

1 A data-driven approach for multiscale elliptic PDEs with random
2 coefficients based on intrinsic dimension reduction

3 Sijing Li^a, Zhiwen Zhang^{a,*}, Hongkai Zhao^b

4 ^a*Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.*

5 ^b*Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA.*

6 **Abstract**

7 We propose a data-driven approach to solve multiscale elliptic PDEs with random coeffi-
8 cients based on the intrinsic approximate low dimensional structure of the underlying elliptic
9 differential operators. Our method consists of offline and online stages. At the offline stage, a
10 low dimensional space and its basis are extracted from solution samples to achieve significant
11 dimension reduction in the solution space. At the online stage, the extracted data-driven basis
12 will be used to solve a new multiscale elliptic PDE efficiently. **The existence of approximate**
13 **low dimensional structure is established in two scenarios based on: (1) high separability of the**
14 **underlying Green's functions; and (2) smooth dependence of the parameters in the random**
15 **coefficients.** Various online construction methods are proposed for different problem setups.
16 We provide error analysis based on the sampling error and the truncation threshold in building
17 the data-driven basis. Finally, we present extensive numerical examples to demonstrate the
18 accuracy and efficiency of the proposed method.

AMS subject classification: 35J08, 35J15, 35R60, 65N30, 65N80, 78M34.

19 **Keywords:** multiscale elliptic PDEs with random coefficients; uncertainty quantification
20 (UQ); Green's function; separability; proper orthogonal decomposition (POD); neural
21 network.

22 **1. Introduction**

23 In this paper, we shall develop a data-driven method to solve the following multiscale elliptic
24 PDEs with random coefficients $a(x, \omega)$ and source $f(x, \theta)$,

$$\mathcal{L}(x, \omega)u(x, \omega, \theta) \equiv -\nabla \cdot (a(x, \omega)\nabla u(x, \omega, \theta)) = f(x, \theta), \quad x \in D, \quad \omega \in \Omega_\omega, \quad \theta \in \Omega_\theta, \quad (1)$$

$$u(x, \omega, \theta) = 0, \quad x \in \partial D, \quad (2)$$

25 where $D \in \mathbb{R}^d$ is a bounded spatial domain. **We separate the randomness in the coefficient and**
26 **source, where Ω_ω and Ω_θ to denote the sample spaces for random variables ω and θ respectively**
27 **and treat them differently as we shall see later.** We assume $f(x, \theta)$ to be in $L^2(D)$ and uniform
28 ellipticity of the PDE (see Section 2 for precise definition of the problem).

29 The problem (1)-(2) can be used to model the flow pressure in porous media such as water
30 aquifer and oil reservoirs, where the permeability field $a(x, \omega)$ is a random field whose exact
31 values are infeasible to obtain in practice due to the low resolution of seismic data.

*Corresponding author

Email addresses: lsj17@hku.hk (Sijing Li), zhangzw@hku.hk (Zhiwen Zhang), zhao@math.uci.edu (Hongkai Zhao)

32 In recent years, there has been an increased interest in quantifying the uncertainty in
33 systems with randomness, i.e., solving stochastic partial differential equations (SPDEs, i.e.,
34 PDEs driven by Brownian motion) or partial differential equations with random coefficients
35 (RPDEs). Uncertainty quantification (UQ) is an emerging research area to address these issues;
36 see [20, 44, 5, 42, 4, 35, 34, 37, 39, 41, 13, 14, 22] and references therein. However, when SPDEs
37 or RPDEs involve multiscale features and/or high-dimensional random inputs, these problems
38 become challenging due to high computational cost.

39 Recently, some progress has been made in developing numerical methods for multiscale
40 PDEs with random coefficients; see [31, 3, 36, 2, 21, 1, 27, 45, 18, 15] and references therein.
41 For example, data-driven stochastic methods to solve PDEs with random and/or multiscale
42 coefficients were proposed in [12, 45, 28, 29]. They demonstrated through numerical experi-
43 ments that those methods were efficient in solving RPDEs with many different source functions.
44 However, the polynomial chaos expansion [20, 44] is used to represent the randomness in the
45 solutions. Although the polynomial chaos expansion is general, it is a priori instead of problem
46 specific. Hence many terms may be required in practice for an accurate approximation which
47 induces the curse of dimensionality.

48 We aim to develop a new data-driven method to solve multiscale elliptic PDEs with ran-
49 domness in (1) based on intrinsic dimension reduction in two scenarios. In the first case, the
50 coefficient $a(x) \in L^\infty(D)$ is fixed while the random source can vary arbitrarily in $L^2(D)$ with a
51 bounded norm. As long as the domain of observation for $u(x, \theta)$ is disjoint from the support of
52 the source $f(x, \theta)$, the low-dimensional structure of the underlying solution space in the obser-
53 vation domain is implied by the high separability of the Green's function for uniformly elliptic
54 operators [8], which provides the theoretical foundation for hierarchical low-rank approxima-
55 tion to the inverses of FEM matrices and other fast direct inverse solvers. In this case, the
56 curse of the dimension of randomness θ in the source function can be avoided without the need
57 of smooth dependence on the randomness. For the other case, the coefficient $a(x, \omega) \in L^\infty(D)$
58 varies with smooth dependence on ω while the source function is fixed. Since $u(x, \omega)$ depends
59 smoothly on $a(x, \omega)$ and hence on ω as shown in [16], we show an approximate low dimensional
60 structure in this case as well.

61 Based on the above observations, our method consists of two stages. In the offline stage,
62 the approximate low dimensional structure is extracted by computing a set of data-driven
63 and problem specific basis from solution samples. For example, the data can be generated
64 by solving (1)-(2) corresponding to a sampling of the coefficient $a(x, \omega)$ and/or source $f(x, \theta)$.
65 Here, different sampling methods can be applied, including Monte Carlo (MC) method and
66 quasi-Monte Carlo (qMC) method. The sparse-grid based stochastic collocation method [11,
67 43, 35] also works when the dimension of the random variables is moderate. Or the data
68 may come from field measurements directly in practice. Then the low-dimensional structure
69 and the corresponding basis are extracted using model reduction methods, such as the proper
70 orthogonal decomposition (POD) [10, 38, 9], a.k.a. principle component analysis (PCA), e.g.,
71 by efficient random algorithms [24] due to the approximate low rank structure. The key point
72 is that once the dimension reduction is achieved, the online stage of computing the solution
73 corresponding to a new coefficient and/or source becomes finding a linear combination of the
74 (few) constructed basis functions to approximate the solution.

75 However, the map from the input randomness of the PDE to the expansion coefficients of the

76 solution in terms of the data driven basis can be highly nonlinear. We propose a few possible
 77 online strategies (see Section 3). For examples, if the coefficient is in parametric form, one
 78 can approximate the nonlinear map from the parameter domain to the expansion coefficients
 79 through interpolation or neural network approximation. Or one can apply Galerkin method
 80 using the extracted basis to solve (1)-(2) for a new coefficient. In practice, the coefficient or
 81 the source function of the PDE may not be available but censors can be deployed to record
 82 the solution at certain locations. In this case, one can compute the expansion coefficients of a
 83 new solution by least square fitting those measurements at designed locations. We also provide
 84 analysis and guidelines for sampling, dimension reduction, and other implementations of our
 85 methods.

86 The rest of the paper is organized as follows. In Section 2, we characterize the low di-
 87 mensional structure in two scenarios for elliptic PDE (2). In section 3, we describe our new
 88 data-driven method and its detailed implementation. In Section 4, we present numerical results
 89 to demonstrate the efficiency of our method. Concluding remarks are made in Section 5.

90 **2. Low-dimensional structures in the solution space**

91 *2.1. High separability of the Green's function of elliptic operators.*

92 We first consider the scenario of a multiscale elliptic PDE with a random source. Let
 93 $\mathcal{L}(x) : V \rightarrow V'$ be a uniformly elliptic operator in a divergence form

$$\mathcal{L}(x)u(x) \equiv -\nabla \cdot (a(x)\nabla u(x)) \quad (3)$$

94 in a bounded Lipschitz domain $D \subset \mathbb{R}^d$, where $V = H_0^1(D)$ and $a(x) \in L^\infty(D)$. The uniformly
 95 elliptic assumption means that there exist $a_{\min}, a_{\max} > 0$, such that $a_{\min} < a(x) < a_{\max}$ for all
 96 $x \in D$. The contrast ratio $\kappa_a = \frac{a_{\max}}{a_{\min}}$ is an important factor in the stability and convergence
 97 analysis. We consider the Dirichlet boundary value problem with a random source $f(x, \theta)$,
 98 where θ is some random variable.

$$\mathcal{L}(x)u(x, \theta) = f(x, \theta), \quad \text{in } D, \quad u(x, \theta) = 0, \quad \text{on } \partial D. \quad (4)$$

99 For all $x, y \in D$, the Green's function $G(x, y)$ for differential operator \mathcal{L} is the solution of

$$\mathcal{L}G(\cdot, y) = \delta(\cdot, y), \quad \text{in } D, \quad G(\cdot, y) = 0, \quad \text{on } \partial D, \quad (5)$$

100 where \mathcal{L} refers to the first variable \cdot and $\delta(\cdot, y)$ is the Dirac delta function denoting an impulse
 101 source point at $y \in D$. The Green's function $G(x, y)$ is the Schwartz kernel of the inverse \mathcal{L}^{-1} ,
 102 i.e., the solution of (4) is represented by

$$u(x, \theta) = \mathcal{L}^{-1}f(x, \theta) = \int_D G(x, y)f(y, \theta)dy. \quad (6)$$

103 Since the coefficient $a(x)$ is only bounded, the $G(x, y)$ can have a lower regularity, compared
 104 with the Green's function associated with the Poisson's equation. In [23], the authors proved

105 the existence of Green's function for $d \geq 3$ and the estimate $|G(x, y)| \leq \frac{C(d, \kappa_a)}{a_{\min}} |x - y|^{2-d}$, where
 106 $C(d, \kappa_a)$ is a constant depends on d and κ_a . For $d = 2$ the existence of the Green's function
 107 was proved in [17] together with the estimate $|G(x, y)| \leq \frac{C(\kappa_a)}{a_{\min}} \log |x - y|$. Thus, when \mathcal{L} is an
 108 uniform elliptic operator, \mathcal{L}^{-1} exists and $\|\mathcal{L}^{-1}\| \leq C a_{\min}^{-1}$, where C depends on d and κ_a .

109 One can show the existence of a low dimensional structure in the solution space based on
 110 high separability of the underlying Green's function [8] as follows.

Proposition 2.1. *Let $D \subset \mathbb{R}^d$ be a convex domain and X be a closed subspace of $L^2(D)$. Then
 for any integer $k \in \mathbb{N}$ there is a subspace $V_k \subset X$ satisfying $\dim V_k \leq k$ such that*

$$\text{dist}_{L^2(D)}(u, V_k) \leq C \frac{\text{diam}(D)}{\sqrt[d]{k}} \|\nabla u\|_{L^2(D)}, \quad \text{for all } u \in X \cap H^1(D), \quad (7)$$

111 where the constant C depends only on the spatial dimension d .

112 The proof is based on the Poincaré inequality; see [8]. All distances and diameters use
 113 the Euclidean norm in \mathbb{R}^d except the distance of functions which uses the $L^2(D)$ -norm. In
 114 particular, a choice of V_k in Prop. 2.1 is the L^2 projection of piece-wise constant functions
 115 defined on a grid with grid size $\frac{\text{diam}(D)}{\sqrt[d]{k}}$ onto X .

116 Now we present the definition of \mathcal{L} -harmonic function on a domain $E \subset D$ introduced in
 117 [8]. A function u is \mathcal{L} -harmonic on E if $u \in H^1(\hat{E})$, $\forall \hat{E} \subset E$ with $\text{dist}(\hat{E}, \partial E) > 0$ and satisfies

$$a(u, \varphi) = \int_E a(x) \nabla u(x) \cdot \nabla \varphi(x) dx = 0 \quad \forall \varphi \in C_0^\infty(E).$$

118 Denote the space of \mathcal{L} -harmonic functions on E by $X(E)$, which is closed in $L^2(E)$. The
 119 following key Lemma shows that the space of \mathcal{L} -harmonic function has an approximate low
 120 dimensional structure.

121 **Lemma 2.2** (Lemma 2.6 of [8]). *Let $\hat{E} \subset E \subset D$ in \mathbb{R}^d and assume that \hat{E} is convex such
 122 that*

$$\text{dist}(\hat{E}, \partial E) \geq \rho \text{ diam}(\hat{E}) > 0, \quad \text{for some constant } \rho > 0.$$

123 Then for any $1 > \epsilon > 0$, there is a subspace $W \subset X(\hat{E})$ so that for all $u \in X(E)$,

$$\text{dist}_{L^2(\hat{E})}(u, W) \leq \epsilon \|u\|_{L^2(\hat{E})}$$

124 and

$$\dim(W) \leq c^d(\kappa_a, \rho) (|\log \epsilon|)^{d+1},$$

125 where $c(\kappa_a, \rho) > 0$ is a constant that depends on ρ and κ_a .

126 The key property of \mathcal{L} -harmonic functions used to prove the above result is the Caccioppoli
 127 inequality, which provides the estimate $\|\nabla u\|_{L^2(\hat{E})} \leq C(\kappa_a, \rho) \|u\|_{L^2(E)}$. In particular, the
 128 Green's function $G(\cdot, y)$ is \mathcal{L} -harmonic on E if $y \notin E$. Moreover, given two disjoint domains
 129 D_1, D_2 in D , the Green's function $G(x, y)$ with $x \in D_1, y \in D_2$ can be viewed as a family of
 130 \mathcal{L} -harmonic functions on D_1 parameterized by $y \in D_2$. From the above Lemma one can easily
 131 deduce the following result which shows the high separability of the Green's function for the
 132 elliptic operator (3).

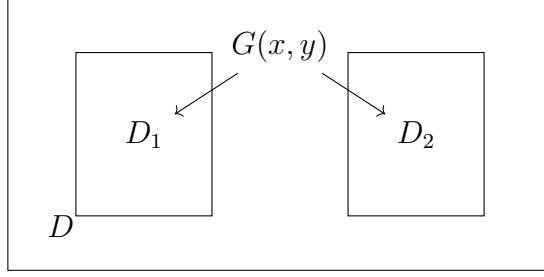


Figure 1: Green's function $G(x, y)$ with dependence on $x \in D_1$ and $y \in D_2$.

Proposition 2.3 (Theorem 2.8 of [8]). *Let $D_1, D_2 \subset D$ be two subdomains and D_1 be convex (see e.g. Figure 1). Assume that there exists $\rho > 0$ such that*

$$0 < \text{diam}(D_1) \leq \rho \text{ dist}(D_1, D_2). \quad (8)$$

Then, for any $\epsilon \in (0, 1)$ there is a separable approximation

$$G_k(x, y) = \sum_{i=1}^k u_i(x)v_i(y) \quad \text{with } k \leq c^d(\kappa_a, \rho)|\log \epsilon|^{d+1}, \quad (9)$$

so that for all $y \in D_2$

$$\|G(\cdot, y) - G_k(\cdot, y)\|_{L^2(D_1)} \leq \epsilon \|G(\cdot, y)\|_{L^2(\hat{D}_1)}, \quad (10)$$

133 where $\hat{D}_1 := \{x \in D : 2\rho \text{ dist}(x, D_1) \leq \text{diam}(D_1)\}$.

134 The above Theorem shows that there exists a low dimensional linear subspace, e.g., spanned
135 by $u_i(\cdot)$, that can approximate the family of functions $G(\cdot, y)$ well in $L^2(D_1)$ uniformly with
136 respect to $y \in D_2$. Moreover, if $\text{supp}(f(x, \theta)) \subset D_2$, one can approximate the family of
137 solutions $u(x, \theta)$ to (4) by the same space well in $L^2(D_1)$ uniformly. Let

$$u_f(x, \theta) = \int_{D_2} G(x, y)f(y, \theta)dy \quad (11)$$

138 and

$$u_f^\epsilon(x, \theta) = \int_{D_2} G_k(x, y)f(y, \theta)dy = \sum_{i=1}^k u_i(x) \int_{D_2} v_i(y)f(y, \theta)dy. \quad (12)$$

139 Hence

$$\begin{aligned} \|u_f(\cdot, \theta) - u_f^\epsilon(\cdot, \theta)\|_{L^2(D_1)}^2 &= \int_{D_1} \left[\int_{D_2} (G(x, y) - G_k(x, y))f(y, \theta)dy \right]^2 dx \\ &\leq \|f\|_{L^2(D_2)}^2 \int_{D_2} \|G(\cdot, y) - G_k(\cdot, y)\|_{L^2(D_1)}^2 dy \leq C(D_1, D_2, \kappa_a, d)\epsilon^2 \|f\|_{L^2(D_2)}^2, \end{aligned} \quad (13)$$

140 since $\|G(\cdot, y)\|_{L^2(\hat{D}_1)}$ is bounded uniformly with respect to $y \in D_2$ by a positive constant that
141 depends on D_1, D_2, κ_a, d due to the uniform ellipticity. Note that the low dimensional structure
142 does not need any regularity assumption in $a(x)$. Moreover, dependence of the source on
143 randomness can be arbitrary in terms of dimensionality and regularity.

144 *Remark 2.1.* Although, the proof of high separability of the Green's function requires $x \in$
 145 $D_1, y \in D_2$ for two disjoint D_1 and D_2 due to the singularity of the Green's function at $x = y$,
 146 the above approximation of the solution u in a domain disjoint with the support of f also works
 147 for u in the whole domain even when f is a globally supported smooth function as shown in
 148 our numerical tests.

149 *Remark 2.2.* Contrary to the elliptic operator, it is shown [19] that the Green's function for
 150 the high frequency Helmholtz equation is not highly separable due to fast decorrelation of two
 151 Green's functions with well separated (in terms of the wavelength) sources.

152 *2.2. Low dimensional structures with respect to random coefficients*

153 In the second scenario we consider the following elliptic PDEs with random coefficients:

$$\mathcal{L}(x, \omega)u(x, \omega) \equiv -\nabla \cdot (a(x, \omega)\nabla u(x, \omega)) = f(x), \quad x \in D, \quad \omega \in \Omega_\omega, \quad (14)$$

$$u(x, \omega) = 0, \quad x \in \partial D, \quad (15)$$

154 where $D \in \mathbb{R}^d$ is a bounded spatial domain, Ω_ω is a sample space, and the source function
 155 $f(x) \in L^2(D)$. We assume the random coefficient $a(x, \omega)$ in (14) is almost surely uniformly
 156 elliptic, namely, there exist $a_{\min}, a_{\max} > 0$, such that

$$P(\omega \in \Omega_\omega : a(x, \omega) \in [a_{\min}, a_{\max}], \forall x \in D) = 1. \quad (16)$$

157 In addition, we assume the random coefficient $a(x, \omega)$ is parameterized by r independent ran-
 158 dom variables. For example, a commonly used affine form is the following,

$$a(x, \omega) = \bar{a}(x) + \sum_{m=1}^r a_m(x)\xi_m(\omega), \quad (17)$$

159 where $\xi_m(\omega)$, $m = 1, \dots, r$ are i.i.d. uniform random variables in $[-1, 1]$. The random coeffi-
 160 cient (17) can be used in multiscale random elliptic PDEs, such as elliptic PDEs with highly
 161 oscillatory and/or high-contrast coefficients.

162 Once a parametric form of the random coefficient $a(x, \omega)$ is given, computing the solution
 163 $u(x, \omega)$ of the problem (14)-(15) defines a solution map from the parameter domain $\xi(\omega) =$
 164 $[\xi_1(\omega), \dots, \xi_r(\omega)]^T \in \mathcal{U} = [-1, 1]^r$ to the solution space

$$\xi(\omega) \mapsto u(x, \omega) = u(x, \xi(\omega)) \in H_0^1(D), \quad (18)$$

165 which is a Banach-space-valued function of the random input vector $\xi(\omega)$. With the uniform
 166 ellipticity assumption of $a(x, \xi(\omega))$ and its smooth dependence on the parameter ξ , the solution
 167 $u(x, \xi)$ also depends smoothly on the parameters, which can be approximated via polynomial
 168 expansion in ξ of the form

$$\sum_{\alpha \in \mathcal{J}_r} u_\alpha(x)\xi^\alpha(\omega), \quad (19)$$

169 where $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_r)$ is a multi-index, $\mathcal{J}_r = \{\boldsymbol{\alpha} \mid \alpha_i \geq 0, \alpha_i \in \mathbb{N}, 1 \leq i \leq r\}$ is a multi-
 170 index set of countable cardinality, and $\boldsymbol{\xi}^{\boldsymbol{\alpha}}(\omega) = \prod_{1 \leq i \leq r} \xi_i^{\alpha_i}(\omega)$ is a multivariate polynomial.

171 In particular, if uniform ellipticity assumption of $a(x, \boldsymbol{\xi})$ has a holomorphic extension to
 172 an open set in complex domain that contains the real domain for $\boldsymbol{\xi}$, explicit estimates for the
 173 coefficients $u_{\boldsymbol{\alpha}}$ can be established similar to those estimates for the polynomial approximation
 174 for an analytic function. From the estimates, the following result for best n -term approximation
 175 can be proved (see [16] for details).

176 **Proposition 2.4.** *Consider a parametric problem of the form (14)-(15) with a random coeffi-
 177 cient (17). Both the Taylor series and Legendre series of the form (19) converges to $u(x, \boldsymbol{\xi}(\omega))$
 178 in $H_0^1(D)$ for all $\boldsymbol{\xi}(\omega) \in \mathcal{U}$. Moreover, for any set \mathcal{J}_r^n of indices corresponding to the n largest
 179 of $\|u_{\boldsymbol{\alpha}}(\cdot)\|_{H_0^1(D)}$, we have*

$$\sup_{\boldsymbol{\xi}(\omega) \in \mathcal{U}} \left\| u(\cdot, \boldsymbol{\xi}(\omega)) - \sum_{\boldsymbol{\alpha} \in \mathcal{J}_r^n} u_{\boldsymbol{\alpha}}(\cdot) \boldsymbol{\xi}^{\boldsymbol{\alpha}}(\omega) \right\|_{H_0^1(D)} \leq C \exp(-cn^{1/r}), \quad (20)$$

180 where \mathcal{J}_r^n is a subset of \mathcal{J}_r with cardinality $\#\mathcal{J}_r^n = n$, C and c are positive and depend on r .

181 Prop.2.4 shows that there exists a linear subspace with dimension at most $O(n \sim (\frac{\log C}{c} +$
 182 $\frac{\log \epsilon}{c})^r)$, e.g., spanned by $u_{\boldsymbol{\alpha}}(x)$, $\boldsymbol{\alpha} \in \mathcal{J}_r^n$, that can approximate the solution of (14)-(15) with
 183 random coefficient within ϵ error.

184 The result in Prop.2.4 reveals the existence of approximate low dimensional structures
 185 in the solution space of (14)-(15). However, this approximation is obtained by mathematical
 186 techniques, which cannot be directly implemented via a computational algorithm. For instance,
 187 we cannot perform an exhaustive search over a huge index set to find \mathcal{J}_r^n . Moreover, there may
 188 be problem dependent basis that can approximate the solution space more effectively than
 189 problem independent polynomial basis, which motivates our data-driven approach explained
 190 in Section 3

191 *Remark 2.3.* When the coefficient $a(x, \omega)$ is a nonlinear function of a finite number of random
 192 variables, one can apply the empirical interpolation method (EIM) [7] to approximately con-
 193 vert $a(x, \omega)$ into an affine form. Thus, low dimensional structures still exist in the solution
 194 space. In addition, we refer the reader to [26, 6] for the results of the best n -term polynomial
 195 approximation of elliptic PDEs with lognormal coefficients.

196 *Remark 2.4.* Although we present the problem and will develop the data-driven method for
 197 the elliptic problem (14)-(15) with scalar random coefficients $a(x, \omega)$, our method can be di-
 198 rectly applied when the random coefficient is replaced by a symmetric positive definite tensor
 199 $a_{i,j}(x, \omega)$, $i, j, = 1, \dots, d$ with almost surely uniform ellipticity.

200 2.3. Some existing numerical methods for random elliptic PDEs

201 For the ease of the reader, we give a short review of existing methods for solving problem
 202 (14)-(15) involving random coefficients. There are basically two types of methods. In intrusive
 203 methods, one represents the solution of (14) by $u(x, \omega) = \sum_{\boldsymbol{\alpha} \in \mathcal{J}} u_{\boldsymbol{\alpha}}(x) H_{\boldsymbol{\alpha}}(\omega)$, where \mathcal{J} is
 204 an index set, and $H_{\boldsymbol{\alpha}}(\omega)$ are certain basis functions (e.g. orthogonal polynomials or wavelet
 205 basis functions). Typical examples are the Wiener chaos expansion (WCE) and polynomial

206 chaos expansion (PCE) method. Then, one uses Galerkin method to compute the expansion
 207 coefficients $u_{\alpha}(x)$; see e.g. [20, 44, 5, 33, 30, 34] and references therein. These methods have
 208 been successfully applied to many UQ problems, where the dimension of the random input is
 209 small or moderate. However, the number of basis functions increases exponentially fast with
 210 respect to the dimension of random input, i.e., they suffer from the curse of dimensionality of
 211 both the input space and the output (solution) space, because the random basis $H_{\alpha}(\omega)$'s are
 212 built *a priori* based on the random variables in $a(x, \omega)$.

213 In non-intrusive methods, one can use the MC method or qMC method to solve (14)-
 214 (15). However, the convergence rate is slow and the method becomes more expensive when
 215 the coefficient $a(x, \omega)$ contains multiscale features. Stochastic collocation methods explore the
 216 smoothness of the solutions in the random space and use certain quadrature points and weights
 217 to compute the solutions [43, 4]. Exponential convergence can be achieved for smooth solutions,
 218 but the quadrature points grow exponentially fast as the number of random variables increases.
 219 Sparse grids can reduce the quadrature points to some extent [11, 35]. However, the sparse
 220 grid method still becomes very expensive when the dimension of randomness is modestly high.

221 3. Derivation of the new data-driven method

222 The results in Prop.2.3 and Prop.2.4 show that there exist low dimensional structures in the
 223 solution space of multiscale elliptic PDEs with random coefficient and source. Our goal is to
 224 use problem-specific and data-driven approaches to achieve a significant dimension reduction.
 225 The low dimensional structures in the solution space are extracted directly from the data, e.g.,
 226 real measurements. The data-driven approach can also allow one to deal with situations where
 227 it is difficult to have an accurate full model, e.g., $a(x, \omega)$, or too expensive to solve a large scale
 228 problem in real practice. As demonstrated by our experiments, we find that the dimension
 229 of the extracted low dimensional space mainly depends on κ_a (namely a_{\min} and a_{\max}) and
 230 very mildly on the dimension of the random input. Therefore, the curse of dimension can be
 231 alleviated. From now on, we use ω to denote randomness in both coefficient a and source f
 232 when there is no confusion.

233 Our method consists of offline and online stages. In the offline stage, we extract the low
 234 dimensional structure and a set of data-driven basis functions from solution samples. For ex-
 235 ample, a set of solution samples $\{u(x, \omega_i)\}_{i=1}^N$ can be obtained from measurements or generated
 236 by solving (14)-(15), e.g., with coefficient samples $\{a(x, \omega_i)\}_{i=1}^N$.

237 Let $V_{snap} = \{u|_{\hat{D}}(x, \omega_1), \dots, u|_{\hat{D}}(x, \omega_N)\}$ denote the solution samples, where $\hat{D} \subseteq D$ is
 238 a region where the solution is of interest. For instance, in the reservoir simulation one is
 239 interested in computing the pressure value $u(x, \omega)$ on a specific subdomain \hat{D} . We use POD
 240 [10, 38, 9], or a.k.a PCA, to find the optimal subspace and its orthonormal basis functions to
 241 approximate V_{snap} to a certain accuracy. Define the correlation matrix $\Sigma = (\sigma_{ij}) \in \mathbb{R}^{N \times N}$ with
 242 $\sigma_{ij} = \langle u(\cdot, \omega_i), u(\cdot, \omega_j) \rangle_{\hat{D}}$, $i, j = 1, \dots, N$, where $\langle \cdot, \cdot \rangle_{\hat{D}}$ denotes the standard inner product
 243 on $L^2(\hat{D})$. Let the eigenvalues of the correlation matrix be $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_N \geq 0$
 244 and the corresponding eigenfunctions be $\phi_1(x), \phi_2(x), \dots, \phi_N(x)$, which will be referred to as
 245 data-driven basis functions. The space spanned by the leading K data-driven basis functions
 246 has the following approximation property to V_{snap} .

Proposition 3.1.

$$\frac{\sum_{i=1}^N \left\| u(x, \omega_i) - \sum_{j=1}^K \langle u(\cdot, \omega_i), \phi_j(\cdot) \rangle_{\hat{D}} \phi_j(x) \right\|_{L^2(\hat{D})}^2}{\sum_{i=1}^N \|u(x, \omega_i)\|_{L^2(\hat{D})}^2} = \frac{\sum_{s=K+1}^N \lambda_s}{\sum_{s=1}^N \lambda_s}. \quad (21)$$

247 First, we expect a fast decay in the eigenvalues λ_s so that a small set of data-driven basis
 248 ($K \ll N$) will be enough to approximate the solution samples well in the root mean square
 249 sense. Secondly, based on the existence of low dimensional structure, we expect that the data-
 250 driven basis, $\phi_1(x), \phi_2(x), \dots, \phi_K(x)$, can almost surely approximate the solution $u|_{\hat{D}}(x, \omega)$
 251 well too under some sampling condition (see Section 3.4) by

$$u|_{\hat{D}}(x, \omega) \approx \sum_{j=1}^K c_j(\omega) \phi_j(x), \quad \text{a.s. } \omega \in \Omega_\omega, \quad (22)$$

252 where the data-driven basis functions $\phi_j(x)$, $j = 1, \dots, K$ are defined on \hat{D} .

253 The computational costs of the offline stage mainly consist of two parts, if data are generated
 254 by simulation: (1) compute solution samples (of global problems); and (2) compute the data-
 255 driven basis by the POD method. This is a common nature for many model reduction methods.
 256 Effective sampling of solutions (see Section 3.4) and the use of randomized algorithms [24] for
 257 the singular value decomposition (SVD) (utilizing the low-rank structure) helps to reduce the
 258 offline computation cost.

259 *Remark 3.1.* In Prop.3.1 we construct the data-driven basis functions from eigen-decomposition
 260 of the correlation matrix associated with the solution samples. Alternatively, we can subtract
 261 the mean from the solution samples, compute the covariance matrix, and construct the basis
 262 functions from eigen-decomposition of the covariance matrix. In this setting, the data-driven
 263 basis functions will be used to approximate the fluctuation of the solution since the mean
 264 function is given.

265 Now the problem is how to find $c_j(\omega)$ through an efficient online process given a new
 266 realization of $a(x, \omega)$. We will prescribe several strategies in different setups.

267 *3.1. A nonlinear solution map*

268 Suppose that $a(x, \omega)$ is parameterized by r independent random variables, i.e.,

$$a(x, \omega) = a(x, \xi_1(\omega), \dots, \xi_r(\omega)). \quad (23)$$

269 Thus, the solution can be represented as a functional of these random variables as well, i.e.,
 270 $u(x, \omega) = u(x, \xi_1(\omega), \dots, \xi_r(\omega))$. Let $\xi(\omega) = [\xi_1(\omega), \dots, \xi_r(\omega)]^T$ denote the random input vector
 271 and $\mathbf{c}(\omega) = [c_1(\omega), \dots, c_K(\omega)]^T$ denote the vector of solution coefficients in (22). Now, the
 272 problem can be viewed as constructing a map from $\xi(\omega)$ to $\mathbf{c}(\omega)$, denoted by $\mathbf{F} : \xi(\omega) \mapsto \mathbf{c}(\omega)$,
 273 which is nonlinear. We approximate this nonlinear map through the sample solution set.
 274 Given a set of solution samples $\{u(x, \omega_i)\}_{i=1}^N$ corresponding to $\{\xi(\omega_i)\}_{i=1}^N$, e.g., by solving (14)-
 275 (15) with $a(x, \xi_1(\omega_i), \dots, \xi_r(\omega_i))$, from which the set of data driven basis $\phi_j(x)$, $j = 1, \dots, K$

276 is obtained by using POD method as described above, we can easily compute the projection
 277 coefficients $\{\mathbf{c}(\omega_i)\}_{i=1}^N$ of $u|_{\hat{D}}(x, \omega_i)$ on $\phi_j(x)$, $j = 1, \dots, K$, i.e., $c_j(\omega_i) = \langle u(x, \omega_i), \phi_j(x) \rangle_{\hat{D}}$.
 278 From the data set, $F(\xi(\omega_i)) = \mathbf{c}(\omega_i)$, $i = 1, \dots, N$, we construct the map \mathbf{F} . Note the significant
 279 dimension reduction by reducing the map $\xi(\omega) \mapsto u(x, \omega)$ to the map $\xi(\omega) \mapsto \mathbf{c}(\omega)$. We provide
 280 several ways to construct \mathbf{F} , depending on the dimension of the random input vector. More
 281 implementation details will be explained in Section 4.

282 1. Interpolation.

283 When the dimension of the random input r is small or moderate, one can use interpolation.
 284 In particular, if the solution samples correspond to ξ located on a uniform or sparse
 285 grid, standard polynomial interpolation can be used to approximate the coefficient c_j at a
 286 new point of ξ . If the solution samples correspond to ξ at scattered points or the dimen-
 287 sion of the random input r is moderate or high, one can first find a few nearest neighbors
 288 to the new point efficiently using the k - d tree algorithm [40] and then use moving least
 289 square approximation centered at the new point to approximate the mapped value. See
 290 Figure 5 for an example of the map \mathbf{F} based on interpolation.

291 2. Neural network.

292 When the dimension of the random input r is high, interpolation approach becomes ex-
 293 pensive and less accurate. We tried a simple neural network with small output dimension
 294 (due to the dimension reduction) that seems to provide a satisfactory solution.

295 For the uniform-grids or sparse-grid based polynomial interpolation approach, the approx-
 296 imation property (error estimate) can be studied based on the regularity of map F , which is
 297 smooth with respect to ξ if $a(x, \xi(\omega))$ depends on ξ smoothly. Our numerical results in Sec-
 298 tion 4 show the moving least square approach and neural network approach are efficient and
 299 accurate. However, since the map \mathbf{F} is nonlinear and lives in a high dimensional space, many
 300 issues need to be further investigated, such as how to optimally choose the training samples
 301 and how to study the approximation property of the map F .

302 In the online stage, one can compute the solution $u(x, \omega)$ using the constructed map \mathbf{F} . For
 303 example, given a new realization of $a(x, \xi_1(\omega_i), \dots, \xi_r(\omega_i))$, we plug $\xi(\omega)$ into the constructed
 304 map \mathbf{F} to approximate $\mathbf{c}(\omega) = \mathbf{F}(\xi(\omega))$, which are the projection coefficients of the solution
 305 on the data-driven basis. So we can quickly obtain the new solution $u|_{\hat{D}}(x, \omega)$ using Eq.(22),
 306 where the computational time is negligible. Once we obtain the numerical solutions, we can use
 307 them to compute statistical quantities of interest, such as mean, variance, and joint probability
 308 distributions.

309 3.2. Galerkin approach

310 In the case $\hat{D} = D$, we can solve the problem (14)-(15) on the whole domain D by the
 311 standard Galerkin formulation using the data driven basis for a new realization of $a(x, \omega)$.

312 Once the data driven basis $\phi_j(x)$, $j = 1, \dots, K$, which are defined on the domain D , are
 313 obtained from solution samples in the offline stage. Given a new realization of the coefficient
 314 $a(x, \omega)$, we approximate the corresponding solution as

$$u(x, \omega) \approx \sum_{j=1}^K c_j(\omega) \phi_j(x), \quad \text{a.s. } \omega \in \Omega_\omega, \quad (24)$$

315 and use the Galerkin projection to determine the coefficients $c_j(\omega)$, $j = 1, \dots, K$ by solving the
 316 following linear system in the online stage,

$$\sum_{j=1}^K \int_D a(x, \omega) c_j(\omega) \nabla \phi_j(x) \cdot \nabla \phi_l(x) dx = \int_D f(x) \phi_l(x) dx, \quad l = 1, \dots, K. \quad (25)$$

317 *Remark 3.2.* The computational cost of solving the linear system (25) is small compared to
 318 using a Galerkin method, such as the finite element method, directly for $u(x, \omega)$ because K is
 319 much smaller than the degree of freedom needed to discretize $u(x, \omega)$ in the whole domain.

320 Note that if $a(x, \omega)$ has the affine form (17), we first compute the terms that do not de-
 321 pend on randomness, including $\int_D \bar{a}(x) \nabla \phi_j(x) \cdot \nabla \phi_l(x) dx$, $\int_D a_m(x) \nabla \phi_j(x) \cdot \nabla \phi_l(x) dx$ and
 322 $\int_D f(x) \phi_j(x) dx$, $j, l = 1, \dots, K$. Then, we save them in the offline stage. This leads to con-
 323 siderable savings in assembling the stiffness matrix for each new realization of the coefficient
 324 $a(x, \omega)$ in the online stage. Of course, the affine form is automatically parameterized. Hence,
 325 one can also construct the map $\mathbf{F} : \xi(\omega) \mapsto \mathbf{c}(\omega)$ as described in the previous Section 3.1.

326 *3.3. Least square fitting from direct measurements at selected locations*

327 In many applications, only samples (data) or measurements of $u(x, \omega)$ is available while
 328 the model of $a(x, \omega)$ or its realization is not known. In this case, we propose to compute
 329 the coefficients \mathbf{c} by least square fitting the measurements (values) of $u(x, \omega)$ at appropriately
 330 selected locations. First, as before, from a set of solutions samples, $u(x_j, \omega_i)$, measured on a
 331 mesh $x_j \in \hat{D}$, $j = 1, \dots, J$, one finds a set of data driven basis $\phi_1(x_j), \dots, \phi_K(x_j)$, e.g. using
 332 POD. For a new solution $u(x, \omega)$ measured at x_1, x_2, \dots, x_M , one can set up the following least
 333 square problem to find $\mathbf{c} = [c_1, \dots, c_K]^T$ such that $u(x, \omega) \approx \sum_{k=1}^K c_k \phi_k(x)$:

$$B\mathbf{c} = \mathbf{y}, \quad \mathbf{y} = [u(x_1, \omega), \dots, u(x_M, \omega)]^T, B = [\phi_1^M, \dots, \phi_K^M] \in R^{M \times K}, \quad (26)$$

334 where $\phi_k^M = [\phi_k(x_1), \dots, \phi_k(x_M)]^T$.

335 The key issue in practice is the conditioning of the least square problem (26). One way is
 336 to select the measurement (sensor) locations x_1, \dots, x_M such that rows of B are as decorrelated
 337 as possible. We adopt the approach proposed in [32], where a QR factorization with pivoting
 338 for the matrix of data driven basis is used to determine the measurement locations. More
 339 specifically, let $\Phi = [\phi_1, \dots, \phi_K] \in R^{J \times K}$, $\phi_k = [\phi_k(x_1), \dots, \phi_k(x_J)]^T$. If $M = K$, QR factor-
 340 ization with column pivoting is performed on Φ^T . If $M > K$, QR factorization with pivoting
 341 is performed on $\Phi\Phi^T$. The first M pivoting indices provide the measurement locations. More
 342 details can be found in [32].

343 *3.4. Determine a set of good learning samples*

344 A set of good solution samples is important for the construction of data-driven basis in the
 345 offline stage. Since the solution depends on the source linearly with an explicit bound, the
 346 analysis is straightforward. Here we provide an error analysis for the coefficient based on the
 347 finite element formulation. However, the results extend to general Galerkin formulation. First,
 348 we make a few assumptions.

349 **Assumption 3.2.** Suppose $a(x, \omega)$ has the following property: given $\delta_1 > 0$, there exists an
 350 integer N_{δ_1} and a choice of snapshots $\{a(x, \omega_i)\}$, $i = 1, \dots, N_{\delta_1}$ such that

$$\mathbb{E} \left[\inf_{1 \leq i \leq N_{\delta_1}} \|a(x, \omega) - a(x, \omega_i)\|_{L^\infty(D)} \right] \leq \delta_1. \quad (27)$$

351 Let $\{a(x, \omega_i)\}_{i=1}^{N_{\delta_1}}$ denote the samples of the random coefficient, which form a δ_1 -net for the
 352 coefficient $a(x, \omega)$. For every realization of $a(x, \omega)$, we can find a coefficient sample $a(x, \omega_i)$ that
 353 is close to $a(x, \omega)$ in the norm $\|\cdot\|_{L^\infty(D)}$. We define this δ_1 -net in the sense of the expectation
 354 $\mathbb{E}[\cdot]$, which allows us to exclude a small set of outliers.

355 A good sampling of the solution is important for computational efficiency and accuracy.
 356 When the coefficient has the affine form (17), one can verify Asm.3.2 and provide a constructive
 357 way to sample snapshots $\{a(x, \omega_i)\}_{i=1}^{N_{\delta_1}}$ if we know the distribution of the random variables
 358 $\xi_m(\omega)$, $m = 1, \dots, r$, since the linear map from ξ space to the function space of $a(x, \xi)$ is
 359 explicitly determined by $\bar{a}(x), a_m(x)$, $m = 1, \dots, r$. In general, it becomes a sampling problem
 360 for $\{a(x, \omega_i)\}$, which may be challenging especially when the dimension of the random variables
 361 r is high and/or $a(x, \omega)$ does not have an affine form. However, the Asm.3.2 provides us some
 362 insight on how to choose coefficient samples $\{a(x, \omega_i)\}$ in order to obtain a set of accurate
 363 data-driven basis functions.

364 Let $V_h \subset H_0^1(D)$ denote a finite element space that is spanned by nodal basis functions on
 365 a mesh with size h and $\tilde{V}_h \subset V_h$ denote the space spanned by the data-driven basis $\{\phi_j(x)\}_{j=1}^K$.
 366 We assume the mesh size is fine enough so that the finite element space can approximate the
 367 solutions to the underlying PDEs well. For each $a(x, \omega_i)$, let $u_h(x, \omega_i) \in V_h$ denote the FEM
 368 solution and $\tilde{u}_h(x, \omega_i) \in \tilde{V}_h$ denote the projection on the data-driven basis $\{\phi_j(x)\}_{j=1}^K$.

369 **Assumption 3.3.** Given $\delta_2 > 0$, we can find a set of data-driven basis, $\phi_1, \dots, \phi_{K_{\delta_2}}$ such that

$$\|u_h(x, \omega_i) - \tilde{u}_h(x, \omega_i)\|_{L^2(D)} \leq \delta_2, \quad \forall 1 \leq i \leq K_{\delta_2}, \quad (28)$$

370 where $\tilde{u}_h(x, \omega_i)$ is the L^2 projection of $u_h(x, \omega_i)$ onto the space spanned by $\phi_1, \dots, \phi_{K_{\delta_2}}$.

371 Asm.3.3 can be verified by setting the threshold in the POD method; see Prop.3.1. Now
 372 we present the following error estimate.

373 **Theorem 3.4.** Under Assumptions 3.2-3.3, for any $\delta_i > 0$, $i = 1, 2$, we can choose the samples
 374 of the random coefficient $\{a(x, \omega_i)\}_{i=1}^{N_{\delta_1}}$ and the threshold in constructing the data-driven basis
 375 accordingly, such that

$$\mathbb{E} \left[\|u_h(x, \omega) - \tilde{u}_h(x, \omega)\|_{L^2(D)} \right] \leq C\delta_1 + \delta_2, \quad (29)$$

376 where C depends on a_{\min} , $f(x)$, and the domain D .

377 *Proof.* Given a coefficient $a(x, \omega)$, let $u_h(x, \omega)$ and $\tilde{u}_h(x, \omega)$ be the corresponding FEM solution
 378 and data-driven solution, respectively. We have

$$\begin{aligned}
& \left\| u_h(x, \omega) - \tilde{u}_h(x, \omega) \right\|_{L^2(D)} \\
& \leq \left\| u_h(x, \omega) - u_h(x, \omega_i) \right\|_{L^2(D)} + \left\| u_h(x, \omega_i) - \tilde{u}_h(x, \omega_i) \right\|_{L^2(D)} + \left\| \tilde{u}_h(x, \omega_i) - \tilde{u}_h(x, \omega) \right\|_{L^2(D)}, \\
& := I_1 + I_2 + I_3,
\end{aligned} \tag{30}$$

379 where $u_h(x, \omega_i)$ is the solution corresponding to the coefficient $a(x, \omega_i)$ and $\tilde{u}_h(x, \omega_i)$ is its
380 projection. Now we estimate the error term I_1 first. In the sense of weak form, we have

$$\int_D a(x, \omega) \nabla u_h(x, \omega) \cdot \nabla v_h(x) dx = \int_D f(x) v_h(x), \quad \text{for all } v_h(x) \in V_h, \tag{31}$$

381 and

$$\int_D a(x, \omega_i) \nabla u_h(x, \omega_i) \cdot \nabla v_h(x) dx = \int_D f(x) v_h(x), \quad \text{for all } v_h(x) \in V_h. \tag{32}$$

382 Subtracting the above two variational formulations (31)-(32), we have, for all $v_h(x) \in V_h$,

$$\int_D a(x, \omega) \nabla (u_h(x, \omega) - u_h(x, \omega_i)) \cdot \nabla v_h(x) dx = - \int_D (a(x, \omega) - a(x, \omega_i)) \nabla u_h(x, \omega_i) \cdot \nabla v_h(x). \tag{33}$$

383 Let $w_h(x) = u_h(x, \omega) - u_h(x, \omega_i)$ and $L(v_h) = - \int_D (a(x, \omega) - a(x, \omega_i)) \nabla u_h(x, \omega_i) \cdot \nabla v_h(x)$ denote
384 a linear form. Eq.(33) means that $w_h(x, \omega)$ is the solution of the weak form $\int_D a(x, \omega) \nabla w_h \cdot$
385 $\nabla v_h(x) dx = L(v_h)$, for all $v_h(x) \in V_h$. Therefore, we have

$$\left\| w_h(x) \right\|_{H^1(D)} \leq \frac{\|L\|_{H^1(D)}}{a_{\min}}. \tag{34}$$

386 Notice that

$$\begin{aligned}
\|L\|_{H^1(D)} &= \max_{\|v_h\|_{H^1(D)}=1} |L(v_h)| \leq \|a(x, \omega) - a(x, \omega_i)\|_{L^\infty(D)} \|u_h(x, \omega_i)\|_{H^1(D)}, \\
&\leq \|a(x, \omega) - a(x, \omega_i)\|_{L^\infty(D)} \frac{\|f(x)\|_{H^1(D)}}{a_{\min}}.
\end{aligned} \tag{35}$$

387 Since $w_h(x) = 0$ on ∂D , combining Eqns.(34)-(35) and using the Poincaré inequality for $w_h(x)$,
388 we obtain an estimate for the term I_1 as follows,

$$\begin{aligned}
\|u_h(x, \omega) - u_h(x, \omega_i)\|_{L^2(D)} &\leq C_1 \|u_h(x, \omega) - u_h(x, \omega_i)\|_{H^1(D)} \\
&\leq C_1 \|a(x, \omega) - a(x, \omega_i)\|_{L^\infty(D)} \frac{\|f(x)\|_{H^1(D)}}{a_{\min}^2},
\end{aligned} \tag{36}$$

389 where C_1 only depends on the domain D . For the term I_3 in Eq.(30), we can similarly get

$$\|\tilde{u}_h(x, \omega_i) - \tilde{u}_h(x, \omega)\|_{L^2(D)} \leq C_1 \|a(x, \omega) - a(x, \omega_i)\|_{L^\infty(D)} \frac{\|f(x)\|_{H^1(D)}}{a_{\min}^2}. \quad (37)$$

390 The term I_2 in Eq.(30) can be controlled according to the Asm.3.3. Combining the estimates
 391 for terms I_1 , I_2 and I_3 and integrating over the random space, we prove the theorem. \square

392

Corollary 3.5. *If we use Monte Carlo method to compute the expectation in (29), from the proof of Theorem 3.4 we still have*

$$\frac{1}{N_{MC}} \sum_{j=1}^{N_{MC}} \|u_h(x, \omega_j) - \tilde{u}_h(x, \omega_j)\|_{L^2(D)} \leq C\delta_1 + \delta_2, \quad (38)$$

393 where N_{MC} is the sample number and C , δ_1 and δ_2 are the same as in Theorem 3.4.

394 In this paper, we restrict attention to the approximation in the physical space. So we
 395 assume the sampling error (i.e., the error of approximation the expectation by a sample mean)
 396 is negligible. Theorem 3.4 or Corollary 3.5 indicate that the error between $u_h(x, \omega)$ and its
 397 approximation $\tilde{u}_h(x, \omega)$ using the data-driven basis consists of two parts. The first part depends
 398 on how well the random coefficient is sampled. While the second part depends on the truncation
 399 threshold in constructing the data-driven basis from the solution samples. In practice, a balance
 400 of these two factors gives us guidance on how to choose solution samples and the truncation
 401 threshold in the POD method to achieve optimal accuracy. Again, the key advantage for our
 402 data-driven approach for this form of elliptic PDEs is the low dimensional structure in the
 403 solution space which provides a significant dimension reduction.

404 4. Numerical results

405 In this section we will present various numerical results to demonstrate the accuracy and
 406 efficiency of our proposed data-driven method.

407 In all of our numerical experiments, we use the same uniform triangulation to implement
 408 the standard FEM and choose mesh size $h = \frac{1}{512}$ in order to resolve the multiscale information.
 409 We use $N = 2000$ samples in the offline stage to construct the data-driven basis and determine
 410 the number of basis K according to the decay rate of the eigenvalues of the correlation matrix
 411 $\Sigma = (\sigma_{ij})$ of the solution samples, i.e., $\sigma_{ij} = \langle u(x, \omega_i), u(x, \omega_j) \rangle$, $i, j = 1, \dots, N$. Let N_1
 412 and N_2 denote the number of training samples in constructing the nonlinear map \mathbf{F} and the
 413 number of testing samples in the online stage, respectively. We will choose $N_1 \ll N_2$.

414 In the numerical results, the testing error is the error between the numerical solution
 415 obtained by our mapping method and the reference solution obtained by the FEM on the same
 416 fine mesh used to compute the sample solutions. The projection error is the error between
 417 the FEM solution and its projection on the space spanned by data-driven basis, i.e. the best
 418 possible approximation error.

419 4.1. An example with deterministic multiscale coefficients and random sources

420 First of all, we consider a deterministic multiscale elliptic PDE with a random source defined
421 on a square domain $D = [0, 1] \times [0, 1]$,

$$\begin{aligned} -\nabla \cdot (a(x, y) \nabla u(x, y, \theta)) &= f(x, y, \theta), \quad (x, y) \in D, \quad \theta \in \Omega_\theta, \\ u(x, y, \theta) &= 0, \quad (x, y) \in \partial D. \end{aligned} \quad (39)$$

422 The multiscale coefficient $a(x, y)$ is defined as

$$\begin{aligned} a(x, y) = & 0.1 + \frac{2 + p_1 \sin(\frac{2\pi x}{\epsilon_1})}{2 - p_1 \cos(\frac{2\pi y}{\epsilon_1})} + \frac{2 + p_2 \sin(\frac{2\pi(x+y)}{\sqrt{2}\epsilon_2})}{2 - p_2 \sin(\frac{2\pi(x-y)}{\sqrt{2}\epsilon_2})} + \frac{2 + p_3 \cos(\frac{2\pi(x-0.5)}{\epsilon_3})}{2 - p_3 \cos(\frac{2\pi(y-0.5)}{\epsilon_3})} \\ & + \frac{2 + p_4 \cos(\frac{2\pi(x-y)}{\sqrt{2}\epsilon_4})}{2 - p_4 \sin(\frac{2\pi(x+y)}{\sqrt{2}\epsilon_4})} + \frac{2 + p_5 \cos(\frac{2\pi(2x-y)}{\sqrt{5}\epsilon_5})}{2 - p_5 \sin(\frac{2\pi(x+2y)}{\sqrt{5}\epsilon_5})}, \end{aligned} \quad (40)$$

423 where $[p_1, p_2, p_3, p_4, p_5] = [1.98, 1.96, 1.94, 1.92, 1.9]$. We choose $D_1 = [\frac{1}{4}, \frac{3}{4}] \times [\frac{11}{16}, \frac{15}{16}]$ and
424 $D_2 = [\frac{1}{4}, \frac{3}{4}] \times [\frac{1}{16}, \frac{5}{16}]$. The source function $f(x, y, \theta)$ is a spatially uncorrelated white noise
425 defined on D_2 . Note that D_2 is partitioned into a 256×128 fine mesh. In this experiment,
426 $f(x, y, \theta)$ is an independent Gaussian random variable on each mesh.

427 We generate $N = 2000$ samples of the source function $f(x, y, \theta)$. Then, we solve the
428 problem (39) by using FEM and obtain 2000 solution samples $u(x, y, \theta)$. The eigenvalues of
429 the correlation matrix of the solution samples $u(x, y, \theta)|_{D_2}$ is referred to as the eigenvalues of
430 local problem. While the eigenvalues of the correlation matrix of the solution samples $u(x, y, \theta)$
431 on the whole domain D is referred to as the eigenvalues of global problem.

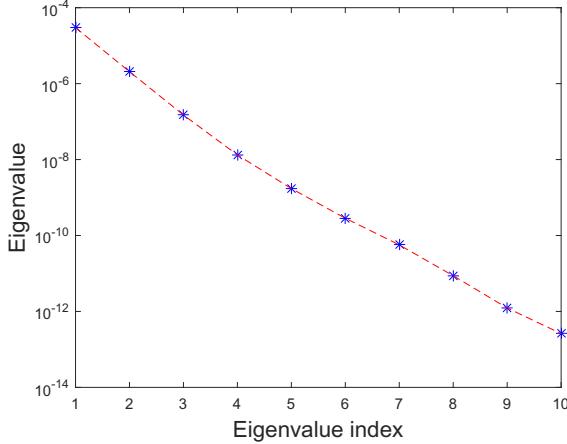
432 In Figure 2a, we plot the decay properties of the eigenvalues of the local problem. We see
433 the fast decay in the eigenvalues of the correlation matrix, which reveals the existence of low
434 dimensional structure in the solution space implied by Proposition 2.3. We also plot the decay
435 properties of the eigenvalues of the global problem in Figure 2b. First 50 eigenvalues take up
436 96% of the total sum of the eigenvalues. It means that certain low dimensional structure still
437 exists in the solution space of global problem, however, the dimension of such approximate
438 space is larger than that of the local problem.

439 We change the distance between D_1 and D_2 and repeat the above experiment. In Figure
440 3, we plot the decay properties of the local problem. One can see that distance between D_1
441 and D_2 affects the effective dimension of the approximate solution space, which is embedded
442 in the constant for separability estimate.

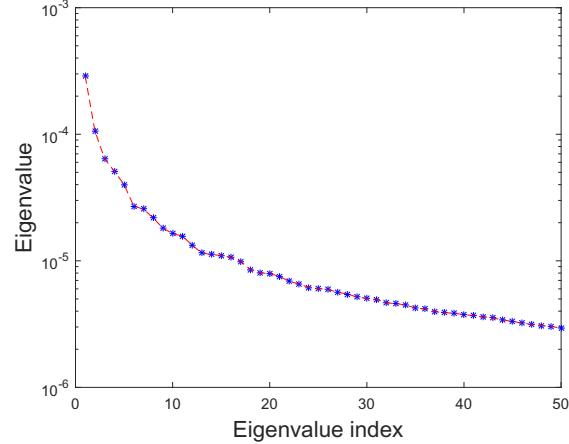
443 4.2. An example with random coefficient

444 Here we consider a multiscale elliptic PDE with a random coefficient that is defined on a
445 square domain $D = [0, 1] \times [0, 1]$,

$$\begin{aligned} -\nabla \cdot (a(x, y, \omega) \nabla u(x, y, \omega)) &= f(x, y), \quad (x, y) \in D, \omega \in \Omega_\omega, \\ u(x, y, \omega) &= 0, \quad (x, y) \in \partial D. \end{aligned} \quad (41)$$



(a) Decay of eigenvalues of local problem.



(b) Decay of eigenvalues of global problem.

Figure 2: The decay properties of the eigenvalues in the problem of Sec.4.1.

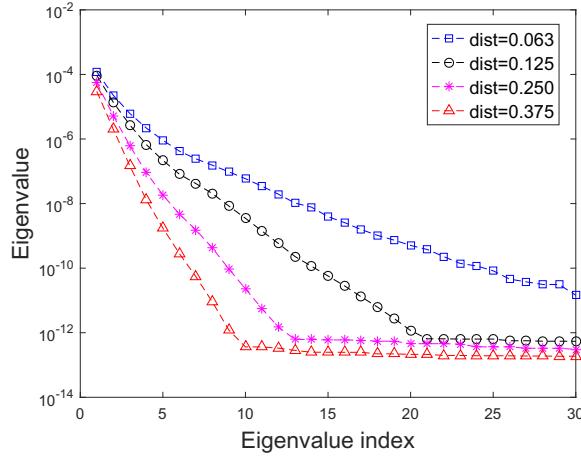


Figure 3: The decay properties of the eigenvalues for different separate distances.

446 In this example, the coefficient $a(x, y, \omega)$ is defined as

$$\begin{aligned}
 a(x, y, \omega) = & 0.1 + \frac{2 + p_1 \sin(\frac{2\pi x}{\epsilon_1})}{2 - p_1 \cos(\frac{2\pi y}{\epsilon_1})} \xi_1(\omega) + \frac{2 + p_2 \sin(\frac{2\pi(x+y)}{\sqrt{2}\epsilon_2})}{2 - p_2 \sin(\frac{2\pi(x-y)}{\sqrt{2}\epsilon_2})} \xi_2(\omega) + \frac{2 + p_3 \cos(\frac{2\pi(x-0.5)}{\epsilon_3})}{2 - p_3 \cos(\frac{2\pi(y-0.5)}{\epsilon_3})} \xi_3(\omega) \\
 & + \frac{2 + p_4 \cos(\frac{2\pi(x-y)}{\sqrt{2}\epsilon_4})}{2 - p_4 \sin(\frac{2\pi(x+y)}{\sqrt{2}\epsilon_4})} \xi_4(\omega) + \frac{2 + p_5 \cos(\frac{2\pi(2x-y)}{\sqrt{5}\epsilon_5})}{2 - p_5 \sin(\frac{2\pi(x+2y)}{\sqrt{5}\epsilon_5})} \xi_5(\omega),
 \end{aligned} \tag{42}$$

447 where $[\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4, \epsilon_5] = [\frac{1}{47}, \frac{1}{29}, \frac{1}{53}, \frac{1}{37}, \frac{1}{41}]$, $[p_1, p_2, p_3, p_4, p_5] = [1.98, 1.96, 1.94, 1.92, 1.9]$, and
448 $\xi_i(\omega)$, $i = 1, \dots, 5$ are i.i.d. uniform random variables in $[0, 1]$. The contrast ratio in the
449 coefficient (42) is $\kappa_a \approx 4.5 \times 10^3$. The source function is $f(x, y) = \sin(2\pi x) \cos(2\pi y) \cdot I_{D_2}(x, y)$,
450 where I_{D_2} is an indicator function defined on $D_2 = [\frac{1}{4}, \frac{3}{4}] \times [\frac{1}{16}, \frac{5}{16}]$. The coefficient (42) is
451 highly oscillatory in the physical space. Therefore, one needs a fine discretization to resolve
452 the small-scale variations in the problem. We shall show results for the solution to (41) with

453 coefficient (42) in: (1) a restricted subdomain $D_1 = [\frac{1}{4}, \frac{3}{4}] \times [\frac{11}{16}, \frac{15}{16}]$ away from the support D_2
 454 of the source term $f(x, y)$; and (2) the full domain D .

455 In Figure 4, we show the decay property of eigenvalues. Specifically, we show the magnitude
 456 of the eigenvalues in Figure 4a and the ratio of the accumulated sum of the leading eigenvalues
 457 over the total sum in Figure 4b. These results and Prop.3.1 imply that a few leading eigen-
 458 vectors will provide a set of data-driven basis that can approximate all solution samples well.

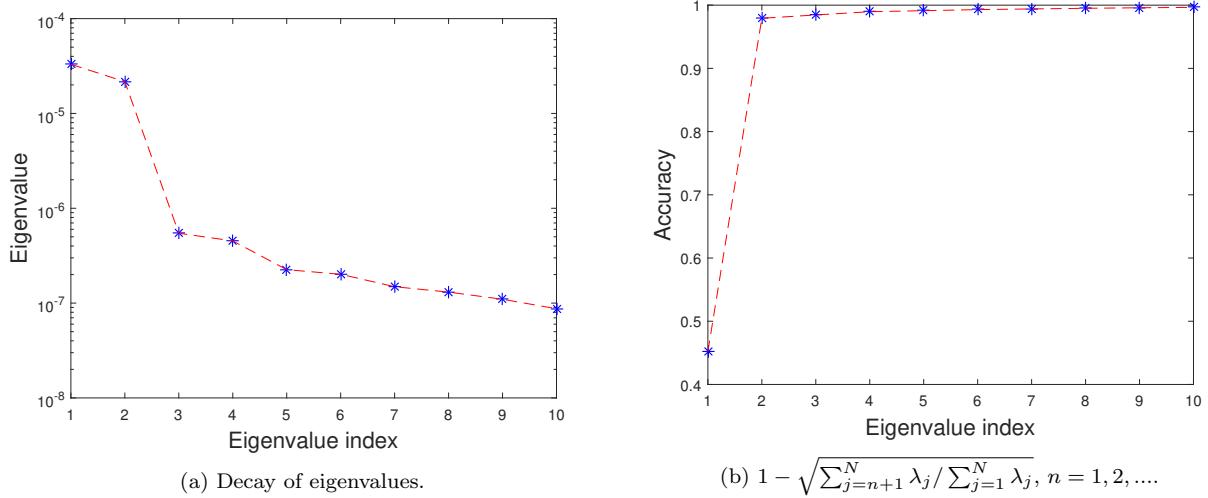


Figure 4: The decay properties of the eigenvalues in the local problem of Sec.4.2.

459
 460 After we construct the data-driven basis, we use the polynomial interpolation to approx-
 461 imate the map $\mathbf{F} : \boldsymbol{\xi} \mapsto \mathbf{c}(\boldsymbol{\xi})$. Notice that the coefficient of (42) is parameterized by five
 462 i.i.d. random variables. We partition the random space $[\xi_1(\omega), \xi_2(\omega), \dots, \xi_5(\omega)]^T \in [0, 1]^5$
 463 into a set of uniform grids in order to construct the map \mathbf{F} . Here we choose $N_1 = 9^5$ sam-
 464 ples. We can choose other sampling strategies, such as sparse-grid points and Latin hypercube
 465 points, for moderate- or high-dimensional cases. In Figure 5, we show the profiles of the first
 466 two data-driven basis functions ϕ_1 and ϕ_2 and the plots of the maps $c_1(\xi_1, \xi_2; \xi_3, \xi_4, \xi_5)$ and
 467 $c_2(\xi_1, \xi_2; \xi_3, \xi_4, \xi_5)$ with fixed $[\xi_3, \xi_4, \xi_5]^T = [0.25, 0.5, 0.75]^T$. One can see that the data-driven
 468 basis functions contain multiscale features, while the maps $c_1(\xi_1, \xi_2; \xi_3, \xi_4, \xi_5)$ and $c_2(\xi_1, \xi_2; \xi_3, \xi_4, \xi_5)$
 469 are smooth with respect to ξ_i , $i = 1, 2$. The behaviors of other data-driven basis functions and
 470 other maps are similar (not shown here). Once we get the map \mathbf{F} , the solution corresponding
 471 to a new realization $a(x, \boldsymbol{\xi}(\omega))$ can be computed easily by finding $\mathbf{c}(\boldsymbol{\xi})$ and plugging in the
 472 approximation (22).

473 In Figure 6, we show the mean relative L^2 and H^1 errors of the testing error and projection
 474 error, where $N_2 = 10N_1$. For the experiment, only four data-driven basis are needed to achieve
 475 a relative error less than 1% in L^2 norm and less than 2% in H^1 norm. Moreover, the numerical
 476 solution obtained by our mapping method is close to the projection solution, which is the best
 477 approximation of the reference solution by the data-driven basis. This result also indicates
 478 that the nonlinear map \mathbf{F} is a smooth function and has been approximated well by the uniform
 479 grids based polynomials interpolation.

480 We also study the approximation property of the nonlinear map \mathbf{F} based on different uni-

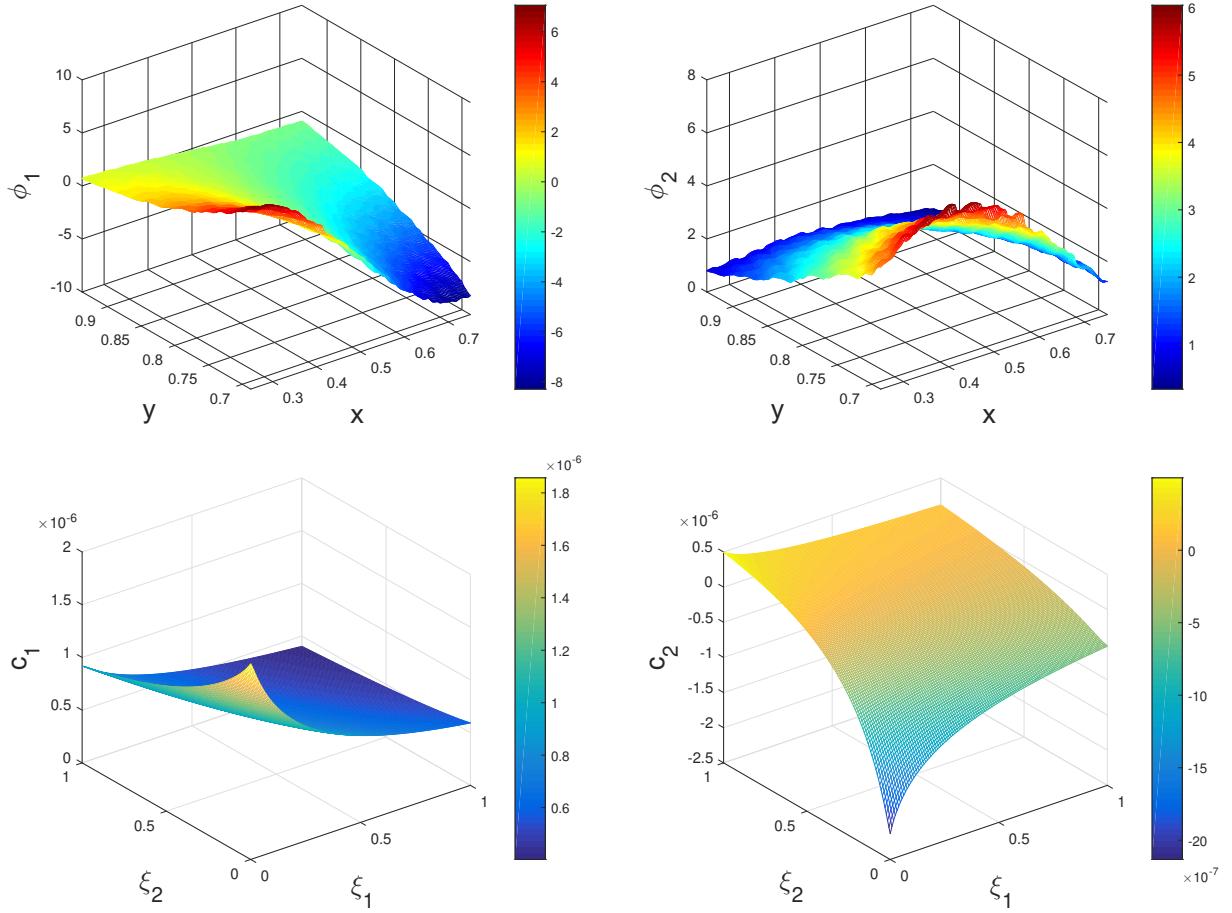


Figure 5: Top: profiles of data-driven basis ϕ_1 and ϕ_2 . Bottom: profiles of the maps $c_1(\xi_1, \xi_2; \xi_3, \xi_4, \xi_5)$ and $c_2(\xi_1, \xi_2; \xi_3, \xi_4, \xi_5)$ with fixed $[\xi_3, \xi_4, \xi_5]^T = [0.25, 0.5, 0.75]^T$.

481 form grids. Specifically, we partition the random space $[\xi_1(\omega), \xi_2(\omega), \dots, \xi_5(\omega)]^T \in [0, 1]^5$ into
482 different uniform grids with $N_1 = 5^5, 6^5, 7^5, 8^5, 9^5$ samples and use the polynomial interpolation
483 to construct the map \mathbf{F} . Figure 7 shows the mean relative L^2 and H^1 errors of the testing
484 errors and the project error (which does not depend on the grid partition), where $N_2 = 10^6$.
485 We observe a convergence behavior in constructing the map \mathbf{F} if we increase the partition
486 number in the uniform grids.

487 The standard FEM takes 0.82 second to compute one solution. In the offline stage of our
488 method, we need to compute N solution samples to construct POD basis and N_1 solution
489 samples to construct the nonlinear map \mathbf{F} . The random SVD method takes 1.2 seconds to
490 compute the POD basis. In the online stage of our method, the CPU time is almost negligible.
491 For instance, when the number of basis is $K = 10$, it takes about 0.0022 second to compute
492 one solution. In Figure 8, we compare the CPU time of the FEM and our method (including
493 both stages) as a function of the number of new solutions computed in the online stage. This
494 result shows that our method is very efficient if one needs to solve many forward problems for
495 (41) (e.g. in the context of solving an inverse problem by using the Bayesian method).

496 In Figure 9, we show the accuracy of the proposed method when we use different number

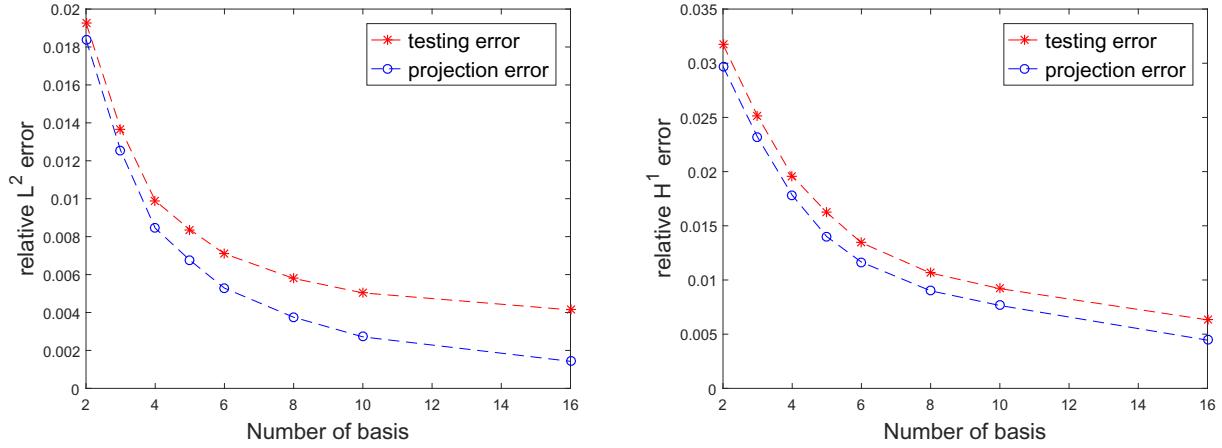


Figure 6: Relative L^2 and H^1 error with increasing number of basis for the local problem of Sec.4.2.

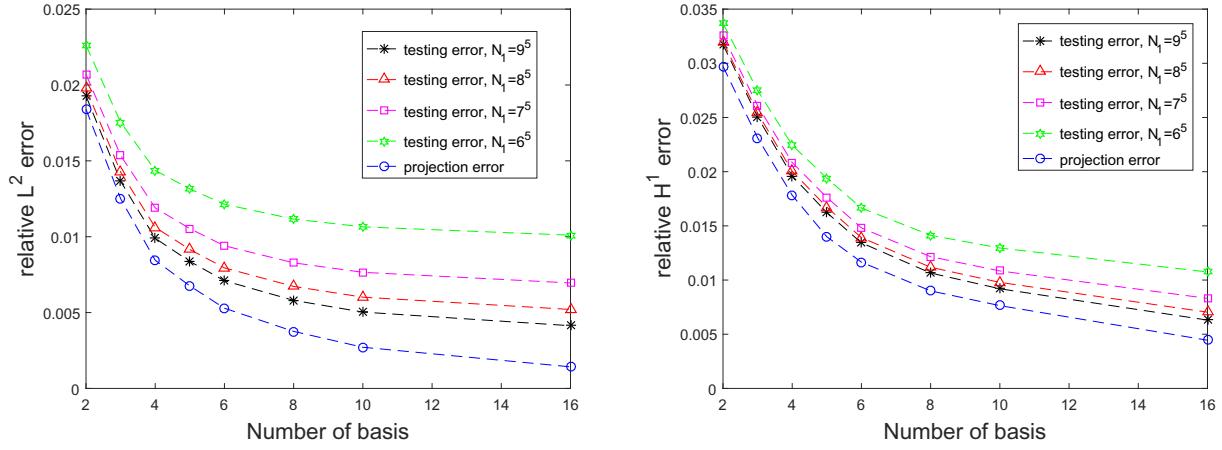


Figure 7: Relative L^2 and H^1 error of the solution computed by the nonlinear map \mathbf{F} based on different uniform grids for the local problem of Sec.4.2.

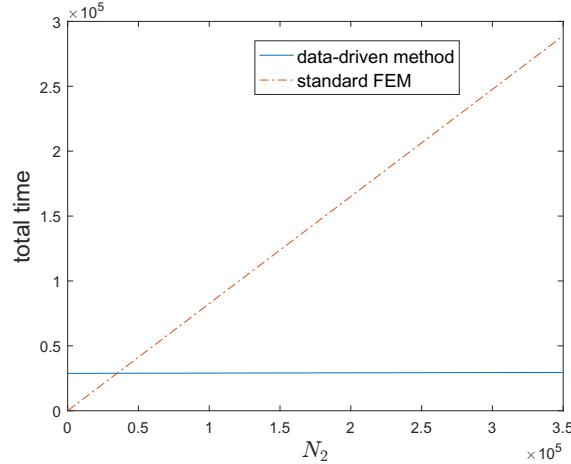


Figure 8: CPU time for the local problem of Sec.4.2.

497 of samples N in constructing the data-driven basis. Although the numerical error decreases when the sampling number N is increased in general, the difference is very mild.

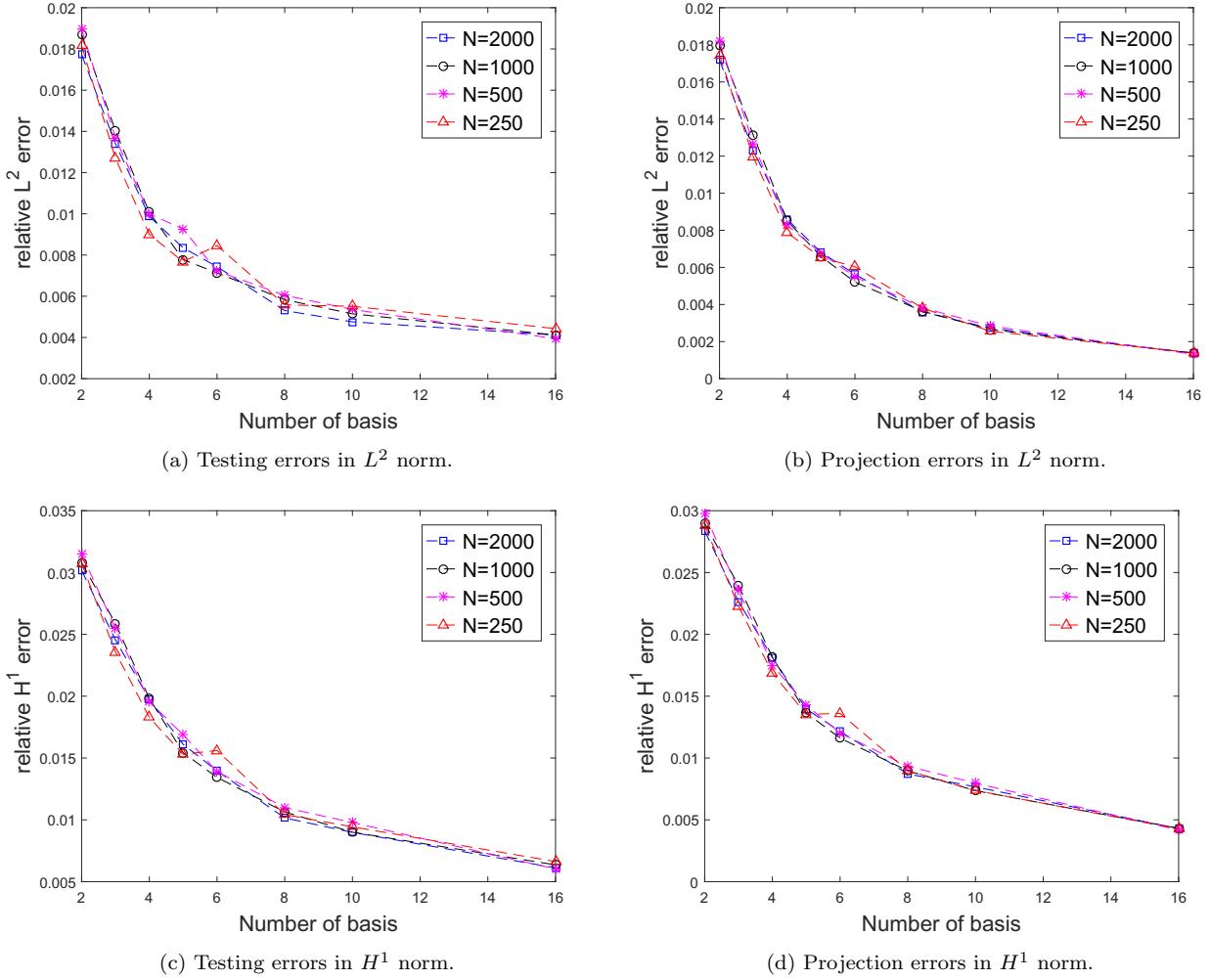
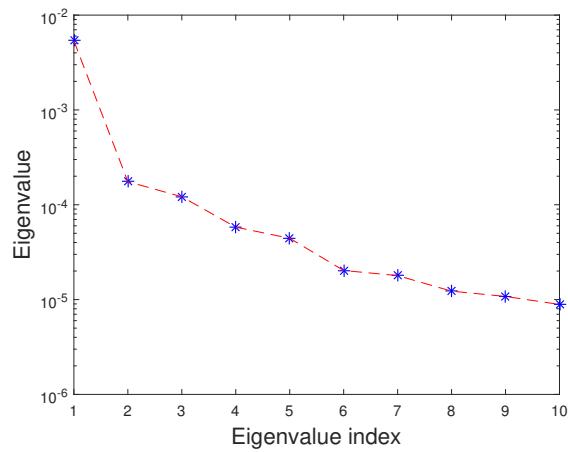
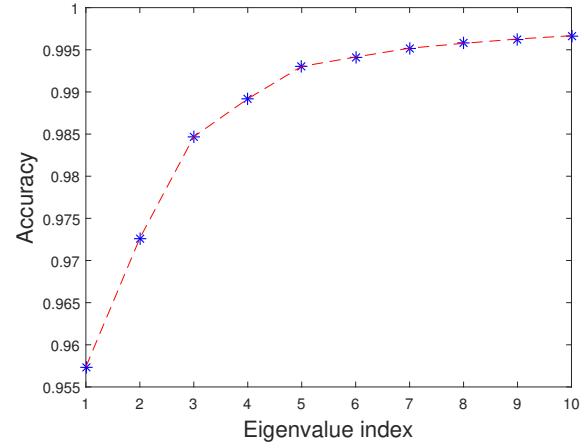


Figure 9: The relative testing/projection errors in L^2 and H^1 norms with different number of samples (i.e. N) for the local problem of Sec.4.2.

498
499 Next, we test our method on the whole computation domain for (41) with coefficient (42).
500 We choose $N_2 = 10N_1$. Figure 10 shows the decay property of eigenvalues. Similarly, we show
501 magnitudes of the leading eigenvalues in Figure 10a and the ratio of the accumulated sum
502 of the eigenvalues over the total sum in Figure 10b. We observe similar behaviors as before.
503 Since we approximate the solution in the whole computational domain, we take the Galerkin
504 approach described in Section 3.2 using the data-driven basis. In Figure 11, we show the mean
505 relative error between our numerical solution and the reference solution in L^2 norm and H^1
506 norm, respectively. In practice, when the number of basis is 15, it takes about 0.084 second to
507 compute a new solution by our method, whereas the standard FEM method costs about 0.82
508 second for one solution.

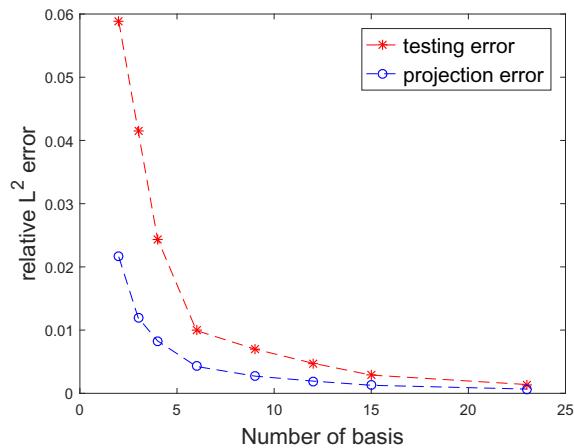


(a) Decay of the eigenvalues.

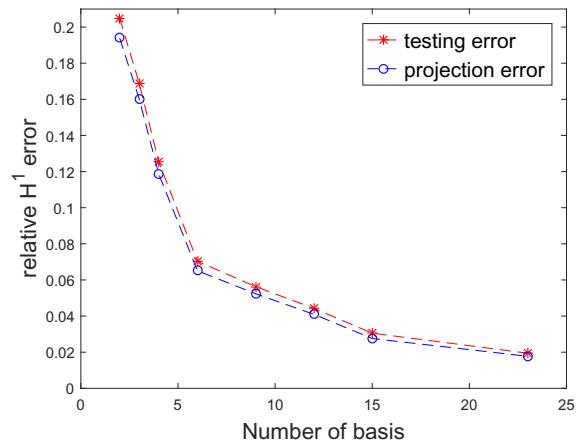


(b) $1 - \sqrt{\sum_{j=n+1}^N \lambda_j / \sum_{j=1}^N \lambda_j}$, $n = 1, 2, \dots$

Figure 10: The decay properties of the eigenvalues for the global problem of Sec.4.2.



(a) Relative error in L^2 norm.



(b) Relative error in H^1 norm.

Figure 11: The relative errors with increasing number of basis for the global problem of Sec.4.2.

509 4.3. An example with an exponential type coefficient

510 We now solve the problem (41) with an exponential type coefficient. The coefficient is
511 parameterized by eight random variables, which has the following form

$$a(x, y, \omega) = \exp \left(\sum_{i=1}^8 \sin\left(\frac{2\pi(9-i)x}{9\epsilon_i}\right) \cos\left(\frac{2\pi iy}{9\epsilon_i}\right) \xi_i(\omega) \right), \quad (43)$$

512 where the multiscale parameters $[\epsilon_1, \epsilon_2, \dots, \epsilon_8] = [\frac{1}{43}, \frac{1}{41}, \frac{1}{47}, \frac{1}{29}, \frac{1}{37}, \frac{1}{31}, \frac{1}{53}, \frac{1}{35}]$ and $\xi_i(\omega)$, $i = 513 1, \dots, 8$ are i.i.d. uniform random variables in $[-\frac{1}{2}, \frac{1}{2}]$. Hence the contrast ratio is $\kappa_a \approx 3.0 \times 10^3$
514 in the coefficient (43). The source function is $f(x, y) = \cos(2\pi x) \sin(2\pi y) \cdot I_{D_2}(x, y)$, where I_{D_2}
515 is an indicator function defined on $D_2 = [\frac{1}{4}, \frac{3}{4}] \times [\frac{1}{16}, \frac{5}{16}]$. In the local problem, the subdomain
516 of interest is $D_1 = [\frac{1}{4}, \frac{3}{4}] \times [\frac{11}{16}, \frac{15}{16}]$.

517 In Figure 12, we show the decay property of eigenvalues. Specifically, in Figure 12a we show
518 the magnitude of leading eigenvalues and in Figure 12b we show the ratio of the accumulated
519 sum of the eigenvalues over the total sum. These results imply that the solution space has a
520 low-dimensional structure, which can be approximated by the data-driven basis functions.

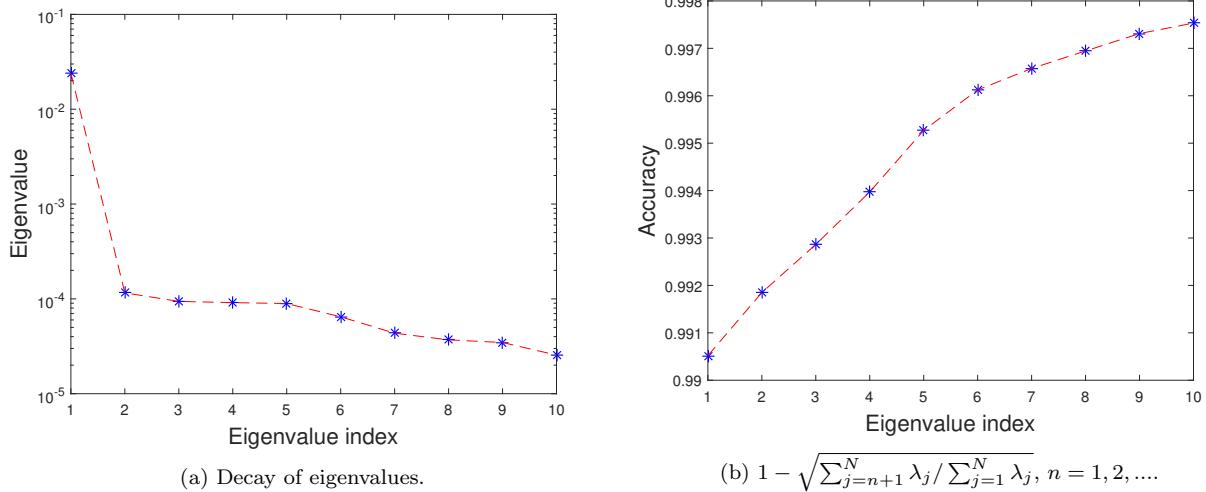
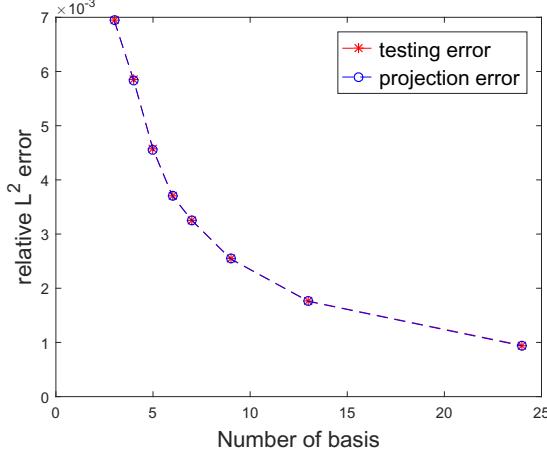


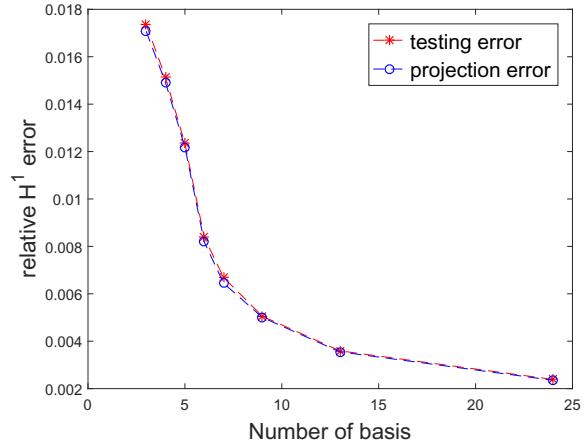
Figure 12: The decay properties of the eigenvalues in the problem of Sec.4.3.

521 Since the coefficient $a(x, y, \omega)$ is parameterized by eight random variables, it is expensive
522 to construct the map $\mathbf{F} : \xi(\omega) \mapsto \mathbf{c}(\omega)$ using the interpolation method with uniform grids.
523 Instead, we use a sparse grid polynomial interpolation approach to approximate the map \mathbf{F} .
524 Specifically, we use Legendre polynomials with total order less than or equal 4 (i.e. sparse grid
525 of level 5) to approximate the map, where the total number of nodes is $N_1 = 2177$; see [11].

526 Figure 13a and 13b show the relative errors of the testing error and projection error in L^2
527 norm and H^1 norm, respectively, where $N_2 = 10N_1$. The sparse grid polynomial interpolation
528 approach gives a comparable error as the best approximation error. We observe similar con-
529 vergence results in solving the global problem (41) with the coefficient (43) (not shown here).
530 Therefore, we can use the sparse grid method to construct maps for problems of a moderate
531 number of random variables.



(a) Relative error in L^2 norm.



(b) Relative error in H^1 norm.

Figure 13: The relative errors with increasing number of basis in the problem of Sec.4.3.

532 We also study the approximation property of the nonlinear map \mathbf{F} based on sparse grids
 533 of different levels. Specifically, sparse grids of accuracy level 3, 4, and 5 respectively contain
 534 $N_1 = 129$, 609, and 2177 grid points. Figure 14 shows the mean relative L^2 and H^1 errors of
 535 the testing errors and the project error (which does not depend on the grid partition), where
 536 $N_2 = 21700$. One can see that the nonlinear map \mathbf{F} based on sparse grids of accuracy level 4
 537 is accurate enough.

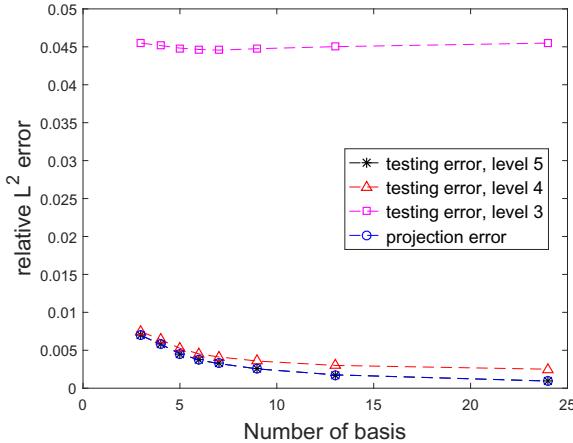
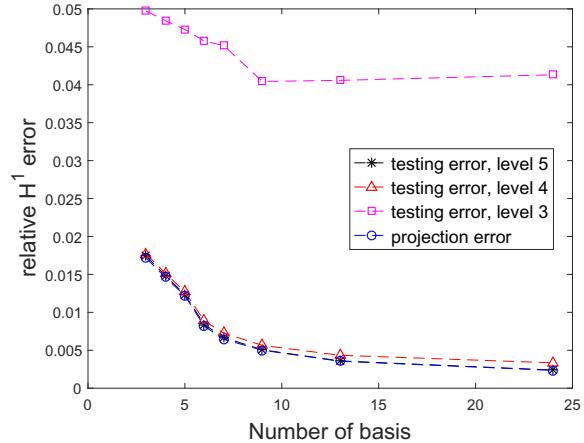


Figure 14: Relative L^2 and H^1 error of the solution computed by the nonlinear map \mathbf{F} based on different sparse grids for the local problem of Sec.4.3.

538 4.4. An example with discontinuous coefficients

539 We solve the problem (41) with a discontinuous coefficient, which is an interface problem.
 540 The coefficient is parameterized by twelve random variables and has the following form

$$\begin{aligned}
a(x, y, \omega) = & \exp \left(\sum_{i=1}^6 \sin \left(2\pi \frac{x \sin(\frac{i\pi}{6}) + y \cos(\frac{i\pi}{6})}{\epsilon_i} \right) \xi_i(\omega) \right) \cdot I_{D \setminus D_3}(x, y) \\
& + \exp \left(\sum_{i=1}^6 \sin \left(2\pi \frac{x \sin(\frac{(i+0.5)\pi}{6}) + y \cos(\frac{(i+0.5)\pi}{6})}{\epsilon_{i+6}} \right) \xi_{i+6}(\omega) \right) \cdot I_{D_3}(x, y),
\end{aligned} \quad (44)$$

541 where $\epsilon_i = \frac{1+i}{100}$ for $i = 1, \dots, 6$, $\epsilon_i = \frac{i+13}{100}$ for $i = 7, \dots, 12$, $\xi_i(\omega)$, $i = 1, \dots, 12$ are i.i.d.
542 uniform random variables in $[-\frac{2}{3}, \frac{2}{3}]$, and I_{D_3} , $I_{D \setminus D_3}$ are indicator functions. The contrast ratio
543 in the coefficient (44) is $\kappa_a \approx 3 \times 10^3$. The subdomain D_3 consists of three small rectangles
544 whose edges are parallel to the edges of domain D with width $10h$ and height 0.8. And the
545 lower left vertices are located at $(0.3, 0.1)$, $(0.5, 0.1)$, $(0.7, 0.1)$ respectively. One can use the
546 coefficient (44) to model channels in permeability field in the reservoir simulation. In Figure
547 15 we show two realizations of the coefficient (44).

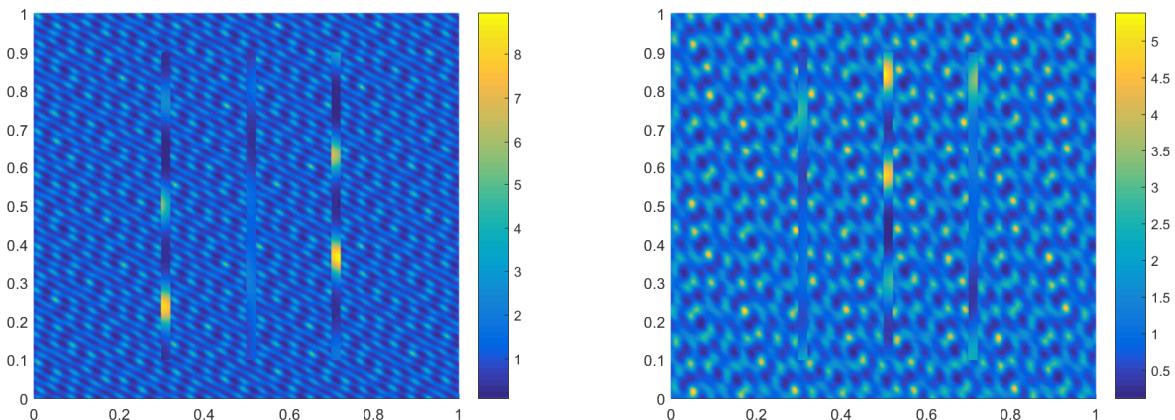


Figure 15: Two realizations of the coefficient (44) in the interface problem.

548 We now solve the local problem of (41) with the coefficient (44), where the domain of
549 interest is $D_1 = [\frac{1}{4}, \frac{3}{4}] \times [\frac{11}{16}, \frac{15}{16}]$. The source function is $f(x, y) = \cos(2\pi x) \sin(2\pi y) \cdot I_{D_2}(x, y)$,
550 where $D_2 = [\frac{1}{4}, \frac{3}{4}] \times [\frac{1}{16}, \frac{5}{16}]$. In Figure 16a and Figure 16b we show the magnitude of dominant
551 eigenvalues and approximate accuracy. These results show that only a few data-driven basis
552 functions are enough to approximate all solution samples well.

553 Since the coefficient (44) is parameterized by twelve random variables, constructing the
554 map $\mathbf{F} : \xi(\omega) \mapsto \mathbf{c}(\omega)$ using the sparse grid polynomial interpolation becomes very expensive
555 too. Here we use the least square method combined with the k - d tree algorithm for searching
556 nearest neighbors to approximate the map \mathbf{F} .

557 In our method, we first generate $N_1 = 5000$ data pairs $\{(\xi^n(\omega), \mathbf{c}^n(\omega))\}_{n=1}^{N_1}$ that will be used
558 as training data. Then, we use $N_2 = 10N_1$ samples for testing in the online stage. For each
559 new testing data point $\xi(\omega) = [\xi_1(\omega), \dots, \xi_r(\omega)]^T$ (here $r = 12$), we run the k - d tree algorithm
560 to find its n nearest neighbors in the training data set and apply the least square method
561 to compute the corresponding mapped value $\mathbf{c}(\omega) = [c_1(\omega), \dots, c_K(\omega)]^T$. The complexity of
562 constructing a k - d tree for N_1 data points is $O(N_1 \log N_1)$. Given the k - d tree, for each testing
563 point the complexity of finding its n nearest neighbors is $O(n \log N_1)$ [40].

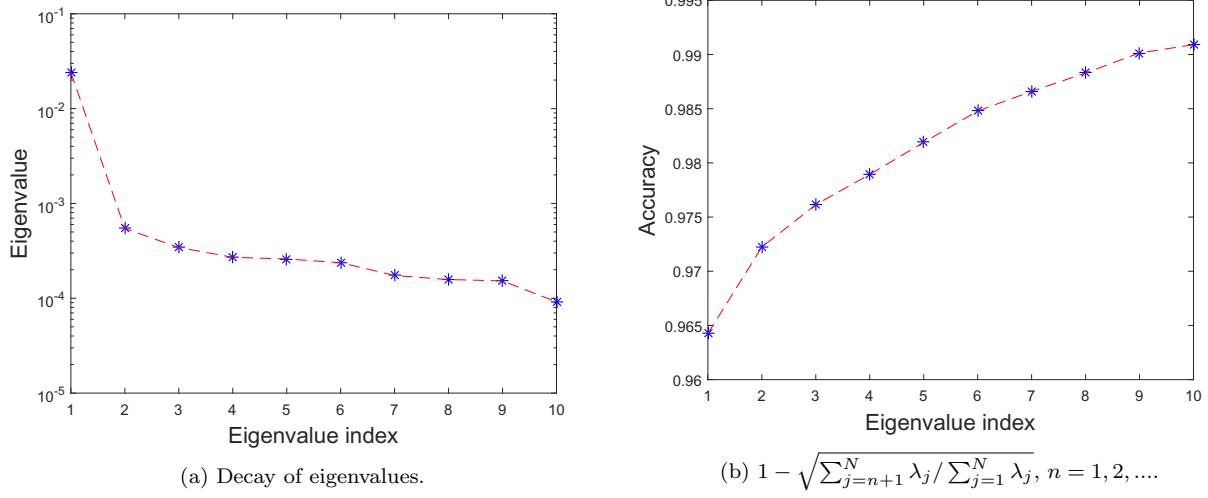


Figure 16: The decay properties of the eigenvalues in the problem of Sec.4.4.

564 Since the n nearest neighbors (training data) are close to the testing data point $\xi(\omega)$, for
565 each training data $(\xi^m(\omega), \mathbf{c}^m(\omega))$, $m = 1, \dots, n$, we compute the first-order Taylor expansion
566 of each component $c_j^m(\omega)$ at $\xi(\omega)$ as

$$c_j^m(\omega) \approx c_j(\omega) + \sum_{i=1}^{r=12} (\xi_i^m - \xi_i) \frac{\partial c_j}{\partial \xi_i}(\omega), \quad j = 1, 2, \dots, K, \quad (45)$$

567 where ξ_i^m , $i = 1, \dots, r$, $c_j^m(\omega)$, $j = 1, \dots, K$ are given training data, $c_j(\omega)$ and $\frac{\partial c_j}{\partial \xi_i}(\omega)$, $j = 1, \dots, K$
568 are unknowns associated with the testing data point $\xi(\omega)$. In the k - d tree algorithm, we choose
569 $n = 20$, which is slightly greater than $r+1 = 13$. By solving (45) using the least square method,
570 we get the mapped value $\mathbf{c}(\omega) = [c_1(\omega), \dots, c_K(\omega)]^T$. Finally, we use the formula (22) to get
571 the numerical solution of Eq.(41) with the coefficient (44).

572 Because of the discontinuity and high-dimensional random variables in the coefficient (44),
573 the problem (41) is more challenging. The nearest neighbors based least square method pro-
574 vides an efficient way to construct maps and achieve relative errors less than 3% in both L^2
575 norm and H^1 norm; see Figure 17. Alternatively, one can use neural network method to
576 construct maps for this type of challenging problems; see Section 4.5.

577 4.5. An example with high-dimensional random coefficient and source function

578 We solve the problem (41) with an exponential type coefficient and random source func-
579 tion, where the total number of random variables is twenty. Specifically, the coefficient is
580 parameterized by eighteen i.i.d. random variables, i.e.

$$a(x, y, \omega) = \exp \left(\sum_{i=1}^{18} \sin(2\pi \frac{x \sin(\frac{i\pi}{18}) + y \cos(\frac{i\pi}{18})}{\epsilon_i}) \xi_i(\omega) \right), \quad (46)$$

581 where $\epsilon_i = \frac{1}{2i+9}$, $i = 1, 2, \dots, 18$ and $\xi_i(\omega)$, $i = 1, \dots, 18$ are i.i.d. uniform random variables in
582 $[-\frac{1}{5}, \frac{1}{5}]$. The source function is a Gaussian density function $f(x, y) = \frac{1}{2\pi\sigma^2} \exp(-\frac{(x-\theta_1)^2 + (y-\theta_2)^2}{2\sigma^2})$

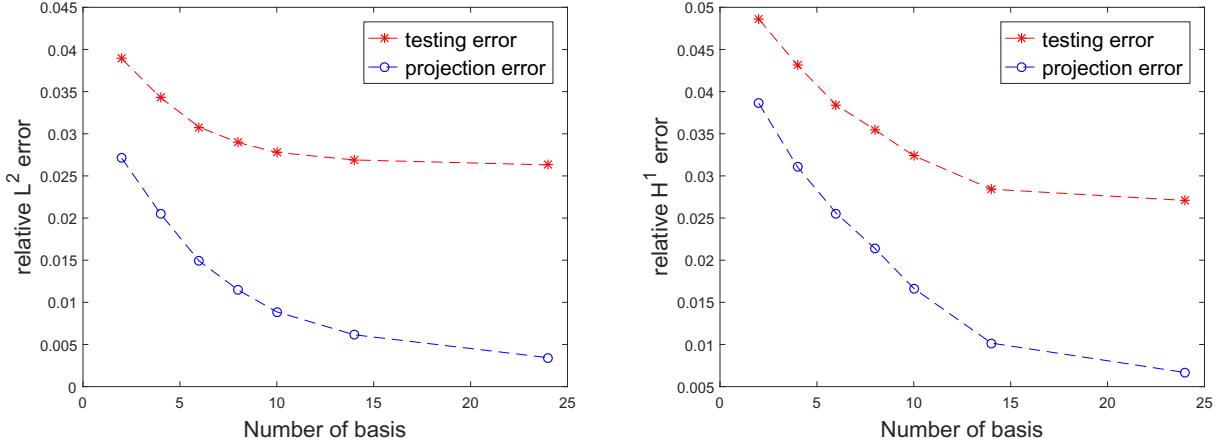


Figure 17: The relative errors with increasing number of basis in the local problem of Sec.4.4 .

583 with a random center (θ_1, θ_2) that is a random point uniformly distributed in the subdomain
584 $D_2 = [\frac{1}{4}, \frac{3}{4}] \times [\frac{1}{16}, \frac{5}{16}]$ and $\sigma = 0.01$. When σ is small, the Gaussian density function $f(x, y)$ can
585 be used to approximate the Dirac- δ function, such as modeling wells in reservoir simulations.

586 We first solve the local problem of (41) with $N = 2000$ samples of the coefficient (46),
587 where the subdomain of interest is $D_1 = [\frac{1}{4}, \frac{3}{4}] \times [\frac{11}{16}, \frac{15}{16}]$. In Figures 18a and 18b, we show the
588 magnitude of leading eigenvalues and the ratio of the accumulated sum of the eigenvalue over
589 the total sum, respectively. We observe similar exponential decay properties of eigenvalues
590 even if the source function contains randomness. These results show that we can still build a
591 set of data-driven basis functions to solve problem (41) with coefficient (46).

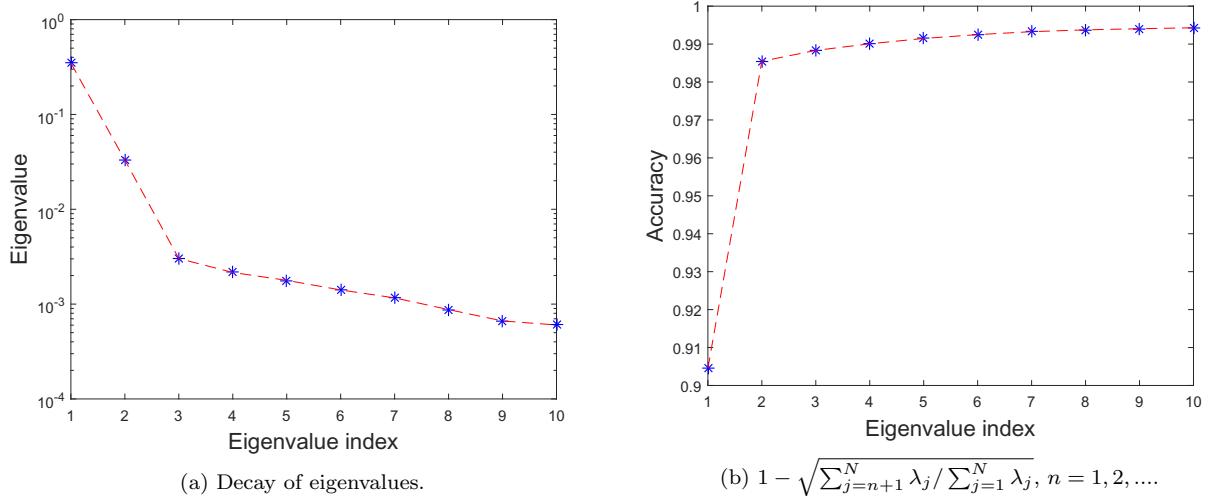


Figure 18: The decay properties of the eigenvalues in the problem of Sec.4.5.

592 Notice that both the coefficient and source contain randomness here. We put the random
593 variables $\xi(\omega)$ in the coefficient and the random variables $\theta(\omega)$ in the source together when
594 we construct the map \mathbf{F} . Moreover, the dimension of randomness, $18+2=20$, is too large even

595 for sparse grids. Here we construct the map $\mathbf{F} : (\boldsymbol{\xi}(\omega), \boldsymbol{\theta}(\omega)) \mapsto \mathbf{c}(\omega)$ using the neural network
 596 as depicted in Figure 19. The neural network has 4 hidden layers and each layer has 50 units.
 597 Naturally, the number of the input units is 20 and the number of the output units is K . The
 598 layer between input units and first layer of hidden units is an affine transform. So is the
 599 layer between output units and last layer of hidden units. Each two layers of hidden units
 600 are connected by an affine transform, a tanh (hyperbolic tangent) activation and a residual
 601 connection, i.e. $\mathbf{h}_{l+1} = \tanh(\mathbf{A}_l \mathbf{h}_l + \mathbf{b}_l) + \mathbf{h}_l$, $l = 1, 2, 3$, where \mathbf{h}_l is l -th layer of hidden units,
 602 \mathbf{A}_l is a 50-by-50 matrix and \mathbf{b}_l is a 50-by-1 vector. Under the same setting of neural network, if
 603 the rectified linear unit (ReLU), which is piecewise linear, is used as the activation function, we
 604 observe a much bigger error. Therefore, we choose the hyperbolic tangent activation function
 605 and implement the residual neural network (ResNet) here [25].

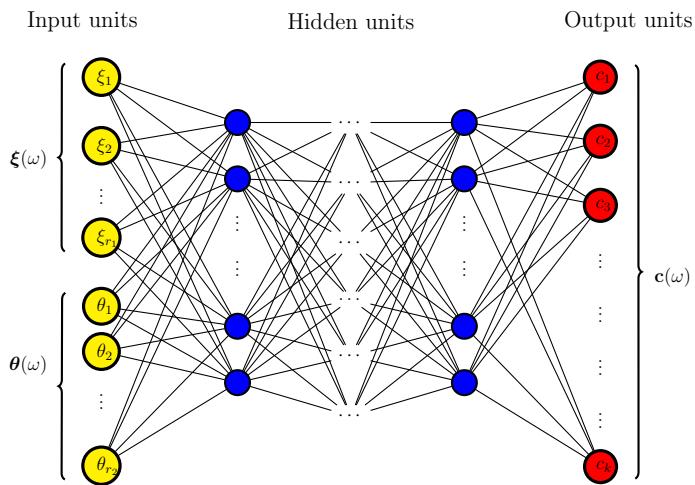


Figure 19: Structure of neural network, where $r_1 = 18$ and $r_2 = 2$.

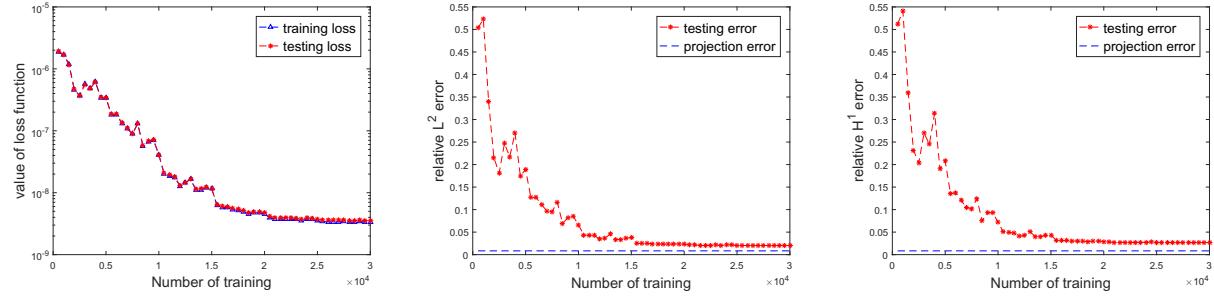
606 We use $N_1 = 5000$ samples for network training in the offline stage and $N_2 = 10N_1$ samples
 607 for testing in the online stage. The sample data pairs for training are $\{(\boldsymbol{\xi}^n(\omega), \boldsymbol{\theta}^n(\omega)), \mathbf{c}^n(\omega)\}_{n=1}^{N_1}$,
 608 where $\boldsymbol{\xi}^n(\omega) \in [-\frac{1}{5}, \frac{1}{5}]^{18}$, $\boldsymbol{\theta}^n(\omega) \in [\frac{1}{4}, \frac{3}{4}] \times [\frac{1}{16}, \frac{5}{16}]$, and $\mathbf{c}^n(\omega) \in R^K$. We define the loss function
 609 of network training as

$$loss(\{\mathbf{c}^n\}, \{\hat{\mathbf{c}}^n\}) = \frac{1}{N_1} \sum_{n=1}^{N_1} \frac{1}{K} |\mathbf{c}^n - \hat{\mathbf{c}}^n|^2, \quad (47)$$

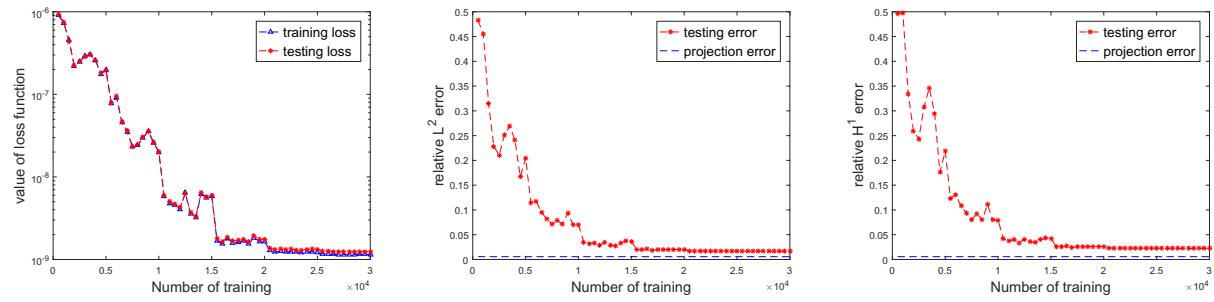
610 where \mathbf{c}^n are the training data and $\hat{\mathbf{c}}^n$ are the output of the neural network (see Figure 19).

611 Figure 20a shows the value of loss function during training procedure. Figure 20b shows the
 612 corresponding mean relative error of the testing samples in L^2 norm. Eventually the relative
 613 error of the neural network reaches about 1.5%. Figure 20c shows the corresponding mean
 614 relative error of the testing samples in H^1 norm. We remark that many existing methods be-
 615 come extremely expensive or infeasible when the problem is parameterized by high-dimensional
 616 random variables. Our data-driven basis method based on neural network still provides a sat-
 617 isfactory result.

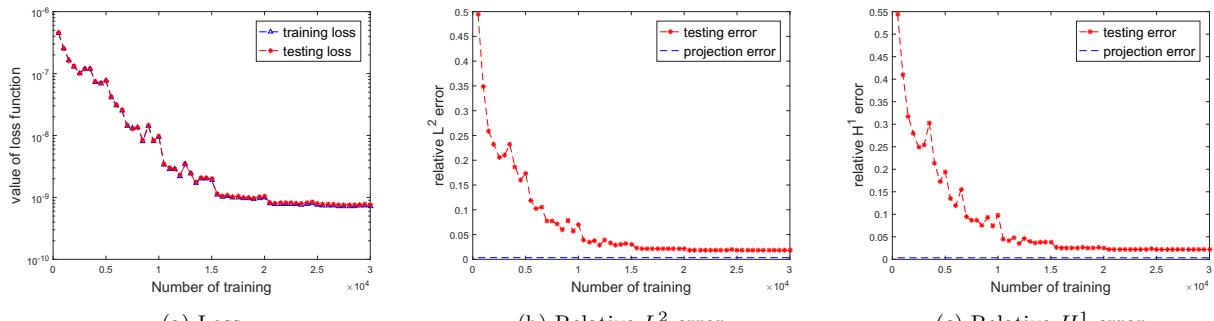
$K = 5$



$K = 10$



$K = 20$



(a) Loss.

(b) Relative L^2 error.

(c) Relative H^1 error.

Figure 20: First column: the value of loss function during training procedure. Second column and third column: the mean relative errors of the testing set during training procedure in L^2 and H^1 norm respectively.

618 4.6. An example with unknown random coefficient and source function

619 Finally, we present an example where the models of the random coefficient and source are
620 unknown. Only a set of sample solutions are provided as well as a few censors can be placed at
621 certain locations for solution measurements. This kind of scenario appears often in practice.
622 We take the least square fitting method as described in Section 3.3. Our numerical experiment
623 is still based on (41), which is used to generate solution samples (instead of experiments or
624 measurements in real practice). But once the data are generated, we do not assume any
625 knowledge of the coefficient or the source when computing a new solution.

626 To be specific, the coefficient takes the form

$$a(x, y, \omega) = \exp \left(\sum_{i=1}^{24} \sin(2\pi \frac{x \sin(\frac{i\pi}{24}) + y \cos(\frac{i\pi}{24})}{\epsilon_i}) \xi_i(\omega) \right), \quad (48)$$

627 where $\epsilon_i = \frac{1+i}{100}$, $i = 1, 2, \dots, 24$ and $\xi_i(\omega)$, $i = 1, \dots, 24$ are i.i.d. uniform random variables
628 in $[-\frac{1}{6}, \frac{1}{6}]$. The source function is a random function $f(x, y) = \sin(\pi(\theta_1 x + 2\theta_2)) \cos(\pi(\theta_3 y +
629 2\theta_4)) \cdot I_{D_2}(x, y)$ with i.i.d. uniform random variables $\theta_1, \theta_2, \theta_3, \theta_4$ in $[0, 2]$. We first generate
630 $N = 2000$ solutions samples (using standard FEM) $u(x_j, \omega_i)$, $i = 1, \dots, N$, $j = 1, \dots, J$, where
631 x_j are the points where solution samples are measured. Then, a set of K data-driven basis
632 $\phi_k(x_j)$, $j = 1, \dots, J$, $k = 1, \dots, K$ are extracted from the solution samples as before.

633 Next we determine M good sensing locations from the data-driven basis so that the least
634 square problem (26) is not ill-conditioned. We follow the method proposed in [32]. Define
635 $\Phi = [\phi_1, \dots, \phi_K] \in R^{J \times K}$, where $\phi_k = [\phi_k(x_1), \dots, \phi_k(x_J)]^T$. If $M = K$, QR factorization
636 with column pivoting is performed on Φ^T . If $M > K$, QR factorization with pivoting is
637 performed on $\Phi\Phi^T$. The first M pivoting indices provide the measurement locations. Once
638 a new solution is measured at these M selected locations, the least square problem (26) is
639 solved to determine the coefficients c_1, c_2, \dots, c_K and the new solution is approximated by
640 $u(x_j, \omega) = \sum_{k=1}^K c_k \phi_k(x_j)$.

641 In Figure 21 and Figure 22, we show the results of the local problem and global problem,
642 respectively. In these numerical results, we compared the error between the reconstructed
643 solutions and the reference solution. We find the our proposed method works well for problem
644 (41) with a non-parametric coefficient or source as well.

645 5. Conclusion

646 In this paper, we propose a data-driven approach to solve multiscale elliptic PDEs with
647 random coefficients or random sources. This type of multiscale problem has many applications,
648 such as heterogeneous porous media flow problems in water aquifer and oil reservoir simulations.
649 Motivated by the existence of approximate low dimensional structures in the solution space
650 of the multiscale problems, we construct a set of problem-specific data-driven basis functions
651 directly from samples solutions or experimental data. Once the data-driven basis is available,
652 depending on different problem setups, we design several ways to compute a new solution
653 efficiently.

654 Error analysis based on the sampling error of the coefficients and the projection error of the
655 data-driven basis is presented to provide some guidance on the implementation of our method.

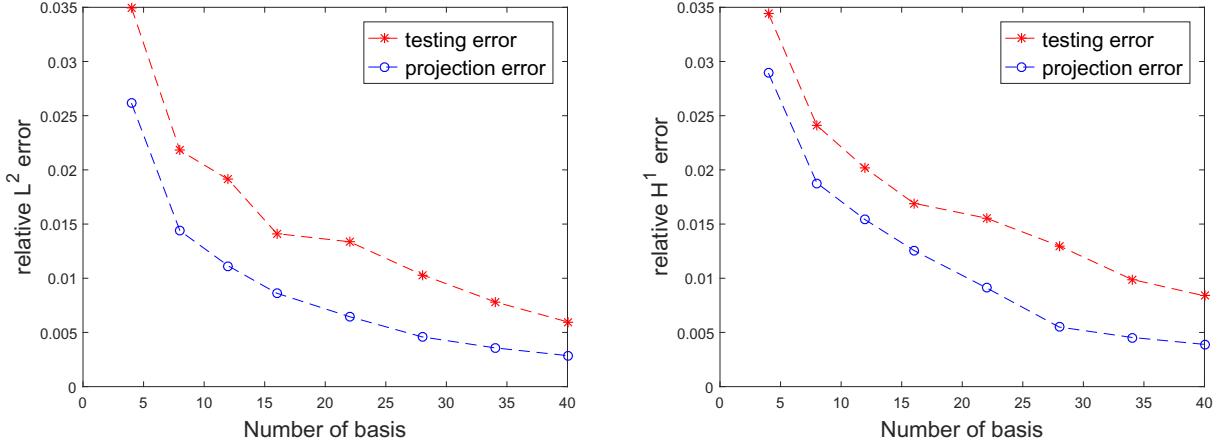


Figure 21: The relative errors with increasing number of basis in the local problem of Sec.4.6 .

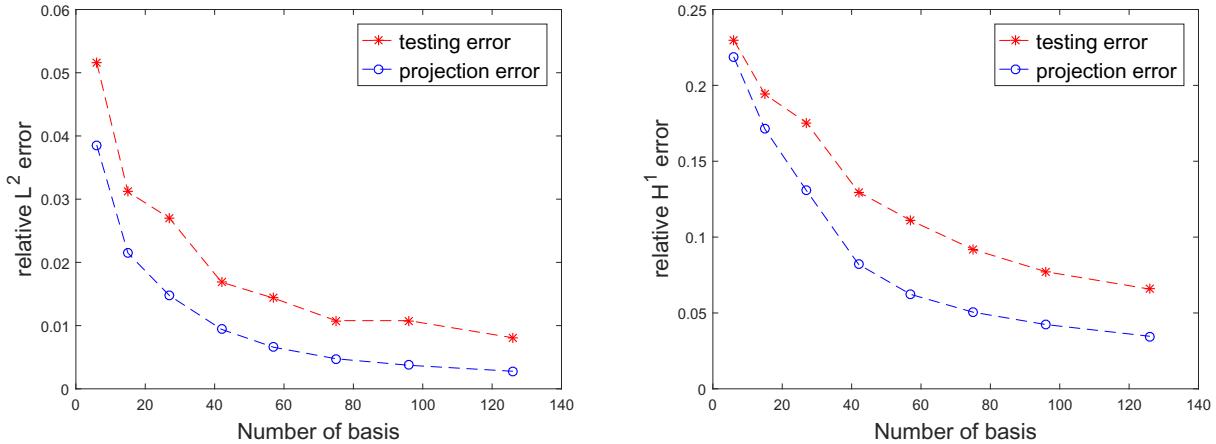


Figure 22: The relative errors with increasing number of basis in the global problem of Sec.4.6.

656 Numerical examples show that the proposed method is very efficient in solving multiscale elliptic
 657 PDEs with random input, especially when the random input is relative high dimensional.
 658 Therefore, these data-driven basis functions indeed provide a nearly optimal approximation to
 659 the low dimensional structures in the solution space.

660 Acknowledgements

661 The research of S. Li is partially supported by the Doris Chen Postgraduate Scholarship.
 662 The research of Z. Zhang is supported by the Hong Kong RGC General Research Funds
 663 (Projects 27300616, 17300817, and 17300318), National Natural Science Foundation of China
 664 (Project 11601457), Seed Funding Programme for Basic Research (HKU), and Basic Research
 665 Programme (JCYJ20180307151603959) of The Science, Technology and Innovation Commis-
 666 sion of Shenzhen Municipality. The research of H. Zhao is partially supported by NSF grant
 667 DMS-1622490 and DMS-1821010. This research is made possible by a donation to the Big
 668 Data Project Fund, HKU, from Dr Patrick Poon whose generosity is gratefully acknowledged.

669 **References**

670 [1] A. ABDULLE, A. BARTH, AND C. SCHWAB, *Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs*, Multiscale Modeling & Simulation, 11 (2013), pp. 1033–1070.

671

672 [2] M. ARNST AND R. GHANEM, *Probabilistic equivalence and stochastic model reduction in multiscale analysis*, Comput. methods Appl. Mech. Engrg, 197(43) (2008), pp. 3584–3592.

673

674 [3] B. V. ASOKAN AND N. ZABARAS, *A stochastic variational multiscale method for diffusion in heterogeneous random media*, Journal of Computational Physics, 218 (2006), pp. 654–676.

675

676

677 [4] I. BABUSKA, F. NOBILE, AND R. TEMPONE, *A stochastic collocation method for elliptic partial differential equations with random input data*, SIAM J. Numer. Anal., 45 (2007), pp. 1005–1034.

678

680 [5] I. BABUSKA, R. TEMPONE, AND G. ZOURARIS, *Galerkin finite element approximations of stochastic elliptic partial differential equations*, SIAM J. Numer. Anal., 42 (2004), pp. 800–825.

681

683 [6] M. BACHMAYR, A. COHEN, R. DEVORE, AND G. MIGLIORATI, *Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients*, ESAIM: Mathematical Modelling and Numerical Analysis, 51 (2017), pp. 341–363.

684

686 [7] M. BARRAULT, Y. MADAY, N. C. NGUYEN, AND A. T. PATERA, *An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations*, Comptes Rendus Mathematique, 339(9) (2004), pp. 667–672.

687

689 [8] M. BEBENDORF AND W. HACKBUSCH, *Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L^∞ coefficients*, Numerische Mathematik, 95 (2003), pp. 1–28.

690

692 [9] P. BENNER, S. GUGERCIN, AND K. WILLCOX, *A survey of projection-based model reduction methods for parametric dynamical systems*, SIAM Review, 57 (2015), pp. 483–531.

693

694 [10] G. BERKOOZ, P. HOLMES, AND J. L. LUMLEY, *The proper orthogonal decomposition in the analysis of turbulent flows*, Annual review of fluid mechanics, 25(1) (1993), pp. 539–575.

695

697 [11] H. J. BUNGARTZ AND M. GRIEBEL, *Sparse grids*, Acta Numerica, 13 (2004), pp. 147–269.

698

699 [12] M. CHENG, T. Y. HOU, M. YAN, AND Z. ZHANG, *A data-driven stochastic method for elliptic PDEs with random coefficients*, SIAM J. UQ, 1 (2013), pp. 452–493.

700

701 [13] M. CHENG, T. Y. HOU, AND Z. ZHANG, *A dynamically bi-orthogonal method for stochastic partial differential equations I: derivation and algorithms*, J. Comput. Phys., 242 (2013), pp. 843–868.

702

703

704 [14] ——, *A dynamically bi-orthogonal method for stochastic partial differential equations II: adaptivity and generalizations*, *J. Comput. Phys.*, 242 (2013), pp. 753–776.

705

706 [15] E. CHUNG, Y. EFENDIEV, W. LEUNG, AND Z. ZHANG, *Cluster-based generalized multiscale finite element method for elliptic PDEs with random coefficients*, *Journal of Computational Physics*, 371 (2018), pp. 606–617.

707

708

709 [16] A. COHEN AND R. DEVORE, *Approximation of high-dimensional parametric PDEs*, *Acta Numerica*, 24 (2015), pp. 1–159.

710

711 [17] G. DOLZMANN AND S. MÜLLER, *Estimates for green's matrices of elliptic systems by p theory*, *Manuscripta mathematica*, 88 (1995), pp. 261–273.

712

713 [18] Y. EFENDIEV, C. KRONSBEN, AND F. LEGOLL, *Multilevel Monte Carlo approaches for numerical homogenization*, *Multiscale Modeling & Simulation*, 13 (2015), pp. 1107–1135.

714

715 [19] B. ENGQUIST AND H. ZHAO, *Approximate separability of the Green's function of the Helmholtz equation in the high frequency limit*, *Communications on Pure and Applied Mathematics*, 71 (2018), pp. 2220–2274.

716

717

718 [20] R. GHANEM AND P. SPANOS, *Stochastic finite elements: a spectral approach.*, Springer-Verlag, New York, 1991.

719

720 [21] I. GRAHAM, F. KUO, D. NUYENS, R. SCHEICHL, AND I. SLOAN, *Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications*, *Journal of Computational Physics*, 230 (2011), pp. 3668–3694.

721

722

723 [22] I. G. GRAHAM, F. Y. KUO, J. A. NICHOLS, R. SCHEICHL, C. SCHWAB, AND I. H. SLOAN, *Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients*, *Numerische Mathematik*, 131(2) (2015), pp. 329–368.

724

725

726 [23] M. GRÜTER AND K. WIDMAN, *The green function for uniformly elliptic equations*, *Manuscripta Mathematica*, 37 (1982), pp. 303–342.

727

728 [24] N. HALKO, P. MARTINSSON, AND J. TROPP, *Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions*, *SIAM review*, 53 (2011), pp. 217–288.

729

730

731 [25] K. HE, X. ZHANG, S. REN, AND J. SUN, *Deep residual learning for image recognition*, in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 770–778.

732

733

734 [26] V. HOANG AND C. SCHWAB, *N -term wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs*, *Mathematical Models and Methods in Applied Sciences*, 24 (2014), pp. 797–826.

735

736

737 [27] T. HOU AND P. LIU, *A heterogeneous stochastic FEM framework for elliptic PDEs*, *Journal of Computational Physics*, 281 (2015), pp. 942–969.

738

739 [28] T. HOU, P. LIU, AND Z. ZHANG, *A localized data-driven stochastic method for elliptic*
 740 *PDEs with random coefficients*, Bull. Inst. Math. Acad. Sin. (N.S.), 1 (2016), pp. 179–216.

741 [29] T. HOU, D. MA, AND Z. ZHANG, *A model reduction method for multiscale elliptic*
 742 *PDEs with random coefficients using an optimization approach*, Multiscale Modeling &
 743 Simulation, 17 (2019), pp. 826–853.

744 [30] T. Y. HOU, W. LUO, B. ROZOVSKII, AND H. M. ZHOU, *Wiener chaos expansions and*
 745 *numerical solutions of randomly forced equations of fluid mechanics*, J. Comput. Phys.,
 746 216 (2006), pp. 687–706.

747 [31] I. G. KEVREKIDIS, C. W. GEAR, J. M. HYMAN, P. G. KEVREKIDIS, O. RUNBORG,
 748 AND C. THEODOROPOULOS, *Equation-free, coarse-grained multiscale computation: En-*
 749 *abling macroscopic simulators to perform system-level analysis*, Communications in Math-
 750 *ematical Sciences*, 1(4) (2003), pp. 715–762.

751 [32] K. MANOHAR, B. BRUNTON, J. KUTZ, AND S. BRUNTON, *Data-driven sparse sensor*
 752 *placement for reconstruction*, arXiv:1701.07569, (2017).

753 [33] H. G. MATTHIES AND A. KEESE, *Galerkin methods for linear and nonlinear elliptic*
 754 *stochastic partial differential equations*, Comput. Method Appl. Mech. Eng., 194 (2005),
 755 pp. 1295–1331.

756 [34] H. N. NAJM, *Uncertainty quantification and polynomial chaos techniques in computational*
 757 *fluid dynamics*, Annual Review of Fluid Mechanics, 41 (2009), pp. 35–52.

758 [35] F. NOBILE, R. TEMPONE, AND C. WEBSTER, *A sparse grid stochastic collocation method*
 759 *for partial differential equations with random input data*, SIAM J. Numer. Anal., 46 (2008),
 760 pp. 2309–2345.

761 [36] H. OWHADI AND L. ZHANG, *Metric-based upscaling*, Communications on Pure and Ap-
 762 *plied Mathematics*, 60 (2007), pp. 675–723.

763 [37] T. SAPSIS AND P. LERMUSIAUX, *Dynamically orthogonal field equations for continuous*
 764 *stochastic dynamical systems*, Physica D: Nonlinear Phenomena, 238 (2009), pp. 2347–
 765 2360.

766 [38] L. SIROVICH, *Turbulence and the dynamics of coherent structures. I. Coherent structures*,
 767 Quarterly of applied mathematics, 45(3) (1987), pp. 561–571.

768 [39] A. STUART, *Inverse problems: a Bayesian perspective*, Acta numerica, 19 (2010), pp. 451–
 769 559.

770 [40] I. WALD AND V. HAVRAN, *On building fast kd-trees for ray tracing, and on doing that in*
 771 *O (N log N)*, in 2006 IEEE Symposium on Interactive Ray Tracing, IEEE, 2006, pp. 61–69.

772 [41] J. WAN AND N. ZABARAS, *A probabilistic graphical model approach to stochastic multi-*
 773 *scale partial differential equations*, Journal of Computational Physics, 250 (2013), pp. 477–
 774 510.

775 [42] X. L. WAN AND G. KARNIADAKIS, *Multi-element generalized polynomial chaos for ar-*
776 *bitrary probability measures*, SIAM J. Sci. Comp., 28 (2006), pp. 901–928.

777 [43] D. XIU AND J. S. HESTHAVEN, *High-order collocation methods for differential equations*
778 *with random inputs*, SIAM J. Sci. Comp., 27 (2005), pp. 1118–1139.

779 [44] D. XIU AND G. KARNIADAKIS, *Modeling uncertainty in flow simulations via generalized*
780 *polynomial chaos*, J. Comput. Phys., 187 (2003), pp. 137–167.

781 [45] Z. ZHANG, M. CI, AND T. Y. HOU, *A multiscale data-driven stochastic method for ellip-*
782 *tic PDEs with random coefficients*, SIAM Multiscale Model. Simul., 13 (2015), pp. 173–204.