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ABSTRACT: Endpoints density functional theory (DFT) pro-
vides a framework for calculating the excess chemical potential of a
solute in solution using solvent distribution functions obtained
from both physical endpoints of a hypothetical charging process
which transforms the solvent density from that of the pure liquid to
the solution state. In this work, the endpoints DFT equations are
formulated in terms of the indirect (solvent-mediated) contribution
ω(x) to the solute−solvent potential of mean force, and their
connections are established with the conventional DFT expressions
which are based on the use of direct correlation functions. ω
actually corresponds to the free-energy cost to move a cavity particle (a tagged solvent molecule which interacts with the other
solvent molecules but not the solute) from the bulk to the configuration x of a solvent molecule relative to the solute and is a suitable
variable to describe the solvent effects on the solute−solvent interactions. HNC and PY type approximations are then used to
integrate the DFT charging integral involved in the exact expression for the excess chemical potential. With these approximations,
molecular simulations are to be performed at the two endpoints of solute insertion: pure solvent without the solute and the solution
system with the fully coupled solute−solvent interaction. An endpoints method thus utilizes the ensembles of intermolecular
configurations of physical interest, which are often readily accessible with MD simulations given the present computational power.
To illustrate properties of the formulation, we perform simulations of model systems consisting of a cavity particle in an aqueous
solution containing a spherical hydrophobic solute of three different sizes from which ω(x) and the solute chemical potential can be
calculated using endpoints DFT expressions. These are compared with corresponding results obtained using the approximations
needed in order to evaluate the endpoints DFT charging integral when cavity particle simulation data is not available. We analyze a
new approximation (two-points quadratic HNC) to the DFT charging integral which captures the correct behavior of the cavity
distributions at both endpoints of the solute insertion. The behavior of the cavity particle in simple and complex liquids plays an
important role in various theoretical treatments of the solute chemical potential. For pure Lennard-Jones fluids, the free energy to
bring a cavity particle from the bulk to the center of a fluid particle is negative. However, for solutes of varying size, this is not
generally true for Lennard-Jones fluids or the systems studied in this work. We carry out energetic and structural analyses of the
cavity particle in aqueous solution with hydrophobic solutes of varying size and discuss the results in the context of the hydrophobic
effect.

1. INTRODUCTION

Classical density functional theory (DFT) provides a frame-
work for studying the effects of solvation on a rich variety of
phenomena which are of current interest in chemistry,
biophysics, and materials science. While the classical DFT
equations are usually formulated in terms of direct correlation
functions, it is possible to cast the DFT equations instead in
terms of the indirect part of the solute−solvent potential of
mean force (indirect PMF) ω(x), where x is the configuration
of a solvent molecule relative to the solute.1−4 The indirect
term ω(x) has a physical interpretation as a free-energy
difference that can be calculated by simulation in several
different ways. The cavity distribution function y(x) is the
distribution function of a tagged solvent molecule in a solution

which interacts with all the other untagged solvent molecules
but does not interact with the solute. The relationship between
ω(x) and y(x) is given by ω(x) = −kTlog y(x). The properties
of the cavity distribution function have been well-studied for
Lennard-Jones fluids and solutions,5−7 but they are much less
well-studied for aqueous solutions.8−10 The behavior of the
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indirect PMF, ω(x) (or the direct correlation function c(x)),
inside the excluded volume of the solute plays an important
role in the determination of the solute chemical potential by
DFT. Therefore, analysis of the behavior of y(x) inside the
solute excluded volume region by simulation can be used as a
benchmark to compare with the predictions of approximate
free-energy functional expressions for the solute chemical
potential and also to guide the development of improved
functionals.
In 2000 one of us (N.M.) proposed an approximate

functional for calculating the excess chemical potential of a
solute in solution which uses solvent−solvent distribution
functions obtained from the pure liquid and the solute in
solution (“endpoints DFT”) to construct the functional.1−3

The endpoints DFT functional can be constructed using one-
dimensional solute−solvent interaction energy distributions or
mixed four-dimensional (energy, position) distributions; this is
a significant computational advantage as compared with using
full six-dimensional (position, orientation) distributions.11 In
recent years endpoints DFT has been applied to a diverse array
of problems in biophysics, polymers, and interfaces.12,13

In this work, we provide the theoretical foundation of the
endpoints DFT method. The key role in our formulation is
played by the indirect PMF ω(x). This is a distinct feature
which is different from the classical DFT formulation that
employs direct correlation functions.14,15 The connection
between the two formulations will be established. Although
the formulation of the endpoints functional with the indirect
PMF was presented in the literature,2,11,13 its relationship to
the classical formulation was not described in an explicit and
systematic manner previously. In fact, ω(x) (or the cavity
distribution function) describes the collective effects of solvent
on the solute−solvent correlation. A formulation relying upon
ω(x) can thus be suitable for free energetics of solvation, in
which the solvent effects are to be pursued. The exact
functional for the excess chemical potential then involves an
integration over the gradual insertion process of the solute, and
approximations of HNC and PY type are introduced to express
the functional in terms of distribution functions only at the
endpoints of solute insertion. The endpoints are the pure
solvent without solute and the solution system with the
solute−solvent interaction at full coupling. They are of physical
interest and can often be simulated readily with the
computation power available at present. Typically, the classical
DFT approximation scheme provides solvation thermody-
namic properties using distribution functions only in pure
solvent. In the endpoints scheme employed here, on the other
hand, solvation thermodynamic properties are obtained from a
density functional using distribution functions constructed
from both endpoint states; the pure solvent and the solution of
interest. The endpoints method thus utilizes the DFT
formalism, together with solute−solvent distribution functions
at the physical endpoints, to efficiently and accurately evaluate
the excess chemical potential, which requires substantially
more computational effort using standard methods like
thermodynamic integration and free-energy perturbation.16,17

On the basis of the formulation described in the preceding
paragraph, we use computer simulations to analyze how ω(x)
behaves within the solute core for a series of three methane-
like hydrophobic solutes of increasing size in water. In the limit
of very small solute size, at the center of the solute, it is well-
known that ω(x) < 0 for solvation in the LJ solvent,5,7 while as
the size of the solute grows large, ω(x) > 0 and approaches −μ

(where μ is the solvation free energy of the solvent in the
solution), both for the LJ solvent and for water. We contrast
the qualitative behavior of ω(x) for the three methane-like
solutes of different sizes in water and comment on the
implications for theories of hydrophobic solvation. We also
analyze how the hydrophobic solute−water interfacial
structure is distorted as the cavity particle passes through the
interface.8,18−35 In fact, the indirect PMF (the PMF of a cavity
particle around a solute) in aqueous solutions has not been
studied extensively.7−10 More in-depth studies have been
restricted to the properties of cavity particles in simple
liquids.5,6,15,36 Our purpose in examining a set of model solutes
in water is to catalogue the collective effects of water on the
cavity particle distribution around a hydrophobic solute, with
the specific aim of evaluating quantities which are central to
the construction of free-energy functionals within the frame-
work of endpoints DFT, and to explore a possible way to
improve the approximations.
In endpoints DFT, the excess contribution to the solvent

reorganization free energy associated with linearly charging the
density from that of the pure liquid to the solution distribution
is estimated by a functional constructed using the simulations
of the two physical endpoints. Within the solute core, however,
the functional is constructed using only the pure water
simulation data by inverting the pure water−water fluctuation
correlation function. For larger solutes, it is possible to
improve the approximation of the functional within the solute
core by incorporating the results of cavity particle simulations.
We describe a way to incorporate this information which leads
to better treatment of the excluded volume effect for larger
solutes within the endpoints DFT framework.
The organization of this paper is as follows. In section 2, we

derive the formulas which relate the indirect PMF ω(x), which
is the central focus of endpoints DFT, to the direct correlation
function c(x). In section 3, we describe the simulation
methods, including a description of how the potential of
mean force is constructed as a function of the distance from
the hydrophobic solute. We present the results in section 4 and
discussion in section 5, with conclusions in section 6.

2. THEORY
This work is concerned with the chemical potential of
hydrophobic solutes in aqueous solution from the perspective
of density functional theory. As described below, the endpoints
DFT expression for the solute chemical potential is derived by
combining an expression for the solvent density in the
inhomogeneous solution based on the (Widom) potential
distribution theorem with a solvent density charging formula
that is constructed by performing a partial integration of the
Kirkwood charging formula for the solvation free en-
ergy.1,2,13,37,38 This transforms the charging process from one
which charges up the solute−solvent interaction potential to
one which charges up the solvent density from the initial pure
liquid state to the final inhomogeneous solution state. In this
formulation of the problem, the key quantity we focus on is the
indirect part of the solute−solvent potential of mean force
ω(x). The endpoints DFT equations can be derived in the
canonical or the grand canonical ensemble. The starting point
for the standard DFT formulation of this problem is the grand
potential.14,15 The functional derivative of the excess part of
the grand potential is the one-point direct correlation function
c(1)(x). Integration of the functional derivative leads to a
Kirkwood-type charging formula of the direct correlation
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function to obtain the excess free-energy contribution to the
chemical potential of the solute. In this section, we show that
the two expressions for the chemical potential of the solute in
solution, namely the endpoints DFT expression and the
standard DFT expression, are equivalent.
We adopt the grand canonical ensemble in the following.

The solute molecule is fixed at the origin, and the configuration
of a solvent molecule is expressed as x. The position and
orientation are collectively represented by x, and the
intramolecular degrees of freedom are also incorporated into
x if the molecule is flexible. We treat a family of solute−solvent
interactions ϕλ(x), where λ is the coupling parameter with 0 ≤
λ ≤ 1. At λ = 0, the solute−solvent interaction is absent and ϕ0
= 0. ϕ1 is the solute−solvent interaction of interest, and ϕλ in 0
< λ < 1 describes the alchemical intermediate states connecting
the endpoint states of λ = 0 and 1. ρλ

(1)(x) further denotes the
one-body distribution function of the solvent around the
solute. It is the density of the solvent at configuration x and is
the ensemble average with solute−solvent interaction potential
ϕλ of the instantaneous distribution ρ̂(x) defined as

∑ρ δ̂ = −x x x( ) ( )
i

i
(1)

where xi is the (snapshot) configuration of the ith solvent
molecule and the sum is taken over all the solvent molecules. It
should noted that the averaging is done for ρλ

(1) in the presence
of the solute−solvent interaction ϕλ; this is the reason why ρλ

(1)

depends on λ, while ρ̂ refers only to a snapshot configuration
and is a quantity “before” the averaging procedure. ρ0

(1) is then
the density in the absence of the solute and is equal to the bulk
density of the solvent when the system is homogeneous. Note
that our developments are valid also when the system is
inhomogeneous.
The one-body direct correlation function cλ

(1)(x) is
introduced as14,15,39

ρ βϕ= − +λ λ λz cx x x( ) exp( ( ) ( ))(1) (1)
(2)

where β = 1/kBT with the Boltzmann constant kB and the
temperature T, and z is given by

βμ
=

Λ
z

exp( )v
3 (3)

with the chemical potential μv and the thermal de Broglie
length Λ of the solvent. μv does not vary with the coupling
parameter λ in the grand canonical ensemble, and correspond-
ingly, z does not depend on λ. cλ

(1)(x) vanishes in the ideal gas
without solvent−solvent interactions. It thus describes the
effects of solvent−solvent correlations at the level of one-body
distribution of solvent. The indirect part of the solute−solvent
potential of mean force ωλ(x) is defined, on the other hand,
as15,38

ρ ρ βϕ βω= − −λ λ λx x x x( ) ( )exp( ( ) ( ))(1)
0
(1)

(4)

This definition uses the pure liquid distribution function (λ =
0) as the reference. Because ϕ0(x) = 0 and z is constant against
the variation of λ, eq 2 can be rewritten through ρ0

(1)(x) =
z exp(c0

(1)(x)) as

ρ ρ βϕ= − + −λ λ λc cx x x x x( ) ( )exp( ( ) ( ) ( ))(1)
0
(1) (1)

0
(1)

(5)

so that the definition also refers to the distribution function at
λ = 0. By comparing eqs 4 and 5, we come to the conclusion
that cλ

(1) and ωλ are related to each other through

βω− = −λ λc cx x x( ) ( ) ( )(1)
0
(1)

(6)

exp(−βωλ(x)) is called the cavity distribution function. It
describes the probability of favorable and unfavorable
configurations of a “cavity” particle, which interacts with the
other solvent molecules but not the solute. The molecular
structure of the cavity particle is identical to that of the solvent,
and the only difference is that the interaction with the solute is
turned off. cλ

(1)(x) is connected through the potential
distribution theorem to the excess chemical potential or the
free energy of transferring a cavity particle from vacuum to
configuration x.15,39 The ideal-gas state is thus the reference for
cλ
(1), and the effects of solvent−solvent correlations on the one-
particle distribution function ρλ

(1) are quantified there. ωλ

reflects the changes in solvent−solvent correlations due to
the introduction of the solute−solvent interaction ϕλ, on the
other hand, and ω0 = 0, in particular. ωλ thus focuses more on
the solute−solvent effects than cλ

(1).
When the ensemble is grand canonical, the solvation free

energy, Δμu, of the solute is equal to the difference of the grand
potential at λ = 1 from that at λ = 0. In the density functional
formalism, the grand potential Ωλ is expressed as14,15

∫ ∫ϕ ρ μ ρΩ = + + −λ λ λ λ λ λF F x x x x xd ( ) ( ) d ( )v
id ex (1) (1)

(7)

where (Fλ
id + Fλ

ex) is called intrinsic free energy and Fλ
id and Fλ

ex

are the ideal and excess parts, respectively. ρλ
(1)(x) is provided

by eq 2. Fλ
id is written explicitly with ρλ

(1) as

∫ ρ ρ= Λ −λ λ λF k T x x xd ( )(log( ( )) 1)id
B

(1) 3 (1)
(8)

and Fλ
ex is connected to cλ

(1)(x) through

δ
δρ

− =λ
λ

λ

k Tc
F

x
x

( )
( )

B
(1)

ex

(1)
(9)

Fλ
ex vanishes for the ideal gas, and it is a notable feature of the

DFT formalism that the ideal part is provided in closed form in
terms of the one-body distribution function ρλ

(1)(x). According
to eq 7, Δμu is given by

∫
∫

μ μ ρ ρ

ϕ ρ

Δ = − − −

+ − +

F F

F F

x x x

x x x

( ) d ( ( ) ( ))

( ) d ( ) ( )

u v1
id

0
id

1
(1)

0
(1)

1
ex

0
ex

1 1
(1)

(10)

The first term reflects the change in the one-body distribution
of the solvent due to the introduction of the solute−solvent
interaction ϕ1(x), and the second term is present because the
number of solvent molecules in a grand canonical system can
change with the interaction with the solute. The third term
corresponds to the solute-induced effects on solvent−solvent
correlations, and the last term is simply the sum of the solute−
solvent interaction energy at λ = 1. The first two terms (those
involving the ideal part and μv) on the right-hand side of eq 10
can be written by virtue of eqs 2, 3, and 8 as
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∫ ∫

∫

ρ ρ ρ
ρ

ρ

ρ ρ

− − +

+ −

i

k

jjjjjjj
y

{

zzzzzzzk T k T

k T c

x x x x x
x

x

x x x x

d ( ( ) ( )) d ( )log
( )

( )

d ( )( ( ) ( ))

B 1
(1)

0
(1)

B 1
(1) 1

(1)

0
(1)

B 0
(1)

1
(1)

0
(1)

(11)

because

ρ μ= Λ −k Tc k Tx x( ) log( ( )) vB 0
(1)

B
3

0
(1)

(12)

Of course c0
(1)(x) and ρ0

(1)(x) are independent of x for a
homogeneous fluid as they correspond to the pure liquid state
λ = 0. Equation 9 leads further to

∫ ∫λ
ρ

λ
− = −

∂
∂λ

λF F k T cx x
x

d d ( )
( )

1
ex

0
ex

B
0

1
(1)

(1)

(13)

and by noting

∫ρ ρ λ
ρ

λ
− =

∂
∂

λdx x
x

( ) ( )
( )

1
(1)

0
(1)

0

1 (1)

(14)

we obtain

∫

∫ ∫

ρ ρ

λ
ρ

λ

− + −

= − −
∂

∂λ
λ

F F k T c

k T c c

x x x x

x x x
x

d ( )( ( ) ( ))

d d ( ( ) ( ))
( )

1
ex

0
ex

B 0
(1)

1
(1)

0
(1)

B
0

1
(1)

0
(1)

(1)

(15)

and

∫ ∫

∫ ∫

μ ϕ ρ ρ ρ

ρ
ρ

ρ
λ

ρ
λ

Δ = − −

− −

−
∂

∂λ
λ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
i

k

jjjjjjj
y

{

zzzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

k T

k T

c c

x x x x x x

x
x

x
x

x x
x

d ( ) ( ) d ( ) ( )

( )log
( )

( )
d d

( ( ) ( ))
( )

u 1 1
(1)

B 1
(1)

0
(1)

1
(1) 1

(1)

0
(1) B

0

1

(1)
0
(1)

(1)

(16)

Therefore, eq 10 can be rewritten by using eq 6 as

∫

∫

∫ ∫

μ ϕ ρ

ρ ρ ρ
ρ

ρ

λ ω
ρ

λ

Δ = −

− −

+
∂

∂λ
λ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i

k

jjjjjj
y

{

zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

k Tx x x

x x x x
x

x

x x
x

d ( ) ( )

d ( ) ( ) ( )log
( )

( )

d d ( )
( )

u 1 1
(1)

B

1
(1)

0
(1)

1
(1) 1

(1)

0
(1)

0

1 (1)

(17)

and this equation is indeed the expression derived in refs 2, 13,
37, and 38. The derivation started from the Kirkwood charging
formula there and is valid in any statistical ensemble. Equation
17 is the basic equation of endpoints DFT. A particularly
important feature of eq 17 is that different representations can
be used to evaluate this expression using simulation data at the
endpoints (pure liquid and solution). In the energy
representation, x is reduced to a one-dimensional variable
corresponding to the solute−solvent interaction energy (see
section 5.3).
The preceding paragraph showed the equivalence between

the density-functional formalism based on the direct
correlation function and that on the indirect part of the
potential of mean force. The key is provided by the
correspondence expressed as eq 6. ωλ(x) is actually a free-
energy difference quantifying the solvent-mediated effect on

the solute−solvent correlations, and a wealth of numerical
methods may be employed to compute it.16,17 The focus of the
present work is the indirect part of the solute−solvent
potential of mean force, and we will examine aqueous solutions
of hydrophobic solutes with variable sizes.
The parallelism is also evident between the approximations

for cλ
(1) and ωλ. The hypernetted-chain (HNC) approximation

for cλ
(1) is the first-order expansion in terms of (ρλ

(1) − ρ0
(1)) and

is expressed as14,15

∫ δ
δρ

ρ ρ− = −λ
λ

λ λ

λ

=

c c
c

x x y
x

y
y y( ) ( ) d

( )

( )
( ( ) ( ))(1)

0
(1)

(1)

(1)
0

(1)
0
(1)

(18)

In this equation, the integrand involves the two-body direct
correlation function c0

(2)(x, y). The two-body function is
defined at 0 ≤ λ ≤ 1 as

δ
δρ

=λ
λ

λ

c
c

x y
x

y
( , )

( )

( )
(2)

(1)

(1)
(19)

and is related to the (two-body) susceptibility χλ(x, y) through

χ ρ ρ ρ ρ

δρ
δϕ

= ⟨ ̂ ̂ ⟩ − ⟨ ̂ ⟩ ⟨ ̂ ⟩

= −

λ λ λ λ

λ

λ
k T

x y x y x y

x

y

( , ) ( ) ( ) ( ) ( )

( )

( )B

(1)

(20)

∫ δ
ρ

χ δ− − = −
λ

λ λ

i

k

jjjjjj
y

{

zzzzzzcz
x z

z
x z z y x yd

( )

( )
( , ) ( , ) ( )

(1)
(2)

(21)

where the instantaneous distribution ρ̂(x) was introduced by
eq 1; ϕλ(x) is the solute−solvent interaction potential, and
⟨···⟩λ denotes the ensemble average at λ. Equation 21 is
equivalent to the Ornstein−Zernike equation, and with eqs 19
and 21, eq 18 is rewritten as

∫

ρ ρ

ρ

χ ρ ρ

− =
−

− −

λ
λ

λ
−

c cx x
x x

x

y x y y y

( ) ( )
( ) ( )

( )

d ( ) ( , )( ( ) ( ))

(1)
0
(1)

(1)
0
(1)

0
(1)

0
1 (1)

0
(1)

(22)

Using eqs 4, 6, and 20, eq 22 can be written in the following
form:

∫

∫

ω
ρ ρ

ρ
δϕ

δρ
ρ ρ

δω
δρ

ρ ρ

= −
−

− −

= −

λ
λ

λ

λ λ

λ

λ

λ λ

λ

=

=

k Tx
x x

x

y
x

y
y y

y
x

y
y y

( )
( ) ( )

( )

d
( )

( )
( ( ) ( ))

d
( )

( )
( ( ) ( ))

B

(1)
0
(1)

0
(1)

(1)
0

(1)
0
(1)

(1)
0

(1)
0
(1)

(23)

and the equivalence of eqs 18 and 23 is proved. The HNC
approximation is the first-order expansion with (ρλ

(1) − ρ0
(1)) for

cλ
(1), and it is so for ωλ.
A similar argument is possible for the Percus−Yevick (PY)

approximation. It is the first-order expansion of exp(cλ
(1)) and is

written as
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∫

∫

δ
δρ

ρ ρ

δ
δρ

ρ ρ

= +

−

= +

−

λ
λ

λ λ

λ

λ

λ λ

λ

=

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
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By noting the modification of the right-hand side of eq 18 to
those of eqs 22 and 23, eq 24 reduces by virtue of eq 6 to
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This equation shows that the PY approximation is also the
first-order expansion of exp(−βωλ) with respect to (ρλ

(1) −
ρ0
(1)).
Equations 16 and 17 are simplified when the solute−solvent

interaction potential ϕλ is taken so that the one-body
distribution function ρλ

(1) varies l inearly with λ
through2,11,13,15,37,38
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With this linear form for ρλ
(1)(x), eq 17 reduces to
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Equation 27 is exact with the particular choice of eq 26, and
Δμu is obtained when the integration over λ is conducted for
ωλ. When eq 26 is adopted, eqs 18, 23, 24, and 25 are further
expressed as
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respectively. These equations show that the HNC and PY
approximations are expressed as the linear dependencies on λ:
cλ
(1) and ωλ for HNC or exp(cλ

(1)) and exp(−βωλ) for PY. When
ωλ is provided explicitly as a function of λ in terms of its values
(or derivatives) at λ = 0 and 1 (the endpoint states of solute
insertion), the solvation free energy Δμu is expressed in terms
only of the variables at the endpoints.2,13,37,40 The Δμu
computation is called endpoints DFT when an approximate
functional for Δμu is constructed from distribution functions
obtained at molecular simulations at λ = 0 and 1. The
endpoints computation is described in section 5.3 in more
detail.
With the definition of the two-body direct correlation

function cλ
(2)(x, y) by eq 19 and its connection to the

susceptibility through eq 21, the derivatives of cλ
(1) and ωλ are

determined from

∫

∫

λ
ω

λ
ρ

λ

ρ

ρ
λ

χ
ρ

λ

−
∂

∂
=

∂
∂

= −
∂

∂

= −
∂

∂

+
∂

∂

λ λ
λ

λ

λ

λ

λ
λ−

k T
c

k T c

k T

k T

x x
y x y

y

x

x

y x y
y

( ) ( )
d ( , )

( )

1
( )

( )

d ( ) ( , )
( )

B

(1)

B
(2)

(1)

B (1)

(1)

B
1

(1)

(32)

When the one-body distribution function ρλ
(1) is taken so that it

varies linearly with λ, the derivative of ωλ at the pure solvent
state is
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The susceptibility χλ describes the two-point correlation
between a pair of solvent molecules and needs to be inverted in
eqs 22 and 32. It should be noted, in fact, that χλ is not
invertible when the ensemble is canonical or isothermal−
isobaric and the number of solvent molecules is constant. This
reflects the fact that a shift in the solute−solvent potential by
an additive constant does not affect the distribution function; a
single distribution function corresponds to a number of
potential functions that are different among one another by
additive constants independent of the solute−solvent config-
urations. A valid version of the Ornstein−Zernike equation in
the canonical ensemble has been sought in connection with the
Kirkwood−Buff integral,41−46 and the one-to-one correspond-
ence between the potential and distribution can be restored by
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fixing the additive constant so that the potential vanishes at
large distances between the solute and solvent.3,13,37 With the
solute−solvent potential ϕλ(x), the last term of eq 32 is
rewritten as

∫ρ
λ

β χ
ϕ

λ
∂

∂
= −

∂
∂

λ
λ

λx
y x y

y( )
d ( , )

( )(1)

(34)

(∂ϕλ(x)/∂λ) is the solution to eq 34, and our convention is to
adopt the one which vanishes at far separation of solute and
solvent. The expression of ϕλ(x) with (∂ϕλ/∂λ) satisfying eq
34 is then unique, and the (χλ)

−1 procedure in eqs 32 and 33
should be understood with the above convention. Actually,
when ϕλ(x) is not zero at far separation, the solvation free
energy for the solute with that potential is not an intensive
quantity and involves a term that grows with the system size.
Our scheme can thus be rephrased as a requirement that the
solvation free energy is an intensive quantity over the whole 0
≤ λ ≤ 1.
We comment here on the use of endpoints DFT in the

canonical versus grand canonical ensembles. In the DFT
method described above, the difference among the statistical
ensembles lies in the treatment of the susceptibility χλ in eq 32.
In the grand canonical ensemble, χλ is positive definite and can
be straightforwardly inverted. In the canonical or isothermal−
isobaric ensemble, the pseudoinversion procedure in the
preceding paragraph is employed. The solute−solvent
interaction potential ϕλ that is the solution to eq 34 is
independent of the ensemble, though. This is because ϕλ (is
enforced to) vanish at far separation in all of the ensembles,
and as a result, the solvation free energy does not depend on
the ensemble. In fact, molecular simulations are to be
conducted at λ = 0 and 1 when the endpoints DFT scheme
is employed. The solvation free energy computed with the
pseudoinversion in the canonical or isothermal−isobaric
ensemble is still the same as the value that would be obtained
in a grand-canonical simulation. This is a notable feature of the
endpoints DFT scheme because molecular simulations are
commonly performed in the canonical or isothermal−isobaric
ensemble.
In this section, we described the endpoints DFT formalism.

As seen with eqs 17 and 27, the indirect PMF ω(x) plays the
key role in determining the solvation free energy of the solute
Δμu. ω(x) quantifies the collective effects of solvent on the
solute−solvent distribution, and our formalism provides direct
connection between the solvent effects at the molecular scale
and the solvation energetics at the thermodynamic scale. The
third terms of eqs 17 and 27 can be approximated through the
HNC and PY forms to the endpoints expression as further
noted in section 5.3. The endpoints method utilizes MD
outputs at λ = 0 and 1, which is in harmony with the present
status of computational chemistry and biophysics that a
nanoscale MD is readily possible. The performance of the
method is governed by the approximation adopted for ωλ, and
in the following sections, we will examine the indirect PMF for
hydrophobic solutes in water.

3. SIMULATION METHOD

3.1. Cavity Particle. Consider an MD simulation of a
solution with a fixed solute and one tagged solvent molecule
performed in the canonical ensemble. The total potential
energy of the system is

ϕ{ } = + { } + { } + { }̅U U U Ux x x x x x x( , ) ( ) ( ) ( , ) ( )uv vv vv1
(35)

where ϕ1 (ϕλ at the λ = 1 state) is the interaction energy
between the tagged solvent molecule and the solute; Uvv is the
interaction energy between the tagged solvent molecule and
the other solvent molecules; Uuv is the interaction energy
between the solute and the other solvent molecules, and Uvv is
the total interaction energy of all the other solvent molecules. x
and {x} represent the coordinates of the tagged solvent
molecule and the other solvent molecules, respectively. The
density of one tagged water molecule is normalized to unity
instead of the total number of water molecules, N. Namely,
Nρ1

(w)(x) = ρ1
(1)(x), where ρ1

(w)(x) is the density of the tagged
w a t e r m o l e c u l e i n t h e s o l u t i o n , a n d

ρ ρ ρ∞ = ∞ = +N Nx( ) ( ) ( ) (1/ )w
1
( )

1
(1)

0
(1) in the canonical

ensemble, where x = ∞ denotes that the water molecule is in
the bulk.
Consider a different simulation state at which the interaction

between the tagged solvent molecule and the solute is turned
off. Such tagged solvent molecule will be termed a cavity
particle in this study. The total potential energy of this system
is

{ } = { } + { } + { }̅U U U Ux x x x x x( , ) ( ) ( , ) ( )uv vv vvcav (36)

The density of the cavity particle in the solution, ρ1
(c)(x), and

the density of a tagged water molecule, ρ1
(w)(x), described

above satisfy a simple relationship:

ρ βϕ ρ= [ ]x x x( ) exp ( ) ( )c w
1
( )

1 1
( )

(37)

Note that eq 37 actually holds with a multiplicative factor that
is independent of x and reduces to unity in the limit of large
system size (see the Supporting Information).36 Combining
eqs 4 and 37 yields
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which shows that the indirect part of the solute−solvent
potential of mean force, ω(x), can be estimated by the cavity
particle density.

3.2. Simulation Details. We ran simulations for a solution
that contains a methane-like hydrophobic solute represented
by a fixed carbon atom, 699 TIP3P water molecules,47 and a
water cavity particle by using the GROMACS version 2016/
3.48 The simulation box is cubic, and the length of each side is
2.78 nm. The system was modeled by the OPLS-AA force
field.49 Before the NVT production simulations, the system was
equilibrated by energy minimization and a 1 ns long NPT
simulation. For the NPT simulations during the equilibration
period, the pressure was kept at 1 bar by the Parrinello−
Rahman pressure barostat with a pressure relaxation time of
2.0 ps;50 the temperature was kept constant at 300 K by the
velocity-rescaling with a time constant τt = 0.1 ps. For the NVT
simulations during the production period, the temperature was
maintained at 300 K by the leapfrog stochastic dynamics
integrator (Langevin dynamics) with a time constant τt = 2.0
ps.51 The time step for the MD simulations was 2 fs; the water
molecules were kept rigid with SETTLE.52 The long-range
electrostatic interaction was treated using the smooth particle-
mesh Ewald approach with a real-space cutoff of 1.0 nm and a
spline order of 4.53 To create a cavity particle, we chose one
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water molecule and added an artificial bond between each
atom of this water molecule and the solute by using the type 5
bond function in GROMACS, which creates a bond-like
connection between two atoms without creating an interaction.
This makes it possible to put the nonbonded interactions
between the specified water (the cavity particle) and the solute
onto the list of exclusions.48 Therefore, there are no
interactions between the chosen water molecule, namely, the
cavity particle, and the solute in the simulations.
The charges, masses, and parameters of Lennard-Jones

interactions of different atoms in this system are listed in Table

1. The standard formula of the LJ potential VLJ between two
atoms is
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where σ σ σ=ij ii jj and ϵ = ϵ ϵij ii jj . Because a cutoff of van der

Waals interactions (1.0 nm) was applied, the actual LJ
potential between the solute and a water molecule in our
simulations is evaluated by

σ σ
=

ϵ − − <

≥

l

m
ooooooo

n

ooooooo

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑV r r r
V r

r

( )
4 1.0 nm

0 1.0 nm

LJ
(sw)

co
co

co

co

12
co

co

6

shift co

co

(40)

where rco is the distance between the solute and the oxygen
atom of the water molecule and Vshift is the van der Waals
interaction energy between a carbon atom and an oxygen atom
calculated using eq 39 when their distance equals the cutoff
(1.0 nm). The LJ potential between the solute and a water
molecule is plotted in the Figure S1a. The LJ potential

VLJ
(sw)(rco) is zero when the distance rco is 0.332 nm and reaches

its minimum −0.100 kcal/mol when the distance rco is 0.373
nm. Because the hydrogen site in the water molecule does not
carry LJ parameters, in addition, the interaction potential of eq
40 depends only on rco. Because of this property, we can
discuss the cavity distribution only over the coordinate of rco.
We doubled and tripled the value of σ of the carbon atom to

make larger solutes, which will be termed the C×2 and C×3
solutes in this article, respectively. Note that the radius of
solvent exclusion is larger by factors of 2 and 3 for the C×2
and C×3 solutes, respectively, because of the geometric
combination rule adopted. The LJ potential between the C×2
solute and a water molecule is plotted in Figure S1b. The LJ
potential VLJ

(sw)(rco) is zero when the distance rco is 0.470 nm
and reaches its minimum, −0.096 kcal/mol, when the distance
rco is 0.527 nm. See the Supporting Information for the
discussion about the LJ potential for the C×3 solute.
To obtain better sampling in the repulsive region of the

solute, we applied an umbrella sampling algorithm, which
includes 21 independent simulations (21 umbrella sampling
windows). For the ith simulation (0 ≤ i ≤ 20), the parabolic
restraint potential is

= −U i k r r i( )
1
2

( ( ))u u co 0
2

(41)

where ku = 1000 kJ/mol is the force constant and r0(i) = 0.05i
nm is the minimum position of the restraint potential. Each
independent simulation lasted 200 ns. Additionally, we ran one
simulation of the solution without cavity particles and another
simulation of the solution that contains a free cavity particle.
Each additional simulation lasted 300 ns. The position of the
cavity particle (or the tagged water molecule) was recorded
every 1 ps. The raw data were analyzed by UWHAM.54

4. RESULTS
4.1. Potential of Mean Force of the Cavity Particle.

4.1.1. Methane-like Solute: C×1. Figure 1a shows the
densities of the cavity particle and a tagged water molecule
for the methane-like solute. Both densities converge to the
density of water in pure solvent, ρ0

(1)(x)/N (or the density of
the cavity particle in the bulk, ρ1

(c)(∞)), when the distance
between the oxygen atom of the water molecule and the solute,
rco, approaches the simulation cutoff distance 1 nm. (Note that
we ignore the small factor N(1/ ) that distinguishes the bulk

Table 1. Force Field Parameters Used in MD Simulations

atom C O H

charge (e) 0.0 −0.834 0.417
mass (u) 12.01100 15.99940 1.00800
ϵii (kJ/mol) 0.276144 0.636386 0
σii (nm) 0.350000 0.315061 0

Figure 1. (a) Densities of the cavity particle and a tagged water molecule in a solution that contains a methane-like solute. The red line shows the
density of pure solvent. (b) Radial PMF of the cavity particle ω(rco).
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density from the pure liquid density in the canonical
ensemble.) The density of the tagged water molecule peaks
at rco = 0.345 nm where the LJ potential between the solute
and the water molecule is approximately zero (see Figure S1a).
When the distance rco decreases further, the density of the
tagged water molecule decreases rapidly approaching zero
around rco = 0.275 nm, whereas the density of the cavity
particle keeps increasing and reaches its maximum when rco
equals 0.035 nm. Figure 1b shows the radial potential of mean
force (PMF) of the cavity particle calculated by

ω
ρ

ρ
= −

∞
r k T

r
( ) ln

( )

( )

c

cco B
1
( )

co

1
( )

(42)

which represents the free-energy change of moving the cavity
particle from the bulk to the position where the distance
between the oxygen atom of the cavity particle and the solute
is rco. The indirect PMF ω is −1.41 ± 0.02 kcal/mol at the
center of the solute (rco = 0).
4.1.2. Hydrophobic Solute: C×2 and C×3. The densities of

the cavity particle and the tagged water molecule for the
solution containing the larger hydrophobic solute, C×2, are
plotted in Figure 2a. The density curve of the tagged water
molecule maintains a similar shape compared with the case in
which the solute is a carbon atom. (Note the difference in the
scale of the vertical axes.) The density of the tagged water

molecule peaks at rco = 0.485 nm, where the LJ potential
between the solute and the water molecule is approximately
zero (see Figure S1b). When the tagged water molecule moves
closer to the solute, the density decreases rapidly and
approaches zero at rco ≈ 0.385 nm. The density of the cavity
particle reaches its maximum inside the repulsive core close to
the distance at which the density of the tagged water
approaches zero. However, unlike for the methane size solute,
although there is no interaction between the cavity particle and
the solute, the radial probability density of the cavity particle
approaches zero at the center of the solute. In Figure 2b, we
plot the radial PMF of the cavity particle. The radial PMF
ω(rco) switches from negative to positive when rco is ∼0.270
nm and continues increasing when the distance rco decreases.
The radial PMF ω(rco) = +3.89 ± 0.03 kcal/mol at the center
of the solute (rco = 0). We also analyzed the potential of mean
force for a cavity particle in a solution with an even larger
hydrophobic solute (C×3). The results are presented in the
Supporting Information (see Figure S2). For the case of the
C×3 solute, the maximum PMF ω is +5.16 ± 0.02 kcal/mol at
rco = 0.

4.2. Interaction between the Cavity Particle and the
Solvent. 4.2.1. Methane-like Solute: C×1. Figure 3a shows
the change of the average interaction energy between the
cavity particle and the solvent ⟨Uvv ⟩ when the cavity particle is
moved from the bulk to the center of the methane-like solute.

Figure 2. (a) Densities of the cavity particle and a tagged water molecule in a solution that contains a C×2 solute. The red line is the density of
pure solvent. (b) Radial PMF of the cavity particle.

Figure 3. (a) Dependence of the average interaction energy between the cavity particle and the solvent on the distance between the cavity particle
and the solute, rco, in a solution that contains a methane-like solute. (b) Decomposition of PMF ω(rco) and the dependence of the components on
the distance between the cavity particle and the solute, rco.
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The average total interaction energy ⟨Uvv ⟩ changes from
−19.78 to −14.93 kcal/mol when the distance between the
cavity particle and the solute rco decreases from 1.00 nm to
zero. We separated ⟨Uvv ⟩ into the Coulomb part and the LJ
part. In the bulk, the Lennard-Jones interaction between the
cavity particle and other water molecules is positive, but it
switches to negative when the cavity particle moves into the
solute. The magnitude of the change of the LJ interaction is
4.30 kcal/mol when rco decreases from 1.00 nm to zero. The
Coulomb interaction between the cavity particle and other
water molecules is always negative. The Coulomb interaction
becomes less attractive by +9.15 kcal/mol (from −22.89 to
−13.74 kcal/mol) when rco decreases from 1.00 nm to zero.
The free-energy change to insert a cavity particle in the

solution at position rco can be decomposed into two
components, namely

Δ = ⟨ ⟩ + Δ̅F r U r F r( ) ( ) ( )vvco co reorg co (43)

where ⟨Uvv ⟩ is the average interaction energy between the
cavity particle and the solvent and ΔFreorg is the free energy
required to reorganize the solvent water molecule around the
inserted cavity particle. Similarly, we can decompose the PMF
ω(rco) into two components

ω = Δ − Δ ∞

= ⟨ ⟩ − ⟨ ∞ ⟩ + Δ − Δ ∞̅ ̅

r F r F

U r U F r F

( ) ( ) ( )

( ( ) ( ) ) ( ( ) ( ))vv vv

co co

co reorg co reorg

(44)

where (⟨Uvv (rco)⟩ − ⟨Uvv (∞)⟩) and (ΔFreorg(rco) −
ΔFreorg(∞)) represent the changes of the average interaction
energy between the cavity particle and the solvent and the
reorganization free energy, respectively, when the cavity
particle is moved from the bulk to the position where the
distance between the oxygen atom of the cavity particle and
the solute is rco. The dependence of these two energy terms on
rco is shown in Figure 3b. When the cavity particle is in the
bulk, the average interaction energy between the cavity particle
and the solvent is negative, and the reorganization free energy
is positive. Figure 3b shows that the magnitudes of both terms
decrease when the cavity particle is moved from the bulk to the
center of the carbon atom. For the methane-like solute, the

change of the average interaction energy ⟨Uvv ⟩ is +4.84 kcal/
mol when rco is reduced from 1.00 nm to zero, and the change
of the reorganization free energy is −6.28 kcal/mol with the
same variation of rco.
We examined the change of the number of hydrogen bonds

that are formed between the cavity particle and the solvent
when the distance between the cavity particle and the solute rco
changes. The “hbond” function in the GROMACS software
package was applied to analyze hydrogen bonds.48 A
geometrical criterion is used to determine whether a hydrogen
bond exists: the cutoff distance is 0.35 nm, and the cutoff angle
is 30°. The result is shown in Figure 4a. The average number
of hydrogen bonds between the cavity particle and the solvent
is ∼3.4 when the cavity particle is in the bulk, which is the
correct value for the TIP3P water model in water,47 and begins
to decrease when the cavity particle enters the first hydration
shell of the methane-like solute at ∼0.4 nm. The cavity particle
and the solvent form ∼2.4 hydrogen bonds when the cavity
particle is located at the center of the methane-like solute (rco
= 0). The blue curve in Figure 4b shows how the total number
of hydrogen bonds inside the first solvation shell (rfirst = 0.51
nm) of the solute depends on the distance between the cavity
particle and the solute rco. As mentioned in section 4.1.1,
Figure 1 shows the density of a tagged water molecule peaks at
rco = 0.345 nm in the first hydration shell of the methane-like
solute. The radius of the first solvation shell is determined by
the position of the nearest local minimum following the first
maximum in the radial density distribution function. When
measuring the total number of hydrogen bonds within the first
solvation shell, only those hydrogen bonds whose donor and
acceptor are both within the shell are considered. Therefore,
the total number of hydrogen bonds inside the first solvation
shell includes hydrogen bonds made between untagged pairs of
water molecules, both of which must be inside the shell, and
hydrogen bonds made between the cavity particle and
untagged water molecules, both of which must also be inside
the shell. As the cavity particle is moved into the first hydration
shell, one water molecule is gradually pushed out of the shell.
The total number of hydrogen bonds within the first solvation
shell measured by the “hbond” function of GROMACS

Figure 4. (a) Dependence of the number of hydrogen bonds formed with the cavity particle on the distance between the cavity particle and the
solute, rco, in a solution that contains a methane-like solute. (b) Dependence of the number of hydrogen bonds inside the first solvation shell on the
distance between the cavity particle and the solute, rco. The radius of the sphere that encloses the solute and the first solvation shell is 0.51 nm. The
red line shows the average number of hydrogen bonds within the first solvation shell when the cavity particle is in the bulk. The blue curve
represents the total number of hydrogen bonds within the first solvation shell including the cavity particle; and the green curve represents the total
number of hydrogen bonds formed by water molecules excluding the cavity particle within the first solvation shell.
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exhibits a jump around rco = 0.51 nm. For visual clarity, in
Figure 4b, we replaced the jump with the values of a
polynomial function fitting the data points without the jump,
which are shown by the blue dashed curve. As can be seen,
once the cavity particle begins to penetrate the solute, the
number of hydrogen bonds inside the first solvation shell keeps
increasing when the distance between the cavity particle and
the solute rco decreases as the cavity particle approaches the
center of the solute. The green curve in Figure 4b shows the
change of the total number of hydrogen bonds formed only by
water molecules (excluding the cavity particle) within the first
solvation shell. When the cavity particle is located at the center
of the solute (rco = 0), the total number of hydrogen bonds
formed by the water molecules in the first solvation shell is
smaller by about one hydrogen bond than the number when
the cavity particle is in the bulk because the (untagged) water
molecules in the hydration shell are still slightly perturbed by
the cavity particle at the center of this methane-like (C×1)
solute.
4.2.2. Hydrophobic Solutes: C×2 and C×3. Figure 5a

shows the change of the average interaction energy between

the cavity particle and the solvent ⟨Uvv ⟩ when the cavity
particle is moved from the bulk to the center of the C×2
solute. The average interaction energy ⟨Uvv ⟩ changes from
−19.78 to −3.64 kcal/mol when the distance between the
cavity particle and the solute rco decreases from 1.00 nm to
zero. Similarly, the Lennard-Jones interaction between the
cavity particle and other water molecules changes from positive
to negative when the cavity particle moves into the solute. The
magnitude of the change of the LJ interaction is 4.30 kcal/mol,
which is approximately the same as the change when the solute
is a carbon C×1 atom. However, the magnitude of the change
of the Coulomb interaction for the C×2 solute, 20.31 kcal/
mol, is much larger compared with the case for the methane-
like (C×1) solute. Figure 5b shows the decomposition of the
PMF ω(rco). The change of the average interaction energy
⟨Uvv ⟩ is 16.22 kcal/mol when rco is zero, and the change of the
reorganization free energy is −12.33 kcal/mol when rco is zero.
The ranges of variation are thus larger than those for the C×1
solute.
Figure 6a shows the change of the number of hydrogen

bonds that are formed between the cavity particle and the

Figure 5. (a) Dependence of the average interaction energy between the cavity particle and the solvent on the distance between the cavity particle
and the solute, rco, in a solution containing a C×2 solute. (b) Decomposition of PMF ω and the dependence of the components on the distance
between the cavity particle and the solute, rco.

Figure 6. (a) Dependence of the number of hydrogen bonds formed with the cavity particle on the distance between the cavity particle and the
solute, rco, in a solution that contains a C×2 solute. (b) Dependence of the number of hydrogen bonds inside the first solvation shell on the
distance between the cavity particle and the solute, rco. The radius of the sphere that encloses the solute and the first solvation shell is 0.65 nm. The
red line shows the average number of hydrogen bonds within the first solvation shell when the cavity particle is in the bulk. The blue curve
represents the total number of hydrogen bonds within the first solvation shell including the cavity particle, and the green curve represents the total
number of hydrogen bonds formed by water molecules excluding the cavity particle within the first solvation shell.
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solvent when the distance between the cavity particle and the
solute rco changes. The average number of hydrogen bonds
between the cavity particle and the solvent begins to decrease
when rco is about 0.5 nm and decreases to zero when rco is
about 0.05 nm. The blue curve in Figure 6b shows the
dependence of the total number of hydrogen bonds including
the cavity particle inside the first shell (rfirst = 0.65 nm) around
the solute on the distance between the cavity particle and the
solute rco. Similarly, the total number of hydrogen bonds
begins to increase when the cavity particle begins to overlap
with the solute where rco ≈ 0.5 nm and reaches the maximum
number (∼31.5) when rco ≈ 0.2 nm. However, when the cavity
particle moves deeper into the solute, the total number of
hydrogen bonds within the first shell decreases. The green
curve in Figure 6b shows the change of total number of
hydrogen bonds formed by water molecules in the first shell.
When rco is smaller than 0.1 nm, the number of hydrogen
bonds formed by water molecules in the first shell
approximately equals the number when the cavity particle is
in the bulk.
The same analyses were performed for the C×3 solute. The

results, which are similar to those for the C×2 solute, are
shown in the Supporting Information (see Figures S3 and S4).

5. DISCUSSION

5.1. Sign of Indirect PMF at rco = 0 and Competition
between ⟨Uvv ̅⟩ and ΔFreorg. When the solute is a carbon
atom, which serves as a proxy for methane in water, the cavity
particle has more favorable free energy when it overlaps with
the solute (see Figure 1) and the indirect PMF ω(rco) is always
negative inside the repulsive region. However, as the size of the
hydrophobic solute increases to C×2, the sign of the indirect
PMF ω(rco) changes and at rco = 0 is positive. The magnitude
of ω at rco = 0 increases from +3.89 ± 0.03 to +5.16 ± 0.02
kcal/mol when the solute changes from C×2 to C×3, which
agrees with the statement in the Introduction that ω(rco = 0)
approaches the negative of the solvation free energy of the
solvent in the solution if the solute is very large. To validate the
values of the indirect PMF ω(rco) at the center of the solute
that we measured for three different solutes using umbrella
sampling, we examined the following thermodynamic cycle:
the free-energy change of moving a cavity particle from the
vacuum to the center of the solute (rco = 0) equals the sum of
free-energy changes for moving a cavity particle from vacuum
to the bulk and moving a cavity particle from the bulk to the
center of the solute. Namely

ωΔ → = = Δ → + =F r F r(vacuum 0) (vacuum bulk) ( 0)cav co cav co

(45)

The comparisons between ΔFcav(vacuum → rco = 0) and the
sum of ω(rco = 0) and ΔFcav(vacuum → bulk) are shown in
Figure S5. As can be seen, they agree with each other very well
for all three solutes.
Similar results, the indirect PMF ω at the center of the

solute changing from positive to negative when the size of the
solute decreases, have been reported in the study of cavity
correlation functions for Lennard-Jones fluids with solutes of
varying size.7 Reference 7 also shows that the indirect PMF ω
attains a minimum at the center of the solute for one-
component systems. In our study, the methane-like solute is
slightly larger than the oxygen atom of a water molecule (see
Table 1), and as a result, the indirect PMF ω for the C×1

solute attains a minimum at rco = 0.035 nm instead of the
center of the solute.
Furthermore, for Lennard-Jones fluids, because of the

absence of strong Coulomb interactions, the indirect PMF
ω(rco) at the center of the solute (rco = 0) increases more
slowly than for aqueous solutions as the size of the solute
increases. For the C×2 solute, the repulsive core region of the
solute is about ∼1.5 times the size of a solvent molecule. The
indirect PMF ω(rco = 0) is +3.89 kcal/mol, and Figure 2a
shows that the radial density of the cavity particle is
approximately zero at rco = 0. In contrast, for a Lennard-
Jones fluid with a solute whose repulsive core region is about
∼2.5 times the size of a solvent molecule, the indirect PMF
ω(rco = 0) is about 1.0 kBT (∼0.6 kcal/mol when the
temperature is 300 K); the radial density of the cavity particle
at rco = 0 is about 1/e ≈ 37% of the solvent density in the
bulk.7 This indicates that when the cavity particle is located in
the repulsive core of a hydrophobic solute immersed in an
aqueous solvent, it is much more strongly attracted to the
solute−solvent interface than is the case when the solvent is a
Lennard-Jones fluid.
Equation 43 shows the decomposition of the free-energy

change for moving a cavity particle from the vacuum to the
solution at position rco into a sum of two terms: the average
interaction energy between the cavity particle and the solvent
and the reorganization free energy of the solvent. The free-
energy change for inserting a cavity particle from the vacuum
into the bulk (rco = ∞) is −6.29 ± 0.01 kcal/mol. Figures 3a
and 5a show that the average interaction energy between the
cavity particle and the solvent ⟨Uvv ⟩ is ∼ −19.78 kcal/mol in
the bulk.47 According to eq 43, the reorganization free energy,
ΔFreorg, for the insertion of a cavity particle in the bulk is
∼13.49 kcal/mol.
Furthermore, we decompose the indirect PMF ω(rco) into

the sum of the change of the average interaction energy, ⟨Uvv ⟩,
and the change of the reorganization free energy, ΔFreorg, when
the cavity particle is moved from the bulk to position rco. The
results are shown in Figures 3b and 5b. Note that the
contribution of Δ⟨Uvv ⟩ to ω(rco) is positive and the
contribution of ΔΔFreorg is negative and that the magnitudes
of both terms, ⟨Uvv ⟩ and ΔFreorg, become smaller when the
distance between the cavity particle and the solute, rco,
decreases. The indirect PMF ω(rco) is the result of the
competition between the changes of these two terms. If the
change of ⟨Uvv ⟩ is smaller than the change of ΔFreorg when the
cavity particle is moved from the bulk to the center of the
solute, the indirect PMF ω(rco) at rco = 0 is negative. Namely,
the cavity particle prefers overlapping with the solute to staying
in the bulk, as is the case for the methane-like solute (C×1). In
contrast, if the change of ⟨Uvv ⟩ is larger than the change of
ΔFreorg, the indirect PMF ω(rco) at rco = 0 is positive, as is the
case for the larger solutes (C×2 or C×3). As mentioned in
section 4.1.2, for the C×2 and the C×3 solutes, the radial
density of the cavity particle ρ1

(c)(rco) reaches its maximum
inside the repulsive core of the solute when the density of the
tagged water molecule approaches zero. As the cavity particle
penetrates the repulsive core of the solute, at first the cost to
reorganize the hydration shell decreases more rapidly than the
loss of the interaction energy between the cavity particle and
the solvent. Therefore, for solutes that are larger than water
molecules, the radial density of cavity particles reaches its
maximum at a distance that is inside the solute but is adjacent
to the solute−solvent interface.
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5.2. Structural Features of the Cavity Particle
Interacting with the Solvation Shell. The tagged water
molecule (or cavity particle) forms an average of 3.4 hydrogen
bonds with the solvent molecules in the bulk. Figures 4a and
6a show that the total number of hydrogen bonds formed with
the cavity particle begins to decreases once the cavity particle
begins to penetrate the repulsive core of the solute. For the
methane-like solute (C×1), the cavity particle can still form 2.4
hydrogen bonds with the solvent molecules when the cavity
particle is located at the center of the solute (rco = 0). Figure 3a
shows that the average Coulomb interaction energy between
the cavity particle and the solvent is attractive when the cavity
particle is located at the center of the methane-like solute with
substantial magnitude (−13.74 kcal/mol). However, for the
larger solutes (C×2 or C×3), the cavity particle cannot form
any hydrogen bonds with the solvent molecules when it is
located at the center of the solute. Figure 5a shows that the
average Coulomb interaction energy between the cavity
particle and the solvent (C×2) is as weak as −2.43 kcal/mol
when rco is zero.
The blue curves in Figures 4b and 6b show the changes of

the total number of hydrogen bonds formed within the first
solvation shell when the cavity particle is moved from the bulk
to the center of the solute, which can be divided into four
stages. In the first stage, the cavity particle is located outside of
the first solvation shell. The total number of hydrogen bonds
within the first solvation shell is constant in this region. In the
second stage, the cavity particle enters the first solvation shell
but does not overlap with the solute. The total number of
hydrogen bonds within the first solvation shell remains the
same as the number when the cavity particle is in the bulk
because the cavity particle simply replaces a regular untagged
water molecule in the first solvation shell. In the third stage,
the cavity particle begins to penetrate the repulsive core of the
solute, while the total number of hydrogen bonds within the
first solvation shell continues increasing. An explanation for
this is that one more water molecule enters the first solvation
shell as the cavity particle moves inside the repulsive core of
the solute. In the last stage, the cavity particle totally overlaps
with the solute and moves deeper into the solute. Now the
total number of hydrogen bonds within the first solvation shell
continues decreasing and approaches the value at large rco
because the cavity particle is located far from the hydrophobic
interface. Note the last stage does not exist when the solute is
C×1 because of the small size of this methane-like solute.
For all three hydrophobic solutes (C×1, C×2, and C×3), as

the cavity particle penetrates the repulsive core, it acts as a
perturbation on the untagged water molecules in the
hydrophobic hydration shell. However, the decrease in the
number of hydrogen bonds between untagged water in the first
shell is more than compensated by the hydrogen bonding
between the cavity particle and the (untagged) water in the
first shell. In other words, the hydration shell water molecules
are able to maintain their hydrogen bonding to a large extent
while also hydrogen bonding to the cavity particle inside the
repulsive core. The ability of waters in the first shell to adapt in
this way to the perturbation by the cavity particle is related to
the enhanced fluctuations of water at hydrophobic inter-
faces.33,55,56

The green curves in Figures 4b and 6b show the changes of
the total number of hydrogen bonds formed only by water
molecules (excluding the cavity particle) within the first
solvation shell. The comparisons between the values at rco = 0

and rco = 1.0 nm indicate the disturbance to the first solvation
shell caused by the cavity particle that is located at the center
of the solute. For the methane-like solute, the total number of
hydrogen bonds formed by the water molecule within the first
solvation shell with the cavity particle located at the center of
the solute is smaller than the number when the cavity particle
is in the bulk. Figure 3b shows that the reorganization free
energy is about ∼7.21 kcal/mol to insert a cavity particle at the
center of the solute, which is 6.28 kcal/mol smaller compared
with the value of inserting a cavity particle in the bulk, 13.49
kcal/mol. However, for the C×2 and C×3 solutes, the total
number of hydrogen bonds formed by the water molecule
within the first solvation shell with the cavity particle located at
the center of the solute is approximately the same as the total
number when the cavity particle is in the bulk. This suggests
that the water molecules within the first shell recover their
unperturbed structure when the cavity particle penetrates
deeper into the solute. Figure 5b shows that the reorganization
free energy is only ∼1.26 kcal/mol to insert a cavity particle at
the center of the C×2 solute, which is much smaller compared
with the value of the reorganization free energy of inserting a
cavity particle in the bulk, 13.49 kcal/mol.

5.3. Solvation Free Energy from the Endpoints DFT
Method. The DFT formalism in section 2 provides a
connection between the solvation free energy of the solute,
Δμu, and the indirect part of the solute−solvent potential of
mean force (indirect PMF), ωλ(x), where x is the configuration
(position and orientation) of a solvent molecule relative to the
solute. A difficulty in practical implementation of DFT is the
high dimensionality of x. It is six-dimensional for the water
molecule, for example. To circumvent the problem of
dimensionality within the DFT framework, the method of
energy representation was proposed.1,2,11,13,37 In this method,
the solute−solvent distribution is described with respect to the
solute−solvent pair interaction v(x) of interest as

∑ρ δ̂ ϵ = ϵ − v x( ) ( ( ))
i

i
(46)

ρ̂(ϵ) corresponds to the instantaneous histogram of the value ϵ
of v(x) in a snapshot configuration. The solute−solvent
potential ϕλ(x) is then set to a composite form of ϕλ(v(x)),
and the one-body distribution function ρλ

(1)(ϵ) can be
expressed as the projection:

∫ρ δ ρϵ = ϵ −λ λvx x x( ) d ( ( )) ( )(1) (1)
(47)

The indirect part of the potential of mean force is introduced
similarly to eq 4 as

ρ ρ βϕ βωϵ = ϵ − ϵ − ϵλ λ λ( ) ( )exp( ( ) ( ))(1)
0
(1)

(48)

and Δμu is expressed exactly as
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(49)

when ρλ
(1) is taken to vary linearly with λ. The correspondence

of eq 49 with eq 27 is striking. A valid formulation of DFT can
be obtained by reducing the dimensionality of x to ϵ, and with
the one-dimensional ϵ, the DFT treatment of Δμu is
numerically much more feasible even for complicated solutes
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and/or solvent molecules. In eq 49, the integrand is written as
a sum of three terms. The contribution of the first term to the
solvation free energy is zero when the simulations are
performed in the canonical ensemble. The second term does
not depend on the indirect PMF ω1(ϵ) in the repulsive region
of the solute because the density ρ1

(1)(ϵ) in the repulsive region
decreases rapidly to zero. Within the current implementation
(called ERmod software),37 the value of ωλ(ϵ) in the third
term is approximately estimated (in the repulsive region) by
combining the HNC-type form of

ω λσϵ = ϵλ( ) ( )0 (50)

and the PY-type form of

βω λβσ− ϵ = − ϵλ( ) log(1 ( ))0 (51)

where

∫

σ
ω

λ

η δ η
ρ

χ η ρ η ρ η

ϵ =
∂ ϵ

∂
= −

ϵ −
ϵ

− ϵ −

λ

λ=

−
i

k

jjjjjj
y

{

zzzzzz

k T( )
( )

d
( )

( )
( ) ( , ) ( ( ) ( ))

0
0

B

0
(1) 0

1
1
(1)

0
(1)

(52)

and χ0(ϵ, η) is the correlation matrix in the energy
representation at the pure solvent state (see eqs 29, 31, and
33).
In the following, ω denotes ω1 at λ = 1 for notational

brevity. Figure 7 shows the comparisons between the indirect
PMF ω measured by the cavity particle density and the HNC
and the PY approximations (through eqs 50 and 51,
respectively, with λ = 1) in the solute repulsive core where
the interaction energy ϵ is positive. For a methane-like solute,
the PY approximation shows good agreement with the
benchmark, the indirect PMF ω measured by using the
density distribution of the cavity particle. The difference
between the PY approximation and the benchmark is smaller
than 0.2 kcal/mol in the whole repulsive region where 0 < ϵ.
The difference between the HNC and the benchmark increases
when the interaction energy between the tagged water
molecule and the solute ϵ increases as the cavity particle
penetrates deeper into the core. The difference is ∼6 kcal/mol
at rco = 0.0527 nm (where ϵ is 1.0e + 11 kcal/mol). For the
C×2 and the C×3 solutes, neither the PY nor the HNC
provides a good approximation of the indirect PMF ω in the
deep-core region. When the solute is large, the indirect PMF ω
will switch from negative to positive when the distance
between the cavity particle and the solute, rco, decreases.
However, both the PY and the HNC approximations are

Figure 7. Comparison between the indirect PMF in the repulsive region estimated by the density of the cavity particle obtained from explicit
simulations of the cavity particle in solution with the hydrophobic solute at the λ = 1 state and those from the HNC and PY approximations of the
indirect PMF through eqs 50 and 51, respectively.
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always negative in the repulsive region and fail to catch the sign
change of the indirect PMF ω for large solutes.
In Table 2, we compare the solvation free energies of these

three different solutes estimated by ERmod and the bench-

marks that were estimated by the free-energy perturbation
(FEP) algorithm. The volumes of the C×2 and C×3 solutes
are ∼3 and ∼5 times that of the C×1 (methane-like) solute.
For the C×1 and C×2 solutes, their solvation free energies are
roughly proportional to their volumes. However, the ratio of
solvation free energies of the C×3 solute and the C×1 solute
∼3.7 fall between their surface area ratio ∼3 and their volume
ratio ∼5, and it is in the crossover region.24 The solvation free
energy of the methane-like solute estimated by ERmod
matches the benchmark. However, for the C×2 and the C×3
solutes, the solvation free energy values estimated by ERmod
are more positive compared to those of the benchmarks.

Equation 49 is an exact expression for the solvation free
energy Δμu, and in the endpoints DFT scheme, the integration
of ωλ in the repulsive core over 0 ≤ λ ≤ 1 can be approximated
through eqs 50 and 51. Let σ0(ϵ) and ω(ϵ) denote (∂ωλ(ϵ)/
∂λ)λ=0 and ωλ(ϵ) at λ = 1, respectively. σ0 = ω holds in the
HNC relationship, and their difference corresponds to the
bridge function. Figure 7 provides the numerical values of both
σ0 and ω, and it is observed that ω is more positive than σ0 in
the repulsive region of the solute−solvent interaction. This
indicates that ωλ in the repulsive region is convex downward
with respect to the λ dependence, and the PY relationship of
eq 51 is considered as a scheme to mimic the convexity. It is
not “convex enough”, however, when the solute is as large as
C×2 or C×3 or larger. In the deep-core region, ωλ from the PY
approximation stays negative over 0 < λ ≤ 1 while ω at λ = 1 is
positive according to Figure 7. Actually, ω is equal to the
negative of the solvation free energy of the solvent in its bulk
when the solute is large enough and the cavity particle is
located deeply in the solute core. This is because ωλ(ϵ) is the
transfer free energy of the cavity particle from the bulk to the
location (over the energy coordinate) ϵ and the cavity particle
is isolated from the other solvent molecules when ϵ
corresponds to the deep core of a large enough solute. The
positive ω at λ = 1 in the deep cores of C×2 or C×3 reflects
the above property, though the solute is still of molecular scale.
The PY approximation is adopted in the repulsive region of the

Table 2. Estimates of Solvation Free Energies (kcal/mol)a

solute FEP ERmod ERmod(2P-QHNC)

C×1 3.39 ± 0.01 3.39 ± 0.01 3.81 ± 0.02
C×2 8.44 ± 0.02 10.46 ± 0.01 9.68 ± 0.04
C×3 12.45 ± 0.04 19.21 ± 0.02 13.86 ± 0.18

aThe benchmarks are obtained by free-energy perturbation (FEP)
simulations.

Figure 8. Comparison between the original ERmod and the (modified) ERmod using the 2P-QHNC approximation. Note that the cumulative
results for these two do not include the Lennard-Jones long-range corrections. Therefore, the FEP values are further shifted from those in Table 2
by removing the long-range corrections.
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solute−solvent interaction in the endpoints DFT scheme
employed at present.37 The contribution from that region to
the solvation free energy will then be overestimated according
to eq 49 because ρ0 > ρ there and the PY estimate of ω is more
negative than the exact value.
In the repulsive-core region, only σ0 has been used to

approximate the integration over λ in eq 49 in the endpoints
functional in ref 37. This means that the λ dependence of ωλ is
estimated as an extrapolation through eq 50 or 51. In the
present work, we have determined ω (at λ = 1) and can
therefore formulate an interpolation by using both σ0 and ω.
Because σ0 = (∂ωλ/∂λ)λ=0 and ω = ω1, a simplest expression is
quadratic and is given by

ω λ λ σ λ ω= − +λ (1 ) 0
2

(53)

∫ λ ω σ ω= +λd
1
6

1
30

1

0 (54)

Equation 53 enforces ω1 = ω at λ = 1, while it keeps the
derivative at λ = 0 valid. The λ dependence of the indirect
PMF ωλ was linear in the HNC-type form of eq 50 and is
extended in eq 53 to the quadratic form by using σ0 and ω1
determined at the two endpoints of λ = 0 and 1. We thus call
eq 53 2-point quadratic HNC (2P-QHNC). We note that the
term of quadratic HNC was originally adopted in ref 57 in an
integral-equation study of multipolar hard spheres through the
expansion of angle-dependent parts of correlation functions to
the second order. Equation 53 is distinct from this and focuses
on the dependence of the indirect PMF on the coupling
parameter λ. With eq 54 adopted in eq 49, the approximate
estimate of the solvation free energy is improved for the larger
solutes as shown in Table 2.
Figure 8 shows the cumulative results of calculating the

solvation free energy by using eq 49, which are running
integrals obtained by setting the upper limit of the integration
in eq 49 to ϵ. The full value of the solvation free energy is
recovered at ϵ → ∞. Each picture in Figure 8 is separated into
two panels. The left panel exhibits the cumulative result of the
integral in eq 49 when the integral upper limit changes from
−0.12 kcal/mol to 0; the right panel exhibits the cumulative
result when the integral upper limit changes from 0 to 1.0e +
11 kcal/mol. The horizontal variable in the right panel, the
interaction energy between the tagged water molecule and the
solute ϵ, is replaced by their distance rco because of the one-to-
one relation between ϵ and rco when ϵ is positive. Since the
first and the second terms are treated exactly in eq 49, the
differences between the original ERmod and the (modified)
ERmod using the 2P-QHNC approximation in the right panels
of Figure 8 are contributed by the third (charging) term of the
integrand in eq 49. For larger solutes, C×2 and C×3, the
ERmod estimates using the 2P-QHNC approximation are less
positive and the absolute differences compared to the
benchmarks are smaller than the original ERmod estimates.
Notice that the differences between the 2P-QHNC results and
the benchmarks are similar for the C×2 and C×3 solutes,
which suggests that the difference between the 2P-QHNC
results and the “true” solvation free energies might approach a
constant value (or increase very slowly) as we make the solute
larger still (i.e., C×4, C×5, etc.), whereas the differences
between the original ERmod results and the “true” results
continue to increase.
Further improvements are possible by examining the λ

dependence of ωλ more closely, while it was observed that the

free-energy differences due to conformational changes are well-
reproduced even with the currently employed functional (see
section 5.4).

5.4. Possible Future Directions and Practical Appli-
cations of the Density Functionals. Table 2 shows that the
performance of the endpoints approximation deteriorates with
the solute size. When seen in terms of the solute volume,
however, the deviation of the solvation free energy Δμu from
its numerically exact value in Table 2 is larger than those in
previous studies.13,58,59 The volumes of the C×2 and C×3
solutes are ∼3 and ∼5 times that of the C×1 (methane-like)
solute (note that we adopted the geometric combination rule
for LJ σ). Many of the amino acid analogues examined in refs
13 and 58 have more than 3 or 5 non-hydrogen atoms, while
the difference between the approximate and exact values is less
than 1 kcal/mol.13,58 Alanine dipeptide and β-cyclodextrin
have even more non-hydrogen atoms (10 and 77, respectively),
and the deviation from the exact value was still found to be
within 2 and 10 kcal/mol, respectively.59 This results from a
cancellation of errors between the hydrophobic and polar
contributions for realistic solutes. As noted in section 5.3, the
contribution from the repulsive region of the solute−solvent
interaction to Δμu is overestimated in the endpoints method.
Table 2 shows that Δμu is well-reproduced for the C×1
(methane-like) solute, indicating that the attractive contribu-
tion cancels the overestimation. It should also be noted that
realistic molecules are formed from such non-hydrogen atoms
as carbon, oxygen, and nitrogen with overlapping excluded-
volume regions. This is distinct from the present models in
which the repulsive region of a single atomic core grows. The
sizes of the carbon, oxygen, and nitrogen atoms are comparable
among one another and comparable to that for the C×1 solute.
The approximation for ω is worse at positions that are more
distant from the solute surface, whereas the deep-core regions
for those atoms cannot be as separated from the surface as the
deep cores for C×2 and C×3. It is thus expected that the
overestimation from the repulsive region is less severe than in
the cases of the larger solutes treated in this work. Indeed, the
cumulative results in Figure 8 from the original ERmod
estimates deviate significantly from those from the 2P-QHNC
approximation only in the deep-core part of the repulsive
region of the solute−solvent interaction. The original and
quadratic estimates agree with each other in the “skin” parts
that are close to the solute surfaces, and the volumes of the
deep-core parts for realistic molecules are not as large as those
for the C×2 and C×3 solutes. It was seen from our previous
analysis for alanine dipeptide and β-cyclodextrin, in addition,
that the conformational dependence of the solvation free
energy is reproduced by the approximate endpoints DFT
method within ∼kBT.59 This reflects the observation that the
density of the solvation free energy depends weakly on the
conformation.11 When the conformation of a protein changes,
its excluded volume varies only because of the rearrangements
of the “skin” parts. The deep-core parts keep their volumes, so
that their contributions will be canceled for conformational
changes.
When the core volume of the solute, V, is large enough, the

solvation free energy, Δμu, scales with p0V, with p0 being the
pressure of the system. This asymptotic property holds for eqs
17 and 49 because they are exact formulas. For the HNC
approximation as well as for the information-theoretic
approach, however, it was pointed out that the proportionality
constant for the V dependence is 1/2κT or (ρ0kBT/2 + 1/2κT),
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where ρ0 is the bulk density of solvent and κT is the isothermal
compressibility.21,60,61 The V dependence then has a
proportionality constant of 104 atm for ambient water and is
a source of overestimation of Δμu for a large solute. The PY
approximation provides a milder constant of proportionality of
−ρ0kBTlog(ρ0kBTκT), which is still ∼3500 atm.60,61 The too
large volume dependence has been fixed with the volume-
correction scheme.62−64 In this scheme, the V-dependent term
is forced to be p0V and the performance improves for the Δμu
expression. Δμu is too positive for C×2 or C×3 in Table 2, and
it was noted in section 5.3 that the contribution from the deep-
core region of the solute is overestimated with too favorable ω
in the HNC and PY approximations. Molecular simulations
can provide numerically exact values of ωλ, which serve as a
guide to develop improved functionals that suppress the deep-
core contribution toward possible improvement of the
endpoints DFT method.
The 2P-QHNC approximation proposed in the current work

leads to improved estimates of the solute chemical potential,
but it relies on cavity particle simulations to estimate the
indirect PMF ω at the λ = 1 solution state that are
computationally costly and not easily performed for more
complex solutes. To obtain the indirect PMF in this way, a
free-energy method such as umbrella sampling needs to be
employed. Recently we proposed an alternative method to
estimate the indirect PMF ω at the solute−solvent interface
using reweighting techniques to combine data from the λ = 0
and λ = 1 states derived from UWHAM.65 It may be possible
to use a similar approach to extrapolate values of ω(x) into the
solute repulsive core. In this event the 2P-QHNC functional
could be evaluated without requiring explicit cavity particle
simulations, and it could then be used as a practical alternative
to the linear endpoints DFT functional that does not use ω at
λ = 1 to estimate the contribution to the DFT charging integral
from the region within the solute core.
Our previous observations11,59 that errors in the endpoints

density functional which are located deeper in the solute core
region tend to cancel when calculating conformational free-
energy profiles suggests that the use of reweighting techniques
to estimate the indirect PMF ω in the solute “outer skin”
region may be sufficient to construct accurate solute
conformational free-energy profiles in solution using 2P-
QHNC. It is precisely in this solute outer skin region where
the use of UWHAM to estimate ω is expected to be most
accurate. We plan to report in a future communication on the
use of UWHAM and 2P-QHNC to estimate ω and solvation
free energies using physical endpoint simulations without
simulating cavity particles explicitly.

6. CONCLUSIONS
Endpoints DFT provides a density functional theory frame-
work for estimating solvation thermodynamic properties from
simulations of the two physical endpoint states, the pure liquid
and the solution containing one or more solutes. A key role is
played by the indirect part of the solute−solvent potential of
mean force (indirect PMF), and in this work the equivalence
with the standard formulation employing the direct correlation
functions is established. The indirect PMF describes the
collective effects of solvent on the solute−solvent correlation,
and our formulation connects the solvent effects at the
molecular level to the solvation free energy of the solute.
Approximations were introduced with respect to the indirect
PMF, and we examined the indirect PMF for spherical,

hydrophobic solutes with varied sizes in water. It was observed
that the indirect PMF is favorable (negative) at distances not
far from the solute surface for each solute examined and
becomes unfavorable (positive) in the deep-core regions of
larger solutes. This reflects the dependencies on the cavity−
solute distance of the interaction energy between the cavity
particle and solvent water and the solvent-reorganization
contribution. Upon penetration of the cavity particle within the
solute repulsive core, the former reduces to a lesser extent than
the free-energy penalty from solvent reorganization when the
cavity particle stays near solvent water molecules, while the
opposite is true when the cavity particle penetrates more
deeply into the core for the two larger hydrophobic solutes
(C×2 and C×3). When the cavity particle stays near the solute
surface, it maintains the hydrogen bonding with solvent water,
and at the same time, the water molecules do not sacrifice the
hydrogen bonds with the other water molecules. An
approximation to the solvation free energy of the solute can
be formulated using HNC-type and PY-type relationships in
the endpoints DFT method, and numerical evaluation of the
solvation free energy was conducted by adopting the one-
dimensional, energy representation. The indirect PMF
computed in a numerically exact scheme was actually found
to be less negative than the HNC-type and PY-type estimates,
and these approximations could not reproduce the sign
changes of the exact, indirect PMF from negative to positive
in the deep-core regions of larger-sized solutes. This leads to
the overestimation of the solvation free energies of the two
larger solutes from the approximate, endpoints method
compared to the benchmarks without approximations. It was
shown indeed that the approximate estimate improves when
the correct indirect PMF at the λ = 1 endpoint was
incorporated into the endpoints DFT functional using the 2-
points quadratic HNC (2P-QHNC) approximation.
The endpoints DFT method has a firm theoretical basis and

is advantageous in terms of computational speed and
interpretability with a variety of applications.13,37 The method
combines a statistical−mechanical DFT formalism with
molecular simulations that are currently possible at nanometer
and microsecond length and time scales to approach the free
energetics of solvation efficiently and accurately with extended
applicability to diverse problems in chemistry and biophysics,
including protein allostery and ligand binding, micellar and
lipid membrane chemistry, polymers, surface phenomena, and
supercritical fluids.12,13 The key quantity is the indirect PMF,
and the approximation adopted for it determines the accuracy
of the endpoints method. Molecular simulations of cavity
particles can approach the numerically exact, indirect PMF,
which can be helpful for further improvement of the endpoints
DFT scheme.
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