F. Di Plinio and I. Parissis (20xx) “On the Maximal Directional Hilbert Transform in Three Dimensions,”
International Mathematics Research Notices, Vol. 00, No. O, pp. 1-33

Advance Access publication on Month XX, 2018

d0i:10.1093/imrn/rny138

On the Maximal Directional Hilbert Transform in Three
Dimensions

Francesco Di Plinio!’* and Ioannis Parissis?2

'Department of Mathematics, University of Virginia, Box 400137,
Charlottesville, VA 22904, USA and *Departamento de Matematicas,
Universidad del Pais Vasco, Aptdo. 644, 48080 Bilbao, Spain and
Ikerbasque, Basque Foundation for Science, Bilbao, Spain

*Correspondence to be sent to: e-mail: francesco.diplinio@virginia.edu

We establish the sharp growth rate, in terms of cardinality, of the LP norms of the
maximal Hilbert transform Hg along finite subsets of a finite order lacunary set of
directions @ C R?3, answering a question of Parcet and Rogers in dimension n =
3. Our result is the first sharp estimate for maximal directional singular integrals
in dimensions greater than 2. The proof relies on a representation of the maximal
directional Hilbert transform in terms of a model maximal operator associated to
compositions of 2D angular multipliers, as well as on the usage of weighted norm

inequalities, and their extrapolation, in the directional setting.

1 Introduction

Let n > 2. The Hilbert transform along a direction w € S"~1 acts on Schwartz functions

on R" by the principal value integral

H,f(x) := p.v.ff(x—i—tw)%, x e R,
R
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2 F. Di Plinio and I. Parissis

If @ ¢ S"!, we may define the corresponding maximal directional Hilbert transform

Hof = sup |H,f|. (1.1)

we

The main result of this paper is the following sharp estimate in the three-dimensional

case.

Theorem 1.1. Let Q C S? be a finite order lacunary set [28]. Then forall 1 < p < oo

sup Hollrpw3)—rp®3) < Cv/10gN. (1.2)
0cQ
#O=N

The positive constant C may depend on 1 < p < co and on the lacunary order of Q only.

We stress that the supremum in Theorem (1.1) is taken over all subsets O
having finite cardinality NV of a given finite order lacunary set 2, which may be infinite.
Theorem 1.1 is in fact the Lebesgue measure case of a more general sharp weighted
norm inequality, which is a natural by-product of our proof techniques and is detailed
in Corollary 1 for the interested reader. In [22] Labaet al. have extended to dimensions

n > 2 the lower bound (due to Karagulyan [19] in the case n = 2)
#gl_fN lHallz2ny—12(®n) = Cny/10g N, (1.3)

where the infimum is taken over all sets @ C S*~! of finite cardinality N. A comparison
with the upper bound of Theorem 1.1 and interpolation reveals that the dependence on
the cardinality of the set of directions in our theorem is sharp forall 1 < p < oco. In fact,

[22] proves the analog of (1.3) for all 1 < p < oc.

1.1 Maximal and singular integrals along sets of directions

The study of cardinality-free or sharp bounds for the companion directional maximal

operator to (1.1)

1 &
Mgqf (%) = sup Mf (x), M,,f(x) := sup — If (x + tw)|dt, xeR" (1.4)
weR e>0 26 J_¢
is a classical subject in real and harmonic analysis, with deep connections to multiplier

theorems, Radon transforms, and the Kakeya problem, to name a few. The seminal
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Maximal Directional Hilbert Transform 3

article by Nagel et al. [26] contains a proof that the projection on S*~! of the set of

directions
Q= {0k, Ak k>1), 0<a<1,

gives rise to a bounded maximal operator Mg, in any dimension n > 2. Besides
providing the 1st higher-dimensional example of such a set of directions, article [26]
contains the important novelty of treating the geometric maximal operator Mg through
Fourier analytic tools. This allowed the authors to break the barrier p = 2 that was
present in previous works of Cérdoba and Fefferman [7] and Stromberg [31], where the
authors used mostly geometric arguments.

Sjogren and Sjolin [29] proved that, in dimension n = 2, a sufficient condition
for the LP-boundedness of Mg for some (equivalently for all) 1 < p < oo is that Q is a
lacunary set of finite order; loosely speaking, in dimension n = 2, a lacunary set Q' of
order L is obtained from a lacunary set Q of order L — 1 by inserting within each gap
between two consecutive elements a, b € Q two subsequences of suitably rotated copies
of Q! having a, b as limit points.

Bateman [2] subsequently showed that (up to finite unions) finite order lacu-
narity of Q is necessary in order for Mg to admit nontrivial LP-bounds when Q is an
infinite set. While the counterexample by Bateman is highly nontrivial and employs a
probabilistic construction based upon tree percolation, it is rather easy to see that the
LP norm of Mg must depend on N if Q is, say, the set of N-th roots of unity. In fact, the

sharp dependence
||MQ”L2(R2)—>L2(R2) ~ IOgN (15)

for sets of this type was proved by Strémberg [31]; in [20], the structural restriction on
Q was lifted and the upper bound in (1.5) was shown to hold for all finite @ c S! with
cardinality N. Further results concerning maximal operators along directions coming
from sets with intermediate Hausdorff and fractal dimension can be found in [15, 17].
We already reviewed that, in all dimensions n > 2, [26] provides us with an
example of a lacunary set of directions 2, for which Mg, is bounded on LP(R") for all
1 < p < oo. Another significant higher-dimensional example is given in the article of

Carbery, [5], where the author considers the projection on S”~! of the infinite set
Q1. [(2k1,...,2kn) k1, kn) € Z},

and proves that Mgn-1 is bounded on LP(R"™) for all 1 < p < oo. In dimension n = 2

the set Q! is the paradigmatic example of lacunary subset of S!. By the same token, the
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4 F. Di Plinio and I. Parissis

Carbery set Q"' can be considered as the canonical example of a higher-order, higher-
dimensional lacunary set. More precisely (cf. Definition 2.2) Q"~! is a lacunary set of
order n — 1 with exactly one direction in each cell of the dissection.

In dimensions n > 3, a general sufficient characterization of those infinite Q C
sl giving rise to bounded directional maximal operators, subsuming those of [5, 26],
was recently established by Parcet and Rogers [28] via an almost-orthogonality principle
for the LP norms of M, resembling in spirit that of [1] by Alfonseca et al. in the 2D case.
This principle leads naturally to the notion of a lacunary subset of S*~! when n > 3,
which is a sufficient condition for nontrivial ZP-bounds of (1.4). Again loosely speaking,
Q c S™*! is lacunary of order 1 if there exists a choice of orthonormal basis (ONB)—in
the language of [28], a dissection of the sphere S*~!—such that for all pairs of coordinate
vectors ej, ex the projection of Q2 on the linear span of ej, e is a 2D lacunary set; higher-
order lacunary sets are defined inductively in the natural way. The authors of [28] also
provide a necessary condition that is slightly less restrictive than finite order lacunarity;
we send to their article for a precise definition.

As (1.3) shows, if @ ¢ S*! is infinite, Hq is necessarily unbounded. Therefore,
the question of sharp quantitative bounds for Hg in terms of the (finite) cardinality
of the set Q arises as a natural substitute of uniform bounds. In dimension n = 2,
several sharp or near-sharp results of this type have been obtained by Demeter [8],
Demeter and the 1st author [9], and the authors in [10]. We choose to send to these
references for detailed statements and just mention the quantitative bounds that are
the closest precursors of our Theorem 1.1. To begin with, the 2D analog of (1.2), with
the same O(m) quantitative dependence, was proved by the authors in [10]. The
methods of [10] are essentially relying on the fact that (lacunary) directions in n = 2
can be naturally ordered and that this order yields a telescopic representation of Hg as
a maximal partial sum of Fourier restrictions to disjoint (lacunary) cones: see also [8,
19]. These methods do not extend to dimensions three and higher, where no ordering is
possible in general. On the other hand, in [28, Corollary 4.1], following the ideas of [9,

Theorem 1], the authors derive the quantitative estimate

sup [|Hollrp®n)—re@®n) < Clog N [Malle @ny—rp®n) (1.6)
oce
#O<N

at the root of which lies Hunt's exponential good-A comparison principle between
maximal and singular integrals [18]. Coupling (1.6) with the main result of [28] yields

that the norms of the maximal Hilbert transform over finite subsets of a given finite
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Maximal Directional Hilbert Transform 5

order lacunary set in any dimension grow at most logarithmically with the cardinality
of the subset. When n = 3, Theorem 1.1 improves this result to the sharp O(,/logN)
quantitative dependence, answering the question posed by Parcet and Rogers in [28,
Section 4]. The estimate of Theorem 1.1 appears to be the 1st sharp quantitative estimate

for directional singular integrals in dimension n > 3.

1.3 Techniques of proof

The key observation leading to the Parcet-Rogers theorem [28] is that the Fourier

support of the single scale distribution
s [ oo,
R

where ¢ is a Schwartz function on R, is covered by a union of 2D wedges ¥, , over
pairs o of coordinate directions, provided that a suitable smooth n-dimensional average
of f at the same scale is subtracted off; the latter piece is controlled by the strong
maximal function of f. While these wedges heavily overlap with respect to o, see
for example Figure 2, the authors use the inclusion-exclusion principle to reduce to
a square function estimate for compositions of 2D multipliers adapted to the wedges
¥, ». The fact that this square function is a bounded operator on LP follows from the
bounded overlap, for fixed o, as w ranges over a lacunary set €2, of the associated wedges
¥, . The proof of our Theorem 1.1 is also based on a representation of the directional
Hilbert transform H,, involving 2D wedge multipliers, which splits H, into an inner and
an outer part: cf. Lemma 3.2.

The inner part, which is supported on the union of the wedges ¥, ., is amenable
to a square function treatment; however, additional difficulties are encountered in
comparison to [28] as Hg is not a positive operator and does not obey a trivial L>-
estimate. We circumvent this difficulty by aiming for the stronger L?-weighted norm
inequality and relying on extrapolation theory for suitable weights in the natural
directional A, classes. This requires extending the maximal inequality of [28] to the
weighted setting; while this extension does not require substantial additional efforts
we wrote out the proofs in detail for future reference. As we previously remarked, it also
has the pleasant effect of giving a much more general weighted version of Theorem 1.1:
see Corollary 1, Section 5.

Unlike the single-scale operator, the outer part of the decomposition is

nontrivial and is actually the one introducing the dependence on the cardinality of
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6 F. Di Plinio and I. Parissis

the set of directions. It is a signed sum of 2" terms, which are compositions of 2D
angular multipliers; in general, we cannot do better than estimating the maximal
operator associated to each summand. The key observation of our analysis at this
point is that these compositions can be bounded pointwise by (compositions of) strong
maximal operators, upon pre-composition with at most |7 | directional Littlewood—
Paley projections; see Lemma 3.3 and Remark 6.4. An application of at most | | Chang-
Wilson-Wolff decouplings, see Proposition 5.2, then reduces the maximal estimate to
a square function estimate upon loss of | 2] factors of order \/@. This is enough to
obtain the sharp result for n = 2, 3 (and, less interestingly, recover (1.6) when n = 4,5),
hinting on the other hand that this approach is not feasible in general dimensions.

In fact, perhaps surprisingly, we show with a counterexample that this growth
rate, worse than that of Hy whenever n > 6, is actually achieved by the maximal operator
associated to the outer parts. This phenomenon displays how the model operator of
Lemma 3.2, based on the combinatorics of 2D wedges, is not subtle enough to completely

capture the cancelation present in H,.

1.4 Relation to the Hilbert transform along vector fields

In addition to their intrinsic interest, Theorem 1.1 and predecessors may be seen as
building blocks toward the resolution of the following question, apocryphally attributed
to E. Stein and often referred to as the vector field problem: if v : R* — S"! is a vector
field with Lipschitz constant equal to 1 and pointing within a small neighborhood of
(1//n,...,1//n), prove or disprove that the truncated directional Hilbert transform

along v

dt
Hyf(x) = p.v. fx —tv(x) e

[tI<eo

for g > 0 small enough, is a bounded operator from L?(R") into L>*°(R"). The partial
progress in dimension n = 2, beginning with the work of Lacey and Li [24, 25] and
continued in for example [3, 11, 14] by several authors, rests upon using the Lipschitz
property to achieve decoupling of the full maximal operator into a Littlewood-Paley
square function similar in spirit to the one appearing in (5.6). The estimation of a
single Littlewood—Paley piece in the vector field case is more difficult than the pointwise
estimate available to us in Lemma 3.3 and involves, in dimension n = 2, time-frequency
analysis of roughly the same parametric complexity as of that appearing in the Lacey-

Thiele proof of Carleson’s theorem [23]. Lemma 3.3 in this context may be interpreted as
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Maximal Directional Hilbert Transform 7

a single tree estimate (cf. [23, 24]), showing that the annular estimate for n = 3 might

display the same essential complexity as the n = 2 case.

1.5 Plan of the article

In the forthcoming Section 2, we set up the notation for the remainder of the article and
provide the precise definition of finite order lacunary sets in R™. Section 3 contains the
reduction of H, to the above-mentioned model operators, Lemma 3.2 as well as their
single tree estimate of Lemma 3.3. In Section 4, after the necessary setup for directional
weighted classes, we prove a weighted version of the Parcet-Rogers maximal estimate
in Theorem 4.6 which, together with the extrapolation techniques of Lemma 4.3, is
relied upon in the proof of our main result. Theorem 1.1 is derived in Section 5 as
the Lebesgue measure case of a more general sharp weighted estimate, Corollary 1.
This corollary in turn descends from Theorem 5.1, a L?-weighted almost-orthogonality
principle for Hg in the vein of [1, 28]. The final Section 6 contains the above-mentioned
sharp counterexamples for the model operator of Lemma 3.2 in dimension 4 and higher:

the main result of this section is the lower bound of Theorem 6.3.

2 Lacunary Sets of Directions: Definitions and Notation

In this section, we give a rigorous definition of finite order lacunary sets that will be
used throughout the article. In essence, our definition is the same as the one given by

Parcet and Rogers in [28].

2.1 Lacunary sets of directions of finite order

For convenience we keep most of the notational conventions of [28]. Throughout the
paper we work in R” and consider sets of directions 2 c S*~!. We allow the possibility
that span(Q2) = R4 for some nonnegative integer d < n and write X(d) :={(j, k) : 1 <j <
k < d}; we will drop the dependence on d and just write X when there is no ambiguity.
We typically denote the members of 2 as w and the members of ¥ as o = (j, k). Note
that |2(d)| = d(d — 1)/2.

With the roles of n,d, and Q as above we assume that for each o = (j, k) € Z(d)
we are given a sequence {6, ¢ : £ € Z} with the property that there exists A, € (0, 1) such
that

0,641 < Aobo e, 05,0 =060, VYo. (2.1)
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8 F. Di Plinio and I. Parissis

Here we set A := max,cx A, and throughout the paper we will fix a numerical value
of A € (0,1) and we will adopt the convention that all sequences 6, , have lacunarity

constants uniformly bounded by the same number 1. A choice of ONB of span(2) = R%
B:={ej:j=1,...,d} (2.2)

and of lacunary sequences {6, } as above induces for each ¢ € X(d) a partition of the

sphere S4-1 into sectors So e

| - ekl

sd-1 = USU,E, Sot = SGk),e = {0) €St b <

< ool <090—,g}. (2.3)
(eZ @€

We will henceforth write w; := w - e¢j for 1 < j < d once the coordinate system is clear
from context. The partition above is completed by adding the set Sy = Sjk),00 =
sd-1n (ejl U e,ﬁ). We henceforth write Z* := Z U {oo}. Now such a partition of the sphere

immediately gives a partition of Q by setting
Qo0 = QN Ss0, ceX, Lel". (2.4)

The family of (g) = d(d — 1)/2 partitions indexed by o € Z(d),

Q=J%.

LeZ

will be called a lacunary dissection of Q, with parameters such as an ONB B as in (2.2)
and a choice of sequences {6, ¢} as in (2.1). Note that {{Sg,g}gez* 1o € Z(d)} is a lacunary
dissection of S4-1.

We will refer to sets of the type S;¢ and Q¢ as sectors of the lacunary
dissection. We will also work with the partition of Q into disjoint cells induced by a
dissection, namely, intersections of sectors 2, . More precisely, let B be a choice of
ONB as in (2.2). Given £ = {{, : 0 € £(d)} € Z* we define the £-cell of the dissection

corresponding to B as
Sti=()Sotsr Q=)
oex oex

Observe that this provides the finer partition of S¢~! and Q, respectively, into cells

s =[] s a=J Q.

LeZx LeZx
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Maximal Directional Hilbert Transform 9

The following definition, which is the principal assumption in our main results,

was given in [28, p. 1537].

Definition 2.2. (Lacunary set) Let Q@ C S™ ! be a set of directions with span(Q) = R<.
Then

Q is a lacunary set of order O if it consists of a single direction;

if L is a positive integer, then 2 is lacunary of order L if there exist an ONB
B as in (2.2) and a choice of sequences {6, ¢} as in (2.1) with the property that
for each o € X(d) and each ¢ € Z* the sector @, ¢ in (2.4) is a lacunary set of
order L — 1.

A set Q@ will be called lacunary if it is a finite union of lacunary sets of finite order.

For example, 2 is 1-lacunary if there exists a dissection such that, for each o €

¥(d) and ¢ € N, the set ©, ¢ contains at most one direction.

Remark 2.3. Let Q be a lacunary set of directions and 8 € (0,1). Then Q is a lacunary
set of directions with respect to dissections given by the sequence 6, ¢ := B°. This is
automatic if 8 > A while in the case 8 < A it follows easily by suitably splitting the set
Q into O(log B/ min, log A,) congruence classes. Unless explicitly mentioned otherwise,

all lacunary sets in this paper are given with respect to the sequence

b 0=27% el

As our choice of sequences {0, ¢} is universal, prescribing a lacunary dissection amounts
to fixing an ONB B as in (2.2). It is also clear that for all proofs in this paper it
suffices to consider the case that Q is contained in the open positive 2¢-tant of the
sphere Sﬁ_l =5%"1n Ri. While there are different coordinate systems involved in the
definition of a lacunary set 2, by splitting any lacunary set into finitely many pieces
we can assume this property for all dissections that come into play. Furthermore, by
standard approximation arguments (e.g., monotone convergence) we can assume that
has empty intersection with all coordinate hyperplanes. These conventions allow us to
only consider sectors S, ¢, Q0 With ¢ € Z instead of ¢ € Z*.

On the other hand, and in contrast with the previous conventions concerning
the proofs, in the statements of our theorems we always assume that the set Q2 is closed.
Furthermore, the basis vectors of any dissection used in the definition of a lacunary
set of any order are assumed to be contained in the set. We adopt these conventions

throughout the paper without further mention.
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10 F. Di Plinio and I. Parissis

Remark 2.4. Although it is necessary to distinguish the case spanQ = R? with d < n in
the definitions, in the proofs of our estimates we will argue with d = n without explicit

mention; by Fubini's theorem, this is without loss of generality.

3 Model Operators

For w € S™! (re)define the directional Hilbert transform on R”
H,f(x) = / F(&)sign & - w)e™* dt. (3.1)
Rn

In this section we set up a representation formula for (3.1). The central result is
Lemma 3.2 below. Before the statement we need to introduce some additional notation

and auxiliary functions. For £ € Z and y > 0 we consider the 2D wedges

2—(Z+1) E 1 3
Wb,y = {E e R" \ (ea(z))J‘ : < - o) <y2 ey

¢5(2)

We are interested in the particular cases y € {n,n + 1} for which we use the special
notations

\pa,l,n = lpa,[r lI’U,Z,TH-I = \TJG,Z- (3.2)

Furthermore, let ¢, ¢~ : R — [0, 1] be smooth functions satisfying

o, — 1), 1, —
b= | XSO XS

1, x> —n, 0, x>

n'
__1
2(n+1)"

We now use the functions ¢, ¢~ in order to define the essentially 2D angular

Fourier multiplier operators

KE, ©) =«F, Gy bon) =0+ (2E0@> ,
€2

Ko, () =kl &) =1, E), &), (3.3)
and their compositions

o= K7, @cUCE,  eeit+,0-)Y; (3.4)

oelU

when &, = o for all o € U we simply write Ky ¢ in place of K7, ,.
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Maximal Directional Hilbert Transform 11

Fig. 1. The Fourier support of the multipliers K¢ and K\,

1,2),0'K1,2),07 1,2),0°

Remark 3.1. Let e € {+, —, o}. We record the support conditions (see Figure 1)

(Ver ) w,, = (VéKg,ZU)IR"\\TJU,g =0, Ko oo 10, = 1, Ko 0, 1m\3,, = 0. (3.5)

Moreover, we have the derivative estimates

sup sup [&o(1)|* 6o 2|35} 92, ke, O] ST, ol =01 + o (3.6)
la|<10n £eR™

We will also use below that if & ¢ W, 4, then K5 ¢, is constant in a neighborhood of §.

Lemma 3.2. Suppose w € Sy, the cell of S*~! with lacunary parameters £ = {{, : 0 € X}.

Then we have the pointwise bound

|H.f < If1+ _sup !H Kyuf|+ sup  sup |K§,f|.
ee{+,—)}E OCUCT

Proof. As

= [ > (—1)#U+1KU,5] + [ [] (- KMO)}

@CUCE oes
we write
f= [ > (—1)#U+1HwKU,J] +If (3.7)
@CUCE

where T is the Fourier multiplier with symbol

m(E) = T(E) = sign(- &) [ [ (1 -« ©)). (3.8)

oeX
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12 F. Di Plinio and I. Parissis

Fig. 2. Suppose » belongs to the cell S;. The red line is the intersection with the sphere S% of the
singularity & - w = 0 of H,,. The blue and yellow wedges are V(1,2),64,2 and V(2,3),L,3 respectively,

from (3.2). As in the depicted octant &; and &3 have the same sign, V(1,3),001.3 is not visualized.
We have to treat the term T. First of all, we check that

1
R n. . — &L — . .
Cor={g € R 1 1E 0l < - max fogl| € D= | o, 3.9

oED

This is essentially depicted in Figure 2 and is a sharpening of the argument in [28, Proof
of Theorem A]. We prove (3.9) by showing that R"\D, € R™\C,. To that end let § € R"\D,.

Writing 7; := ;€ and remembering the convention w; > 0 for all j we then have that

~2o® g [i,n] Voex.
No (2)
Choose j, such that [7;,| = max;<j<,|n;|. Now we note that if n;n, > 0 for all
je{l,...,n}\ {j.} then & ¢ C, so we are done. Otherwise we define k, by means of
[k, | = maxj., ».<onjl; as [nj,| = nin,| we end up with
;.|
co| = i >1In,l—m—-1 > —— = max |wj§l,
§-ol=| 30 ] = nil = (0= Dimel = 725 = max o

1<j<n

which is the claim (3.9). Noting that

suppm = R" \ U Y, o, =R"\ D,

geX
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Maximal Directional Hilbert Transform 13

this claim tells us that suppm N C, = ¥ whence if § € supp m the signum of (- §) is
constant in a neighborhood of £&. Now using the easy-to-verify fact that (1 — ¢T¢~) =
(1—-¢") 4+ (1 —¢) and the two summands are supported in disjoint intervals we can

rewrite (3.8) as

mE) = Z sign(w - £)ke(£), Ke(£) = H (1 —x5%,)

ee{+,—}% oex

for e = {¢, : 0 € L}. As supp k. is a connected set not intersecting C,, we conclude that
sign(w - &) is constant on supp k.. Therefore, if T, is the Fourier multiplier with symbol
Ke
1Tfl < ) ITefl. (3.10)
ee{+,—}*

Now we observe that the symbol of Id — T, is equal to

-l =)= D> D e,

oeX gCuUcy oelU

and putting together the last display with (3.7) and (3.10) we achieve the pointwise

estimate claimed in the lemma. [ |

In the next lemma we prove an annular estimate for the multiplier operators of
(3.4). To do so we will need to precompose these operators with suitable Littlewood-

Paley projections that we now define. Let p, g be smooth functions on R with

suppp C {§eR: 3 <&l <2}, Y p@*) =1, &+#0,

2
teZ
suppq C {€ eR: } <|g| <4}, g=1lon{teR: § <] <2}.
Now for v € {1,...,n} we define the Fourier multiplier operators on R"

PUfE) :=FEPp@E-e),  QUFE) =LE)q2 i - ey).

Thus {P/}; is a one-dimensional Littlewood-Paley decomposition, acting on the v-th
variable only, and being the identity with respect to all other frequency variables.
Here and in the rest of the paper we write Mg for the strong maximal function and
M2 := Mg o M.
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14 F. Di Plinio and I. Parissis

Lemma 3.3. Let supp f C Q where Q is any of the 23 octants of R3. Let 3 CUC %, e €

{+,—}Y. There is a choice v = v(U, &,Q) € {1,...,n} such that the pointwise estimate
K§ o (PYF) 0] S ME(PYf) %), x€R?,
holds uniformly over all t € R.

Proof. As e,£ are fixed throughout the proof and in order to avoid proliferation of

indices, we shall write below

Ko, =Kor Ky =Ky Kpjy =Ky,
when these parameters are unimportant. As we are working with the strong maximal
function, by rescaling on the sphere we may assume ¢, = 0 for all 0 € ¥; this is just for
convenience of notation as we shall see. We divide the proof to different cases according
to the cardinality of the set U C X.

Case #U = 1. In this case there exists ¢ € X(3) such that U = {0}, Ky = Ky,
and we may choose either v = o(1) or v = 0(2). The choice does not depend on the
quadrant Q. To fix ideas, we work with ¢ = (1,2) and choose v = 1. By the observation
(3.5) of Remark 3.1, we know that «, is constant in a neighborhood of & unless & € \Tfayo,
in which case |£,(1)| ~ |&2)|. Therefore, if & € U, o and 282 < |£| < 2¢2, there holds
28 ~ || ~ l&52)| and

0g) 952, ko O] S o™ leo@| ™2 27, a=a1 +aa.

Using the above inequality for ¢« =0, ..., 10 - 3, it follows that

bs (X5(1), X5 (2)) 1= /2 Ko (E0(1), E0(2))q (2708, @ Fo i Ko@) dt ) (1) dEy (o) (3.11)
R

satisfies

—(3+1)

|Po (X (1), Xo2)| S 225 (1 + 281x5 1) | + 2% 1%0(2) ) (3.12)

We now write f; = P{f. Denoting convolution in the variables ¢ (1), 0(2) by %, we have
that

K. fi = (Ko Q) (fy) = P *0 fi.
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Maximal Directional Hilbert Transform 15

Hence using (3.12) we see that

IKuft(x)| < /RZ |ft(x1 — y1,x2 — y2,x3)[|Po (y1, y2) | dy S Ms(f2) (%)

as claimed.

Case #U = 2. In this case U = {0, 1} for some 0,7 € X(3) and necessarily o,
7 must have a common component. We choose v to be this common component. This
choice also does not depend on the quadrant Q. To fix ideas ¢ = (1,2),7 = (1, 3) and we
choose v = 1. Note that in this case Ky = K(1,2)K(1,3). With the same notation of (3.11)

from the previous case we have the equality

Kyft = (Ka,2Q7) o (K2,3)Qf) (f) = ®a,2) *1,2) Pa3) *a,3) ft

so using (3.12) again we see that

Kufi(x)] < f

R4x

w2 lfi(x1 —y1 — z1, X2 — y2,X3 — 23)||®1,2) V1, Y2 P1,3) (21, 23) | dy dz

< M2(fp) ()

as claimed.
Case #U = 3. We show that this case reduces to the preceding ones, with choice

of v depending on the quadrant Q. Let
Q, = {£ e R®: &,1)é0(2) > O}
Notice that the constraints on the supports of ¢* imply that
/c(;e”la(7 =0, K+, lg, =1, Vo € X.

As for each of the eight quadrants Q of R® there exists (at least one) oo € ¥ such that
Q C Q,,, we see that

. 0, if 30 e U with & =—,

KU,{ ].O = . .
KU\{UQ},e 1a, otherwise.

As #{U \ {0q}} = 2 for each quadrant Q the proof follows by the cases #U € {1,2}

considered above. [ |
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16 F. Di Plinio and I. Parissis
4 Weighted Norm Inequalities for Directional Maximal Operators

We dedicate this section to the discussion of weighted norm inequalities for the
maximal directional operator. These will serve as a tool for the proof of Theorem 1.1;
in fact, they will be used to prove a weighted almost-orthogonality principle that
subsumes both Theorem 1.1 and its weighted analog, which will be stated at the end
of this section. However, we do think they are also of independent interest.

The weighted theory of the directional maximal operator has been studied, at
least in the 2D case, in [13], for the case of 1-lacunary sets of directions. Here we recall
all the basic definitions and tools and then proceed to prove weighted norm inequalities
for the directional maximal function Mg associated to a finite order lacunary set
Q c S"!. In essence, the main result of this section, Theorem 4.3, is a weighted

generalization of the main result of [28] by Parcet and Rogers.

4.1 Directional Ap weights

We begin by defining the appropriate directional A, classes. The easiest way to define
the appropriate class is to ask for nonnegative, locally integrable functions w (we will

refer to such functions as weights) such that for all nice functions f we have

1
IMafllzeewy S N Fllizpw), I fllizpw) = (/ |f|pW>p, 1<p<oo

where Q is a set of directions such that Mg is bounded on LP(R"™). Without explicit
mention, we work under the purely qualitative assumptions that all weights appearing
below will be continuous and nonvanishing functions on R"; this assumption may
be removed via a standard approximation procedure that we omit. We will very soon
specialize to sets Q that are lacunary of finite order so we encourage the reader to keep
this example in mind. Note that for smooth functions f we have Mg f = Mq f. We can
then assume that Q is closed when deriving necessary conditions for w.

For w € Q, x € R", and > 0 we then define segments and corresponding one-

dimensional averages of f € C(R%) as follows
1 [
Ix,n, o) = {x+tw: [t| <n}, (F1nw = z/ fx + tw) dt.
=

We set Ig = {I(x,n,0) : x € R%, n > 0,0 € Q} and for p € (1,00) we adopt the usual
1
notation for the dual weight o := w ?-T. Now the LP(R™)-boundedness of Mg clearly

implies the boundedness of M,, on LP (I(x, w)), where I(x, w) := {x+ tw : t € R}, uniformly
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Maximal Directional Hilbert Transform 17

in x € R" and w € Q. Now testing this one-dimensional boundedness property M,, for
some fixed p € (1, 00) against functions of the form o 1;,,,») shows the necessity of the

directional A, condition

p-1
[W]A[s]z .:Isellzg/l_w(/;o) < 00;

here we remember that we have made the qualitative assumption that w is a continuous
nonvanishing function.

Note that if we write w(x) = w(x - w,x - o), the previous condition means that
for almost every x € R” and o € , the one-dimensional weight vy ,(s) := w(s,x - wb),

s e R, is in Ap(R), with uniformly bounded A, constant:

sup [vxela, = [W]ye < oco.
xeR?, weQ P

We complete the set of definitions by defining A to be the class of weights w such that

(W],0 = Mow(x)
Ve SR Sy <

A well-known class of Muckenhoupt weights is produced considering @ = {ej,...,en};
then Af} is just the class A4} of strong or n-parameter Muckenhoupt weights. We also

note that an obvious corollary of one-dimensional theory is that

1
My llze (wy—12w) S [W]Zg, w € Q,

and the implicit constant is independent of w and w. We refer to [4] for the sharp one-

dimensional weighted bound for M,,.

4.2 Extrapolation for Ag weights

Having established the appropriate Afoz classes, we now proceed to proving one of the
most useful properties of weighted norm inequalities, that of extrapolation.

We begin by noting that, as in the case of classical A, weights, it is easy to create
A?-weights by using the Rubio de Francia method and factorization; see [12, Lemmata

2.1,2.2]. We omit the proofs that are essentially identical to the one-directional case.
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18 F. Di Plinio and I. Parissis

Lemma 4.3. Letw € AIS}. For a nonnegative function g € LP(w) we define

o0 (k)
My’g

Eg:=) —2—
k

k=0 zk”MQ”Lp(W)

Then Eg satisfies the following properties:

(i) g<E;g.
(ii) For every g € LP(w) we have ||Eglizr(w) < 2llgllLe(w)-
(iii) If [Mgllze(w)—r1r(w) < oo then Eg is an AS* weight with constant
[Eg]Aiz < 2|IMgqllze (w)—L1P(w)-
Furthermore for all exponents 1 < p < 00,1 < pg < co and weights u, w there holds

[Wup—po]Ago < [W]Ag[u]A?’ P =Dpo

po-1 Pp-po 1’40*11 prlo
D=1 7, D=1 p— p—
w p-T y p-1 S[W]AQ [W]AQ , P> Po.
Ago P P

We now provide the basic extrapolation result for Ag weights, which will be

our main tool for passing from L%(w) estimates to LP(w) estimates for all p € (1, 00).

This result and its proof are completely analogous to [12, Theorem 3.1], making use of

Lemma 4.3 as the analogous of [12, Lemmata 2.1 and 2.2].

Lemma 4.4. Let Q C S ! be a set of directions such that for all 1 < p < oo and for all

w e Ag we have the weighted boundedness property Mg, : LP(w) — LP(w). Assume that

for some family of pairs of nonnegative functions, (f, g), for some pg € [1, 00] and for all

w € Ap, we have

(/Rn 9P0w>% < CP([W]A§O)</Rnfp°W>"IO,

where P : R, — R, is a an increasing function and C > 0 does not depend on w or the

pairs (f,g). Then for all 1 < p < oo we have

(o)} <oxon( [, o)
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Maximal Directional Hilbert Transform 19

with

P(wl g 2IMe Iz w))PO7P), p < po,
K(w) = po-1 p-po
,P([W]Apg (2”MQ”UJ’(U)) P, P > po-

4.5 Weighted inequalities for the lacunary directional maximal operator

In this subsection, we consider directional maximal operators associated to lacunary
sets of order L.

According to the previous discussion, the condition w € Ag is necessary for
the boundedness property Mg : LP(w) — LP(w). In this paragraph we also show the
sufficiency of condition Ag, thus giving a characterization of the Ag class in terms of
M.

Theorem 4.6. Let Q@ C S™ ! be a lacunary set of directions of order L, where L is a

positive integer, and w be a weight. For every 1 < p < oo, the following are equivalent.

(i) For all f € LP(w) we have |[Mqoflrrw) S Ifllzew), with implicit constant
depending on w, the dimension, and the lacunarity constants of Q.
(i) We have that w € A7

Furthermore, if w € A7 then we have the estimate |Mgllzow)»pw) S Wl for some
14

exponent § = §(p, n) > 0 and implicit constant independent of w.

Remark 4.7. We note here that in dimension n = 2 and for L = 1 this theorem was

known and contained in [13, Theorem 4].

4.8 Proof of Theorem 4.6

Recall from Section 2 that a set ¢ S* ! is called lacunary of order L, where L > 1 is a
positive integer, if there exists a dissection as in (2.3) such that for each o € £(n) and
¢ € N, the sets Q. are lacunary of order L — 1. As mentioned before, cf. Remark 2.3,
we assume that Q is closed and that the axes {e1, ..., e,} of the dissection of order L are
contained in Q. Then, the inclusion Ag C Aj holds, the latter being the class of strong
Ap, weights with respect to these coordinate axes. In consequence, the strong maximal
function Ms is automatically bounded on LP(w) for w € AISJZ.

As in the proof of [27, Theorem A] we rely on the covering of the singularity
hyperplane & - w = 0 by finitely overlapping unions of 2D wedges {V, ¢, : 0 € £} defined

in (3.2), where £ = (£, : o € ¥) is the unique index in Z* such that » belongs to the cell
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20 F. Di Plinio and I. Parissis

;. The core of the proof is contained in the following two lemmata, which are weighted
versions of the corresponding results from [27].

The 1st result we need is a weighted analog of [27, Lemma 1.1]. Note that it does
not require the lacunarity assumption on Q2 and the weight class needed is just the usual

class of strong Muckenhoupt weights A;.

Lemma 4.9. Letp > 1 and w € A} be a weight. There holds

_n_
”MQ\f”LP(W) S [W]Z;l sup H sup MQ(KU,e.f”Lp(W)r
P gAUCY  gez*®

with the implicit constant depending upon dimension and p.

Proof. The proof follows from the arguments in the proof of [27, Lemma 1.1]. Indeed,
one just needs to note that the corresponding unweighted estimate in [27] is proved
via the use of pointwise estimates, which of course are independent of the underlying
measure, and the boundedness of the strong maximal function Mgf on LP(R"™). The latter
fact is replaced by the observation that Ms maps LP(w) to itself whenever w € A} and

satisfies the quantitative norm estimate

n

IMslze (w)—L2(w) S [W]Zg-

Here again we use the one-dimensional sharp weighted estimate for the Hardy-

Littlewood maximal operator from [4]. |

The 2nd result is a weighted square function estimate for the angular multipliers

Ky associated to a lacunary dissection of the sphere.

Lemma 4.10. Let 1 < p < oo and ¥ corresponding to a given dissection of the sphere.

Then for all w € AI’; we have

1
2\ 2 B
oup (5 0a)' ], 5 Wt
sup g]l FI) iy S W2 fllrcr

The implicit constant depends upon dimension n, p, and 8 > 0 depends on p and n.
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Maximal Directional Hilbert Transform 21

Proof. As in the proof of [27, Lemma 1.2] we note that it will be enough to prove the

LP(w)-boundedness of the randomized map T given as

> ( Z €e H Kﬁ,@j)v =: (mf)",

te7S o€l

uniformly over choices of signs {e¢};.;v. The unweighted L2(R")-boundedness of this
map follows simply by Plancherel and the finite overlap property of the supports
{\T/g,g : £ € N}, which shows that m € L*, uniformly over choices of signs. For LP(w)-
bounds, we need an Aj-weighted version of the standard Marcinkiewicz multiplier
theorem. This can be found for example in [21, Theorem 3] so the proof of the lemma
reduces to checking a number of conditions on averaged derivatives of m. In fact these
conditions are identical to the hypothesis of the unweighted Marcinkiewicz multiplier
theorem, as can be found for example in [30, p. 109] and can be verified by using
estimates (3.6) for each single multiplier K7 ,. An inspection of the proof, which relies
on the weighted vector valued boundedness of frequency projections on rectangles, and
the weighted multiparameter Littlewood-Paley inequalities show that there exists a

constant 8 depending on n and p such that | Tl|zpw)—r1r(w) S [W]ﬁ*. |
P
We now give the conclusion of the proof of Theorem 4.6.

Proof. Conclusion of the Proof of Theorem 4.6. The key step is the estimate

||MQ||LP(W)—>LP(W) ,S [W]i;; sup sup ”MQU’g ||LP(W)_>LP(W), (4-1)
oceX (el

for some exponent § > 0 depending on the dimension n and on p. Indeed, if L = 1,
each sector Q. ¢ contains at most one direction, whence using the well-known weighted
maximal inequality for each such direction and the obvious inequality [w] 4l < [w] a2
forw e Q,

sup sup [|[Mg, , l|lzp(w)—1Pw) S SUP |Miw} lze (w)— 1P (w) -
oeX (el weR

Coupling the latter display with (4.1) yields the claimed estimate in Theorem 4.6. We
now proceed by induction and derive the L-lacunary case assuming the L — 1 holds true.

Estimate (4.1) and the inductive assumption read

ST~ 1
IMalp (w)— 1P (w) S [W]A* sup sup Mg, , lzp(w)—1P(w) S [W]A* sup supwl’ &Y < [W]ZLQ
P oes tez P oex teZ Ap P
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22 F. Di Plinio and I. Parissis

where in the last inequality we have used the obvious fact that sup, Z[W] M < [W]Asz
and [wlay < [w] ag- This completes the proof of the theorem up to showing estimate (4.1)
holds true. |

Proof of (4.1). We first perform the proof in the case p > 2. Let us for a moment fix a
U C ¥ and write Z* = ZVU ® Z*\U so that given £ = (£, },cx We decompose £ = 7 x t with

T = {1, : 0 € U}. Replacing the supremum by an ¢P function gives

< supsup [Me, ,lz2w)>zoaw | | Y 1felP . @2
oeX (el —

sup Mq,f:
LeZ®

LP(w) L2(w)

As p > 2 estimate (4.2) implies

—

[N

2
< supsup Mg, , [lrw)—1eew) || | D 1 f]
0€X (eN 7S

sup Mg, f~
LeZ®

LP(w)

LP(w)

Now (4.1) follows by taking f; := Ky, where T = {t, : ¢ € U} and bounding the right-
hand side in the last display, from above, by Lemma 4.10, and the left-hand side of
the last display, from below, by Lemma 4.9. For 1 < p < 2 we note that, by monotone
convergence, it suffices to show the estimate for every finite subset of €, which we still

call Q. Then |Mgq|lzr(w)—1r(w) < 00, W € A%, so we can interpolate between the estimates

sup | f|
LeZ®

< IMgy llzp (w)— 1P (w)
LP(w)

sup Mg, fr
LeZ®

LP(w)

and (4.2) to conclude

1

N

p

p 2 2
< IMallzp ) o) (sug sup ||Msz(,@||Lp(W)4Lp<w>> > Il
TeZS

sup Mg, f7
LeZ®

Lp
(w) P (w)

Taking again f; = Ky, an application of Lemmata 4.10 and 4.9 yields

p
2

» p
||MQ||LP(W)—>LP(W) < [W]A* ”MSZ”Lp(W)HLp(W) (Sug Seug ||MQ(,[ ||LP(W)—>LP(W)>
€Y fe

with y = B+n/(p—1). As we have assumed that | Mg ||zr(w)—L1P(w) < 0O We may rearrange

and complete the proof of the theorem.
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Maximal Directional Hilbert Transform 23
5 An Almost-Orthogonality Principle for the Maximal Hilbert Transform

We now prove an almost-orthogonality principle for the maximal Hilbert transform of a
set Q@ C S%. In the statements below it is convenient to write for all nonnegative integers
N, weights w on R?, and Q C S?

@N(Q,W) = sup ||HO”L2(R3;W)—>L2(R3;W) .
ocQ
#0O<N

Theorem 5.1. There exist C,y > 1 such that the following holds. Let N be a positive
integer; B, be a choice of ONB; and Q C S2, a set of directions containing B and w € Ag.
Then

On(Q, w) < C[W]ngz |:\/logN + sup sup ®N(QU'6'W{|
o€eX (el

where the lacunary dissection is taken with respect to 5 as in (2.3).

By iterative application of the almost-orthogonality principle, and extrapola-
tion, we obtain the following corollary, of which Theorem 1.1 is the particular case

w=1.

Corollary 1. Let1 < p < oo and L > 0. There exists constants C = Cp,¥ = ¥p,L such
that for any  C S? lacunary set of order L and w € A}

sup ”HO”LP(R3;W)—>LP(R3;W) < C[W]Zg\/ logN.
ocQ
#0O<N

The proof of Theorem 5.1 rests upon the results of the previous sections, as well
as on the proposition below, a weighted version of the Chang-Wilson-Wolff principle,
which we state and prove before the main argument. In the statement of the proposition

below we remember that 4 = Ag with Q being the canonical basis of R”, namely Q =

{e1,...,en}. We also use the standard notation A}  := Up>1A;§.
Proposition 5.2. Let {Ki,...,Ky} be Fourier multiplier operators on R” with uniform
bound

sup IKjllz2w)—r2w) = [W]Z;
1<j<N
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24 F. Di Plinio and I. Parissis

for some o > 0. Let {P/};cz be a smooth Littlewood-Paley decomposition acting on the

v-th frequency variable, where 1 < v < n.Forw ¢ AZ’; and 1 < p < oo we then have

(Z sup |KjP;’f|2)%

1
< wlh, |:||f||LP(w) + (log(V +1))2
g tez 1=J=N

sup |K;
H p IKifl Lp(w)}

lffjfEA] “IJD(VV)
for some exponent y = y(«, p, n) and implicit constant depending on «, p, n.

Proof. To simplify the notation we work with v =1 and set

—

K*f:= sup |K;fl, DK* := (Z sup |Kth1f|2)7.
1=<j<N tez 1=J=N

Let {D; : j € Z} be the standard dyadic filtration on R, E; be the associated sequence
of conditional expectations, and Af denote the associated martingale square function.
Let IEJI be the sequence of conditional expectations on L!(R") acting on tensor products
f(x) = g(x1)Qh(x2,...,x,) by E}f := Ejg®h and denote by A'f the associated martingale

square functions. The Chang-Wilson-Wolff inequality [6] tells us that if w is an A} -
weight then

w({xer: g0 —Elgeol > 22, 1A1F 0] = y2})

b
2>W({X eR™: [Me,g(x)| > A}), (5.1)

< A e)(I) (:—— i;;;iigs—;;—-

where A, b are absolute positive constants and

wl,o) = supw(x + -e1)la;
o xeR™
here []a,, denotes the Wilson A, constant of a weight on the real line, see [32]. The
inequality (5.1) for n > 1 is in fact obtained from the one-dimensional version of [6] and
Fubini. As [w], o) < [W]A; and proceeding exactly as in in the proof of [11, Corollary 1.14]

we can use the above inequality to reach

IK*Flzpw) S IMeyfllzow) + sup [Me, Kif llzpw) + v10g(WV + 1) Me, llze w) IDE*f |2 (w)
1<j<N
(5.2)

where 1\7[e1f = (Mg, |f|r)%, and r > 1 can be chosen arbitrarily close to 1; the implicit

constant depends on p,r, and polynomially on [W]Az. Since our weight w € A}, Me, is
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Maximal Directional Hilbert Transform 25

a bounded operator on LP(w). Furthermore, using the reverse Holder property for A%
weights, see for example [16, Theorem 1.4], we actually have the openness property
p
Wlax < 2[wlax, r<——/—————,
“p 4 p — c(wlax) !
where the positive constant ¢ = c(p, n) < 1 can be explicitly computed. Therefore, 1\7[91 is
also a bounded operator on LP (w) provided r is chosen small enough to comply with the
restriction in the last display. Making use of these LP(w)-bounds in (5.2) finally yields
the proposition. |

5.3 Proof of Theorem 5.1

In this proof the implicit constants occurring in the inequalities as well as the exponent
y are meant to be absolute and are allowed to vary without explicit mention. Let Q C S?
and an ONB B C 2 be given. Fix a subset O C @ with #0 = N. Of course the set of
addresses of the cells whose intersection with O is nonempty, in symbols Ly := {£ €
7Z* : ONSy # #}, has cardinality at most N. We use the pointwise estimate of Lemma 3.2
for each w € O to obtain that

|Hof| S 1fl+ sup sup|Hons,Kuef|+ sup  sup sup|Kg,f)|. (5.3)

GCUCX Lelg GCUCY ge{+,—}U Lelo

We may ignore the 1st summand on the right-hand side. We bound the norm of the 2nd

summand on the right-hand side by a constant multiple of

( Z |KU,€f|2)%

ezl

( Z |HOﬁSgKU,€f’2>%

leILo

sup
GCUCE

<B sup
L2(w) GCUCE

LZ(w)

< wil, ( sup sup O (R ¢, w)) 1F 2y, (5.4)
2 No€eX (el

where in the last step we have used the weighted estimate of Lemma 4.10, and we have
also used the easy estimate

1

( Z |Hons, 9e |2) :

LezZ*

B = sup
19122 (e2)=1

< supsup On(Q2s,¢, Ww).
L2(w) oeX (el
The 3rd summand in (5.3) is treated in the next proposition. In fact, coupling the
bounds (5.4) above, and (5.5) below, with the pointwise estimate (5.3), and noticing that
[w] a3 < [w] A9 since the coordinate basis vectors are contained in 2, completes the proof
of Theorem 5.1.
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26 F. Di Plinio and I. Parissis

Proposition 5.4. Let L be a finite subset of Z3. Then

sup  sup

sup \Kff,ef|
DCUCE ee{+,—}U

< wlh, log(#L + 1 : 5.5
U 2wy ~ [w] : og(#L + DI fllz2w) (5.5)
Proof. Fix U C X,e € {+,—}U throughout the proof. By means of compositions of

Hilbert transforms along the coordinate directions we may decompose

f=) fo.  Ifalzw S W1 Flzw,
Q

where each fp has frequency support in one of the octants Q of R3. By virtue of the
norm estimate of the above display, we may fix one of these octants Q and prove (5.5) for
functions f whose frequency support is contained in Q, which we do here onwards. Now
we remember that by Lemma 4.10 the multiplier operators {K7; , : £ € L} satisfy weighted
L? bounds with weighted operator norms bounded polynomially in [w] a3, uniformly in U
and £. This allows us to use Proposition 5.2 on the N = #I. Fourier multiplier operators
{K?M : £ € L}, to get that

1
o S W11, [nfuLz(m +Viog@ + D (Y sup kg, PLfI?)°

teZ el

sup |K¢ (5.6)
H e Kf| L2<w)]

for any v € {1, 2, 3}. We make the choice v = v(U, ¢, Q) € {1, 2,3} according to Lemma 3.3,
so that based on suppf ca

|K§ (PYA) )| S ME(PYS) ().

Combining the last two inequalities followed by weighted Fefferman-Stein and

L2<w>]

Littlewood—-Paley estimates

o S [le;[HfHLz(W) + Vg + 1| (Y mzeern?)
teZ
< Wiy, VIog@ + Dilf 2,

| sup &5, f]
Lell

which is the claimed (5.5). |
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6 Quantitative Counterexamples for the Model Operator

In this section, we show that sharp higher-dimensional (n > 4) analogs of Theorem 1.1
cannot be attacked by means of the model operators of Section 3, which are essentially
compositions of smooth 2D lacunary cutoffs. To wit, we show that the maximal

operators

sup ’[ l_[ (Id — Kf;fe”)]f

Lell sex

’

, sup |Ky of
Lell

intervening in the decomposition of the maximal Hilbert transform induced by
Lemma 3.2, have operator norms that grow at order (log#L)%L%J. For n > 4, this is
unfavorable compared to the maximal Hilbert transform over finite subsets O of a (finite
order) lacunary set 2, whose operator norm is of order at most log(#0); see [28, Corollary
4.1]. Our counterexamples are obtained by careful tensoring of the lower bound for the
2D case X = {(1, 2)}, which in turn descends from the main theorem of [19].

We use the notation of Section 3 and in particular of (3.3). However, in this

section it will be more convenient to use the equivalent (up to identity) definition

Hof(x) = /R F© 1000 01 d.

6.1 A lower boundinn =2

The lower bound for p = 2 of Karagulyan [19] combined with the upper bound for all
1 <p <ooof[9, 10] tells us that forall L > 0 and 1 < p < oo there exists ¢, > 0 such
that the following holds: whenever Q C S! is a lacunary set of order L and O C Q is finite

there exists a Schwartz function fp with

I follLprz) = 1, 1Ho follper2) > Cp.rv/10g#0. (6.1)

Let now 2 be a lacunary set of order 1 with Q C {w € S! : w1, w2 > 0}. We can take fp to
be frequency supported in the quadrants {§ € R? : £;& < 0} as Hp acts trivially on the

remaining frequency plane. By a symmetry argument we can actually take

suppﬁ) C 0(1,2) = {.‘;-' € R? 1€ >0,86 < 0}.
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Rewriting (3.7) in this particular case we see that if w € 2N S 2)¢) and suppf C Qa2
then

ﬁa?f(é) =F (HwKﬁllz),g(w)f> &)+ 1(0,00)(5 - w) (1 - K(Ol,z),@(w)(é)> ?(E)

=F (Hwal,z),z(w)f> 6+ (1 - K(Jiz),g(w) (5)) ?(5)-

We notice that, for some absolute constant Cp

1
o 2\ 2 _ .
|(X 1HK ) 0 fol?) HLP(RZ) < Cyll follpp ey = Cpi

we

this ILP-boundedness is most easily seen by proving the weighted L?-bound as in
Section 5 first. Comparing this last display with (6.1) we obtain that

cp+/log#0

H SUp K7 5, 0] |, 2
provided #0 is large enough, with ¢, = ¢p,1/2. The arguments of Section 3 and symmetry
considerations finally show that there exist positive absolute constants ¢y, C, such that
for ¢ € {+,0,—} and all finite index sets L. C Z we have

Hf B K12, f H < Cp. 6.2)

1
P = Jog#L LP(R?) ~
Remark 6.2. Just like the maximal Hilbert transform, the maximal operators defined
in (6.2) are invariant under dilation and reflection through the frequency origin and act
trivially on functions supported outside +Q(;,2). For any fixed L. C Z with #L = N, using
the lower bound in (6.2), the reflection symmetry and an approximation argument we

may find M > 0 and a Schwartz function fi, with
= M M
suppfi C QupNAY?(277,22), | supKf) o) fill oz, = Cov/108 NIl fillppzz), (6.3)
telL

where

A1 (g, b) = [(51152) eR?:a< \/@ < b].

Given any s € R, the dilation invariance can then be used to find f51 with the same
properties as fi, in (6.3) but supp fa. C Q1,2 NAL2) (25, 25HM) |
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The next result is the anticipated counterexample to estimate (5.5) in dimensions
4 and higher.

Theorem 6.3. Let n > 2 be the dimension of the ambient space. Then

n

> cp(\/m)m. (6.4)

LP(R™)—LP(R?) —

inf sup sup Hf + sup |K§ , f|
ee{+, -1 Lcgr @CUCE Lell '
#L=N

Proof. It suffices to prove the statement for even n = 2d and for N > 10d, say. By
symmetry considerations we may argue in the case where ¢ = (+,...,+). Let L be the
set of N¢ indices such that S¢ N Q # @, where Q2 is the set of vectors on S2d-1 gbtained

by normalizing the vectors (x,...,x,) with components

Xopq = 272KV xpp =2 2KN=m e (1,...,N}, k=1,...,d.

In practice £ = £(my, ..., mg) € L is completely determined by the 2d — 1 conditions
g(zk_llzk)zmk, k= 1,...,d; 6(2k—1,2k+1) = 2N, k= 1,...,d—1.

As

1-TT(1 =)= X O[],

[A=D> ICUcE oeU

estimate (6.4) will follow if we prove that

d
Hf > sup |:H (Id — K;r,ea>:| f’H > ¢p (\/logN) , (6.5)
el floex IP(R")—IP (R™)
where product denotes composition. Now for each k = 1,...,d define the function of

two variables fr = fi(X2k—1, X2k) given by fi1. in Remark 6.2 with the pair (2k — 1, 2k) in
the place of (1,2), with L = {1, ..., N}, and with s chosen so that

suppﬁ C Qeak-1.20 N A@k=1,2) (9-3kM 5-(3k-1My

Here

Qek-1,2k = {£ € R*: £35_1 > 0, &3¢ < 0}.
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We now define

d
&0 = [ fiear-1, xa1)-
k=1

The point of this choice is that if o = (o(1),0(2)) is such that o (1), c(2) have the same

parity then &,(1), &5(2) have the same sign on the frequency support of f, so that (Id —
K;r,fa)f = f. Also, unless o = (2k — 1, 2k) for some k = 1,...,d, there holds

supp f C {§ eR": Sl > 23M} ,
&5 2)l

Id — K:,er, =Id onthecone |[& )| > (2d+ 1)27 % 1Ex2)l,

which is a larger cone than the one where f is supported, as ¢, > N in this case.
Summarizing, we may delete from the composition in (6.5) all the o that are not of the
form o = (2k — 1, 2k), and we have forallm = 1,...,N that

d
" _ +
l—[ (Id — Ka,(e(m1 ..... md))a)f = l_[ <Id - K(Zk—l,Zk),mk)fk'
k=1

oED

with the caveat that the product sign on the left-hand side denotes composition while
the product sign on the right-hand side denotes pointwise product. Therefore using (6.4)
for the lower bound in the 3rd line

sup || [] (1d - K:,zg)]f‘
el oEX LP®R™
d
B +
= H sup ‘ 1_[ (Id - K(2k71,2k),mk)fk‘
(my,...mg)efl,.. N} ' 4 LP@RS)

d

+
o 4
k=1 "€

d
=11
k=1

LP(R™)

+
sup v ‘(Id - K(Zk—l,zk),mk>fk‘

me(l,..., ‘LP(X2k1 X2k)

d
a a
> cf(og )2 [ [ 1 ficllze ey ) = €310 N) 2 | £ o).
k=1

This proves (6.5) and thus completes the proof of the theorem. |
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Remark 6.4. This remark shows that the counterexample of Theorem 6.3 is sharp. We
say that U C ¥ (n) has no odd cycles if it does not contain tuples of pairs, which are

images under permutation of {1,...,n} of the tuple of pairs
{(11 2)! (21 3)! s (k - ]-rk)r (1rk)}

with k odd. In the case that U has odd cycles, in each given quadrant of R" at least one
of the multipliers Kfr,z is trivial for both ¢ = +; we can thus reduce to the case that U
has no odd cycles. This case is treated below.

Suppose that {vy,...,vs} C {1,...,n} are such that for all 0 € U there exists j
such that v; € o: in this case {v1, ..., vs} is called spanning set of U. Notice that for every
U C ¥ we may find a spanning set with s < |[n/2]. Arguing in similar fashion as in the

proof of Lemma 3.3 we may obtain the pointwise estimate
Ky (Prlo-- 0P f)(x)| SME (P! o-- 0P f) (x), x€R", (6.6)

uniformly over all ¢3, ..., t; € R. Now, we may use an s-parametric version of the Chang—
Wilson-Wolff inequality to reduce estimates for the maximal operator associated to
the multipliers Kfu over £ € L to an s-fold Littlewood-Paley square function estimate
involving the left-hand side of (6.6) with a loss of (log#L)Z. An application of the bound

(6.6) as in Proposition 5.4 will thus lead to the estimate

s
sup || sup |Ké[:],lf|||Lp(Rn) 5 (log#H-‘)Z ”f”Lp(R")r
ec{+,—}U Lel
which, together with the previously made observation that s may be taken <

[n/2], shows the sharpness of Theorem 6.3; in general the worst case is U =
{1,2),3,4),...,(2|n/2] —1,2|n/2])}. We leave the details to the interested reader.
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