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A data-driven approach for multiscale elliptic PDEs with random
coeflicients based on intrinsic dimension reduction

Sijing Li*, Zhiwen Zhang®*, Hongkai Zhao"
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Abstract

We propose a data-driven approach to solve multiscale elliptic PDEs with random coeffi-
cients based on the intrinsic approximate low dimensional structure of the underlying elliptic
differential operators. Our method consists of offline and online stages. At the offline stage, a
low dimensional space and its basis are extracted from solution samples to achieve significant
dimension reduction in the solution space. At the online stage, the extracted data-driven basis
will be used to solve a new multiscale elliptic PDE efficiently. The existence of approximate
low dimensional structure is established in two scenarios based on: (1) high separability of the
underlying Green’s functions; and (2) smooth dependence of the parameters in the random
coefficients. Various online construction methods are proposed for different problem setups.
We provide error analysis based on the sampling error and the truncation threshold in building
the data-driven basis. Finally, we present extensive numerical examples to demonstrate the
accuracy and efficiency of the proposed method.

AMS subject classification: 35J08, 35J15, 35R60, 65N30, 656N80, 7T8M34.

Keywords: multiscale elliptic PDEs with random coefficients; uncertainty quantification
(UQ); Green’s function; separability; proper orthogonal decomposition (POD); neural
network.

1. Introduction

In this paper, we shall develop a data-driven method to solve the following multiscale elliptic
PDEs with random coefficients a(z,w) and source f(z,0),

L(z,w)u(r,w,0) = -V - (a(z,w)Vu(z,w,0) = f(z,0), €D, we, 6HcQ, (1)
u(z,w,0) =0, x € 0D, (2)

where D € R? is a bounded spatial domain. We separate the randomness in the coefficient and
source, where €2, and 2y to denote the sample spaces for random variables w and 6 respectively
and treat them differently as we shall see later. We assume f(z, ) to be in L?(D) and uniform
ellipticity of the PDE (see Section 2 for precise definition of the problem).

The problem (1)-(2) can be used to model the flow pressure in porous media such as water
aquifer and oil reservoirs, where the permeability field a(z,w) is a random field whose exact
values are infeasible to obtain in practice due to the low resolution of seismic data.

*Corresponding author
Email addresses: 1sj17@hku.hk (Sijing Li), zhangzw@hku.hk (Zhiwen Zhang), zhao@math.uci.edu
(Hongkai Zhao)
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In recent years, there has been an increased interest in quantifying the uncertainty in
systems with randomness, i.e., solving stochastic partial differential equations (SPDEs, i.e.,
PDEs driven by Brownian motion) or partial differential equations with random coefficients
(RPDEs). Uncertainty quantification (UQ) is an emerging research area to address these issues;
see [20, 44, 5,42, 4, 35, 34, 37, 39, 41, 13, 14, 22] and references therein. However, when SPDEs
or RPDEs involve multiscale features and/or high-dimensional random inputs, these problems
become challenging due to high computational cost.

Recently, some progress has been made in developing numerical methods for multiscale
PDEs with random coefficients; see [31, 3, 36, 2, 21, 1, 27, 45, 18, 15] and references therein.
For example, data-driven stochastic methods to solve PDEs with random and/or multiscale
coefficients were proposed in [12, 45, 28 29]. They demonstrated through numerical experi-
ments that those methods were efficient in solving RPDEs with many different source functions.
However, the polynomial chaos expansion [20, 44] is used to represent the randomness in the
solutions. Although the polynomial chaos expansion is general, it is a priori instead of problem
specific. Hence many terms may be required in practice for an accurate approximation which
induces the curse of dimensionality.

We aim to develop a new data-driven method to solve multiscale elliptic PDEs with ran-
domness in (1) based on intrinsic dimension reduction in two scenarios. In the first case, the
coefficient a(x) € L*°(D) is fixed while the random source can vary arbitrarily in L?(D) with a
bounded norm. As long as the domain of observation for u(zx, @) is disjoint from the support of
the source f(z,0), the low-dimensional structure of the underlying solution space in the obser-
vation domain is implied by the high separability of the Green’s function for uniformly elliptic
operators [8], which provides the theoretical foundation for hierarchical low-rank approxima-
tion to the inverses of FEM matrices and other fast direct inverse solvers. In this case, the
curse of the dimension of randomness # in the source function can be avoided without the need
of smooth dependence on the randomness. For the other case, the coefficient a(z,w) € L*(D)
varies with smooth dependence on w while the source function is fixed. Since u(z,w) depends
smoothly on a(z,w) and hence on w as shown in [16], we show an approximate low dimensional
structure in this case as well.

Based on the above observations, our method consists of two stages. In the offline stage,
the approximate low dimensional structure is extracted by computing a set of data-driven
and problem specific basis from solution samples. For example, the data can be generated
by solving (1)-(2) corresponding to a sampling of the coefficient a(x,w) and/or source f(z,8).
Here, different sampling methods can be applied, including Monte Carlo (MC) method and
quasi-Monte Carlo (¢QMC) method. The sparse-grid based stochastic collocation method [11,
43, 35] also works when the dimension of the random variables is moderate. Or the data
may come from field measurements directly in practice. Then the low-dimensional structure
and the corresponding basis are extracted using model reduction methods, such as the proper
orthogonal decomposition (POD) [10, 38, 9], a.k.a. principle component analysis (PCA), e.g.,
by efficient random algorithms [24] due to the approximate low rank structure. The key point
is that once the dimension reduction is achieved, the online stage of computing the solution
corresponding to a new coefficient and/or source becomes finding a linear combination of the
(few) constructed basis functions to approximate the solution.

However, the map from the input randomness of the PDE to the expansion coefficients of the
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solution in terms of the data driven basis can be highly nonlinear. We propose a few possible
online strategies (see Section 3). For examples, if the coefficient is in parametric form, one
can approximate the nonlinear map from the parameter domain to the expansion coefficients
through interpolation or neural network approximation. Or one can apply Galerkin method
using the extracted basis to solve (1)-(2) for a new coefficient. In practice, the coefficient or
the source function of the PDE may not be available but censors can be deployed to record
the solution at certain locations. In this case, one can compute the expansion coefficients of a
new solution by least square fitting those measurements at designed locations. We also provide
analysis and guidelines for sampling, dimension reduction, and other implementations of our
methods.

The rest of the paper is organized as follows. In Section 2, we characterize the low di-
mensional structure in two scenarios for elliptic PDE (2). In section 3, we describe our new
data-driven method and its detailed implementation. In Section 4, we present numerical results
to demonstrate the efficiency of our method. Concluding remarks are made in Section 5.

2. Low-dimensional structures in the solution space

2.1. High separability of the Green’s function of elliptic operators.

We first consider the scenario of a multiscale elliptic PDE with a random source. Let
L(z):V — V' be a uniformly elliptic operator in a divergence form

L(z)u(x) = =V - (a(z)Vu(z)) (3)

in a bounded Lipschitz domain D C R?, where V = H{(D) and a(x) € L*®(D). The uniformly
elliptic assumption means that there exist Gmin, Gmax > 0, such that amy, < a(x) < amax for all
xr € D. The contrast ratio k, = 2®= is an important factor in the stability and convergence

analysis. We consider the Dirichlgtmboundary value problem with a random source f(z,8),
where 6 is some random variable.

L(x)u(x,0) = f(x,0), in D, wu(zx,d)=0, ondD. (4)

For all z,y € D, the Green’s function G(z,y) for differential operator £ is the solution of

LG(,y)=96(,y), inD, G(,y)=0, ondD, (5)

where L refers to the first variable - and (-, y) is the Dirac delta function denoting an impulse
source point at y € D. The Green’s function G(z,y) is the Schwartz kernel of the inverse £7!,
i.e., the solution of (4) is represented by

u(,0) = £ f(z,0) = / Gl y) (4, 0)dy. (6)

D

Since the coefficient a(z) is only bounded, the G(z,y) can have a lower regularity, compared
with the Green’s function associated with the Poisson’s equation. In [23], the authors proved

3
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the existence of Green’s function for d > 3 and the estimate |G(x,y)| < C(d fo) |3 — |2~ where

C(d, kq) is a constant depends on d and k,. For d = 2 the ex1stence of the Green’s functlon
was proved in [17] together with the estimate |G(xz,y)| < <% log | — y|. Thus, when £ is an
uniform elliptic operator, £~} exists and [|[£7}|| < Ca_i,, Where C' depends on d and k.

One can show the existence of a low dimensional structure in the solution space based on
high separability of the underlying Green’s function [8] as follows.

Proposition 2.1. Let D C R be a convexr domain and X be a closed subspace of L?(D). Then
for any integer k € N there is a subspace Vi, C X satisfying dim Vi, < k such that

diam(D)
Vk

where the constant C' depends only on the spatial dimension d.

distz2(py(u, Vi) < C |Vull2(py, for allu € X N H'(D), (7)

The proof is based on the Poincaré inequality; see [8]. All distances and diameters use
the Euclidean norm in R? except the distance of functions which uses the L*(D)-norm. In
particular, a choice of Vi in Prop. 2.1 is the L? projection of piece-wise constant functions
defined on a grid with grid size la% ) onto X.

Now we present the definition of L- harmonic function on a domain £ C D introduced in
[8]. A function u is £-harmonic on E if u € H'(E),YE C E with dist(E,dE) > 0 and satisfies

a(u, ) = /Ea(m)Vu(a:) -Vo(x)de =0 VYo e C°(E).

Denote the space of L-harmonic functions on E by X(FE), which is closed in L?*(E). The
following key Lemma shows that the space of L-harmonic function has an approximate low
dimensional structure.

Lemma 2.2 (Lemma 2.6 of [§]). Let E C E C D in R? and assume that E is convex such
that ) R
dist(E,0F) > p diam(E) > 0, for some constant p > 0.

Then for any 1 > € > 0, there is a subspace W C X(E) so that for all u € X (F),
dist 2 gy (u, W) < €l|ull g2

and
dim(W) < (ka, p) (|loge]) ",

where ¢(kq, p) > 0 is a constant that depends on p and K.

The key property of £L-harmonic functions used to prove the above result is the Cacciop-
poli inequality, which provides the estimate |[Vul|;2s) < C(Ka, p)|lullz2(p). In particular, the
Green’s function G(-,y) is L-harmonic on E if y ¢ FE. Moreover, given two disjoint domains
Dy, Dy in D, the Green’s function G(x,y) with z € Dy, y € Dy can be viewed as a family of
L-harmonic functions on D; parameterized by y € Dy. From the above Lemma one can easily
deduce the following result which shows the high separability of the Green’s function for the
elliptic operator (3).
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Figure 1: Green’s function G(z,y) with dependence on x € Dy and y € D.
Proposition 2.3 (Theorem 2.8 of [8]). Let Dy, Dy C D be two subdomains and Dy be convex
(see e.g. Figure 1). Assume that there exists p > 0 such that

Then, for any € € (0,1) there is a separable approximation

T,y) = Zui(ﬂf)vi(y) with k < ¢(kq, p)| log |, (9)

so that for all y € Dy
IGCoy) = G, )2y < ellGC Y20, (10)
where Dy := {z € D : 2p dist(z, Dy) < diam(D;)}.

The above Theorem shows that there exists a low dimensional linear subspace, e.g., spanned
by u;(-), that can approximate the family of functions G(-,y) well in L?(D;) uniformly with
respect to y € Ds. Moreover, if supp(f(x,6)) C D,, one can approximate the family of
solutions u(x, 0) to (4) by the same space well in L?(D;) uniformly. Let

Uf(ffﬁ):/D G(z,y)f(y, 0)dy (11)
and
wie0) = [ Gulan) .00y =D uie) [ w(o)f(w.0)dy (12)
Hence _
5 0) = 5 0) i,y = Sy [Jpu (Gla) = Guo ) 0. 0)y] o
(13

< Hf”%z(Dz) sz 1G(y) — Gk(',?/)H%EY(Dl)dy < C(Dy, Do, /fmd)EszH%%DQ),

since [|G(+,y)||12(p,) is bounded uniformly with respect to y € D, by a positive constant that
depends on D1, D», kg, d due to the uniform ellipticity. Note that the low dimensional structure
does not need any regularity assumption in a(x). Moreover, dependence of the source on
randomness can be arbitrary in terms of dimensionality and regularity.
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Remark 2.1. Although, the proof of high separability of the Green’s function requires x €
Dq,y € D, for two disjoint Dy and Dy due to the singularity of the Green’s function at x = y,
the above approximation of the solution u in a domain disjoint with the support of f also works
for u in the whole domain even when f is a globally supported smooth function as shown in
our numerical tests.

Remark 2.2. Contrary to the elliptic operator, it is shown [19] that the Green’s function for
the high frequency Helmholtz equation is not highly separable due to fast decorrelation of two
Green’s functions with well separated (in terms of the wavelength) sources.

2.2. Low dimensional structures with respect to random coefficients
In the second scenario we consider the following elliptic PDEs with random coefficients:

L(z,w)u(r,w) = -V - (a(z,w)Vu(z,w)) = f(z), €D, we, (14)
u(z,w) =0, x € 0D, (15)

where D € R? is a bounded spatial domain, €}, is a sample space, and the source function
f(x) € L*(D). We assume the random coefficient a(z,w) in (14) is almost surely uniformly
elliptic, namely, there exist amyin, @max > 0, such that

P(w e Q:a(z,w) € [amin, Gmax), V2 € D) = 1. (16)

In addition, we assume the random coefficient a(z,w) is parameterized by r independent ran-
dom variables. For example, a commonly used affine form is the following,

a(z,w) = a(x) + Y am(r)én(w), (17)

where &, (w), m = 1,...,r are i.i.d. uniform random variables in [—1,1]. The random coeffi-
cient (17) can be used in multiscale random elliptic PDEs, such as elliptic PDEs with highly
oscillatory and/or high-contrast coefficients.

Once a parametric form of the random coefficient a(z,w) is given, computing the solution
u(z,w) of the problem (14)-(15) defines a solution map from the parameter domain £(w) =
(&1 (W), -, & ()] €U = [—1,1]" to the solution space

&(w) = u(z,w) = u(z,§(w)) € Hy(D), (18)

which is a Banach-space-valued function of the random input vector £(w). With the uniform

ellipticity assumption of a(z, &(w)) and its smooth dependence on the parameter &, the solution
u(x, &) also depends smoothly on the parameters, which can be approximated via polynomial
expansion in & of the form

> ta(@)E”(w), (19

aEJr
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where a = (ay, g, -+, @) is a multi-index, J, = {a|a; > 0,; € N;1 < i < r} is a multi-
index set of countable cardinality, and £*(w) = [[,-,-, & (w) is a multivariate polynomial.

In particular, if uniform ellipticity assumption of a(z, &) has a holomorphic extension to
an open set in complex domain that contains the real domain for &, explicit estimates for the
coefficients u, can be established similar to those estimates for the polynomial approximation
for an analytic function. From the estimates, the following result for best n-term approximation
can be proved (see [16] for details).

Proposition 2.4. Consider a parametric problem of the form (14)-(15) with a random coeffi-
cient (17). Both the Taylor series and Legendre series of the form (19) converges to u(x, &(w))
in HY(D) for all £&(w) € U. Moreover, for any set I of indices corresponding to the n largest

of lta ()l (> we have

sup |[u(, &(w)) = Y ua(Je*W)|] 4 p) < Cexp(—en'"), (20)

E(w)eu aejn
where J" is a subset of J,. with cardinality #J" =n, C' and c are positive and depend on r.

Prop.2.4 shows that there exists a linear subspace with dimension at most O(n ~ (% +
M)T), e.g., spanned by uq(x), a € J", that can approximate the solution of (14)-(15) with

ra;dom coefficient within e error.

The result in Prop.2.4 reveals the existence of approximate low dimensional structures
in the solution space of (14)-(15). However, this approximation is obtained by mathematical
techniques, which cannot be directly implemented via a computational algorithm. For instance,
we cannot perform an exhaustive search over a huge index set to find J;'. Moreover, there may
be problem dependent basis that can approximate the solution space more effectively than
problem independent polynomial basis, which motivates our data-driven approach explained

in Section 3

Remark 2.3. When the coefficient a(x,w) is a nonlinear function of a finite number of random
variables, one can apply the empirical interpolation method (EIM) [7] to approximately con-
vert a(z,w) into an affine form. Thus, low dimensional structures still exist in the solution
space. In addition, we refer the reader to [26, 6] for the results of the best n-term polynomial
approximation of elliptic PDEs with lognormal coefficients.

Remark 2.4. Although we present the problem and will develop the data-driven method for
the elliptic problem (14)-(15) with scalar random coefficients a(z,w), our method can be di-
rectly applied when the random coefficient is replaced by a symmetric positive definite tensor
a;;(z,w),1,7,=1,...,d with almost surely uniform ellipticity.

2.3. Some existing numerical methods for random elliptic PDEs

For the ease of the reader, we give a short review of existing methods for solving problem
(14)-(15) involving random coefficients. There are basically two types of methods. In intrusive
methods, one represents the solution of (14) by u(z,w) = > c;Ua(v)Ha(w), where J is
an index set, and H,(w) are certain basis functions (e.g. orthogonal polynomials or wavelet
basis functions). Typical examples are the Wiener chaos expansion (WCE) and polynomial

7
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chaos expansion (PCE) method. Then, one uses Galerkin method to compute the expansion
coefficients uq (z); see e.g. [20, 44, 5, 33, 30, 34] and references therein. These methods have
been successfully applied to many UQ problems, where the dimension of the random input is
small or moderate. However, the number of basis functions increases exponentially fast with
respect to the dimension of random input, i.e., they suffer from the curse of dimensionality of
both the input space and the output (solution) space, because the random basis H,(w)’s are
built @ priori based on the random variables in a(z,w).

In non-intrusive methods, one can use the MC method or ¢qMC method to solve (14)-
(15). However, the convergence rate is slow and the method becomes more expensive when
the coefficient a(x,w) contains multiscale features. Stochastic collocation methods explore the
smoothness of the solutions in the random space and use certain quadrature points and weights
to compute the solutions [43, 4]. Exponential convergence can be achieved for smooth solutions,
but the quadrature points grow exponentially fast as the number of random variables increases.
Sparse grids can reduce the quadrature points to some extent [11, 35]. However, the sparse
grid method still becomes very expensive when the dimension of randomness is modestly high.

3. Derivation of the new data-driven method

The results in Prop.2.3 and Prop.2.4 show that there exist low dimensional structures in the
solution space of multiscale elliptic PDEs with random coefficient and source. Our goal is to
use problem-specific and data-driven approaches to achieve a significant dimension reduction.
The low dimensional structures in the solution space are extracted directly from the data, e.g.,
real measurements. The data-driven approach can also allow one to deal with situations where
it is difficult to have an accurate full model, e.g., a(z,w), or too expensive to solve a large scale
problem in real practice. As demonstrated by our experiments, we find that the dimension
of the extracted low dimensional space mainly depends on k, (namely @y, and ap.,) and
very mildly on the dimension of the random input. Therefore, the curse of dimension can be
alleviated. From now on, we use w to denote randomness in both coefficient a and source f
when there is no confusion.

Our method consists of offline and online stages. In the offline stage, we extract the low
dimensional structure and a set of data-driven basis functions from solution samples. For ex-
ample, a set of solution samples {u(z,w;)}¥, can be obtained from measurements or generated
by solving (14)-(15), e.g., with coefficient samples {a(z,w;)}Y ;.

Let Vingp = {u|p(,w1), ..., u|5(z,wy)} denote the solution samples, where D C D is
a region where the solution is of interest. For instance, in the reservoir simulation one is
interested in computing the pressure value u(z,w) on a specific subdomain D. We use POD
[10, 38, 9], or a.k.a PCA, to find the optimal subspace and its orthonormal basis functions to
approximate V., to a certain accuracy. Define the correlation matrix ¥ = (oy;) € RV*Y with
oij =< u(-,w;),u(-,wj) >p, 9,5 =1,..., N, where < -,- > denotes the standard inner product
on L2(ﬁ). Let the eigenvalues of the correlation matrix be A\y > A > ... > ... > Ay >0
and the corresponding eigenfunctions be ¢1(z), ¢o(z), ..., ¢n(z), which will be referred to as
data-driven basis functions. The space spanned by the leading K data-driven basis functions
has the following approximation property to V.
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Proposition 3.1.

N
iz

2

u(m, wi) = iy <ul,w), 65() >p ()| N
L2(D) _ Qs As 21)

5 N
Sy [|ulz,w) 2ism1 s

L2(D)

First, we expect a fast decay in the eigenvalues \; so that a small set of data-driven basis
(K < N) will be enough to approximate the solution samples well in the root mean square
sense. Secondly, based on the existence of low dimensional structure, we expect that the data-
driven basis, ¢1(x), ¢2(x),...,¢x(z), can almost surely approximate the solution u|p(x,w)
well too under some sampling condition (see Section 3.4) by

K
ulp(z,w) ~ ZCJ ), a.s. w e Ly, (22)
Jj=1

where the data-driven basis functions ¢;(x), j = 1, ..., K are defined on D.

The computational costs of the offline stage mainly consist of two parts, if data are generated
by simulation: (1) compute solution samples (of global problems); and (2) compute the data-
driven basis by the POD method. This is a common nature for many model reduction methods.
Effective sampling of solutions (see Section 3.4) and the use of randomized algorithms [24] for
the singular value decomposition (SVD) (utilizing the low-rank structure) helps to reduce the
offline computation cost.

Remark 3.1. In Prop.3.1 we construct the data-driven basis functions from eigen-decomposition
of the correlation matrix associated with the solution samples. Alternatively, we can subtract
the mean from the solution samples, compute the covariance matrix, and construct the basis
functions from eigen-decomposition of the covariance matrix. In this setting, the data-driven
basis functions will be used to approximate the fluctuation of the solution since the mean
function is given.

Now the problem is how to find ¢j(w) through an efficient online process given a new
realization of a(x,w). We will prescribe several strategies in different setups.

3.1. A nonlinear solution map

Suppose that a(z,w) is parameterized by r independent random variables; i.e.,

a(:z,w) :a($a€1<w>?“'>€r(w))' (23)

Thus, the solution can be represented as a functional of these random variables as well, i.e.,
u(r,w) = u(r, & (W), ..., & (w)). Let €(w) = [&(w), -+, & (w)]T denote the random input vector
and c(w) = [c1(w), -+, cx(w)]T denote the vector of solution coefficients in (22). Now, the
problem can be viewed as constructing a map from &(w) to ¢(w), denoted by F : &(w) — c(w),
which is nonlinear. We approximate this nonlinear map through the sample solution set.
Given a set of solution samples {u(z,w;)}Y, corresponding to {&(w;)}Y,, e.g., by solving (14)-
(15) with a(x,& (w;), ..., & (w;i)), from which the set of data driven basis ¢;(z),j = 1,..., K

9
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is obtained by using POD method as described above, we can easily compute the projection
coefficients {c(wi)};vzl of u|lp(x,w;) on ¢;(x), j =1,.... K, ie., ¢;j(w;) =< u(z,w;), p;j(x) >p.
From the data set, F'(§(w;)) = c(w;), i = 1, ..., N, we construct the map F. Note the significant
dimension reduction by reducing the map &(w) — u(x,w) to the map &(w) — c(w). We provide
several ways to construct F, depending on the dimension of the random input vector. More

implementation details will be explained in Section 4.

1. Interpolation.

When the dimension of the random input 7 is small or moderate, one can use interpola-
tion. In particular, if the solution samples correspond to & located on a uniform or sparse
grid, standard polynomial interpolation can be used to approximate the coefficient ¢; at a
new point of €. If the solution samples correspond to & at scattered points or the dimen-
sion of the random input 7 is moderate or high, one can first find a few nearest neighbors
to the new point efficiently using the k-d tree algorithm [40] and then use moving least
square approximation centered at the new point to approximate the mapped value. See
Figure 5 for an example of the map F based on interpolation.

2. Neural network.
When the dimension of the random input r is high, interpolation approach becomes ex-
pensive and less accurate. We tried a simple neural network with small output dimension
(due to the dimension reduction) that seems to provide a satisfactory solution.

For the uniform-grids or sparse-grid based polynomial interpolation approach, the approx-
imation property (error estimate) can be studied based on the regularity of map F', which is
smooth with respect to € if a(x,€(w)) depends on & smoothly. Our numerical results in Sec-
tion 4 show the moving least square approach and neural network approach are efficient and
accurate. However, since the map F is nonlinear and lives in a high dimensional space, many
issues need to be further investigated, such as how to optimally choose the training samples
and how to study the approximation property of the map F.

In the online stage, one can compute the solution u(z,w) using the constructed map F. For
example, given a new realization of a(z, & (w;), ..., & (w;)), we plug &€(w) into the constructed
map F to approximate c(w) = F(&(w)), which are the projection coefficients of the solution
on the data-driven basis. So we can quickly obtain the new solution u|s(z,w) using Eq.(22),
where the computational time is negligible. Once we obtain the numerical solutions, we can use
them to compute statistical quantities of interest, such as mean, variance, and joint probability
distributions.

3.2. Galerkin approach
In the case D = D, we can solve the problem (14)-(15) on the whole domain D by the
standard Galerkin formulation using the data driven basis for a new realization of a(x,w).
Once the data driven basis ¢;(z), j = 1,..., K, which are defined on the domain D, are
obtained from solution samples in the offline stage. Given a new realization of the coefficient
a(x,w), we approximate the corresponding solution as

u(r,w) ~ Z cj(w)oi(z), as. weQ,, (24)

i=1
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and use the Galerkin projection to determine the coeflicients ¢;(w), j = 1, ..., K by solving the
following linear system in the online stage,

Z/Da(x,w)cj(w)ngj(x) -V (x)de = /Df(x)gzﬁl(x)dx, l=1,..,K. (25)

Remark 3.2. The computational cost of solving the linear system (25) is small compared to
using a Galerkin method, such as the finite element method, directly for u(x,w) because K is
much smaller than the degree of freedom needed to discretize u(z,w) in the whole domain.

Note that if a(x,w) has the affine form (17), we first compute the terms that do not de-
pend on randomness, including [, a(x)Vo;(z) - Véy(x)de, [, am(x)Ve;(x) - Ve(z)dz and
[, f(@)¢;(x)dx, j,l = 1,.., K. Then, we save them in the offline stage. This leads to con-
siderable savings in assembling the stiffness matrix for each new realization of the coefficient
a(x,w) in the online stage. Of course, the affine form is automatically parameterized. Hence,
one can also construct the map F : €(w) — c(w) as described in the previous Section 3.1.

3.3. Least square fitting from direct measurements at selected locations

In many applications, only samples (data) or measurements of u(z,w) is available while
the model of a(z,w) or its realization is not known. In this case, we propose to compute
the coefficients ¢ by least square fitting the measurements (values) of u(z,w) at appropriately
selected locations. First, as before, from a set of solutions samples, u(z;,w;), measured on a

mesh z; € D.,j=1,...,J, one finds a set of data driven basis o1(xj), ..., 0K (z;), e.g. using
POD. For a new solution u(z,w) measured at 1, xs, ..., 2y, one can set up the following least
square problem to find ¢ = [c1, ..., cx]T such that u(z,w) ~ Sr | crop(z):

Be=y, y=[ulz,w),... ulzy,w)’,B=I[p),. . .  ¢¥]ec RM*E, (26)

where ¢ = [@x(21), . .., dx ()]

The key issue in practice is the conditioning of the least square problem (26). One way is
to select the measurement (sensor) locations x1, ... xys such that rows of B are as decorrelated
as possible. We adopt the approach proposed in [32], where a QR factorization with pivoting
for the matrix of data driven basis is used to determine the measurement locations. More
specifically, let ® = [@y, ..., ¢x] € R7E ¢ = [or(z1), ..., 0n(x))]". If M = K, QR factor-
ization with column pivoting is performed on ®. If M > K, QR factorization with pivoting
is performed on ®®7. The first M pivoting indices provide the measurement locations. More
details can be found in [32].

3.4. Determine a set of good learning samples

A set of good solution samples is important for the construction of data-driven basis in the
offline stage. Since the solution depends on the source linearly with an explicit bound, the
analysis is straightforward. Here we provide an error analysis for the coefficient based on the
finite element formulation. However, the results extend to general Galerkin formulation. First,
we make a few assumptions.
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Assumption 3.2. Suppose a(x,w) has the following property: given 6; > 0, there erists an
integer N5, and a choice of snapshots {a(x,w;)}, i =1, ..., N5, such that

< d5. (27)

= 13%2?\751 |a(z,w) - a(x’wi)HL“’(D)

Let {a(x, wz)}fvzai denote the samples of the random coefficient, which form a d;-net for the
coefficient a(z,w). For every realization of a(x,w), we can find a coefficient sample a(z,w;) that
is close to a(z,w) in the norm || - || (p). We define this 6;-net in the sense of the expectation
E[-], which allows us to exclude a small set of outliers.

A good sampling of the solution is important for computational efficiency and accuracy.
When the coefficient has the affine form (17), one can verify Asm.3.2 and provide a constructive

way to sample snapshots {a(m,wi)}j\f{ if we know the distribution of the random variables
Em(w), m = 1,....7, since the linear map from £ space to the function space of a(x,§) is

explicitly determined by @(z), a,,(x),m = 1,...,7. In general, it becomes a sampling problem
for {a(x,w;)}, which may be challenging especially when the dimension of the random variables
7 is high and/or a(x,w) does not have an affine form. However, the Asm.3.2 provides us some
insight on how to choose coefficient samples {a(z,w;)} in order to obtain a set of accurate
data-driven basis functions.

Let V,, C H3(D) denote a finite element space that is spanned by nodal basis functions on
a mesh with size h and Vj, C Vj, denote the space spanned by the data-driven basis {¢; (z)}E .
We assume the mesh size is fine enough so that the finite element space can approximate the
solutions to the underlying PDEs well. For each a(x,w;), let up(z,w;) € V), denote the FEM

solution and iy, (,w;) € V;, denote the projection on the data-driven basis {¢; ()}

i=1-
Assumption 3.3. Guwen 02 > 0, we can find a set of data-driven basis, ¢1,. .., ¢k, such that

||un (2, wi) = n (2, w;)|| 20y < 62, V1 < i < K, (28)
where Uy, (x,w;) is the L* projection of up(x,w;) onto the space spanned by ¢1, . . . , Orcs, -

Asm.3.3 can be verified by setting the threshold in the POD method; see Prop.3.1. Now
we present the following error estimate.

Theorem 3.4. Under Assumptions 3.2-3.3, for any d; > 0, i = 1,2, we can choose the samples

of the random coefficient {a(m,wi)}é\f{ and the threshold in constructing the data-driven basis

accordingly, such that

E [Huh(a:,w) — ﬂh(x,w)HLQ(D)] < Coy + 69, (29)

where C' depends on awm, f(x), and the domain D.

Proof. Given a coefficient a(x,w), let uy(z,w) and @, (z,w) be the corresponding FEM solution
and data-driven solution, respectively. We have
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Huh T, w) = Up(x HL?(D

SHuh Iac‘)) - uh(mawi HL2(D) + Huh<x7wi) - ah<x7wi)”L2(D) + Hah(x7wi> - fbh(l’ M)HL2(D)’

2:]1 +IQ+]3, <30)

where up(z,w;) is the solution corresponding to the coefficient a(z,w;) and u,(z,w;) is its
projection. Now we estimate the error term I first. In the sense of weak form, we have
/ a(z,w)Vuy(z,w) - Vop(z)de = / f(z)op(x), forall wu(z) € Vi, (31)
D D

and

/Da(x,wi)Vuh(m,wi) -Vop(x)de = /Df(x)vh(x), for all  v,(z) € V. (32)

Subtracting the above two variational formulations (31)-(32), we have, for all v,(z) € V},

/Da(x,w)V(uh(a:,w) — up(z,w;)) - Vop(x)de = — /D(a(x,w) — a(z, w;))Vu(z,w;) - Vo (z).
(33)
Let wy,(x) = up(z,w) —up(z,w;) and L(vy,) = — [, (a( —a(z,w;))Vup(z,w;) - Vup(z) denote

a linear form. Eq.(33) means that wy(z, w) is the solutlon of the weak form [, a(z,w)Vuwy, -
Vup(z)dx = L(vy), for all v,(x) € Vj,. Therefore, we have

L] mr1.(py
|[wn(@)]] 1) < B (34)
Notice that
ol = max 1) < lla(e,) — a(e,w0) o)l
UhllEt (D)=
f HY(D
< Jlafa.) = (.l ALY g

Since wp,(x) = 0 on dD, combining Eqns.(34)-(35) and using the Poincaré inequality for wy,(z),
we obtain an estimate for the term I; as follows,

Huh(a:,w) — up(z,w;) < C’l‘ ‘uh(w,w) — up(z,w;)

o)

(@)1 ()

2 )
amin

l220)

< Cilla(z,w) — a(z,w;)|| L~ (D) (36)
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where C only depends on the domain D. For the term I3 in Eq.(30), we can similarly get

) ||f('ra)2”H1(D) ' (37)

min

Hah<x7wz) - a;l(I,CU)‘ ‘LQ(D) S Cl||a<ﬂf,W) - a’(x7wi)||L°°(D

The term 5 in Eq.(30) can be controlled according to the Asm.3.3. Combining the estimates
for terms [, I, and I3 and integrating over the random space, we prove the theorem. O

Corollary 3.5. If we use Monte Carlo method to compute the expectation in (29), from the
proof of Theorem 3.4 we still have

Nyo
1 -
N JZ:; Huh(:c,wj) - uh(x,wj)‘ ’LQ(D) < Coy + 0o, (38)

where Ny is the sample number and C, 61 and 0o are the same as in Theorem 3.J.

In this paper, we restrict attention to the approximation in the physical space. So we
assume the sampling error (i.e., the error of approximation the expectation by a sample mean)
is negligible. Theorem 3.4 or Corollary 3.5 indicate that the error between wuy(x,w) and its
approximation iy, (z, w) using the data-driven basis consists of two parts. The first part depends
on how well the random coefficient is sampled. While the second part depends on the truncation
threshold in constructing the data-driven basis from the solution samples. In practice, a balance
of these two factors gives us guidance on how to choose solution samples and the truncation
threshold in the POD method to achieve optimal accuracy. Again, the key advantage for our
data-driven approach for this form of elliptic PDEs is the low dimensional structure in the
solution space which provides a significant dimension reduction.

4. Numerical results

In this section we will present various numerical results to demonstrate the accuracy and
efficiency of our proposed data-driven method.

In all of our numerical experiments, we use the same uniform triangulation to implement
the standard FEM and choose mesh size h = 5—}2 in order to resolve the multiscale information.
We use N = 2000 samples in the offline stage to construct the data-driven basis and determine
the number of basis K according to the decay rate of the eigenvalues of the correlation matrix
¥ = (0y;) of the solution samples, i.e., 0;; =< u(r,w;),u(r,w;) >, i,j = 1,...,N. Let N
and Ny denote the number of training samples in constructing the nonlinear map F and the
number of testing samples in the online stage, respectively. We will choose Ny < Ns.

In the numerical results, the testing error is the error between the numerical solution
obtained by our mapping method and the reference solution obtained by the FEM on the same
fine mesh used to compute the sample solutions. The projection error is the error between
the FEM solution and its projection on the space spanned by data-driven basis, i.e. the best
possible approximation error.
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4.1. An example with deterministic multiscale coefficients and random sources

First of all, we consider a deterministic multiscale elliptic PDE with a random source defined
on a square domain D = [0, 1] x [0, 1],

_V(OJ('I?y)vu(x?yve)) :f(l',y,6>, ('Tay) €D, RS Qaa

39
u(e,.0) =0, (r.y) < 0D (39)
The multiscale coefficient a(z,y) is defined as
24+pm 5111(22“‘) 2+ py sm( \(/ )) 2+ p3 Cos(27T(:0‘5))
a(%y) =0.1 + 5 _ 2 + . 2m(z—y) 2m(y—0.5)
P1 €COS ( € ) 2 — P2 SID(TQ) 2 — P3 COS( . )
2 + py cos( = o= )) 2+ ps cos(%(%_y))

+ \/ \/565 (40)

2 — py sin( 2y \5;?')) 2 —ps sin(%ffgt:y)) ’

where [p1, p2, p3,p4,p5] = [1.98,1.96,1.94,1.92,1.9]. We choose D; = [;11,%] X [%,%] and

Dy = [3,3] x [+, 2] The source function f(z,y,6) is a spatially uncorrelated white noise
defined on Dsy. Note that D, is partitioned into a 256 x 128 fine mesh. In this experiment,
f(z,y,0) is an independent Gaussian random variable on each mesh.

We generate N = 2000 samples of the source function f(z,y,0). Then, we solve the
problem (39) by using FEM and obtain 2000 solution samples u(z,y,0). The eigenvalues of
the correlation matrix of the solution samples u(z,y, 0)|p, is referred to as the eigenvalues of
local problem. While the eigenvalues of the correlation matrix of the solution samples u(zx, y, 0)
on the whole domain D is referred to as the eigenvalues of global problem.

In Figure 2a, we plot the decay properties of the eigenvalues of the local problem. We see
the fast decay in the eigenvalues of the correlation matrix, which reveals the existence of low
dimensional structure in the solution space implied by Proposition 2.3. We also plot the decay
properties of the eigenvalues of the global problem in Figure 2b. First 50 eigenvalues take up
96% of the total sum of the eigenvalues. It means that certain low dimensional structure still
exists in the solution space of global problem, however, the dimension of such approximate
space is larger than that of the local problem.

We change the distance between D; and D, and repeat the above experiment. In Figure
3, we plot the decay properties of the local problem. One can see that distance between D,
and Dy affects the effective dimension of the approximate solution space, which is embedded
in the constant for separability estimate.

4.2. An example with random coefficient

Here we consider a multiscale elliptic PDE with a random coefficient that is defined on a
square domain D = [0, 1] x [0, 1],

-V (a(x,y,w)Vu(a:,y,w)) = f(a:ay)> (517,y) € Daw S Qo.n

u(z,y,w) =0, (z,y) € OD. (41)
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Figure 2: The decay properties of the eigenvalues in the problem of Sec.4.1.
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Figure 3: The decay properties of the eigenvalues for different separate distances.

In this example, the coefficient a(x,y,w) is defined as

T m(z+y) 27 (xz—0.5)
24+ m sm( = ) 2+p281n(2 ) 2+p3003(—)
CL(Z‘,y,LU) =0.1+ 9 _ o gl(w 27:{5 V) §2< ) + 7(y—0.5) 53( )
p1 cos(Y) 2 — pysin(= %) 2 —ps3 cos(—3 )
2 + py cos (2 \(f mlze—y)) 2+ ps cos(%)
27 (z+y) 54(('0) .27 (z+2y) 55( ) (42)
2 — pasin(=5-= V2ex ) 2—ps SIH(TES)

where [e1, €2, €3, €4, €3] [%, %, %, 3—17,4—11], [p1, P2, P3, D1, p5) = [1.98,1.96,1.94,1.92,1.9], and
&i(w), 1 = ., 5 are ii.d. uniform random variables in [0,1]. The contrast ratio in the
coefficient (42) is k, & 4.5 x 103. The source function is f(x,y) = sin(27z) cos(2wy) - Ip,(z, ),
where Ip, is an indicator function defined on Dy = [§,3] x [z, &]. The coefficient (42) is
highly oscillatory in the physical space. Therefore, one needs a fine discretization to resolve

the small-scale variations in the problem. We shall show results for the solution to (41) with
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of the source term f(z,y); and (2) the full domain D.
In Figure 4, we show the decay property of eigenvalues. Specifically, we show the magnitude

of the eigenvalues in Figure 4a and the ratio of the accumulated sum of the leading eigenvalues
over the total sum in Figure 4b. These results and Prop.3.1 imply that a few leading eigen-
vectors will provide a set of data-driven basis that can approximate all solution samples well.
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Figure 4: The decay properties of the eigenvalues in the local problem of Sec.4.2.

459
460 After we construct the data-driven basis, we use the polynomial interpolation to approx-

w1 imate the map F : & — c(§). Notice that the coefficient of (42) is parameterized by five
w iid. random variables. We partition the random space [¢;(w), & (w), -, &(w)]T € [0,1]°
w3 into a set of uniform grids in order to construct the map F. Here we choose N; = 9° sam-
s ples. We can choose other sampling strategies, such as sparse-grid points and Latin hypercube
w5 points, for moderate- or high-dimensional cases. In Figure 5, we show the profiles of the first
w6 two data-driven basis functions ¢; and ¢9 and the plots of the maps ¢1(&1,&2; €3, &4,&5) and
wr co(&1,60; &3, €4, &5) with fixed [€3,&4,&]T = [0.25,0.5,0.75]7. One can see that the data-driven

s basis functions contain multiscale features, while the maps ¢ (&1, &2; &3, &4, &5) and ¢2(&1, &o; €3, €4, E5)
w0 are smooth with respect to &, ¢« = 1,2. The behaviors of other data-driven basis functions and

w0 other maps are similar (not shown here). Once we get the map F, the solution corresponding

m to a new realization a(z,&(w)) can be computed easily by finding c¢(£) and plugging in the

w2 approximation (22).

473 In Figure 6, we show the mean relative L? and H! errors of the testing error and projection
s error, where Ny = 10N;. For the experiment, only four data-driven basis are needed to achieve
w5 arelative error less than 1% in L? norm and less than 2% in H! norm. Moreover, the numerical
a6 solution obtained by our mapping method is close to the projection solution, which is the best
a7 approximation of the reference solution by the data-driven basis. This result also indicates
s that the nonlinear map F' is a smooth function and has been approximated well by the uniform
a9 grids based polynomials interpolation.

480 We also study the approximation property of the nonlinear map F based on different uni-
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Figure 5: Top: profiles of data-driven basis ¢; and ¢o. Bottom: profiles of the maps ¢;1(&1,&2;&3,84,&5) and
62(517 §27 637 547 55) with fixed [537 §4a 65]T = [0257 055 075]T

form grids. Specifically, we partition the random space [&;(w), & (w), - -+, &(w)]? € [0, 1] into
different uniform grids with N; = 5°,6°, 7%, 8%, 9% samples and use the polynomial interpolation
to construct the map F. Figure 7 shows the mean relative L? and H' errors of the testing
errors and the project error (which does not depend on the grid partition), where No = 10°.
We observe a convergence behavior in constructing the map F if we increase the partition
number in the uniform grids.

The standard FEM takes 0.82 second to compute one solution. In the offline stage of our
method, we need to compute N solution samples to construct POD basis and N; solution
samples to construct the nonlinear map F. The random SVD method takes 1.2 seconds to
compute the POD basis. In the online stage of our method, the CPU time is almost negligible.
For instance, when the number of basis is K = 10, it takes about 0.0022 second to compute
one solution. In Figure 8, we compare the CPU time of the FEM and our method (including
both stages) as a function of the number of new solutions computed in the online stage. This
result shows that our method is very efficient if one needs to solve many forward problems for
(41) (e.g. in the context of solving an inverse problem by using the Bayesian method).

In Figure 9, we show the accuracy of the proposed method when we use different number
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Figure 6: Relative L? and H' error with increasing number of basis for the local problem of Sec.4.2.

0.025 T T T T T T 0.035 T T T T T T
_ ; —g5
—%- testing error, N1=95 *- testing error, N, =9
0.03 A et 5| 1
0.024 —A- testing error, N1=85 | testing error, N, =8
TR _ ) _5
§§ \ oy ~0- testing error, N,=7° 0025 B~ testing error, N, =77/ |
- A% - o et _65
g \QQ\ —%= testing error, N1=65 g %= testing error, N, =6
N(D 0.015 \&\ %« —0- projection error q ‘_CD 0.02 —O- projection error |
- oV, F, T
[} WEL 2 )
= ! A = 0.015 1
So001f N & =
© NI =N ©
2 G\*\\A\ ﬂ”’—ﬂff,,,, - E
o, ¥~ T A T = 0.01
N T A
0.005 O Te%——___ T T oA
~ == —3
&~ i 0.005 -
—o—____
T T T
0 . . . . . . 0 . . . . . .
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of basis Number of basis

Figure 7: Relative L? and H' error of the solution computed by the nonlinear map F based on different uniform
grids for the local problem of Sec.4.2.

5 210°
. ,/4
— data-driven method s
251 —— standard FEM e i
,//
-
-

2+ 7 g
o -
£
Z15¢ o7 1
[
° -

%
1 e i
-
-
P
-
051 s i
P
,/'
e
0 . L L L L L L
0 0.5 1 15 2 25 3 35
N2 x10°

Figure 8: CPU time for the local problem of Sec.4.2.

19



w7 of samples N in constructing the data-driven basis. Although the numerical error decreases
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Figure 9: The relative testing/projection errors in L? and H'! norms with different number of samples (i.e. N)
for the local problem of Sec.4.2.

Next, we test our method on the whole computation domain for (41) with coefficient (42).
We choose Ny = 10N;. Figure 10 shows the decay property of eigenvalues. Similarly, we show
magnitudes of the leading eigenvalues in Figure 10a and the ratio of the accumulated sum
of the eigenvalues over the total sum in Figure 10b. We observe similar behaviors as before.
Since we approximate the solution in the whole computational domain, we take the Galerkin
approach described in Section 3.2 using the data-driven basis. In Figure 11, we show the mean
relative error between our numerical solution and the reference solution in L? norm and H'
norm, respectively. In practice, when the number of basis is 15, it takes about 0.084 second to
compute a new solution by our method, whereas the standard FEM method costs about 0.82
second for one solution.
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4.8. An example with an exponential type coefficient

We now solve the problem (41) with an exponential type coefficient.
parameterized by eight random variables, which has the following form

The coefficient is

a(x,y,w) =exp ( Z Sin(QW(Z; 2):1:) COS(QWZZ/)&(W)> , (43)

O¢;

~ 11 1 1 1 1 1 1 :
where the multiscale parameters [e, €2, €3] = |45, 57> 75 597 37> 310 530 35) and &(w), @ =

1,...,8 are i.i.d. uniform random variables in [—3, 1]. Hence the contrast ratio is x, ~ 3.0 x 10°

wl»—l

in the coefficient (43). The source function is f(z,y) = cos(2nx) sin(27y) - Ip,(z,y), where Ip,
is an indicator function defined on Dy = [1, 3] x [55, ]. In the local problem, the subdomain
of interest is Dy = [1, 2] x [15, 1.

In Figure 12, we show the decay property of eigenvalues. Specifically, in Figure 12a we show
the magnitude of leading eigenvalues and in Figure 12b we show the ratio of the accumulated
sum of the eigenvalues over the total sum. These results imply that the solution space has a
low-dimensional structure, which can be approximated by the data-driven basis functions.
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Figure 12: The decay properties of the eigenvalues in the problem of Sec.4.3.

Since the coefficient a(x,y,w) is parameterized by eight random variables, it is expensive
to construct the map F : &(w) — c(w) using the interpolation method with uniform grids.
Instead, we use a sparse grid polynomial interpolation approach to approximate the map F.
Specifically, we use Legendre polynomials with total order less than or equal 4 (i.e. sparse grid
of level 5) to approximate the map, where the total number of nodes is N; = 2177; see [11].

Figure 13a and 13b show the relative errors of the testing error and projection error in L?
norm and H' norm, respectively, where Ny = 10N;. The sparse grid polynomial interpolation
approach gives a comparable error as the best approximation error. We observe similar con-
vergence results in solving the global problem (41) with the coefficient (43) (not shown here).
Therefore, we can use the sparse grid method to construct maps for problems of a moderate
number of random variables.
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We also study the approximation property of the nonlinear map F based on sparse grids
of different levels. Specifically, sparse grids of accuracy level 3, 4, and 5 respectively contain
N; = 129, 609, and 2177 grid points. Figure 14 shows the mean relative L? and H' errors of
the testing errors and the project error (which does not depend on the grid partition), where
Ny = 21700. One can see that the nonlinear map F based on sparse grids of accuracy level 4
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s 4.4. An example with discontinuous coefficients

539

We solve the problem (41) with a discontinuous coefficient, which is an interface problem.
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ss0  The coefficient is parameterized by twelve random variables and has the following form
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o, . ) = exp (Zsm x sin %) +ycos(%))€i(w)> 'ID\D:;(':L.ay)

€;
(i+0.5)7 (i+0.5)m
, rsin(25) 4+ y cos(2E)
+exp (Zsm@w - L )ino(w)) - Ipy(e,y),  (44)
pr i+6
where ¢; = T for i = 1,--+ 6, ¢ = 52 for i = 7,--- 12, §(w), i = 1,---,12 are i.id.
uniform random variables in [—2, 2], and Ip,, Ip\p, are 1nd1cator functions. The contrast ratio

in the coefficient (44) is k, ~ 3 x 103. The subdomain Dj consists of three small rectangles
whose edges are parallel to the edges of domain D with width 10h and height 0.8. And the
lower left vertices are located at (0.3,0.1),(0.5,0.1),(0.7,0.1) respectively. One can use the
coefficient (44) to model channels in permeability field in the reservoir simulation. In Figure
15 we show two realizations of the coefficient (44).

5
0 0.2 04 06 0.8 1

Figure 15: Two realizations of the coefficient (44) in the interface problem.
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~
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We now solve the local problem of (41) with the coefficient (44), where the domain of

interest is Dy = [1, 3] x [1(13, 2]. The source function is f(xz,y) = cos(2mz) sin(2wy) - Ip,(z,y),
where Dy = [, 3] x |55, &]. In Figure 16a and Figure 16b we show the magnitude of dominant

eigenvalues and approximate accuracy. These results show that only a few data-driven basis
functions are enough to approximate all solution samples well.

Since the coefficient (44) is parameterized by twelve random variables, constructing the
map F : £(w) — c(w) using the sparse grid polynomial interpolation becomes very expensive
too. Here we use the least square method combined with the k-d tree algorithm for searching
nearest neighbors to approximate the map F.

In our method, we first generate N; = 5000 data pairs {(£"(w), c*(w)}, that will be used
as training data. Then, we use Ny = 10/N; samples for testing in the online stage. For each
new testing data point &€(w) = [£1(w), -+ ,&(w)]T (here r = 12), we run the k-d tree algorithm
to find its m nearest neighbors in the training data set and apply the least square method
to compute the corresponding mapped value c(w) = [c1(w), ..., cx(w)]T. The complexity of
constructing a k-d tree for Ny data points is O(N; log N7). Given the k-d tree, for each testing
point the complexity of finding its n nearest neighbors is O(nlog Ny) [40].
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Figure 16: The decay properties of the eigenvalues in the problem of Sec.4.4.

Since the n nearest neighbors (training data) are close to the testing data point &(w), for
each training data (ém(w), cm(w)), m = 1,...n, we compute the first-order Taylor expansion
of each component cJ*(w) at &(w) as

r=12
80 4
Cj( +Z a€]< ) ]:1727"'aK7 (45)
where £, i =1,...,7, ¢'(w), j = 1,..., K are given training data, c;(w) and 2% 5 2(w),j=1,..,.K

are unknowns assoc1ated with the testing data point &£(w). In the k-d tree algorithm, we choose
n = 20, which is slightly greater than r+1 = 13. By solving (45) using the least square method,
we get the mapped value c(w) = [c;(w),...,cx(w)]T. Finally, we use the formula (22) to get
the numerical solution of Eq.(41) with the coefficient (44).

Because of the discontinuity and high-dimensional random variables in the coefficient (44),
the problem (41) is more challenging. The nearest neighbors based least square method pro-
vides an efficient way to construct maps and achieve relative errors less than 3% in both L?
norm and H' norm; see Figure 17. Alternatively, one can use neural network method to
construct maps for this type of challenging problems; see Section 4.5.

4.5. An example with high-dimensional random coefficient and source function

We solve the problem (41) with an exponential type coefficient and random source func-
tion, where the total number of random variables is twenty. Specifically, the coefficient is
parameterized by eighteen i.i.d. random variables, i.e.

7 sin(4%) + y cos(4%)

a(x,y,w) = exp (Z sin(2 :

&), (46)

where ¢ = 515, 1=1,2,---,18 and &(w), i = 1,..., 18 are i.i.d. uniform random variables in
[—5, 5] The source function is a Gaussian densn:y function f(z,y) = %02 exp(— W)
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Figure 17: The relative errors with increasing number of basis in the local problem of Sec.4.4 .

with a random center (61, 6,) that is a random point uniformly distributed in the subdomain
Dy =[1,3] x [, &] and o = 0.01. When ¢ is small, the Gaussian density function f(z,y) can
be used to approximate the Dirac-d function, such as modeling wells in reservoir simulations.

We first solve the local problem of (41) with N = 2000 samples of the coefficient (46),
where the subdomain of interest is Dy = [1, 2] x [1z, 12]. In Figures 18a and 18b, we show the
magnitude of leading eigenvalues and the ratio of the accumulated sum of the eigenvalue over
the total sum, respectively. We observe similar exponential decay properties of eigenvalues
even if the source function contains randomness. These results show that we can still build a

set of data-driven basis functions to solve problem (41) with coefficient (46).
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Figure 18: The decay properties of the eigenvalues in the problem of Sec.4.5.

Notice that both the coefficient and source contain randomness here. We put the random

so3 variables &(w) in the coefficient and the random variables @(w) in the source together when
sa  we construct the map F. Moreover, the dimension of randomness, 184-2=20, is too large even
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for sparse grids. Here we construct the map F : (§(w), 8(w)) + c(w) using the neural network
as depicted in Figure 19. The neural network has 4 hidden layers and each layer has 50 units.
Naturally, the number of the input units is 20 and the number of the output units is K. The
layer between input units and first layer of hidden units is an affine transform. So is the
layer between output units and last layer of hidden units. Each two layers of hidden units
are connected by an affine transform, a tanh (hyperbolic tangent) activation and a residual
connection, i.e. h;;; = tanh(A;h; +b;) + hy, [ = 1,2, 3, where h; is [-th layer of hidden units,
A, is a 50-by-50 matrix and b; is a 50-by-1 vector. Under the same setting of neural network, if
the rectified linear unit (ReLU), which is piecewise linear, is used as the activation function, we
observe a much bigger error. Therefore, we choose the hyperbolic tangent activation function
and implement the residual neural network (ResNet) here [25].

Input units Hidden units Output units

Figure 19: Structure of neural network, where r; = 18 and 7o = 2.

We use N; = 5000 samples for network training in the offline stage and N, = 10/N; samples
for testing in the online stage. The sample data pairs for training are { (£"(w), 8" (w)), ¢"(w) }nNil,

where £"(w) € [—1, "5, 6"(w) € [1, 3] X [55, 3], and ¢"(w) € R¥. We define the loss function

of network training as

N1

loss({c"}, {€"}) = Nil > et e, (47)

n=1

where ¢™ are the training data and &" are the output of the neural network (see Figure 19).

Figure 20a shows the value of loss function during training procedure. Figure 20b shows the
corresponding mean relative error of the testing samples in L? norm. Eventually the relative
error of the neural network reaches about 1.5%. Figure 20c shows the corresponding mean
relative error of the testing samples in H! norm. We remark that many existing methods be-
come extremely expensive or infeasible when the problem is parameterized by high-dimensional
random variables. Our data-driven basis method based on neural network still provides a sat-
isfactory result.
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Figure 20: First column: the value of loss function during training procedure. Second column and third column:
the mean relative errors of the testing set during training procedure in L? and H' norm respectively.
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4.6. An example with unknown random coefficient and source function

Finally, we present an example where the models of the random coefficient and source are
unknown. Only a set of sample solutions are provided as well as a few censors can be placed at
certain locations for solution measurements. This kind of scenario appears often in practice.
We take the least square fitting method as described in Section 3.3. Our numerical experiment
is still based on (41), which is used to generate solution samples (instead of experiments or
measurements in real practice). But once the data are generated, we do not assume any
knowledge of the coefficient or the source when computing a new solution.

To be specific, the coefficient takes the form

2 rsin(Z) + ycos(X)
a(z,y,w) = exp (D sin(2r 2! 26 (w)), (48)
€;
i=1
where ¢; = %, i=1,2,--+,24 and §(w), i = 1,...,24 are i.i.d. uniform random variables
in [—£, ¢]. The source function is a random function f(z,y) = sin(w (612 + 26,)) cos(m(fsy +

204)) - Ip,(z,y) with i.i.d. uniform random variables 61,65, 05,0, in [0,2]. We first generate
N = 2000 solutions samples (using standard FEM) u(z;,w;),i =1,...,N,j =1,...,J, where
x; are the points where solution samples are measured. Then, a set of K data-driven basis
ok(z;),7=1,...,J,k=1,..., K are extracted from the solution samples as before.

Next we determine M good sensing locations from the data-driven basis so that the least
square problem (26) is not ill-conditioned. We follow the method proposed in [32]. Define
D = [¢y,...,0x] € R*E where ¢, = [dp(x1),...,01(zs)]". If M = K, QR factorization
with column pivoting is performed on ®. If M > K, QR factorization with pivoting is
performed on ®®7. The first M pivoting indices provide the measurement locations. Once
a new solution is measured at these M selected locations, the least square problem (26) is
solved to determine the coefficients ¢y, co,...,cx and the new solution is approximated by
u(wg,w) = Yy cxor(y).

In Figure 21 and Figure 22, we show the results of the local problem and global problem,
respectively. In these numerical results, we compared the error between the reconstructed
solutions and the reference solution. We find the our proposed method works well for problem
(41) with a non-parametric coefficient or source as well.

5. Conclusion

In this paper, we propose a data-driven approach to solve multiscale elliptic PDEs with
random coefficients or random sources. This type of multiscale problem has many applications,
such as heterogeneous porous media flow problems in water aquifer and oil reservoir simulations.
Motivated by the existence of approximate low dimensional structures in the solution space
of the multiscale problems, we construct a set of problem-specific data-driven basis functions
directly from samples solutions or experimental data. Once the data-driven basis is available,
depending on different problem setups, we design several ways to compute a new solution
efficiently.

Error analysis based on the sampling error of the coefficients and the projection error of the
data-driven basis is presented to provide some guidance on the implementation of our method.

29



656

657

658

659

660

661

662

663

664

665

666

667

668

0.035 ¥ . . . . . . 0.035 %
\ . .
\ —* testing error \\ —* testing error
003 ¢ N —o- projection error | | 003F g —o- projection error | |
\
q ! o
0.025 \ 1 L 0.025F
= \
e \ \ e \\ k N
o ¥ —
o \ S o) \ N «
o~ 002f \ « — 002 b N
— \ N\ T N ~
o \ N N (] ~ k- ~ —x%_
2 0015 IS % = 00151 S -
~ — = — = ~
Y ~ *. o Se *
o "o, S~ g s S~
001t ~ * 0.01 S e
o _ ~ % N T —%
~ ~ - ~
°_ ~ % S
0.005 - ~o_ k 0.005 - _ _ 1
—0— — _ !
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of basis Number of basis

Figure 21: The relative errors with increasing number of basis in the local problem of Sec.4.6 .
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Figure 22: The relative errors with increasing number of basis in the global problem of Sec.4.6.

Numerical examples show that the proposed method is very efficient in solving multiscale ellip-
tic PDEs with random input, especially when the random input is relative high dimensional.
Therefore, these data-driven basis functions indeed provide a nearly optimal approximation to
the low dimensional structures in the solution space.
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