p
2

∥∥∥∥∥∥∥

⎛
⎝∑

τ∈ZS

|fτ |2
⎞
⎠

1
2

∥∥∥∥∥∥∥
Lp(w)

.

Taking again fτ = KU,τ an application of Lemmata 4.10 and 4.9 yields

‖M�‖Lp(w)→Lp(w) � [w]γA∗p‖M�‖1− p
2

Lp(w)→Lp(w)

(
sup
σ∈


sup
�∈Z

‖M�σ ,�‖Lp(w)→Lp(w)

) p
2

with γ = β+n/(p−1). As we have assumed that ‖M�‖Lp(w)→Lp(w) <∞we may rearrange

and complete the proof of the theorem. �
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Maximal Directional Hilbert Transform 23

5 An Almost-Orthogonality Principle for the Maximal Hilbert Transform

We now prove an almost-orthogonality principle for the maximal Hilbert transform of a

set � ⊂ S2. In the statements below it is convenient to write for all nonnegative integers

N, weights w on R
3, and � ⊂ S2

�N(�, w) := sup
O⊂�
#O≤N

‖HO‖L2(R3;w)→L2(R3;w) .

Theorem 5.1. There exist C, γ ≥ 1 such that the following holds. Let N be a positive

integer; B, be a choice of ONB; and � ⊂ S2, a set of directions containing B and w ∈ A�
2 .

Then

�N(�, w) ≤ C[w]γ
A�

2

[√
log N + sup

σ∈


sup
�∈Z

�N(�σ ,�, w)

]

where the lacunary dissection is taken with respect to B as in (2.3).

By iterative application of the almost-orthogonality principle, and extrapola-

tion, we obtain the following corollary, of which Theorem 1.1 is the particular case

w = 1.

Corollary 1. Let 1 < p < ∞ and L ≥ 0. There exists constants C = Cp,L, γ = γp,L such

that for any � ⊂ S2 lacunary set of order L and w ∈ A�
p

sup
O⊂�
#O≤N

‖HO‖Lp(R3;w)→Lp(R3;w) ≤ C[w]γ
A�

p

√
log N.

The proof of Theorem 5.1 rests upon the results of the previous sections, as well

as on the proposition below, a weighted version of the Chang–Wilson–Wolff principle,

which we state and prove before the main argument. In the statement of the proposition

below we remember that A∗p = A�
p with � being the canonical basis of R

n, namely � =
{e1, . . . , en}. We also use the standard notation A∗∞ := ∪p>1A∗p.

Proposition 5.2. Let {K1, . . . , KN} be Fourier multiplier operators on R
n with uniform

bound

sup
1≤ j≤N

‖Kj‖L2(w)→L2(w) ≤ [w]αA∗2
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24 F. Di Plinio and I. Parissis

for some α > 0. Let {Pυ
t }t∈Z be a smooth Littlewood–Paley decomposition acting on the

υ-th frequency variable, where 1 ≤ υ ≤ n. For w ∈ A∗p and 1 < p <∞ we then have

∥∥∥ sup
1≤ j≤N

|Kjf |
∥∥∥

Lp(w)
� [w]γA�

p

[
‖ f ‖Lp(w) + (log(N + 1))

1
2

∥∥∥(∑
t∈Z

sup
1≤ j≤N

|KjP
υ
t f |2) 1

2

∥∥∥
Lp(w)

]

for some exponent γ = γ (α, p, n) and implicit constant depending on α, p, n.

Proof. To simplify the notation we work with υ = 1 and set

K�f := sup
1≤ j≤N

|Kj f |, DK� :=
(∑

t∈Z
sup

1≤ j≤N
|KjP

1
t f |2

) 1
2
.

Let {Dj : j ∈ Z} be the standard dyadic filtration on R, Ej be the associated sequence

of conditional expectations, and �f denote the associated martingale square function.

Let E1
j be the sequence of conditional expectations on L1(Rn) acting on tensor products

f (x) = g(x1)⊗h(x2, . . . , xn) by E
1
j f := Ejg⊗h and denote by �1f the associated martingale

square functions. The Chang–Wilson–Wolff inequality [6] tells us that if w is an A∗∞-

weight then

w
({

x ∈ R
n : |g(x)− E

1
0g(x)| > 2λ, |�1f (x)| ≤ γ λ

})

≤ A exp
(
− b

[w](1)
A∞γ 2

)
w

({
x ∈ R

n : |Me1g(x)| > λ
})

, (5.1)

where A, b are absolute positive constants and

[w]
A(1)∞

:= sup
x∈Rn

[w(x + ·e1)]A∞ ;

here [·]A∞ denotes the Wilson A∞ constant of a weight on the real line, see [32]. The

inequality (5.1) for n > 1 is in fact obtained from the one-dimensional version of [6] and

Fubini. As [w]
A(1)∞

≤ [w]A∗p and proceeding exactly as in in the proof of [11, Corollary 1.14]

we can use the above inequality to reach

‖K�f ‖Lp(w) � ‖Me1f ‖Lp(w) + sup
1≤ j≤N

‖Me1Kjf ‖Lp(w) +
√

log(N + 1)‖M̃e1‖Lp(w)‖DK�f ‖Lp(w)

(5.2)

where M̃e1f := (Me1 |f |r)
1
r , and r > 1 can be chosen arbitrarily close to 1; the implicit

constant depends on p, r, and polynomially on [w]A∗p . Since our weight w ∈ A∗p, Me1 is
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Maximal Directional Hilbert Transform 25

a bounded operator on Lp(w). Furthermore, using the reverse Hölder property for A∗∞
weights, see for example [16, Theorem 1.4], we actually have the openness property

[w]A∗p
r

≤ 2[w]A∗p , r ≤ p

p− c([w]A∗∞)−1 ,

where the positive constant c = c(p, n) ≤ 1 can be explicitly computed. Therefore, M̃e1 is

also a bounded operator on Lp(w) provided r is chosen small enough to comply with the

restriction in the last display. Making use of these Lp(w)-bounds in (5.2) finally yields

the proposition. �

5.3 Proof of Theorem 5.1

In this proof the implicit constants occurring in the inequalities as well as the exponent

γ are meant to be absolute and are allowed to vary without explicit mention. Let � ⊂ S2

and an ONB B ⊂ � be given. Fix a subset O ⊂ � with #O = N. Of course the set of

addresses of the cells whose intersection with O is nonempty, in symbols LO := {� ∈
Z


 : O∩ S� �= ∅}, has cardinality at most N. We use the pointwise estimate of Lemma 3.2

for each ω ∈ O to obtain that

|HOf | � | f | + sup
∅�U⊆


sup
�∈LO

∣∣HO∩S�
KU,�f

∣∣+ sup
∅�U⊆


sup
ε∈{+,−}U

sup
�∈LO

∣∣Kε
U,� f

∣∣. (5.3)

We may ignore the 1st summand on the right-hand side. We bound the norm of the 2nd

summand on the right-hand side by a constant multiple of

sup
∅�U⊆


∥∥∥∥
( ∑

�∈LO

∣∣HO∩S�
KU,� f

∣∣2) 1
2

∥∥∥∥
L2(w)

≤ B sup
∅�U⊆


∥∥∥∥
( ∑

�∈ZU

∣∣KU,� f
∣∣2) 1

2

∥∥∥∥
L2(w)

� [w]γ
A�

2

(
sup
σ∈


sup
�∈Z

�N(�σ ,�, w)
)
‖ f ‖L2(w), (5.4)

where in the last step we have used the weighted estimate of Lemma 4.10, and we have

also used the easy estimate

B := sup
‖g‖L2(w;�2)

=1

∥∥∥∥
( ∑

�∈Z


∣∣HO∩S�
g�

∣∣2) 1
2

∥∥∥∥
L2(w)

≤ sup
σ∈


sup
�∈Z

�N(�σ ,�, w).

The 3rd summand in (5.3) is treated in the next proposition. In fact, coupling the

bounds (5.4) above, and (5.5) below, with the pointwise estimate (5.3), and noticing that

[w]A∗2 ≤ [w]A�
2

since the coordinate basis vectors are contained in �, completes the proof

of Theorem 5.1.
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26 F. Di Plinio and I. Parissis

Proposition 5.4. Let L be a finite subset of Z
3. Then

sup
∅�U⊆


sup
ε∈{+,−}U

∥∥∥ sup
�∈L

∣∣Kε
U,�f

∣∣∥∥∥
L2(w)

� [w]γA∗2

√
log(#L+ 1)‖ f ‖L2(w). (5.5)

Proof. Fix U ⊆ 
, ε ∈ {+,−}U throughout the proof. By means of compositions of

Hilbert transforms along the coordinate directions we may decompose

f =
∑
Q

fQ, ‖ fQ‖L2(w) � [w]3A∗2
‖ f ‖L2(w),

where each fQ has frequency support in one of the octants Q of R
3. By virtue of the

norm estimate of the above display, we may fix one of these octants Q and prove (5.5) for

functions f whose frequency support is contained in Q, which we do here onwards. Now

we remember that by Lemma 4.10 the multiplier operators {Kε
U,� : � ∈ L} satisfy weighted

L2 bounds with weighted operator norms bounded polynomially in [w]A∗2 , uniformly in U

and �. This allows us to use Proposition 5.2 on the N = #L Fourier multiplier operators

{Kε
U,� : � ∈ L}, to get that

∥∥∥ sup
�∈L

∣∣Kε
U,�f

∣∣∥∥∥
L2(w)

� [w]γA∗2

[
‖f ‖L2(w) +

√
log(N + 1)

∥∥∥
(∑

t∈Z
sup
�∈L

|Kε
U,�P

υ
t f |2

) 1
2
∥∥∥

L2(w)

]
(5.6)

for any υ ∈ {1, 2, 3}. We make the choice υ = υ(U, ε, Q) ∈ {1, 2, 3} according to Lemma 3.3,

so that based on supp f̂ ⊂ Q

∣∣Kε
U,�(P

υ
t f )(x)

∣∣ � M2
s(Pυ

t f )(x).

Combining the last two inequalities followed by weighted Fefferman–Stein and

Littlewood–Paley estimates

∥∥∥ sup
�∈L

∣∣Kε
U,�f

∣∣∥∥∥
L2(w)

� [w]γA∗2

[
‖f ‖L2(w) +

√
log(N + 1)

∥∥∥
(∑

t∈Z
M2

s(Pυ
t f )2

) 1
2
∥∥∥

L2(w)

]

� [w]γA∗2

√
log(N + 1)‖f ‖L2(w),

which is the claimed (5.5). �

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny138/5042919
by University of Virginia user
on 03 September 2018



Maximal Directional Hilbert Transform 27

6 Quantitative Counterexamples for the Model Operator

In this section, we show that sharp higher-dimensional (n ≥ 4) analogs of Theorem 1.1

cannot be attacked by means of the model operators of Section 3, which are essentially

compositions of smooth 2D lacunary cutoffs. To wit, we show that the maximal

operators

sup
�∈L

∣∣∣
[ ∏

σ∈


(
Id− Kεσ

σ ,�σ

)]
f
∣∣∣, sup

�∈L

∣∣Kε
U,�f

∣∣,

intervening in the decomposition of the maximal Hilbert transform induced by

Lemma 3.2, have operator norms that grow at order (log #L)
1
2 
 n

2 �. For n ≥ 4, this is

unfavorable compared to the maximal Hilbert transform over finite subsets O of a (finite

order) lacunary set �, whose operator norm is of order at most log(#O); see [28, Corollary

4.1]. Our counterexamples are obtained by careful tensoring of the lower bound for the

2D case 
 = {(1, 2)}, which in turn descends from the main theorem of [19].

We use the notation of Section 3 and in particular of (3.3). However, in this

section it will be more convenient to use the equivalent (up to identity) definition

Hωf (x) :=
∫
Rn

f̂ (ξ)1(0,∞)(ξ · ω)eix·ξ dξ .

6.1 A lower bound in n = 2

The lower bound for p = 2 of Karagulyan [19] combined with the upper bound for all

1 < p < ∞ of [9, 10] tells us that for all L ≥ 0 and 1 < p < ∞ there exists cp,L > 0 such

that the following holds: whenever � ⊂ S1 is a lacunary set of order L and O ⊂ � is finite

there exists a Schwartz function fO with

‖ fO‖Lp(R2) = 1, ‖HO fO‖Lp(R2) ≥ cp,L
√

log #O. (6.1)

Let now � be a lacunary set of order 1 with � ⊂ {ω ∈ S1 : ω1, ω2 > 0}. We can take fO to

be frequency supported in the quadrants {ξ ∈ R
2 : ξ1ξ2 < 0} as HO acts trivially on the

remaining frequency plane. By a symmetry argument we can actually take

supp f̂O ⊂ Q(1,2) := {
ξ ∈ R

2 : ξ1 > 0, ξ2 < 0
}
.
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28 F. Di Plinio and I. Parissis

Rewriting (3.7) in this particular case we see that if ω ∈ � ∩ S(1,2),�(ω) and supp f̂ ⊂ Q(1,2)

then

Ĥωf (ξ) = F
(
HωK◦(1,2),�(ω) f

)
(ξ)+ 1(0,∞)(ξ · ω)

(
1− κ◦(1,2),�(ω)(ξ)

)
f̂ (ξ)

= F
(
HωK◦(1,2),�(ω) f

)
(ξ)+

(
1− κ+(1,2),�(ω)(ξ)

)
f̂ (ξ).

We notice that, for some absolute constant Cp

∥∥∥
(∑

ω∈�

|HωK◦(1,2),�(ω) fO|2
) 1

2
∥∥∥

Lp(R2)
≤ Cp‖ fO‖Lp(R2) = Cp;

this Lp-boundedness is most easily seen by proving the weighted L2-bound as in

Section 5 first. Comparing this last display with (6.1) we obtain that

∥∥∥ sup
ω∈O

∣∣K+(1,2),�(ω) fO
∣∣∥∥∥

Lp(R2)
≥ cp

√
log #O

provided #O is large enough, with cp = cp,1/2. The arguments of Section 3 and symmetry

considerations finally show that there exist positive absolute constants cp, Cp such that

for ε ∈ {+, ◦,−} and all finite index sets L ⊂ Z we have

cp ≤ 1√
log #L

∥∥∥f �→ sup
�∈L

∣∣Kε
(1,2),� f

∣∣∥∥∥
Lp(R2)

≤ Cp. (6.2)

Remark 6.2. Just like the maximal Hilbert transform, the maximal operators defined

in (6.2) are invariant under dilation and reflection through the frequency origin and act

trivially on functions supported outside ±Q(1,2). For any fixed L ⊂ Z with #L = N, using

the lower bound in (6.2), the reflection symmetry and an approximation argument we

may find M > 0 and a Schwartz function fL with

supp f̂L ⊂ Q(1,2)∩A(1,2)
(
2−

M
2 , 2

M
2
)
,

∥∥ sup
�∈L

|Kε
(1,2),� fL|

∥∥
Lp(R2)

≥ Cp
√

log N‖ fL‖Lp(R2), (6.3)

where

A(1,2)(a, b) :=
{
(ξ1, ξ2) ∈ R

2 : a <

√
ξ2

1 + ξ2
2 < b

}
.

Given any s ∈ R, the dilation invariance can then be used to find fs,L with the same

properties as fL in (6.3) but supp f̂s,L ⊂ Q(1,2) ∩ A(1,2)(2s, 2s+M) .
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The next result is the anticipated counterexample to estimate (5.5) in dimensions

4 and higher.

Theorem 6.3. Let n ≥ 2 be the dimension of the ambient space. Then

inf
ε∈{+,−}


sup
L⊂Z


#L=N

sup
∅�U⊆


∥∥∥ f �→ sup
�∈L

∣∣Kε
U,� f

∣∣∥∥∥
Lp(Rn)→Lp(Rn)

≥ cp

(√
log N

)
n
2 �

. (6.4)

Proof. It suffices to prove the statement for even n = 2d and for N > 10d, say. By

symmetry considerations we may argue in the case where ε = (+, . . . ,+). Let L be the

set of Nd indices such that S� ∩ � �= ∅, where � is the set of vectors on S2d−1 obtained

by normalizing the vectors (x1, . . . , xn) with components

x2k−1 = 2−2kN , x2k = 2−2kN−mk , mk ∈ {1, . . . , N}, k = 1, . . . , d.

In practice � = �(m1, . . . , md) ∈ L is completely determined by the 2d− 1 conditions

�(2k−1,2k) = mk, k = 1, . . . , d; �(2k−1,2k+1) = 2N, k = 1, . . . , d− 1.

As

1−
∏
σ∈


(
1− κ+σ ,�σ

)
=

∑
∅�U⊆


(−1)#U+1
∏
σ∈U

κ+σ ,�σ

estimate (6.4) will follow if we prove that

∥∥∥∥∥ f �→ sup
�∈L

∣∣∣∣∣
[∏

σ∈


(
Id− K+σ ,�σ

)]
f

∣∣∣∣∣
∥∥∥∥∥

Lp(Rn)→Lp(Rn)

≥ cp

(√
log N

)d
, (6.5)

where product denotes composition. Now for each k = 1, . . . , d define the function of

two variables fk = fk(x2k−1, x2k) given by fs,L in Remark 6.2 with the pair (2k − 1, 2k) in

the place of (1, 2), with L = {1, . . . , N}, and with s chosen so that

supp f̂k ⊂ Q(2k−1,2k) ∩ A(2k−1,2k)(2−3kM , 2−(3k−1)M).

Here

Q(2k−1,2k) := {
ξ ∈ R

2 : ξ2k−1 > 0, ξ2k < 0
}
.
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30 F. Di Plinio and I. Parissis

We now define

f (x) :=
d∏

k=1

fk(x2k−1, x2k).

The point of this choice is that if σ = (σ (1), σ(2)) is such that σ(1), σ(2) have the same

parity then ξσ(1), ξσ(2) have the same sign on the frequency support of f , so that
(
Id −

K+σ ,�σ

)
f = f . Also, unless σ = (2k− 1, 2k) for some k = 1, . . . , d, there holds

supp f̂ ⊂
{
ξ ∈ R

n :
|ξσ(1)|
|ξσ(2)| ≥ 23M

}
,

Id− K+σ ,�σ
= Id on the cone |ξσ(1)| > (2d+ 1)2−�σ |ξσ(2)|,

which is a larger cone than the one where f̂ is supported, as �σ ≥ N in this case.

Summarizing, we may delete from the composition in (6.5) all the σ that are not of the

form σ = (2k− 1, 2k), and we have for all m = 1, . . . , N that

∏
σ∈


(
Id− K+σ ,(�(m1,...,md))σ

)
f =

d∏
k=1

(
Id− K+

(2k−1,2k),mk

)
fk,

with the caveat that the product sign on the left-hand side denotes composition while

the product sign on the right-hand side denotes pointwise product. Therefore using (6.4)

for the lower bound in the 3rd line

∥∥∥∥ sup
�∈!�

∣∣∣
[ ∏

σ∈


(
Id− K+σ ,�σ

)]
f
∣∣∣
∥∥∥∥

Lp(Rn)

=
∥∥∥∥ sup

(m1,...,md)∈{1,...,N}d

∣∣∣
d∏

k=1

(
Id− K+

(2k−1,2k),mk

)
fk

∣∣∣
∥∥∥∥

Lp(Rn)

=
∥∥∥∥

d∏
k=1

sup
mk∈{1,...,N}

∣∣∣
(
Id− K+

(2k−1,2k),mk

)
fk

∣∣∣
∥∥∥∥

Lp(Rn)

=
d∏

k=1

∥∥∥∥ sup
mk∈{1,...,N}

∣∣∣
(
Id− K+

(2k−1,2k),mk

)
fk

∣∣∣
∥∥∥∥

Lp(x2k−1,x2k)

≥ cd
p (log N)

d
2

d∏
k=1

‖ fk‖Lp(x2k−1,x2k) = cd
p (log N)

d
2 ‖ f ‖Lp(Rn).

This proves (6.5) and thus completes the proof of the theorem. �

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rny138/5042919
by University of Virginia user
on 03 September 2018



Maximal Directional Hilbert Transform 31

Remark 6.4. This remark shows that the counterexample of Theorem 6.3 is sharp. We

say that U ⊂ 
(n) has no odd cycles if it does not contain tuples of pairs, which are

images under permutation of {1, . . . , n} of the tuple of pairs

{(1, 2), (2, 3), . . . , (k− 1, k), (1, k)}

with k odd. In the case that U has odd cycles, in each given quadrant of Rn at least one

of the multipliers Kε
σ ,� is trivial for both ε = ±; we can thus reduce to the case that U

has no odd cycles. This case is treated below.

Suppose that {υ1, . . . , υs} ⊂ {1, . . . , n} are such that for all σ ∈ U there exists j

such that υj ∈ σ : in this case {υ1, . . . , υs} is called spanning set of U. Notice that for every

U ⊂ 
 we may find a spanning set with s ≤ 
n/2�. Arguing in similar fashion as in the

proof of Lemma 3.3 we may obtain the pointwise estimate

∣∣Kε
U,�

(
Pυ1

t1
◦ · · · ◦ Pυs

ts
f
)
(x)

∣∣ � Mn
s
(
Pυ1

t1
◦ · · · ◦ Pυs

ts
f
)
(x), x ∈ R

n, (6.6)

uniformly over all t1, . . . , ts ∈ R. Now, we may use an s-parametric version of the Chang–

Wilson–Wolff inequality to reduce estimates for the maximal operator associated to

the multipliers Kε
U,� over � ∈ L to an s-fold Littlewood–Paley square function estimate

involving the left-hand side of (6.6) with a loss of (log #L)
s
2 . An application of the bound

(6.6) as in Proposition 5.4 will thus lead to the estimate

sup
ε∈{+,−}U

∥∥ sup
�∈L

|Kε
U,� f |∥∥Lp(Rn)

� (log #L)
s
2 ‖ f ‖Lp(Rn),

which, together with the previously made observation that s may be taken ≤

n/2�, shows the sharpness of Theorem 6.3; in general the worst case is U =
{(1, 2), (3, 4), . . . , (2
n/2� − 1, 2
n/2�)}. We leave the details to the interested reader.
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