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Abstract6

We propose a data-driven approach to solve multiscale elliptic PDEs with random coeffi-7

cients based on the intrinsic approximate low dimensional structure of the underlying elliptic8

differential operators. Our method consists of offline and online stages. At the offline stage, a9

low dimensional space and its basis are extracted from solution samples to achieve significant10

dimension reduction in the solution space. At the online stage, the extracted data-driven basis11

will be used to solve a new multiscale elliptic PDE efficiently. The existence of approximate12

low dimensional structure is established in two scenarios based on: (1) high separability of the13

underlying Green’s functions; and (2) smooth dependence of the parameters in the random14

coefficients. Various online construction methods are proposed for different problem setups.15

We provide error analysis based on the sampling error and the truncation threshold in building16

the data-driven basis. Finally, we present extensive numerical examples to demonstrate the17

accuracy and efficiency of the proposed method.18

AMS subject classification: 35J08, 35J15, 35R60, 65N30, 65N80, 78M34.
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(UQ); Green’s function; separability; proper orthogonal decomposition (POD); neural20

network.21

1. Introduction22

In this paper, we shall develop a data-driven method to solve the following multiscale elliptic23

PDEs with random coefficients a(x, ω) and source f(x, θ),24

L(x, ω)u(x, ω, θ) ≡ −∇ ·
(
a(x, ω)∇u(x, ω, θ)

)
= f(x, θ), x ∈ D, ω ∈ Ωω, θ ∈ Ωθ, (1)

u(x, ω, θ) = 0, x ∈ ∂D, (2)

where D ∈ Rd is a bounded spatial domain. We separate the randomness in the coefficient and25

source, where Ωω and Ωθ to denote the sample spaces for random variables ω and θ respectively26

and treat them differently as we shall see later. We assume f(x, θ) to be in L2(D) and uniform27

ellipticity of the PDE (see Section 2 for precise definition of the problem).28

The problem (1)-(2) can be used to model the flow pressure in porous media such as water29

aquifer and oil reservoirs, where the permeability field a(x, ω) is a random field whose exact30

values are infeasible to obtain in practice due to the low resolution of seismic data.31
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In recent years, there has been an increased interest in quantifying the uncertainty in32

systems with randomness, i.e., solving stochastic partial differential equations (SPDEs, i.e.,33

PDEs driven by Brownian motion) or partial differential equations with random coefficients34

(RPDEs). Uncertainty quantification (UQ) is an emerging research area to address these issues;35

see [20, 44, 5, 42, 4, 35, 34, 37, 39, 41, 13, 14, 22] and references therein. However, when SPDEs36

or RPDEs involve multiscale features and/or high-dimensional random inputs, these problems37

become challenging due to high computational cost.38

Recently, some progress has been made in developing numerical methods for multiscale39

PDEs with random coefficients; see [31, 3, 36, 2, 21, 1, 27, 45, 18, 15] and references therein.40

For example, data-driven stochastic methods to solve PDEs with random and/or multiscale41

coefficients were proposed in [12, 45, 28, 29]. They demonstrated through numerical experi-42

ments that those methods were efficient in solving RPDEs with many different source functions.43

However, the polynomial chaos expansion [20, 44] is used to represent the randomness in the44

solutions. Although the polynomial chaos expansion is general, it is a priori instead of problem45

specific. Hence many terms may be required in practice for an accurate approximation which46

induces the curse of dimensionality.47

We aim to develop a new data-driven method to solve multiscale elliptic PDEs with ran-48

domness in (1) based on intrinsic dimension reduction in two scenarios. In the first case, the49

coefficient a(x) ∈ L∞(D) is fixed while the random source can vary arbitrarily in L2(D) with a50

bounded norm. As long as the domain of observation for u(x, θ) is disjoint from the support of51

the source f(x, θ), the low-dimensional structure of the underlying solution space in the obser-52

vation domain is implied by the high separability of the Green’s function for uniformly elliptic53

operators [8], which provides the theoretical foundation for hierarchical low-rank approxima-54

tion to the inverses of FEM matrices and other fast direct inverse solvers. In this case, the55

curse of the dimension of randomness θ in the source function can be avoided without the need56

of smooth dependence on the randomness. For the other case, the coefficient a(x, ω) ∈ L∞(D)57

varies with smooth dependence on ω while the source function is fixed. Since u(x, ω) depends58

smoothly on a(x, ω) and hence on ω as shown in [16], we show an approximate low dimensional59

structure in this case as well.60

Based on the above observations, our method consists of two stages. In the offline stage,61

the approximate low dimensional structure is extracted by computing a set of data-driven62

and problem specific basis from solution samples. For example, the data can be generated63

by solving (1)-(2) corresponding to a sampling of the coefficient a(x, ω) and/or source f(x, θ).64

Here, different sampling methods can be applied, including Monte Carlo (MC) method and65

quasi-Monte Carlo (qMC) method. The sparse-grid based stochastic collocation method [11,66

43, 35] also works when the dimension of the random variables is moderate. Or the data67

may come from field measurements directly in practice. Then the low-dimensional structure68

and the corresponding basis are extracted using model reduction methods, such as the proper69

orthogonal decomposition (POD) [10, 38, 9], a.k.a. principle component analysis (PCA), e.g.,70

by efficient random algorithms [24] due to the approximate low rank structure. The key point71

is that once the dimension reduction is achieved, the online stage of computing the solution72

corresponding to a new coefficient and/or source becomes finding a linear combination of the73

(few) constructed basis functions to approximate the solution.74

However, the map from the input randomness of the PDE to the expansion coefficients of the75
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solution in terms of the data driven basis can be highly nonlinear. We propose a few possible76

online strategies (see Section 3). For examples, if the coefficient is in parametric form, one77

can approximate the nonlinear map from the parameter domain to the expansion coefficients78

through interpolation or neural network approximation. Or one can apply Galerkin method79

using the extracted basis to solve (1)-(2) for a new coefficient. In practice, the coefficient or80

the source function of the PDE may not be available but censors can be deployed to record81

the solution at certain locations. In this case, one can compute the expansion coefficients of a82

new solution by least square fitting those measurements at designed locations. We also provide83

analysis and guidelines for sampling, dimension reduction, and other implementations of our84

methods.85

The rest of the paper is organized as follows. In Section 2, we characterize the low di-86

mensional structure in two scenarios for elliptic PDE (2). In section 3, we describe our new87

data-driven method and its detailed implementation. In Section 4, we present numerical results88

to demonstrate the efficiency of our method. Concluding remarks are made in Section 5.89

2. Low-dimensional structures in the solution space90

2.1. High separability of the Green’s function of elliptic operators.91

We first consider the scenario of a multiscale elliptic PDE with a random source. Let92

L(x) : V → V ′ be a uniformly elliptic operator in a divergence form93

L(x)u(x) ≡ −∇ · (a(x)∇u(x)) (3)

in a bounded Lipschitz domain D ⊂ Rd, where V = H1
0 (D) and a(x) ∈ L∞(D). The uniformly94

elliptic assumption means that there exist amin, amax > 0, such that amin < a(x) < amax for all95

x ∈ D. The contrast ratio κa = amax

amin
is an important factor in the stability and convergence96

analysis. We consider the Dirichlet boundary value problem with a random source f(x, θ),97

where θ is some random variable.98

L(x)u(x, θ) = f(x, θ), in D, u(x, θ) = 0, on ∂D. (4)

For all x, y ∈ D, the Green’s function G(x, y) for differential operator L is the solution of99

LG(·, y) = δ(·, y), in D, G(·, y) = 0, on ∂D, (5)

where L refers to the first variable · and δ(·, y) is the Dirac delta function denoting an impulse100

source point at y ∈ D. The Green’s function G(x, y) is the Schwartz kernel of the inverse L−1,101

i.e., the solution of (4) is represented by102

u(x, θ) = L−1f(x, θ) =

∫
D

G(x, y)f(y, θ)dy. (6)

Since the coefficient a(x) is only bounded, the G(x, y) can have a lower regularity, compared103

with the Green’s function associated with the Poisson’s equation. In [23], the authors proved104
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the existence of Green’s function for d ≥ 3 and the estimate |G(x, y)| ≤ C(d,κa)
amin

|x−y|2−d, where105

C(d, κa) is a constant depends on d and κa. For d = 2 the existence of the Green’s function106

was proved in [17] together with the estimate |G(x, y)| ≤ C(κa)
amin

log |x− y|. Thus, when L is an107

uniform elliptic operator, L−1 exists and ||L−1|| ≤ Ca−1min, where C depends on d and κa.108

One can show the existence of a low dimensional structure in the solution space based on109

high separability of the underlying Green’s function [8] as follows.110

Proposition 2.1. Let D ⊂ Rd be a convex domain and X be a closed subspace of L2(D). Then
for any integer k ∈ N there is a subspace Vk ⊂ X satisfying dimVk ≤ k such that

distL2(D)(u, Vk) ≤ C
diam(D)

d
√
k
‖∇u‖L2(D), for all u ∈ X ∩H1(D), (7)

where the constant C depends only on the spatial dimension d.111

The proof is based on the Poincaré inequality; see [8]. All distances and diameters use112

the Euclidean norm in Rd except the distance of functions which uses the L2(D)-norm. In113

particular, a choice of VK in Prop. 2.1 is the L2 projection of piece-wise constant functions114

defined on a grid with grid size diam(D)
d√
k

onto X.115

Now we present the definition of L-harmonic function on a domain E ⊂ D introduced in116

[8]. A function u is L-harmonic on E if u ∈ H1(Ê),∀Ê ⊂ E with dist(Ê, ∂E) > 0 and satisfies117

a(u, ϕ) =

∫
E

a(x)∇u(x) · ∇ϕ(x)dx = 0 ∀ϕ ∈ C∞0 (E).

Denote the space of L-harmonic functions on E by X(E), which is closed in L2(E). The118

following key Lemma shows that the space of L-harmonic function has an approximate low119

dimensional structure.120

Lemma 2.2 (Lemma 2.6 of [8]). Let Ê ⊂ E ⊂ D in Rd and assume that Ê is convex such121

that122

dist(Ê, ∂E) ≥ ρ diam(Ê) > 0, for some constant ρ > 0.

Then for any 1 > ε > 0, there is a subspace W ⊂ X(Ê) so that for all u ∈ X(E),123

distL2(Ê)(u,W ) ≤ ε‖u‖L2(Ê)

and124

dim(W ) ≤ cd(κa, ρ)
(
| log ε|

)d+1
,

where c(κa, ρ) > 0 is a constant that depends on ρ and κa.125

The key property of L-harmonic functions used to prove the above result is the Cacciop-126

poli inequality, which provides the estimate ‖∇u‖L2(Ê) ≤ C(κa, ρ)‖u‖L2(E). In particular, the127

Green’s function G(·, y) is L-harmonic on E if y /∈ E. Moreover, given two disjoint domains128

D1, D2 in D, the Green’s function G(x, y) with x ∈ D1, y ∈ D2 can be viewed as a family of129

L-harmonic functions on D1 parameterized by y ∈ D2. From the above Lemma one can easily130

deduce the following result which shows the high separability of the Green’s function for the131

elliptic operator (3).132
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Figure 1: Green’s function G(x, y) with dependence on x ∈ D1 and y ∈ D2.

Proposition 2.3 (Theorem 2.8 of [8]). Let D1, D2 ⊂ D be two subdomains and D1 be convex
(see e.g. Figure 1). Assume that there exists ρ > 0 such that

0 < diam(D1) ≤ ρ dist(D1, D2). (8)

Then, for any ε ∈ (0, 1) there is a separable approximation

Gk(x, y) =
k∑
i=1

ui(x)vi(y) with k ≤ cd(κa, ρ)| log ε|d+1, (9)

so that for all y ∈ D2

‖G(·, y)−Gk(·, y)‖L2(D1) ≤ ε‖G(·, y)‖L2(D̂1)
, (10)

where D̂1 := {x ∈ D : 2ρ dist(x,D1) ≤ diam(D1)}.133

The above Theorem shows that there exists a low dimensional linear subspace, e.g., spanned134

by ui(·), that can approximate the family of functions G(·, y) well in L2(D1) uniformly with135

respect to y ∈ D2. Moreover, if supp(f(x, θ)) ⊂ D2, one can approximate the family of136

solutions u(x, θ) to (4) by the same space well in L2(D1) uniformly. Let137

uf (x, θ) =

∫
D2

G(x, y)f(y, θ)dy (11)

and138

uεf (x, θ) =

∫
D2

Gk(x, y)f(y, θ)dy =
k∑
i=1

ui(x)

∫
D2

vi(y)f(y, θ)dy. (12)

Hence139

‖uf (·, θ)− uεf (·, θ)‖2L2(D1)
=
∫
D1

[∫
D2

(G(x, y)−Gk(x, y))f(y, θ)dy
]2
dx

≤ ‖f‖2L2(D2)

∫
D2
‖G(·, y)−Gk(·, y)‖2L2(D1)

dy ≤ C(D1, D2, κa, d)ε2‖f‖2L2(D2)
,

(13)

since ‖G(·, y)‖L2(D̂1)
is bounded uniformly with respect to y ∈ D2 by a positive constant that140

depends on D1, D2, κa, d due to the uniform ellipticity. Note that the low dimensional structure141

does not need any regularity assumption in a(x). Moreover, dependence of the source on142

randomness can be arbitrary in terms of dimensionality and regularity.143
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Remark 2.1. Although, the proof of high separability of the Green’s function requires x ∈144

D1, y ∈ D2 for two disjoint D1 and D2 due to the singularity of the Green’s function at x = y,145

the above approximation of the solution u in a domain disjoint with the support of f also works146

for u in the whole domain even when f is a globally supported smooth function as shown in147

our numerical tests.148

Remark 2.2. Contrary to the elliptic operator, it is shown [19] that the Green’s function for149

the high frequency Helmholtz equation is not highly separable due to fast decorrelation of two150

Green’s functions with well separated (in terms of the wavelength) sources.151

2.2. Low dimensional structures with respect to random coefficients152

In the second scenario we consider the following elliptic PDEs with random coefficients:153

L(x, ω)u(x, ω) ≡ −∇ ·
(
a(x, ω)∇u(x, ω)

)
= f(x), x ∈ D, ω ∈ Ωω, (14)

u(x, ω) = 0, x ∈ ∂D, (15)

where D ∈ Rd is a bounded spatial domain, Ωω is a sample space, and the source function154

f(x) ∈ L2(D). We assume the random coefficient a(x, ω) in (14) is almost surely uniformly155

elliptic, namely, there exist amin, amax > 0, such that156

P
(
ω ∈ Ωω : a(x, ω) ∈ [amin, amax],∀x ∈ D

)
= 1. (16)

In addition, we assume the random coefficient a(x, ω) is parameterized by r independent ran-157

dom variables. For example, a commonly used affine form is the following,158

a(x, ω) = ā(x) +
r∑

m=1

am(x)ξm(ω), (17)

where ξm(ω), m = 1, ..., r are i.i.d. uniform random variables in [−1, 1]. The random coeffi-159

cient (17) can be used in multiscale random elliptic PDEs, such as elliptic PDEs with highly160

oscillatory and/or high-contrast coefficients.161

Once a parametric form of the random coefficient a(x, ω) is given, computing the solution162

u(x, ω) of the problem (14)-(15) defines a solution map from the parameter domain ξ(ω) =163

[ξ1(ω), · · · , ξr(ω)]T ∈ U = [−1, 1]r to the solution space164

ξ(ω) 7→ u(x, ω) = u(x, ξ(ω)) ∈ H1
0 (D), (18)

which is a Banach-space-valued function of the random input vector ξ(ω). With the uniform165

ellipticity assumption of a(x, ξ(ω)) and its smooth dependence on the parameter ξ, the solution166

u(x, ξ) also depends smoothly on the parameters, which can be approximated via polynomial167

expansion in ξ of the form168

∑
α∈Jr

uα(x)ξα(ω), (19)
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where α = (α1, α2, · · · , αr) is a multi-index, Jr = {α |αi ≥ 0, αi ∈ N, 1 ≤ i ≤ r} is a multi-169

index set of countable cardinality, and ξα(ω) =
∏

1≤i≤r ξ
αi
i (ω) is a multivariate polynomial.170

In particular, if uniform ellipticity assumption of a(x, ξ) has a holomorphic extension to171

an open set in complex domain that contains the real domain for ξ, explicit estimates for the172

coefficients uα can be established similar to those estimates for the polynomial approximation173

for an analytic function. From the estimates, the following result for best n-term approximation174

can be proved (see [16] for details).175

Proposition 2.4. Consider a parametric problem of the form (14)-(15) with a random coeffi-176

cient (17). Both the Taylor series and Legendre series of the form (19) converges to u(x, ξ(ω))177

in H1
0 (D) for all ξ(ω) ∈ U . Moreover, for any set Jnr of indices corresponding to the n largest178

of ||uα(·)||H1
0 (D), we have179

sup
ξ(ω)∈U

∣∣∣∣u(·, ξ(ω))−
∑
α∈Jnr

uα(·)ξα(ω)
∣∣∣∣
H1

0 (D)
≤ C exp(−cn1/r), (20)

where J n
r is a subset of Jr with cardinality #J n

r = n, C and c are positive and depend on r.180

Prop.2.4 shows that there exists a linear subspace with dimension at most O(n ∼ ( logC
c

+181

| log ε|
c

)r), e.g., spanned by uα(x), α ∈ J n
r , that can approximate the solution of (14)-(15) with182

random coefficient within ε error.183

The result in Prop.2.4 reveals the existence of approximate low dimensional structures184

in the solution space of (14)-(15). However, this approximation is obtained by mathematical185

techniques, which cannot be directly implemented via a computational algorithm. For instance,186

we cannot perform an exhaustive search over a huge index set to find Jnr . Moreover, there may187

be problem dependent basis that can approximate the solution space more effectively than188

problem independent polynomial basis, which motivates our data-driven approach explained189

in Section 3190

Remark 2.3. When the coefficient a(x, ω) is a nonlinear function of a finite number of random191

variables, one can apply the empirical interpolation method (EIM) [7] to approximately con-192

vert a(x, ω) into an affine form. Thus, low dimensional structures still exist in the solution193

space. In addition, we refer the reader to [26, 6] for the results of the best n-term polynomial194

approximation of elliptic PDEs with lognormal coefficients.195

Remark 2.4. Although we present the problem and will develop the data-driven method for196

the elliptic problem (14)-(15) with scalar random coefficients a(x, ω), our method can be di-197

rectly applied when the random coefficient is replaced by a symmetric positive definite tensor198

ai,j(x, ω), i, j,= 1, . . . , d with almost surely uniform ellipticity.199

2.3. Some existing numerical methods for random elliptic PDEs200

For the ease of the reader, we give a short review of existing methods for solving problem201

(14)-(15) involving random coefficients. There are basically two types of methods. In intrusive202

methods, one represents the solution of (14) by u(x, ω) =
∑

α∈J uα(x)Hα(ω), where J is203

an index set, and Hα(ω) are certain basis functions (e.g. orthogonal polynomials or wavelet204

basis functions). Typical examples are the Wiener chaos expansion (WCE) and polynomial205
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chaos expansion (PCE) method. Then, one uses Galerkin method to compute the expansion206

coefficients uα(x); see e.g. [20, 44, 5, 33, 30, 34] and references therein. These methods have207

been successfully applied to many UQ problems, where the dimension of the random input is208

small or moderate. However, the number of basis functions increases exponentially fast with209

respect to the dimension of random input, i.e., they suffer from the curse of dimensionality of210

both the input space and the output (solution) space, because the random basis Hα(ω)’s are211

built a priori based on the random variables in a(x, ω).212

In non-intrusive methods, one can use the MC method or qMC method to solve (14)-213

(15). However, the convergence rate is slow and the method becomes more expensive when214

the coefficient a(x, ω) contains multiscale features. Stochastic collocation methods explore the215

smoothness of the solutions in the random space and use certain quadrature points and weights216

to compute the solutions [43, 4]. Exponential convergence can be achieved for smooth solutions,217

but the quadrature points grow exponentially fast as the number of random variables increases.218

Sparse grids can reduce the quadrature points to some extent [11, 35]. However, the sparse219

grid method still becomes very expensive when the dimension of randomness is modestly high.220

3. Derivation of the new data-driven method221

The results in Prop.2.3 and Prop.2.4 show that there exist low dimensional structures in the222

solution space of multiscale elliptic PDEs with random coefficient and source. Our goal is to223

use problem-specific and data-driven approaches to achieve a significant dimension reduction.224

The low dimensional structures in the solution space are extracted directly from the data, e.g.,225

real measurements. The data-driven approach can also allow one to deal with situations where226

it is difficult to have an accurate full model, e.g., a(x, ω), or too expensive to solve a large scale227

problem in real practice. As demonstrated by our experiments, we find that the dimension228

of the extracted low dimensional space mainly depends on κa (namely amin and amax) and229

very mildly on the dimension of the random input. Therefore, the curse of dimension can be230

alleviated. From now on, we use ω to denote randomness in both coefficient a and source f231

when there is no confusion.232

Our method consists of offline and online stages. In the offline stage, we extract the low233

dimensional structure and a set of data-driven basis functions from solution samples. For ex-234

ample, a set of solution samples {u(x, ωi)}Ni=1 can be obtained from measurements or generated235

by solving (14)-(15), e.g., with coefficient samples {a(x, ωi)}Ni=1.236

Let Vsnap = {u|D̂(x, ω1), ..., u|D̂(x, ωN)} denote the solution samples, where D̂ ⊆ D is237

a region where the solution is of interest. For instance, in the reservoir simulation one is238

interested in computing the pressure value u(x, ω) on a specific subdomain D̂. We use POD239

[10, 38, 9], or a.k.a PCA, to find the optimal subspace and its orthonormal basis functions to240

approximate Vsnap to a certain accuracy. Define the correlation matrix Σ = (σij) ∈ RN×N with241

σij =< u(·, ωi), u(·, ωj) >D̂, i, j = 1, . . . , N , where < ·, · >D̂ denotes the standard inner product242

on L2(D̂). Let the eigenvalues of the correlation matrix be λ1 ≥ λ2 ≥ . . . ≥ . . . ≥ λN ≥ 0243

and the corresponding eigenfunctions be φ1(x), φ2(x), . . . , φN(x), which will be referred to as244

data-driven basis functions. The space spanned by the leading K data-driven basis functions245

has the following approximation property to Vsnap.246
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Proposition 3.1.∑N
i=1

∣∣∣∣∣∣u(x, ωi)−
∑K

j=1 < u(·, ωi), φj(·) >D̂ φj(x)
∣∣∣∣∣∣2
L2(D̂)∑N

i=1

∣∣∣∣∣∣u(x, ωi)
∣∣∣∣∣∣2
L2(D̂)

=

∑N
s=K+1 λs∑N
s=1 λs

. (21)

First, we expect a fast decay in the eigenvalues λs so that a small set of data-driven basis247

(K � N) will be enough to approximate the solution samples well in the root mean square248

sense. Secondly, based on the existence of low dimensional structure, we expect that the data-249

driven basis, φ1(x), φ2(x), . . . , φK(x), can almost surely approximate the solution u|D̂(x, ω)250

well too under some sampling condition (see Section 3.4) by251

u|D̂(x, ω) ≈
K∑
j=1

cj(ω)φj(x), a.s. ω ∈ Ωω, (22)

where the data-driven basis functions φj(x), j = 1, ..., K are defined on D̂.252

The computational costs of the offline stage mainly consist of two parts, if data are generated253

by simulation: (1) compute solution samples (of global problems); and (2) compute the data-254

driven basis by the POD method. This is a common nature for many model reduction methods.255

Effective sampling of solutions (see Section 3.4) and the use of randomized algorithms [24] for256

the singular value decomposition (SVD) (utilizing the low-rank structure) helps to reduce the257

offline computation cost.258

Remark 3.1. In Prop.3.1 we construct the data-driven basis functions from eigen-decomposition259

of the correlation matrix associated with the solution samples. Alternatively, we can subtract260

the mean from the solution samples, compute the covariance matrix, and construct the basis261

functions from eigen-decomposition of the covariance matrix. In this setting, the data-driven262

basis functions will be used to approximate the fluctuation of the solution since the mean263

function is given.264

Now the problem is how to find cj(ω) through an efficient online process given a new265

realization of a(x, ω). We will prescribe several strategies in different setups.266

3.1. A nonlinear solution map267

Suppose that a(x, ω) is parameterized by r independent random variables, i.e.,268

a(x, ω) = a(x, ξ1(ω), ..., ξr(ω)). (23)

Thus, the solution can be represented as a functional of these random variables as well, i.e.,269

u(x, ω) = u(x, ξ1(ω), ..., ξr(ω)). Let ξ(ω) = [ξ1(ω), · · · , ξr(ω)]T denote the random input vector270

and c(ω) = [c1(ω), · · · , cK(ω)]T denote the vector of solution coefficients in (22). Now, the271

problem can be viewed as constructing a map from ξ(ω) to c(ω), denoted by F : ξ(ω) 7→ c(ω),272

which is nonlinear. We approximate this nonlinear map through the sample solution set.273

Given a set of solution samples {u(x, ωi)}Ni=1 corresponding to {ξ(ωi)}Ni=1, e.g., by solving (14)-274

(15) with a(x, ξ1(ωi), ..., ξr(ωi)), from which the set of data driven basis φj(x), j = 1, ..., K275
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is obtained by using POD method as described above, we can easily compute the projection276

coefficients
{
c(ωi)

}N
i=1

of u|D̂(x, ωi) on φj(x), j = 1, ..., K, i.e., cj(ωi) =< u(x, ωi), φj(x) >D̂.277

From the data set, F (ξ(ωi)) = c(ωi), i = 1, ..., N , we construct the map F. Note the significant278

dimension reduction by reducing the map ξ(ω) 7→ u(x, ω) to the map ξ(ω) 7→ c(ω). We provide279

several ways to construct F, depending on the dimension of the random input vector. More280

implementation details will be explained in Section 4.281

1. Interpolation.282

When the dimension of the random input r is small or moderate, one can use interpola-283

tion. In particular, if the solution samples correspond to ξ located on a uniform or sparse284

grid, standard polynomial interpolation can be used to approximate the coefficient cj at a285

new point of ξ. If the solution samples correspond to ξ at scattered points or the dimen-286

sion of the random input r is moderate or high, one can first find a few nearest neighbors287

to the new point efficiently using the k-d tree algorithm [40] and then use moving least288

square approximation centered at the new point to approximate the mapped value. See289

Figure 5 for an example of the map F based on interpolation.290

2. Neural network.291

When the dimension of the random input r is high, interpolation approach becomes ex-292

pensive and less accurate. We tried a simple neural network with small output dimension293

(due to the dimension reduction) that seems to provide a satisfactory solution.294

For the uniform-grids or sparse-grid based polynomial interpolation approach, the approx-295

imation property (error estimate) can be studied based on the regularity of map F , which is296

smooth with respect to ξ if a(x, ξ(ω)) depends on ξ smoothly. Our numerical results in Sec-297

tion 4 show the moving least square approach and neural network approach are efficient and298

accurate. However, since the map F is nonlinear and lives in a high dimensional space, many299

issues need to be further investigated, such as how to optimally choose the training samples300

and how to study the approximation property of the map F .301

In the online stage, one can compute the solution u(x, ω) using the constructed map F. For302

example, given a new realization of a(x, ξ1(ωi), ..., ξr(ωi)), we plug ξ(ω) into the constructed303

map F to approximate c(ω) = F(ξ(ω)), which are the projection coefficients of the solution304

on the data-driven basis. So we can quickly obtain the new solution u|D̂(x, ω) using Eq.(22),305

where the computational time is negligible. Once we obtain the numerical solutions, we can use306

them to compute statistical quantities of interest, such as mean, variance, and joint probability307

distributions.308

3.2. Galerkin approach309

In the case D̂ = D, we can solve the problem (14)-(15) on the whole domain D by the310

standard Galerkin formulation using the data driven basis for a new realization of a(x, ω).311

Once the data driven basis φj(x), j = 1, ..., K, which are defined on the domain D, are312

obtained from solution samples in the offline stage. Given a new realization of the coefficient313

a(x, ω), we approximate the corresponding solution as314

u(x, ω) ≈
K∑
j=1

cj(ω)φj(x), a.s. ω ∈ Ωω, (24)

10



and use the Galerkin projection to determine the coefficients cj(ω), j = 1, ..., K by solving the315

following linear system in the online stage,316

K∑
j=1

∫
D

a(x, ω)cj(ω)∇φj(x) · ∇φl(x)dx =

∫
D

f(x)φl(x)dx, l = 1, ..., K. (25)

Remark 3.2. The computational cost of solving the linear system (25) is small compared to317

using a Galerkin method, such as the finite element method, directly for u(x, ω) because K is318

much smaller than the degree of freedom needed to discretize u(x, ω) in the whole domain.319

Note that if a(x, ω) has the affine form (17), we first compute the terms that do not de-320

pend on randomness, including
∫
D
ā(x)∇φj(x) · ∇φl(x)dx,

∫
D
am(x)∇φj(x) · ∇φl(x)dx and321 ∫

D
f(x)φj(x)dx, j, l = 1, ..., K. Then, we save them in the offline stage. This leads to con-322

siderable savings in assembling the stiffness matrix for each new realization of the coefficient323

a(x, ω) in the online stage. Of course, the affine form is automatically parameterized. Hence,324

one can also construct the map F : ξ(ω) 7→ c(ω) as described in the previous Section 3.1.325

3.3. Least square fitting from direct measurements at selected locations326

In many applications, only samples (data) or measurements of u(x, ω) is available while327

the model of a(x, ω) or its realization is not known. In this case, we propose to compute328

the coefficients c by least square fitting the measurements (values) of u(x, ω) at appropriately329

selected locations. First, as before, from a set of solutions samples, u(xj, ωi), measured on a330

mesh xj ∈ D̂, j = 1, . . . , J , one finds a set of data driven basis φ1(xj), . . . , φK(xj), e.g. using331

POD. For a new solution u(x, ω) measured at x1, x2, . . . , xM , one can set up the following least332

square problem to find c = [c1, . . . , cK ]T such that u(x, ω) ≈
∑K

k=1 ckφk(x):333

Bc = y, y = [u(x1, ω), . . . , u(xM , ω)]T , B = [φM
1 , . . . ,φ

M
K ] ∈ RM×K , (26)

where φM
k = [φk(x1), . . . , φk(xM)]T .334

The key issue in practice is the conditioning of the least square problem (26). One way is335

to select the measurement (sensor) locations x1, . . . xM such that rows of B are as decorrelated336

as possible. We adopt the approach proposed in [32], where a QR factorization with pivoting337

for the matrix of data driven basis is used to determine the measurement locations. More338

specifically, let Φ = [φ1, . . . ,φK ] ∈ RJ×K , φk = [φk(x1), . . . , φk(xJ)]T . If M = K, QR factor-339

ization with column pivoting is performed on ΦT . If M > K, QR factorization with pivoting340

is performed on ΦΦT . The first M pivoting indices provide the measurement locations. More341

details can be found in [32].342

3.4. Determine a set of good learning samples343

A set of good solution samples is important for the construction of data-driven basis in the344

offline stage. Since the solution depends on the source linearly with an explicit bound, the345

analysis is straightforward. Here we provide an error analysis for the coefficient based on the346

finite element formulation. However, the results extend to general Galerkin formulation. First,347

we make a few assumptions.348

11



Assumption 3.2. Suppose a(x, ω) has the following property: given δ1 > 0, there exists an349

integer Nδ1 and a choice of snapshots {a(x, ωi)}, i = 1, ..., Nδ1 such that350

E

[
inf

1≤i≤Nδ1

∣∣∣∣a(x, ω)− a(x, ωi)
∣∣∣∣
L∞(D)

]
≤ δ1. (27)

Let {a(x, ωi)}
Nδ1
i=1 denote the samples of the random coefficient, which form a δ1-net for the351

coefficient a(x, ω). For every realization of a(x, ω), we can find a coefficient sample a(x, ωi) that352

is close to a(x, ω) in the norm || · ||L∞(D). We define this δ1-net in the sense of the expectation353

E[·], which allows us to exclude a small set of outliers.354

A good sampling of the solution is important for computational efficiency and accuracy.355

When the coefficient has the affine form (17), one can verify Asm.3.2 and provide a constructive356

way to sample snapshots {a(x, ωi)}
Nδ1
i=1 if we know the distribution of the random variables357

ξm(ω), m = 1, ..., r, since the linear map from ξ space to the function space of a(x, ξ) is358

explicitly determined by a(x), am(x),m = 1, ..., r. In general, it becomes a sampling problem359

for {a(x, ωi)}, which may be challenging especially when the dimension of the random variables360

r is high and/or a(x, ω) does not have an affine form. However, the Asm.3.2 provides us some361

insight on how to choose coefficient samples {a(x, ωi)} in order to obtain a set of accurate362

data-driven basis functions.363

Let Vh ⊂ H1
0 (D) denote a finite element space that is spanned by nodal basis functions on364

a mesh with size h and Ṽh ⊂ Vh denote the space spanned by the data-driven basis {φj(x)}Kj=1.365

We assume the mesh size is fine enough so that the finite element space can approximate the366

solutions to the underlying PDEs well. For each a(x, ωi), let uh(x, ωi) ∈ Vh denote the FEM367

solution and ũh(x, ωi) ∈ Ṽh denote the projection on the data-driven basis {φj(x)}Kj=1.368

Assumption 3.3. Given δ2 > 0, we can find a set of data-driven basis, φ1, . . . , φKδ2 such that369

||uh(x, ωi)− ũh(x, ωi)||L2(D) ≤ δ2, ∀1 ≤ i ≤ Kδ2 , (28)

where ũh(x, ωi) is the L2 projection of uh(x, ωi) onto the space spanned by φ1, . . . , φKδ2 .370

Asm.3.3 can be verified by setting the threshold in the POD method; see Prop.3.1. Now371

we present the following error estimate.372

Theorem 3.4. Under Assumptions 3.2-3.3, for any δi > 0, i = 1, 2, we can choose the samples373

of the random coefficient {a(x, ωi)}
Nδ1
i=1 and the threshold in constructing the data-driven basis374

accordingly, such that375

E
[∣∣∣∣uh(x, ω)− ũh(x, ω)

∣∣∣∣
L2(D)

]
≤ Cδ1 + δ2, (29)

where C depends on amin, f(x), and the domain D.376

Proof. Given a coefficient a(x, ω), let uh(x, ω) and ũh(x, ω) be the corresponding FEM solution377

and data-driven solution, respectively. We have378
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∣∣∣∣uh(x, ω)− ũh(x, ω)
∣∣∣∣
L2(D)

≤
∣∣∣∣uh(x, ω)− uh(x, ωi)

∣∣∣∣
L2(D)

+
∣∣∣∣uh(x, ωi)− ũh(x, ωi)∣∣∣∣L2(D)

+
∣∣∣∣ũh(x, ωi)− ũh(x, ω)

∣∣∣∣
L2(D)

,

:=I1 + I2 + I3, (30)

where uh(x, ωi) is the solution corresponding to the coefficient a(x, ωi) and ũh(x, ωi) is its379

projection. Now we estimate the error term I1 first. In the sense of weak form, we have380

∫
D

a(x, ω)∇uh(x, ω) · ∇vh(x)dx =

∫
D

f(x)vh(x), for all vh(x) ∈ Vh, (31)

and381

∫
D

a(x, ωi)∇uh(x, ωi) · ∇vh(x)dx =

∫
D

f(x)vh(x), for all vh(x) ∈ Vh. (32)

Subtracting the above two variational formulations (31)-(32), we have, for all vh(x) ∈ Vh,382

∫
D

a(x, ω)∇(uh(x, ω)− uh(x, ωi)) · ∇vh(x)dx = −
∫
D

(a(x, ω)− a(x, ωi))∇uh(x, ωi) · ∇vh(x).

(33)

Let wh(x) = uh(x, ω)−uh(x, ωi) and L(vh) = −
∫
D

(a(x, ω)−a(x, ωi))∇uh(x, ωi)·∇vh(x) denote383

a linear form. Eq.(33) means that wh(x, ω) is the solution of the weak form
∫
D
a(x, ω)∇wh ·384

∇vh(x)dx = L(vh), for all vh(x) ∈ Vh. Therefore, we have385

∣∣∣∣wh(x)
∣∣∣∣
H1(D)

≤
||L||H1(D)

amin

. (34)

Notice that386

||L||H1(D) = max
||vh||H1(D)=1

|L(vh)| ≤ ||a(x, ω)− a(x, ωi)||L∞(D)||uh(x, ωi)||H1(D),

≤ ||a(x, ω)− a(x, ωi)||L∞(D)

||f(x)||H1(D)

amin

. (35)

Since wh(x) = 0 on ∂D, combining Eqns.(34)-(35) and using the Poincaré inequality for wh(x),387

we obtain an estimate for the term I1 as follows,388

∣∣∣∣uh(x, ω)− uh(x, ωi)
∣∣∣∣
L2(D)

≤ C1

∣∣∣∣uh(x, ω)− uh(x, ωi)
∣∣∣∣
H1(D)

≤ C1||a(x, ω)− a(x, ωi)||L∞(D)

||f(x)||H1(D)

a2min

, (36)
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where C1 only depends on the domain D. For the term I3 in Eq.(30), we can similarly get389

∣∣∣∣ũh(x, ωi)− ũh(x, ω)
∣∣∣∣
L2(D)

≤ C1||a(x, ω)− a(x, ωi)||L∞(D)

||f(x)||H1(D)

a2min

. (37)

The term I2 in Eq.(30) can be controlled according to the Asm.3.3. Combining the estimates390

for terms I1, I2 and I3 and integrating over the random space, we prove the theorem.391

392

Corollary 3.5. If we use Monte Carlo method to compute the expectation in (29), from the
proof of Theorem 3.4 we still have

1

NMC

NMC∑
j=1

∣∣∣∣uh(x, ωj)− ũh(x, ωj)∣∣∣∣L2(D)
≤ Cδ1 + δ2, (38)

where NMC is the sample number and C, δ1 and δ2 are the same as in Theorem 3.4.393

In this paper, we restrict attention to the approximation in the physical space. So we394

assume the sampling error (i.e., the error of approximation the expectation by a sample mean)395

is negligible. Theorem 3.4 or Corollary 3.5 indicate that the error between uh(x, ω) and its396

approximation ũh(x, ω) using the data-driven basis consists of two parts. The first part depends397

on how well the random coefficient is sampled. While the second part depends on the truncation398

threshold in constructing the data-driven basis from the solution samples. In practice, a balance399

of these two factors gives us guidance on how to choose solution samples and the truncation400

threshold in the POD method to achieve optimal accuracy. Again, the key advantage for our401

data-driven approach for this form of elliptic PDEs is the low dimensional structure in the402

solution space which provides a significant dimension reduction.403

4. Numerical results404

In this section we will present various numerical results to demonstrate the accuracy and405

efficiency of our proposed data-driven method.406

In all of our numerical experiments, we use the same uniform triangulation to implement407

the standard FEM and choose mesh size h = 1
512

in order to resolve the multiscale information.408

We use N = 2000 samples in the offline stage to construct the data-driven basis and determine409

the number of basis K according to the decay rate of the eigenvalues of the correlation matrix410

Σ = (σij) of the solution samples, i.e., σij =< u(x, ωi), u(x, ωj) >, i, j = 1, . . . , N . Let N1411

and N2 denote the number of training samples in constructing the nonlinear map F and the412

number of testing samples in the online stage, respectively. We will choose N1 � N2.413

In the numerical results, the testing error is the error between the numerical solution414

obtained by our mapping method and the reference solution obtained by the FEM on the same415

fine mesh used to compute the sample solutions. The projection error is the error between416

the FEM solution and its projection on the space spanned by data-driven basis, i.e. the best417

possible approximation error.418
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4.1. An example with deterministic multiscale coefficients and random sources419

First of all, we consider a deterministic multiscale elliptic PDE with a random source defined420

on a square domain D = [0, 1]× [0, 1],421

−∇ · (a(x, y)∇u(x, y, θ)) = f(x, y, θ), (x, y) ∈ D, θ ∈ Ωθ,

u(x, y, θ) = 0, (x, y) ∈ ∂D.
(39)

The multiscale coefficient a(x, y) is defined as422

a(x, y) =0.1 +
2 + p1 sin(2πx

ε1
)

2− p1 cos(2πy
ε1

)
+

2 + p2 sin(2π(x+y)√
2ε2

)

2− p2 sin(2π(x−y)√
2ε2

)
+

2 + p3 cos(2π(x−0.5)
ε3

)

2− p3 cos(2π(y−0.5)
ε3

)

+
2 + p4 cos(2π(x−y)√

2ε4
)

2− p4 sin(2π(x+y)√
2ε4

)
+

2 + p5 cos(2π(2x−y)√
5ε5

)

2− p5 sin(2π(x+2y)√
5ε5

)
, (40)

where [p1, p2, p3, p4, p5] = [1.98, 1.96, 1.94, 1.92, 1.9]. We choose D1 = [1
4
, 3
4
] × [11

16
, 15
16

] and423

D2 = [1
4
, 3
4
] × [ 1

16
, 5
16

]. The source function f(x, y, θ) is a spatially uncorrelated white noise424

defined on D2. Note that D2 is partitioned into a 256 × 128 fine mesh. In this experiment,425

f(x, y, θ) is an independent Gaussian random variable on each mesh.426

We generate N = 2000 samples of the source function f(x, y, θ). Then, we solve the427

problem (39) by using FEM and obtain 2000 solution samples u(x, y, θ). The eigenvalues of428

the correlation matrix of the solution samples u(x, y, θ)|D2 is referred to as the eigenvalues of429

local problem. While the eigenvalues of the correlation matrix of the solution samples u(x, y, θ)430

on the whole domain D is referred to as the eigenvalues of global problem.431

In Figure 2a, we plot the decay properties of the eigenvalues of the local problem. We see432

the fast decay in the eigenvalues of the correlation matrix, which reveals the existence of low433

dimensional structure in the solution space implied by Proposition 2.3. We also plot the decay434

properties of the eigenvalues of the global problem in Figure 2b. First 50 eigenvalues take up435

96% of the total sum of the eigenvalues. It means that certain low dimensional structure still436

exists in the solution space of global problem, however, the dimension of such approximate437

space is larger than that of the local problem.438

We change the distance between D1 and D2 and repeat the above experiment. In Figure439

3, we plot the decay properties of the local problem. One can see that distance between D1440

and D2 affects the effective dimension of the approximate solution space, which is embedded441

in the constant for separability estimate.442

4.2. An example with random coefficient443

Here we consider a multiscale elliptic PDE with a random coefficient that is defined on a444

square domain D = [0, 1]× [0, 1],445

−∇ · (a(x, y, ω)∇u(x, y, ω)) = f(x, y), (x, y) ∈ D,ω ∈ Ωω,

u(x, y, ω) = 0, (x, y) ∈ ∂D.
(41)

15



1 2 3 4 5 6 7 8 9 10

Eigenvalue index

10-14

10-12

10-10

10-8

10-6

10-4
E

ig
en

va
lu

e

(a) Decay of eigenvalues of local problem.
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(b) Decay of eigenvalues of global problem.

Figure 2: The decay properties of the eigenvalues in the problem of Sec.4.1.
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Figure 3: The decay properties of the eigenvalues for different separate distances.

In this example, the coefficient a(x, y, ω) is defined as446

a(x, y, ω) =0.1 +
2 + p1 sin(2πx

ε1
)

2− p1 cos(2πy
ε1

)
ξ1(ω) +

2 + p2 sin(2π(x+y)√
2ε2

)

2− p2 sin(2π(x−y)√
2ε2

)
ξ2(ω) +

2 + p3 cos(2π(x−0.5)
ε3

)

2− p3 cos(2π(y−0.5)
ε3

)
ξ3(ω)

+
2 + p4 cos(2π(x−y)√

2ε4
)

2− p4 sin(2π(x+y)√
2ε4

)
ξ4(ω) +

2 + p5 cos(2π(2x−y)√
5ε5

)

2− p5 sin(2π(x+2y)√
5ε5

)
ξ5(ω), (42)

where [ε1, ε2, ε3, ε4, ε5] = [ 1
47
, 1
29
, 1
53
, 1
37
, 1
41

], [p1, p2, p3, p4, p5] = [1.98, 1.96, 1.94, 1.92, 1.9], and447

ξi(ω), i = 1, ..., 5 are i.i.d. uniform random variables in [0, 1]. The contrast ratio in the448

coefficient (42) is κa ≈ 4.5× 103. The source function is f(x, y) = sin(2πx) cos(2πy) · ID2(x, y),449

where ID2 is an indicator function defined on D2 = [1
4
, 3
4
] × [ 1

16
, 5
16

]. The coefficient (42) is450

highly oscillatory in the physical space. Therefore, one needs a fine discretization to resolve451

the small-scale variations in the problem. We shall show results for the solution to (41) with452
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coefficient (42) in: (1) a restricted subdomain D1 = [1
4
, 3
4
]× [11

16
, 15
16

] away from the support D2453

of the source term f(x, y); and (2) the full domain D.454

In Figure 4, we show the decay property of eigenvalues. Specifically, we show the magnitude455

of the eigenvalues in Figure 4a and the ratio of the accumulated sum of the leading eigenvalues456

over the total sum in Figure 4b. These results and Prop.3.1 imply that a few leading eigen-457

vectors will provide a set of data-driven basis that can approximate all solution samples well.458
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(a) Decay of eigenvalues.
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Figure 4: The decay properties of the eigenvalues in the local problem of Sec.4.2.

459

After we construct the data-driven basis, we use the polynomial interpolation to approx-460

imate the map F : ξ 7→ c(ξ). Notice that the coefficient of (42) is parameterized by five461

i.i.d. random variables. We partition the random space [ξ1(ω), ξ2(ω), · · · , ξ5(ω)]T ∈ [0, 1]5462

into a set of uniform grids in order to construct the map F. Here we choose N1 = 95 sam-463

ples. We can choose other sampling strategies, such as sparse-grid points and Latin hypercube464

points, for moderate- or high-dimensional cases. In Figure 5, we show the profiles of the first465

two data-driven basis functions φ1 and φ2 and the plots of the maps c1(ξ1, ξ2; ξ3, ξ4, ξ5) and466

c2(ξ1, ξ2; ξ3, ξ4, ξ5) with fixed [ξ3, ξ4, ξ5]
T = [0.25, 0.5, 0.75]T . One can see that the data-driven467

basis functions contain multiscale features, while the maps c1(ξ1, ξ2; ξ3, ξ4, ξ5) and c2(ξ1, ξ2; ξ3, ξ4, ξ5)468

are smooth with respect to ξi, i = 1, 2. The behaviors of other data-driven basis functions and469

other maps are similar (not shown here). Once we get the map F, the solution corresponding470

to a new realization a(x, ξ(ω)) can be computed easily by finding c(ξ) and plugging in the471

approximation (22).472

In Figure 6, we show the mean relative L2 and H1 errors of the testing error and projection473

error, where N2 = 10N1. For the experiment, only four data-driven basis are needed to achieve474

a relative error less than 1% in L2 norm and less than 2% in H1 norm. Moreover, the numerical475

solution obtained by our mapping method is close to the projection solution, which is the best476

approximation of the reference solution by the data-driven basis. This result also indicates477

that the nonlinear map F is a smooth function and has been approximated well by the uniform478

grids based polynomials interpolation.479

We also study the approximation property of the nonlinear map F based on different uni-480
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Figure 5: Top: profiles of data-driven basis φ1 and φ2. Bottom: profiles of the maps c1(ξ1, ξ2; ξ3, ξ4, ξ5) and
c2(ξ1, ξ2; ξ3, ξ4, ξ5) with fixed [ξ3, ξ4, ξ5]T = [0.25, 0.5, 0.75]T .

form grids. Specifically, we partition the random space [ξ1(ω), ξ2(ω), · · · , ξ5(ω)]T ∈ [0, 1]5 into481

different uniform grids with N1 = 55, 65, 75, 85, 95 samples and use the polynomial interpolation482

to construct the map F. Figure 7 shows the mean relative L2 and H1 errors of the testing483

errors and the project error (which does not depend on the grid partition), where N2 = 106.484

We observe a convergence behavior in constructing the map F if we increase the partition485

number in the uniform grids.486

The standard FEM takes 0.82 second to compute one solution. In the offline stage of our487

method, we need to compute N solution samples to construct POD basis and N1 solution488

samples to construct the nonlinear map F. The random SVD method takes 1.2 seconds to489

compute the POD basis. In the online stage of our method, the CPU time is almost negligible.490

For instance, when the number of basis is K = 10, it takes about 0.0022 second to compute491

one solution. In Figure 8, we compare the CPU time of the FEM and our method (including492

both stages) as a function of the number of new solutions computed in the online stage. This493

result shows that our method is very efficient if one needs to solve many forward problems for494

(41) (e.g. in the context of solving an inverse problem by using the Bayesian method).495

In Figure 9, we show the accuracy of the proposed method when we use different number496
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Figure 6: Relative L2 and H1 error with increasing number of basis for the local problem of Sec.4.2.
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Figure 7: Relative L2 and H1 error of the solution computed by the nonlinear map F based on different uniform
grids for the local problem of Sec.4.2.
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of samples N in constructing the data-driven basis. Although the numerical error decreases497

when the sampling number N is increased in general, the difference is very mild.
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(a) Testing errors in L2 norm.
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(b) Projection errors in L2 norm.
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(c) Testing errors in H1 norm.
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(d) Projection errors in H1 norm.

Figure 9: The relative testing/projection errors in L2 and H1 norms with different number of samples (i.e. N)
for the local problem of Sec.4.2.

498

Next, we test our method on the whole computation domain for (41) with coefficient (42).499

We choose N2 = 10N1. Figure 10 shows the decay property of eigenvalues. Similarly, we show500

magnitudes of the leading eigenvalues in Figure 10a and the ratio of the accumulated sum501

of the eigenvalues over the total sum in Figure 10b. We observe similar behaviors as before.502

Since we approximate the solution in the whole computational domain, we take the Galerkin503

approach described in Section 3.2 using the data-driven basis. In Figure 11, we show the mean504

relative error between our numerical solution and the reference solution in L2 norm and H1
505

norm, respectively. In practice, when the number of basis is 15, it takes about 0.084 second to506

compute a new solution by our method, whereas the standard FEM method costs about 0.82507

second for one solution.508
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Figure 10: The decay properties of the eigenvalues for the global problem of Sec.4.2.
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Figure 11: The relative errors with increasing number of basis for the global problem of Sec.4.2.
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4.3. An example with an exponential type coefficient509

We now solve the problem (41) with an exponential type coefficient. The coefficient is510

parameterized by eight random variables, which has the following form511

a(x, y, ω) = exp
( 8∑
i=1

sin(
2π(9− i)x

9εi
) cos(

2πiy

9εi
)ξi(ω)

)
, (43)

where the multiscale parameters [ε1, ε2, · · · , ε8] = [ 1
43
, 1
41
, 1
47
, 1
29
, 1
37
, 1
31
, 1
53
, 1
35

] and ξi(ω), i =512

1, ..., 8 are i.i.d. uniform random variables in [−1
2
, 1
2
]. Hence the contrast ratio is κa ≈ 3.0×103

513

in the coefficient (43). The source function is f(x, y) = cos(2πx) sin(2πy) · ID2(x, y), where ID2514

is an indicator function defined on D2 = [1
4
, 3
4
]× [ 1

16
, 5
16

]. In the local problem, the subdomain515

of interest is D1 = [1
4
, 3
4
]× [11

16
, 15
16

].516

In Figure 12, we show the decay property of eigenvalues. Specifically, in Figure 12a we show517

the magnitude of leading eigenvalues and in Figure 12b we show the ratio of the accumulated518

sum of the eigenvalues over the total sum. These results imply that the solution space has a519

low-dimensional structure, which can be approximated by the data-driven basis functions.520
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Figure 12: The decay properties of the eigenvalues in the problem of Sec.4.3.

Since the coefficient a(x, y, ω) is parameterized by eight random variables, it is expensive521

to construct the map F : ξ(ω) 7→ c(ω) using the interpolation method with uniform grids.522

Instead, we use a sparse grid polynomial interpolation approach to approximate the map F.523

Specifically, we use Legendre polynomials with total order less than or equal 4 (i.e. sparse grid524

of level 5) to approximate the map, where the total number of nodes is N1 = 2177; see [11].525

Figure 13a and 13b show the relative errors of the testing error and projection error in L2
526

norm and H1 norm, respectively, where N2 = 10N1. The sparse grid polynomial interpolation527

approach gives a comparable error as the best approximation error. We observe similar con-528

vergence results in solving the global problem (41) with the coefficient (43) (not shown here).529

Therefore, we can use the sparse grid method to construct maps for problems of a moderate530

number of random variables.531
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(b) Relative error in H1 norm.

Figure 13: The relative errors with increasing number of basis in the problem of Sec.4.3.

We also study the approximation property of the nonlinear map F based on sparse grids532

of different levels. Specifically, sparse grids of accuracy level 3, 4, and 5 respectively contain533

N1 = 129, 609, and 2177 grid points. Figure 14 shows the mean relative L2 and H1 errors of534

the testing errors and the project error (which does not depend on the grid partition), where535

N2 = 21700. One can see that the nonlinear map F based on sparse grids of accuracy level 4536

is accurate enough.537
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Figure 14: Relative L2 and H1 error of the solution computed by the nonlinear map F based on different sparse
grids for the local problem of Sec.4.3.

4.4. An example with discontinuous coefficients538

We solve the problem (41) with a discontinuous coefficient, which is an interface problem.539

The coefficient is parameterized by twelve random variables and has the following form540
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a(x, y, ω) = exp
( 6∑
i=1

sin(2π
x sin( iπ

6
) + y cos( iπ

6
)

εi
)ξi(ω)

)
· ID\D3(x, y)

+ exp
( 6∑
i=1

sin(2π
x sin( (i+0.5)π

6
) + y cos( (i+0.5)π

6
)

εi+6

)ξi+6(ω)
)
· ID3(x, y), (44)

where εi = 1+i
100

for i = 1, · · · , 6, εi = i+13
100

for i = 7, · · · , 12, ξi(ω), i = 1, · · · , 12 are i.i.d.541

uniform random variables in [−2
3
, 2
3
], and ID3 , ID\D3 are indicator functions. The contrast ratio542

in the coefficient (44) is κa ≈ 3 × 103. The subdomain D3 consists of three small rectangles543

whose edges are parallel to the edges of domain D with width 10h and height 0.8. And the544

lower left vertices are located at (0.3, 0.1), (0.5, 0.1), (0.7, 0.1) respectively. One can use the545

coefficient (44) to model channels in permeability field in the reservoir simulation. In Figure546

15 we show two realizations of the coefficient (44).547

Figure 15: Two realizations of the coefficient (44) in the interface problem.

We now solve the local problem of (41) with the coefficient (44), where the domain of548

interest is D1 = [1
4
, 3
4
]× [11

16
, 15
16

]. The source function is f(x, y) = cos(2πx) sin(2πy) · ID2(x, y),549

where D2 = [1
4
, 3
4
]× [ 1

16
, 5
16

]. In Figure 16a and Figure 16b we show the magnitude of dominant550

eigenvalues and approximate accuracy. These results show that only a few data-driven basis551

functions are enough to approximate all solution samples well.552

Since the coefficient (44) is parameterized by twelve random variables, constructing the553

map F : ξ(ω) 7→ c(ω) using the sparse grid polynomial interpolation becomes very expensive554

too. Here we use the least square method combined with the k-d tree algorithm for searching555

nearest neighbors to approximate the map F.556

In our method, we first generate N1 = 5000 data pairs {(ξn(ω), cn(ω)}N1
n=1 that will be used557

as training data. Then, we use N2 = 10N1 samples for testing in the online stage. For each558

new testing data point ξ(ω) = [ξ1(ω), · · · , ξr(ω)]T (here r = 12), we run the k-d tree algorithm559

to find its n nearest neighbors in the training data set and apply the least square method560

to compute the corresponding mapped value c(ω) = [c1(ω), . . . , cK(ω)]T . The complexity of561

constructing a k-d tree for N1 data points is O(N1 logN1). Given the k-d tree, for each testing562

point the complexity of finding its n nearest neighbors is O(n logN1) [40].563
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Figure 16: The decay properties of the eigenvalues in the problem of Sec.4.4.

Since the n nearest neighbors (training data) are close to the testing data point ξ(ω), for564

each training data
(
ξm(ω), cm(ω)

)
, m = 1, ....n, we compute the first-order Taylor expansion565

of each component cmj (ω) at ξ(ω) as566

cmj (ω) ≈ cj(ω) +
r=12∑
i=1

(ξmi − ξi)
∂cj
∂ξi

(ω), j = 1, 2, · · · , K, (45)

where ξmi , i = 1, ..., r, cmj (ω), j = 1, ..., K are given training data, cj(ω) and
∂cj
∂ξi

(ω), j = 1, ..., K567

are unknowns associated with the testing data point ξ(ω). In the k-d tree algorithm, we choose568

n = 20, which is slightly greater than r+1 = 13. By solving (45) using the least square method,569

we get the mapped value c(ω) = [c1(ω), . . . , cK(ω)]T . Finally, we use the formula (22) to get570

the numerical solution of Eq.(41) with the coefficient (44).571

Because of the discontinuity and high-dimensional random variables in the coefficient (44),572

the problem (41) is more challenging. The nearest neighbors based least square method pro-573

vides an efficient way to construct maps and achieve relative errors less than 3% in both L2
574

norm and H1 norm; see Figure 17. Alternatively, one can use neural network method to575

construct maps for this type of challenging problems; see Section 4.5.576

4.5. An example with high-dimensional random coefficient and source function577

We solve the problem (41) with an exponential type coefficient and random source func-578

tion, where the total number of random variables is twenty. Specifically, the coefficient is579

parameterized by eighteen i.i.d. random variables, i.e.580

a(x, y, ω) = exp
( 18∑
i=1

sin(2π
x sin( iπ

18
) + y cos( iπ

18
)

εi
)ξi(ω)

)
, (46)

where εi = 1
2i+9

, i = 1, 2, · · · , 18 and ξi(ω), i = 1, ..., 18 are i.i.d. uniform random variables in581

[−1
5
, 1
5
]. The source function is a Gaussian density function f(x, y) = 1

2πσ2 exp(− (x−θ1)2+(y−θ2)2
2σ2 )582
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Figure 17: The relative errors with increasing number of basis in the local problem of Sec.4.4 .

with a random center (θ1, θ2) that is a random point uniformly distributed in the subdomain583

D2 = [1
4
, 3
4
]× [ 1

16
, 5
16

] and σ = 0.01. When σ is small, the Gaussian density function f(x, y) can584

be used to approximate the Dirac-δ function, such as modeling wells in reservoir simulations.585

We first solve the local problem of (41) with N = 2000 samples of the coefficient (46),586

where the subdomain of interest is D1 = [1
4
, 3
4
]× [11

16
, 15
16

]. In Figures 18a and 18b, we show the587

magnitude of leading eigenvalues and the ratio of the accumulated sum of the eigenvalue over588

the total sum, respectively. We observe similar exponential decay properties of eigenvalues589

even if the source function contains randomness. These results show that we can still build a590

set of data-driven basis functions to solve problem (41) with coefficient (46).591
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Figure 18: The decay properties of the eigenvalues in the problem of Sec.4.5.

Notice that both the coefficient and source contain randomness here. We put the random592

variables ξ(ω) in the coefficient and the random variables θ(ω) in the source together when593

we construct the map F. Moreover, the dimension of randomness, 18+2=20, is too large even594
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for sparse grids. Here we construct the map F : (ξ(ω),θ(ω)) 7→ c(ω) using the neural network595

as depicted in Figure 19. The neural network has 4 hidden layers and each layer has 50 units.596

Naturally, the number of the input units is 20 and the number of the output units is K. The597

layer between input units and first layer of hidden units is an affine transform. So is the598

layer between output units and last layer of hidden units. Each two layers of hidden units599

are connected by an affine transform, a tanh (hyperbolic tangent) activation and a residual600

connection, i.e. hl+1 = tanh(Alhl + bl) + hl, l = 1, 2, 3, where hl is l-th layer of hidden units,601

Al is a 50-by-50 matrix and bl is a 50-by-1 vector. Under the same setting of neural network, if602

the rectified linear unit (ReLU), which is piecewise linear, is used as the activation function, we603

observe a much bigger error. Therefore, we choose the hyperbolic tangent activation function604

and implement the residual neural network (ResNet) here [25].605
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Figure 19: Structure of neural network, where r1 = 18 and r2 = 2.

We use N1 = 5000 samples for network training in the offline stage and N2 = 10N1 samples606

for testing in the online stage. The sample data pairs for training are
{

(ξn(ω),θn(ω)), cn(ω)
}N1

n=1
,607

where ξn(ω) ∈ [−1
5
, 1
5
]18, θn(ω) ∈ [1

4
, 3
4
]× [ 1

16
, 5
16

], and cn(ω) ∈ RK . We define the loss function608

of network training as609

loss
(
{cn}, {ĉn}

)
=

1

N1

N1∑
n=1

1

K
|cn − ĉn|2, (47)

where cn are the training data and ĉn are the output of the neural network (see Figure 19).610

Figure 20a shows the value of loss function during training procedure. Figure 20b shows the611

corresponding mean relative error of the testing samples in L2 norm. Eventually the relative612

error of the neural network reaches about 1.5%. Figure 20c shows the corresponding mean613

relative error of the testing samples in H1 norm. We remark that many existing methods be-614

come extremely expensive or infeasible when the problem is parameterized by high-dimensional615

random variables. Our data-driven basis method based on neural network still provides a sat-616

isfactory result.617
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(a) Loss.
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(b) Relative L2 error.
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(c) Relative H1 error.

Figure 20: First column: the value of loss function during training procedure. Second column and third column:
the mean relative errors of the testing set during training procedure in L2 and H1 norm respectively.
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4.6. An example with unknown random coefficient and source function618

Finally, we present an example where the models of the random coefficient and source are619

unknown. Only a set of sample solutions are provided as well as a few censors can be placed at620

certain locations for solution measurements. This kind of scenario appears often in practice.621

We take the least square fitting method as described in Section 3.3. Our numerical experiment622

is still based on (41), which is used to generate solution samples (instead of experiments or623

measurements in real practice). But once the data are generated, we do not assume any624

knowledge of the coefficient or the source when computing a new solution.625

To be specific, the coefficient takes the form626

a(x, y, ω) = exp
( 24∑
i=1

sin(2π
x sin( iπ

24
) + y cos( iπ

24
)

εi
)ξi(ω)

)
, (48)

where εi = 1+i
100

, i = 1, 2, · · · , 24 and ξi(ω), i = 1, ..., 24 are i.i.d. uniform random variables627

in [−1
6
, 1
6
]. The source function is a random function f(x, y) = sin(π(θ1x + 2θ2)) cos(π(θ3y +628

2θ4)) · ID2(x, y) with i.i.d. uniform random variables θ1, θ2, θ3, θ4 in [0, 2]. We first generate629

N = 2000 solutions samples (using standard FEM) u(xj, ωi), i = 1, . . . , N, j = 1, . . . , J , where630

xj are the points where solution samples are measured. Then, a set of K data-driven basis631

φk(xj), j = 1, . . . , J, k = 1, . . . , K are extracted from the solution samples as before.632

Next we determine M good sensing locations from the data-driven basis so that the least633

square problem (26) is not ill-conditioned. We follow the method proposed in [32]. Define634

Φ = [φ1, . . . ,φK ] ∈ RJ×K , where φk = [φk(x1), . . . , φk(xJ)]T . If M = K, QR factorization635

with column pivoting is performed on ΦT . If M > K, QR factorization with pivoting is636

performed on ΦΦT . The first M pivoting indices provide the measurement locations. Once637

a new solution is measured at these M selected locations, the least square problem (26) is638

solved to determine the coefficients c1, c2, . . . , cK and the new solution is approximated by639

u(xj, ω) =
∑K

k=1 ckφk(xj).640

In Figure 21 and Figure 22, we show the results of the local problem and global problem,641

respectively. In these numerical results, we compared the error between the reconstructed642

solutions and the reference solution. We find the our proposed method works well for problem643

(41) with a non-parametric coefficient or source as well.644

5. Conclusion645

In this paper, we propose a data-driven approach to solve multiscale elliptic PDEs with646

random coefficients or random sources. This type of multiscale problem has many applications,647

such as heterogeneous porous media flow problems in water aquifer and oil reservoir simulations.648

Motivated by the existence of approximate low dimensional structures in the solution space649

of the multiscale problems, we construct a set of problem-specific data-driven basis functions650

directly from samples solutions or experimental data. Once the data-driven basis is available,651

depending on different problem setups, we design several ways to compute a new solution652

efficiently.653

Error analysis based on the sampling error of the coefficients and the projection error of the654

data-driven basis is presented to provide some guidance on the implementation of our method.655
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Figure 21: The relative errors with increasing number of basis in the local problem of Sec.4.6 .
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Figure 22: The relative errors with increasing number of basis in the global problem of Sec.4.6.

Numerical examples show that the proposed method is very efficient in solving multiscale ellip-656

tic PDEs with random input, especially when the random input is relative high dimensional.657

Therefore, these data-driven basis functions indeed provide a nearly optimal approximation to658

the low dimensional structures in the solution space.659
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