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ABSTRACT: Free energy perturbation (FEP) simulations have
been widely applied to obtain predictions of the relative binding
free energy for a series of congeneric ligands binding to the same
receptor, which is an essential component for the lead
optimization process in computer-aided drug discovery. In the
case of several congeneric ligands forming a perturbation map
involving a closed thermodynamic cycle, the summation of the
estimated free energy change along each edge in the cycle using
Bennett acceptance ratio (BAR) usually will deviate from zero due
to systematic and random errors, which is the hysteresis of cycle
closure. In this work, the advanced reweighting techniques binless weighted histogram analysis method (UWHAM) and locally
weighted histogram analysis method (LWHAM) are applied to provide statistical estimators of the free energy change along
each edge in order to eliminate the hysteresis effect. As an example, we analyze a closed thermodynamic cycle involving four
congeneric ligands which bind to HIV-1 integrase, a promising target which has emerged for antiviral therapy. We demonstrate
that, compared with FEP and BAR, more accurate and hysteresis-free estimates of free energy differences can be achieved by
using UWHAM to find a single estimate of the density of states based on all of the data in the cycle. Furthermore, by
comparison of LWHAM results obtained from the inclusion of different numbers of neighboring states with UWHAM
estimation involving all the states, we show how to determine the optimal neighborhood size in the LWHAM analysis to balance
the trade-offs between computational cost and accuracy of the free energy prediction. Even with the smallest neighborhood,
LWHAM can improve the BAR free energy estimates using the same input data as BAR. We introduce an overlapping states
matrix that is constructed by using the global jump formula of LWHAM and plot its heat map. The heat map provides a
quantitative measure of the overlap between pairs of alchemical/thermodynamic states. We explain how to identify and improve
the FEP calculations along the edges that most likely cause large systematic errors by using the heat map of the overlapping
states matrix and by comparing the BAR and UWHAM estimates of the free energy change.

■ INTRODUCTION

Ranking the binding affinities for a series of congeneric ligands
binding to the same receptor is a central component in the lead
optimization process of drug discovery.1 Nowadays, quantita-
tive prediction of the relative binding affinities of the
congeneric ligands can be achieved based on the free energy
perturbation (FEP) method in conjunction with molecular
dynamics simulations.2−8 Significant progress in the develop-
ment of new methodologies, improvement of the force field,
and increase of computer speed has led to higher accuracy
estimates of the relative binding free energy using FEP.9−11

Compared with popular methods like docking and MM-
GBSA,12,13 FEP is rooted in a rigorous statistical mechanical
framework, which involves the calculation of the alchemical
free energy to convert the reference ligand into the target
ligand in both the bound state around the receptor and the
unbound state in pure water.14−16 In FEP calculations, the

optimal way to construct the mutation paths among several
congeneric ligands can be achieved by using algorithms such as
LOMAP,17 which results in a single graph or perturbation map
consisting of one or more closed cycles.18,19 On the basis of the
fundamental law of thermodynamics, the total free energy
change in a closed thermodynamic cycle should sum to zero.
However, hysteresis of cycle closure is usually observed in
practice, which means that the total free energy change in the
closed cycle may deviate from zero due to insufficient sampling
arising from at least one edge of the cycle.
In this study, two advanced reweighting techniques, binless

weighted histogram analysis method (UWHAM)20−22 and
locally weighted histogram analysis method (LWHAM),23,24

are implemented to analyze the simulation data generated at
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states along multiple edges in order to estimate the free energy
change along each edge. Compared with the Bennett
Acceptance Ratio (BAR)25−27 approach involving analysis of
the data from pairs of adjacent states, UWHAM (also called
MBAR28) is an extension to include data from all states in the
closed cycle, with the solution as the maximum likelihood free
energy estimators along each edge given the contributions
from all the data. In this way, it is guaranteed that there is no
hysteresis in the closed cycle since UWHAM solves for a single
density of states. The UWHAM method can be considered to
not only generalize BAR but also remove the necessity of
discretizing observations into bins in the original WHAM
(weighted histogram analysis method),29 which therefore
provides the estimate of density of states for each data point
and increases the statistical precision. Furthermore, estimating
the density of states provides a connection with the potential
distribution theorem.30,31 LWHAM is based on serial temper-
ing32−34 and its extensions24,35 to resample data obtained from
multi-ensemble simulations. The advantage of LWHAM is that
a proper neighborhood size can be chosen in the analysis, so
that the unnormalized density functions for each data point
only need to be locally evaluated at the states within a chosen
neighborhood of each state for reweighting, which can be
computationally much less expensive as compared with
UWHAM. On the other hand, the variability in free energy
estimation is, to a large extent, affected by the degree of
overlap between different ensembles. LWHAM is expected to
yield similar statistical efficiency to that of UWHAM, because
LWHAM is constructed to effectively exploit the overlaps
between pairs of adjacent ensembles which often represent the
majority of overlaps between all ensembles considered.
The target protein we studied in this work is HIV-1

integrase. HIV-1 integrase not only catalyzes the integration of
viral DNA into the host chromosomes but also plays an
important role in virus particle maturation.36 Due to the
multifunctional nature of HIV-1 integrase, it serves as an
attractive drug target. In this work, we study ligands known to
bind to the allosteric binding site which is located at the dimer
interface of the HIV-1 integrase catalytic core domain (CCD)
as shown in Figure 1.37−40 Structure-based drug design of
allosteric HIV-1 integrase inhibitors (ALLINIs) has been
facilitated by the crystal structure of the HIV-1 integrase CCD
bound with the integrase-binding domain (IBD).41 Quinoline-
based ALLINIs have been identified through both the in silica

screening method using the cocrystal structure40 and high-
throughput screening methods using HIV-1 integrase 3′
processing reactions.39 We apply the FEP method to calculate
the relative binding affinities of a series of quinoline-based
ALLINIs binding to HIV-1 integrase. The four congeneric
ligands in the series form a rectangular perturbation map as
shown in Figure 2. We use this closed thermodynamic cycle to
demonstrate the advantages of using reweighting techniques
like UWHAM and LWHAM to analyze the free energy
difference map when there is hysteresis, as we found to be the
case for the thermodynamic cycle involving the four ligands
shown in Figure 2. UWHAM and LWHAM both use all of the
data sampled from each of the states along the closed cycle to
construct an estimate of a single density of states for the map.
LWHAM is an approximation to UWHAM which associates
each state with all other states within a preselected
neighborhood. We examine the optimal neighborhood size
which balances computational cost and accuracy for ligand
binding FEP simulations of the kind which are the focus of this
work. Finally, we introduce a new analytic toolthe
overlapping states matrixwhich can be used to quantitate
and visualize the extent to which the states of the
thermodynamic cycle overlap. The overlapping states matrix
can be used to choose the optimal neighborhood for LWHAM
reweighting and to identify states in the cycle that may be less
converged and where additional simulation time is best
focused to improve estimates of free energy differences along
some edges of the cycle.

■ METHODS
Simulation Setup. All MD simulations were performed in

GROMACS package, version 5.1.2.42−44 FEP involves
estimating the relative binding free energy among ligands
based on alchemically transforming one ligand to another in
both the bound and unbound states. In order to apply the
UWHAM/LWHAM approach to estimate the free energy
change along each edge, one needs to obtain the potential
energy for a series of configurations generated at one
simulation state under different Hamiltonians of other
simulation states in the closed cycle of the perturbation map.
This requires a special treatment with a further modification of
the dual topology in the FEP transformation.45,46 In the system
involving ligand 1, ligand 2, ligand 3, and ligand 4 in Figure 2,
the topology file used for the FEP simulations contains the
topological information for all four ligands of interest. This
topology can be decomposed into five sets, including the
shared set and four distinct sets. The shared set includes the
topology of the same atoms that are shared by the four ligands
of interest, and the four distinct sets include the topology of
the unique atoms of the four ligands, respectively. At the
beginning of the FEP transformation from ligand 1 to ligand 2,
the atoms described by the shared set and distinct set from
ligand 1 have full interactions with the environment, while the
atoms described by the distinct set from ligand 2, distinct set
from ligand 3, and distinct set from ligand 4 have no
interactions with the environment except the linkage with the
shared part of the ligand. In the case of the bound state, the
environment refers to the receptor and the solvent, while in the
case of the unbound state, the environment refers to only the
pure solvent. Then, as the transformation proceeds along the
edge from ligand 1 to ligand 2, the interactions between the
atoms described by the distinct set from ligand 1 and the
environment are decreased from the full effect to zero, and

Figure 1. ALLINI binding to the dimer interface of the HIV-1
integrase CCD.
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simultaneously the interactions between the atoms described
by the distinct set from ligand 2 and the environment are
increased from zero to full effect using 31 states with different
coupling parameter λ values. Throughout the process, atoms
described by the shared set have full interaction with the
environment; atoms described by the distinct set from ligand 3
and distinct set from ligand 4 have no interactions with the
environment. Therefore, at the end of this transformation, the
atoms described by the shared set and distinct set from ligand
2 have full interactions with the environment, while the atoms
described by the distinct set from ligand 1, the distinct set from
ligand 3, and the distinct set from ligand 4 have no interactions
with the environment except the linkage with the shared part
of the ligand. In GROMACS, the 31 λ states involved in the
transformation are chosen by varying the coul-lambdas and
vdw-lambdas in the mdp file. First, the van der Waals (VdW)
interactions of ligand 2 with the surroundings are turned on
using 11 λ states. Then, the electrostatic interactions of ligand
2 are turned on while simultaneously the electrostatic
interactions of ligand 1 with the surroundings are turned off
using 10 λ states. The last step involves turning off the VdW
interactions of ligand 1 with the surroundings using 10 λ states.

Similarly, this process can be applied to the transformations
along each of the other edges. In this way, a closed
thermodynamic cycle involving simulations of a total of 120
λ states was constructed to represent the FEP transformations.
For the FEP perturbations of the ligands corresponding to

the unbound state in solution, the ligand molecule was solvated
in a cubic TIP3P47,48 water box with dimensions 4.6 nm × 4.6
nm × 4.6 nm using the “gmx solvate” tool in GROMACS. This
ensures that each atom of the ligand was at least 1.0 nm away
from the edge of the box. In this way, a total of 3226 water
molecules were contained in the box with one additional Na+

to neutralize the system. For the bound state perturbations, the
ligand was located in the allosteric binding site of HIV-1
integrase based on the crystal structure of the complex with
PDB code 4TSX.49 The protein in the complex was prepared
using the Protein Preparation Wizard,50 and the protonation
states were assigned assuming a pH of 7.51 The complex was
solvated using 15 456 TIP3P water molecules and three Cl−

ions with a box size of 8.0 nm × 8.0 nm × 8.0 nm. The protein
molecules were modeled by the Amber ff99sb-ILDN force
field,52 and the ligands were described by the Amber GAFF
parameters set.53 The partial charges of the ligands were

Figure 2. (a) Free energy change along each edge in the unbound state, Δ = −8.38−6.80 + 4.63 + 10.73 = 0.18 (kcal/mol). (b) Free energy change
along each edge in the bound state, Δ = −10.02−8.10 + 4.15 + 11.19 = −2.78 (kcal/mol).
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obtained using the AM1-BCC method.54 For each individual
λ-state, energy minimization was performed first, followed by
100 ps of equilibration under the NVT ensemble and 1 ns of
equilibration under the NPT ensemble. Finally, a 10 ns
production MD simulation under the NPT ensemble was
performed. Temperature was maintained at 300 K by the
leapfrog stochastic dynamics integrator (Langevin dynamics)
with time constant of τt = 1.0 ps.55 For the constant pressure
simulations during the equilibrium period, the pressure was
kept constant by the Berendsen pressure barostat with a
pressure relaxation time of 0.5 ps.56 For the constant pressure
simulations during the production period, the pressure was
kept constant by the Parrinello−Rahman pressure barostat
with a pressure relaxation time of 2.0 ps.57 The time step for
the MD simulations was 2 fs with the LINCS algorithm used to
constrain bond lengths involving hydrogen atoms.58 The long-
range electrostatic interaction was treated using the smooth
particle-mesh Ewald approach59,60 with a real-space cutoff of
1.0 nm and a spline order of 4. Trajectory files and energy files
were both saved every 2 ps.
We also performed another set of perturbation simulations

in the bound states using the parallel Hamiltonian replica
exchange conformational sampling method.61−63 With this
scheme, the ligands were less likely to become trapped in low-
energy conformations when the ligand interacted strongly with
the receptor at the end points in the cycle and the simulations
were better converged. The results obtained from Hamiltonian
replica exchange serve as benchmark calculations. The length
of the production simulation based on Hamiltonian replica
exchange was also 10 ns for each λ state.
To apply the reweighting techniques UWHAM and

LWHAM for computing free energies from multiple ensembles
with different potentials, one needs to build up a matrix which
contains the potential energy for each individual data point
evaluation at each of 120 λ states, not just at the λ state
observed to be associated with the data point in the
simulations. This can be achieved by post processing of the
simulation trajectory with the “-rerun” option in GROMACS.
UWHAM. Under the canonical ensemble, one could

perform M parallel simulations at M states. These simulations
could either be independent or coupled. Each state is
characterized by a specific combination of thermodynamic
parameters and potential energy functions, which we describe
collectively as “λ state.” Suppose Xαi is the ith configuration
observed at the αth λ state; the probability of observing Xαi at
the γth λ state is

p X
q x

Z

E x

Z
( )

( ) exp( ( ))
i

i iβ
∼ =

−
γ α

γ α

γ

γ γ α

γ (1)

where qγ(xαi) = exp(−βγEγ(xαi)) is the Boltzmann’s factor of
Xαi at the γth λ state; xαi is the coordinates of the configuration
Xαi; βγ is the inverse temperature of the γth λ state; Eγ(xαi) is
the potential energy of the configuration Xαi at the γth λ state;
and Zγ is the partition function of the γth λ state. The
likelihood of the observed data is proportional to

u q u

Z

( ) ( )M

i

N
i i

1 1
∏ ∏

Ω

α

α α α

α= =

α

(2)

where uαi is the energy coordinate of the configuration Xαi that
in general may be written as the sum of of a reference energy
plus perturbations. Nα is the total number of observations

observed at the αth λ state, and Ω(uαi) is the density of states.
Let Ẑα and Ω̂(uαi) denote estimates of the partition function of
the αth λ state and the density of states of uαi, respectively,
based on finite samples of the states using all the simulation
data. They satisfy the equation

Z q u u( ) ( )
M

i

N

i i
1 1

∑ ∑̂ = Ω̂α
γ

α γ γ
= =

γ

(3)

Maximizing the log likelihood function yields

u
N Z q u

( )
1

( )
i M

i1
1Ω̂ =

∑ ̂γ
κ κ κ κ γ=

−
(4)

The above two equations are the UWHAM equations.21,28

Since the UWHAM estimates do not depend on the original λ
state at which each observation was observed, the UWHAM
equations can be simplified as

Z q u u( ) ( )
i

N

i i
1

∑̂ = Ω̂α α
= (5)

u
N Z q u

( )
1

( )
i M

i1
1Ω̂ =

∑ ̂
κ κ κ κ=

−
(6)

where N = ∑κ=1
M Nκ is the total number of observations.

LWHAM. The UWHAM equations can be solved
stochastically by applying the serial tempering (ST) protocol
to resample the raw data (ST-SWHAM).22−24,64 Like serial
tempering simulations, ST-SWHAM runs by cycles, and each
cycle consists of a move and a jump process. In the move
process, we randomly select an observation ui with uniform
probability from all the observations observed at the state that
is resampled in the current cycle. In the jump process, we
randomly choose one state (e.g., the αth state) to resample in
the next cycle according to the probability

p u
q u

q u
( ; , )

exp( ) ( )

exp( ) ( )
i

i
M

i

0
0

1
0

α ζ π
π ζ

π ζ
| =

∑
α α α

κ κ κ κ= (7)

where ζ and π0 are both vectors that contain M components;
ζκ = −ln Zκ is the estimate of the unitless free energy of the κth
state, and ζ0 is fixed at 0. πκ

0 = Nκ/N is the proportion of the
raw data observed at the κth state during the multi-state
simulations. Suppose πκ is the observed proportion of the κth
state resampled during the ST-SWHAM analysis. The values of
ζ are adjusted iteratively according to the differences between
the vectors π0 and π. It can be shown that the estimates of free
energies ζ are the solutions of the UWHAM equations when
each pair of πκ and πκ

0 agree with each other.23 The jump
process described by eq 7 is referred to as a global jump
because any state can be chosen to resample in the next cycle.
As can be seen from eq 7, each jump process requires
calculations of M exponential functions, where M is the total
number of states. The computational cost of using ST-
SWHAM with the global jump proposal can be prohibitive
when the total number of states M is large.
Recently, we introduced a much faster stochastic solver that

provides an approximate solution of the UWHAM equa-
tions.23,24 In this approximate algorithm, only the states in a
preselected neighborhood of the state resampled in the current
cycle can be chosen for the next cycle, and hence the
exponential functions of the potential functions only associated
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with the neighborhood states at ui need to be evaluated. This
can be substantially less costly than evaluations of all M
exponential functions. Therefore, it is referred to as Local
WHAM (LWHAM) with stochastic solution or simply
LWHAM. Suppose the γth state is resampled in the current
cycle; the procedure of performing one jump in LWHAM is as
follows:
• Randomly select one state in the neighborhood of the γth

state with uniform probability to jump to. Suppose the trial
state is the αth state.
• Accept the αth state as the next state according to the

Metropolis probability.

p u
p u

min 1,
( , )
( , )

( ; , )
( ; , )

i

i

0

0
α γ
γ α

α ζ π
γ ζ π

Γ
Γ

|
|

l
moo
noo

|
}oo
~oo (8)

where p(α|ui; ζ, π
0) and p(γ|ui; ζ, π

0) are defined by eq 7; Γ(α,
γ) is the probability of selecting the αth state as the trial state
when resampling the γth state in the current cycle. Namely,
Γ(α, γ) = 1/nγ, where nγ is the total number of neighbors of the
γth state if the αth state is one of the γth state’s neighbors;
Γ(α, γ) = 0 otherwise.
Although only the states within a preselected neighborhood

are resampled in the next cycle after one local jump, the states
outside of the neighborhood can be resampled if multiple
jumps are performed in one cycle. Similarly, as in the ST-
SWHAM algorithm for UWHAM described above, the values
of ζ are adjusted iteratively according to the differences
between the vectors π0 and π during the LWHAM analysis. As
the number of jumps per cycle increases, the result of
LWHAM converges to the result of the ST-SWHAM using the
global jump proposal and therefore converges to the UWHAM
result. The global jump described by eq 7 is the infinite jump
limit in serial tempering simulations, which is analogous to the
infinite swapping limit in replica exchange simulations.65

Variance Estimation. In order to calculate the standard
errors of free energy estimates from multiple simulation states,
we propose a method called the fractional replication method.
This method involves dividing the simulation data from each
state into nonoverlapping blocks, similarly to that in (non-
overlapping) block bootstrap,66,67 but this method is expected
to be applicable with a larger block length and hence a smaller
number (such as three or four) of blocks than typically used
with block bootstrap. In fact, existing statistical theory indicates
that the optimal block length is on the order of n1/3 for a
stationary series of length n.68 The practical performance of
block bootstrap can also be sensitive to different choices of the
block length, which will be demonstrated in our numerical
experiment (see the Supporting Information).
We describe the proposed method in a system withM states,

denoted as λ1, λ2··· λM, for example, M = 31 alchemical states
along the edge between ligands 1 and 2. Suppose that the
simulation data from each state are divided into four
nonoverlapping blocks, which are sufficiently large such that
the averages from consecutive blocks are approximately
uncorrelated. For the αth state λα, denote the four blocks as
λα(1), ..., λα(4), and the original data set as λα(1234). Let ΔF̂
be an estimate of the free energy change between states λ1 and
λM, obtained by, for example, BAR, using all M original data
sets λα(1234) for α = 1, ...,M. For any indices 1 ≤ j1, ..., jM ≤ 4,
let ΔF̂(j1, ..., jM) be the estimate of the free energy change
based on a fractional replication of the original data sets, which
is defined as a combined data set of the blocks λ1(j1), ..., λM(jM)

from theM states. Then, the variance of ΔF̂ is estimated as S/3
and the standard error of ΔF̂ is S/3 , where

S F j j F
1
4

( , ..., )M
j j

M
1 ,..., 4

1
2

M1

∑= [Δ ̂ − Δ ̂]
≤ ≤ (9)

In practice, the summation over all possible 4M combinations
(j1, ..., jM) is too costly. For a Monte Carlo approximation, S is
estimated by averaging over, for example, 200 combined data
sets, which are constructed by randomly selecting 1 ≤ jα ≤ 4
for α = 1, ..., M.
The variance estimate (eq 9) is similar to that used in the

method of balanced repeated replications69,70 for estimating
the variance of a nonlinear statistic in stratified random
sampling, where orthogonal replications are employed instead
of random replications as above. Note that the variance
estimate of ΔF̂ could be S/4, because the variance of ΔF̂(j1, ...,
jM) is that of ΔF̂ multiplied by 4 according to different sample
sizes. However, the estimate S/3 is used, to adjust the degree
of freedom due to centering by ΔF̂ similarly as in the common
definition that the sample variance of x1, ..., xk is∑i=1

k (xi − x )2/
(k − 1), where x = ∑i=1

k xi/k.
The fractional replication method can also be applied to

calculate standard errors of UWHAM estimates of free energy
differences using simulation data from all M = 120 alchemical
states along the four edges in the thermodynamic cycle. For
any two states for which the free energy change is estimated,
the formula (eq 9) is used, where ΔF̂ is the UWHAM estimate
using all of the 120 original data sets, and ΔF̂(j1, ..., jM) is the
UWHAM estimate using a combined data set including the
blocks λ1(j1), ..., λM(jM) from the M states. For a Monte Carlo
approximation, the average in eq 9 can be estimated by using
200 combined data sets randomly selected from a total of 4120

combinations.
The proposed method can be further employed to calculate

the standard error for the difference between two alternative
estimates of a free energy difference, such as the BAR estimate
and UWHAM estimate, denoted as ΔF̂BAR and ΔF̂UWHAM. For
this purpose, eq 9 is used, with ΔF̂ replaced by ΔF̂BAR −
ΔF̂UWHAM and ΔF̂(j1, ..., jM) replaced by ΔF̂BAR(j1, ..., jM) −
ΔF̂UWHAM(j1, ..., jM), where (j1, ..., jM) indicates a combined
data set of the blocks λ1(j1), ..., λM(jM) from all M = 120 states
along the four edges. Note that ΔF̂BAR(j1, ..., jM) actually
depends only on the blocks from the particular edge to which
BAR is applied. Similarly, as above, the average in eq 9 can be
approximated by using, for example, 200 randomly selected
combined data sets.

■ RESULTS AND DISCUSSION
Results from BAR and UWHAM. We first calculated the

change of free energy along each edge based on BAR to
evaluate the hysteresis of cycle closure in both the unbound
and bound states. The free energy change along each edge in
the unbound state is shown in Figure 2a. The hysteresis is the
summation of free energy change along each edge to form the
closed thermodynamic cycle, which is expressed as Δ = ΔFwat12
+ ΔFwat23 + ΔFwat34 + ΔFwat41 = −8.38 − 6.80 + 4.63 + 10.73 =
0.18 (kcal/mol). With consideration of the standard errors
associated with the free energy estimations along each edge by
using fractional replication methods, the value of hysteresis
shows no significant difference from zero. In this case, the
source of this small difference comes from the unbiased errors
arising from the random fluctuations in the sampling of the
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configurational space. In Figure 2b, it shows the free energy
change along each edge in the bound state with hysteresis as Δ
= ΔFpro12 + ΔFpro23 + ΔFpro34 + ΔFpro41 = −10.02 − 8.10 +
4.15 + 11.19 = −2.78 (kcal/mol). On the basis of the model
proposed by Wang et al.71 (also see the Supporting
Information), if we assume the hysteresis is Gaussian
distributed with mean 0, then the standard deviation s = (σ12

2

+ σ23
2 + σ34

2 + σ41
2 )1/2 = 0.24. The fact that |Δ| > 2s indicates that

it is highly unlikely that the calculations are converged and
there should be some systematic errors coming from the
incomplete sampling of the configurational space in the case of
bound state of the perturbations.
In order to tackle the problem of large hysteresis effects and

improve the reliability of the free energy predictions, we
applied the UWHAM analysis to estimate the free energy
change along each edge in the bound state with results
summarized in Figure 3. Along each edge, the value with black
indicates the result from BAR, while the value with blue
represents the estimation from UWHAM. Tests of statistical
hypotheses were performed along each edge with the null
hypothesis as ΔFBAR = ΔFUWHAM and alternative hypothesis as
ΔFBAR ≠ ΔFUWHAM. The P value was computed based on P

value P Z2 ( )F F
SED

BAR UWHAM= × ≥ |Δ − Δ |
, where Z is standard

normal and SED is the standard error for the difference
between UWHAM and BAR estimates based on fractional
replication method as discussed in the Methods section. The
calculated P values are smaller than 0.05 along the edges of
ligand 2 to ligand 3, ligand 3 to ligand 4, and ligand 4 to ligand
1, which indicates strong evidence against the null hypothesis.
Hence, we can conclude that the differences between the
predictions from BAR and UWHAM are statistically significant
along these edges. On the other hand, the calculated P value
along the edge of ligand 1 to ligand 2 is 0.11, which suggests
that the evidence against the null hypothesis is not as strong as
that from the other three edges.
To serve as the benchmark for the comparisons between the

two reweighting methods, we further adopted a better
converged data set from replica exchange simulations and

obtained the free energy estimations using UWHAM as shown
in orange. We observe that the largest discrepancy between the
calculations from BAR and benchmark lies in the edge of
ligand 2 to ligand 3 with a discrepancy of 2.00 kcal/mol. Such a
large bias from the benchmark indicates the existence of a
sampling issue arising from this edge. Interestingly, we
observed that this edge of transformation from ligand 2 to
ligand 3 has the largest perturbation in terms of ligand
structures, which involves growing two heavy atoms in the
environment. In the other edges of the thermodynamic cycle,
the perturbations of ligand structures are smaller. The
underlying rationale for the poorly converged simulation data
sets generated along the edge of ligand 2 to ligand 3 is that it
involves a larger perturbation of the local environment by the
structural change to the ligand in this mutation, associated with
higher barriers between free energy basins which are only
rarely crossed at some states. In order to overcome this quasi-
ergodicity problem, we apply UWHAM to include all the λ
states in the thermodynamic cycle with additional information
arising from states along the alternative mutation pathway
consisting of the other three edges. As we expect, ΔFpro23
estimated from UWHAM of all the states agrees with the
benchmark results better, which suggests that the UWHAM
approach to reweighting data points across all of the λ states
under study in the cycle to estimate the free energy change
along each edge is a superior method to use in the case of
several ligands forming a closed cycle perturbation map,
compared with analyzing each edge using BAR separately. We
have also considered another example for the FEP calculations
involving three congeneric ligands forming a perturbation path
of a closed triangle as shown in the Supporting Information.
Interestingly, the free energy estimation along the edge with
the largest discrepancy between BAR and benchmark is also
improved by applying UWHAM to include all the λ states in
the triangular cycle. Such an improvement may be a more
general result based on the two examples in our study. It is not
however true that the UWHAM estimate will always be a
better estimate than the BAR estimate along all the edges.

Figure 3. Comparison of free energy change along each edge in the bound state estimated from BAR and UWHAM.
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When there are significant discrepancies between the BAR and
UWHAM estimates along more than one edge, it is not clear
how to choose the best estimateBAR or UWHAM. Instead,
the discrepancy between UWHAM and BAR can be used as a
guide to decide where to focus additional simulations.
Nevertheless, for the two examples we studied, the discrepancy
between the UWHAM and BAR estimates is much greater
along one of the edges than the others, and we conjecture that
for cases like this, the conclusion that UWHAM provides the
better estimate will apply.
Results from LWHAM: Determination of the Optimal

Neighborhood Size. As has been discussed,71 FEP
calculations for several congeneric ligands binding to the
same receptor usually involve the buildup of multiple cycle
closures which correspond to a network of mutation paths.
One can foresee that as the network of the perturbation paths
grows more complicated, more λ states are required to connect
all the nodes. We note that the computational cost of
UWHAM grows quadratically as the number of thermody-
namic states under study increases.23 A more feasible and
effective way to analyze simulations from a large number of
ensembles is based on LWHAM. A key question for applying
LWHAM to estimate the free energy change along each edge is
to determine the optimal neighborhood size in the analysis. In
this study, we use the edge defined by the transformation of
ligand 2 to ligand 3 in the bound state as an example to
demonstrate the choice of optimal neighborhood size. Figure 4
displays the comparison of LWHAM results obtained from
different neighborhood sizes with UWHAM and BAR results.
The red horizontal line indicates the result from the UWHAM
approach. The green horizontal line indicates the result from
the BAR approach. The orange horizontal line indicates the
result from the benchmark. The blue line with dots indicates
the results from the LWHAM approach, with each dot
representing the free energy estimation provided by LWHAM

using a different neighborhood size. Here, a neighborhood size
of n includes both n states from the left and right of the
reference state, i.e., the neighborhood is 2 × n. LWHAM
results obtained from different neighborhood sizes always lie
between the two horizontal lines representing the results from
UWHAM and BAR. When the neighborhood size is set to ±1,
the calculated ΔFpro23 from LWHAM is close to the result by
reweighting with BAR. But it is an improvement over BAR
because for LWHAM with n = ± 1 both adjacent states, i + 1
and i − 1, contribute to the estimate of the density of states for
state i, whereas using BAR leads to two different estimates of
the density of states for state i. As the neighborhood size
increases in the LWHAM analysis to include more and more
states, the calculated ΔFpro23 gradually reaches a plateau value
approaching the result obtained by reweighting all the states
using UWHAM. This indicates that configurations from
neighboring states within a certain range make a significant
contribution to the free energy estimation, while the additional
contribution from configurations generated at states farther
away with little overlap of the reference states becomes
negligible. Therefore, an advantage of applying LWHAM
compared with UWHAM reweighting is that a neighborhood
size can be chosen such that LWHAM involves reweighting
observations only across neighboring states which contribute
significantly to the free energy estimate instead of all states in
the cycle, which can be much less computationally expensive.
Figure 4 shows that for this example, when the

neighborhood size of ±12 is chosen in the LWHAM analysis,
the prediction of ΔFpro23 is very close to the result from
UWHAM with consideration of the standard errors, while
LWHAM only requires 10−20% of the computational time
compared with UWHAM. The timing of UWHAM and
LWHAM and their convergence behavior as the amount of
simulation data increases have been studied on selected
systems.22,23 In summary, these results demonstrate the

Figure 4. Comparison of LWHAM results obtained from different neighborhood sizes with UWHAM, BAR, and benchmark results. The
neighborhood (2 × n) is twice the value of the neighborhood size (n) indicated on the abscissa.
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potential that LWHAM serves as a fast and accurate
approximation to UWHAM to incorporate information from
multiple neighboring simulations for estimating binding free
energies.
LWHAM Reweighting Using BAR Input Data. Another

appealing advantage of applying LWHAM is that LWHAM
analyses do not require full biasing matrices as inputs. As
mentioned in the Simulation Setup section, when constructing
the biasing matrix for UWHAM, we need to evaluate the
potential energy of each configuration using the Hamiltonian
function of each state. Therefore, UWHAMing all data requires
the binding complex in FEP simulations to include all the
ligands in the perturbation map. Suppose the simulations and
analyses are accomplished for a perturbation map and more
ligands are desired to add into the map. We have to redesign
and rerun the simulation at each state in the original
perturbation map to include the additional ligands so that
UWHAM can be applied for the new perturbation map. On
the other hand, inputs for BAR analyses contain much less
information. Suppose we plan to analyze a perturbation map
using BAR. The binding complex simulated at each edge only
includes two ligands; the potential energies of each
configuration are evaluated using the Hamiltonian functions
of the original state at which the configuration is collected and
the nearest neighbors in the same edge, and more ligands can
be added to the perturbation map without rerunning any
simulations at the states in the original map.
The complexity of inputs of LWHAM depends on the

neighborhood size. When the neighborhood contains every
state in the perturbation map, the inputs of LWHAM are the
same as the inputs of UWHAM. However, when the
neighborhood size decreases to one, the inputs of LWHAM
are as simple as the inputs of BAR except for the state at the
vertices in the perturbation map. If we plan to analyze the
perturbation map shown by Figure 3 using BAR, we usually
run two simulations at each vertex state. For example, the
binding complex in the first simulation at the 60th state
includes ligand 3 and ligand 2, where ligand 3 is real and ligand
2 is virtual. We then evaluate the potential energy for each
configuration generated from this simulation using the
Hamiltonian functions of the 59th state and the 60th state,
which belong to the leg at the bottom. The binding complex of
the other simulation at the 60th state includes ligand 3 and
ligand 4, where ligand 3 is real and ligand 4 is virtual. We
evaluate the potential energy for each configuration generated
from the second simulation using the Hamiltonian functions of
the 60th state and the 61st state, which belong to the leg at the
right-hand side. If we plan to analyze the same perturbation
map using LWHAM and the neighborhood size is one, we run
a single simulation at the 60th state, in which the binding
complex includes ligands 2, 3, and 4. Ligand 3 is real, and both
ligand 2 and 4 are virtual. Then, we evaluate the potential
energy for each configuration generated from this single
simulation using the Hamiltonian functions of the 59th, 60th,
and 61st state to construct the input file for LWHAM.

Here, we introduce an approximate approach to apply
LWHAM using the inputs of BAR analyses directly. Again, let
us use the perturbation map shown in Figure 3 and the 60th
state as examples. Suppose the simulations are set up to be
analyzed by BAR, and two simulations are run at each vertex
state. Although the Hamiltonian functions of the two
simulations run at the 60th state (that we mentioned above)
are the same, the raw data cannot be mixed together for the
LWHAM analysis. For the configurations generated by the
simulation with ligand 3 and ligand 2, it is not possible to
evaluate their potential energies using the Hamiltonian
function of the 61st state without manipulating the
configurations because ligand 4 is not included in the original
simulation, and for the configurations generated by the
simulation with ligand 3 and ligand 4, it is not possible to
evaluate their potential energies using the Hamiltonian
function of the 59th state either. However, these two
simulations can be treated as simulations run at two different
states even though their Hamiltonian functions are the same.
In other words, we split each state at the vertices into two
states, and there are no biases between these two split states.
After this simple revision of the perturbation map, we can run
LWHAM analyses using the inputs to BAR directly. We
applied this approach to the perturbation map shown by Figure
3, and the free energy differences calculated for edges are listed
in Table 1. The results are close to the LWHAM estimates
reported in Figure 4 when the neighborhood size is one. There
is a side effect of this revision of the perturbation maps: the
physical state of each ligand is now represented by two states,
and the free energy difference between them is nonzero. In this
case, the largest difference between the two split states is ∼0.02
kcal/mol. We use the average free energy value of the two split
states for the physical state of each ligand during the
calculation of relative binding affinities.

Heat Map of the Overlapping States Matrix. In
addition to the benefits of applying LWHAM discussed
above, LWHAM (or ST-SWHAM) can also provide
information to optimize FEP simulations. Suppose we apply
ST-SWHAM with the global jump proposal (eq 7) to analyze a
raw data set. The average probability of jumping from the γth
state to the αth state is

P
N

p u( , )
1

( ; , )
u

i
0 0

i

∑ζ π α ζ π= |γα
γ γ∈ (10)

where ui ∈ γ denotes that ui is one of the observations
collected at the γth state; p(α | ui; ζ, π

0) is defined by eq 7; and
Nγ is the total number of observations collected at the γth
state. The distribution Pγα(ζ, π

0) is normalized to unity:

P ( , ) 1
M

1

0∑ ζ π =
α

γα
= (11)

where M is the total number of states. When the ST-SWHAM
analysis converges, the probability Pγα(ζ, π

0) can be rewritten
as

Table 1. Free Energy Changes along Each Edge in the Bounding State, ΔF(kcal/mol), Estimated by LWHAM Using the BAR
Inputs Compared with the Results Estimated by UWHAM and BAR

pro12 pro23 pro34 pro41

LWHAM −9.22 ± 0.11 −7.49 ± 0.14 4.79 ± 0.12 11.92 ± 0.14
UWHAM −9.83 ± 0.05 −6.40 ± 0.09 4.67 ± 0.12 11.56 ± 0.07
BAR −10.02 ± 0.13 −8.10 ± 0.15 4.15 ± 0.13 11.19 ± 0.15
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where ζ,̂ Ẑ, and Ω̂ are the UWHAM maximum likelihood

estimates of free energies, partition functions, and density of

states, respectively.
Next, let us consider a matrix O that is defined by the

following equation:

O N P ( , )0ζ π= ̂
γα γ γα (13)

Figure 5 shows an illustration of the matrix O. On one hand,
the sum of the matrix elements at the γth row is Nγ, and the
sum of all matrix elements is

O N N
M M M

1 1 1

∑ ∑ ∑= =
γ α

γα
γ

γ
= = = (14)

where N is the total number of observations. We can interpret
the rows of this matrix as follows. Consider that this matrix
represents N ST-SWHAM cycles that contain N global jumps.
During these N cycles, each data point in the raw data
ensemble is resampled once on average because observations
are chosen uniformly to resample when the ST-SWHAM
analysis converges. Nγ of the total N jumps start from the γth
state, and Oγα of those jumps starting from the γth state end at
the αth state. On the other hand, the sum of the matrix
elements at the αth column is also Nα due to the UWHAM
equations:
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Similarly, this implies that Nα of the total N jumps end at the
αth states, and Oγα of those jumps ending at the αth state start

from the γth state. When the length of the simulation at each
state is sufficiently long, the matrix O converges to a symmetric
matrix:

N P N P( , ) ( , )0 0ζ π ζ π̂ = ̂
γ γα α αγ (16)

Namely, the detailed balance condition is satisfied. This can be
seen by rewriting the matrix element Oγα as
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where the labels (γ, α) appear symmetrically on the right-hand
side of eq 17. The approximation becomes exact when the
simulation at each state converges.
Furthermore, rewriting eq 13 as
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shows that the matrix elements Oγα at the αth column are
proportional to the contributions of the observations of the γth
state to the partition function of the αth state. If the
observations observed at the γth state make a large
contribution to the partition function of the αth state, the
probability of observing those configurations at the αth state is
large. Therefore, the column elements of the matrix O provide
a quantitative measure of the overlap between pairs of
alchemical/thermodynamic states. Analogous to adjusting the
spacing between states in replica exchange simulations based
on acceptance ratios to achieve better sampling, we can
improve FEP simulations based on the overlap between states
to obtain better estimates of the binding affinity differences
along the edges of the thermodynamic cycle.
Figure 6 shows the heat map that represents the overlapping

states matrix constructed from our FEP simulations of 120
states that form the closed cycle. Because the number of
observations at every state is the same, the elements of the
matrix are simplified to Pγα instead of NγPγα, and the sums of
elements in rows or in columns are normalized to unity. The
black lines in Figure 6 indicate upper and lower boundaries
within which the neighbors (including itself) contribute 85% of
the partition function.
Looking at the overlap matrix heat map, it is apparent that

the extent to which each of the 120 alchemical/thermody-
namic states overlaps with its neighbors varies substantially.
The raw data generated at states numbered 30−50 and 70−90
have wider overlaps with their neighbors compared with the
raw data generated at other states. In this region, the
contribution of each state to its own partition function,
which is represented by the diagonal element of the

Figure 5. Illustration of the overlapping states matrix.
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overlapping state matrix, is around 5%. The raw data generated
at states numbered 50−70 have much narrower overlaps with
their neighbors. In this region, the contribution of each state to
its own partition function is as high as 15−20%. As illustrated
in Figure 3, we convert one hydrogen atom in a methyl group
of the ligand to a methyl group from state 60 to 90; we convert
the same hydrogen atom to an ethyl group from state 60 to 30.
The heat map of overlapping states indicates that our choice of
spacing between states causes narrow overlaps at the
alchemical states that are adjacent to the physical state of the
small ligand (ligand 3, state 60) and wide overlaps at the
alchemical states that are adjacent to the physical states of the
large ligand (ligands 2 and 4, states 30 and 90, respectively).
Narrow overlap suggests that the majority in the weighted
configuration ensemble (partition function) for that state are
those configurations sampled at a small number of neighboring
states and itself, which should be avoided because more
overlaps with simulations at other states can decrease the
probability of systematic errors. A likely reason for this is as
follows. Suppose the simulation at one state does not converge
because basins in the free energy landscape centered on that
state are separated by high barriers. However, those basins are
possibly well sampled at neighboring states where the
landscape is less rugged. Applying UWHAM or LWHAM on
the raw data will lead to improvements to the estimates for the
unconverged state. Examples can be found in our previous
work.23,64 As described in the Simulation Setup section, the
states numbered 60−70, which have the narrowest overlaps
with their neighbors, are the states at which we switch on the
Vdw interactions between ligand 4 and the environment
water and the receptor. (Note that the Vdw interactions
between different ligands are always turned off.) In other
words, the simulations from state 60 to state 70 gradually
create a larger size cavity in the solvated protein receptor
environment. This corresponds to one of the largest alchemical

perturbations of the ligand excluded volume from the full
thermodynamic cycle. We expect to obtain better binding
affinity estimates if the number of the states in this region is
increased.
There are alternative methods to measure the overlap

between pairs of states. Along with ST-SWHAM, we proposed
another algorithm called RE-SWHAM that can solve the
UWHAM equations stochastically by applying the replica
exchange (RE) protocol instead of serial tempering to
resample the raw data.64 One can construct a matrix of
exchange acceptance ratios to measure the overlap between
pairs of states simultaneously when running RE-SWHAM
analyses. We also note a previous study by Klimovich et al.
who proposed to calculate a similar overlapping matrix
(referred to as the KSM matrix),72 which is defined by
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The element aγα of the KSM matrix represents the average
probability of observing a configuration at the αth state using
all the configurations generated at all the states weighted by
their (UWHAM) probability of observation of the γth state.
Note the element Oγα of our overlapping states matrix
represents the average probability of observing a configuration
at the αth state using the configurations that are actually
collected at the γ state during the FEP simulations. We can
modify the KSM matrix by multiplying a factor Nα to each
column and obtain a new matrix

a N a
N N
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Apparently, our overlapping matrix and the modified KSM
matrix become the same when the simulation at each state
converges, which is clear through a simple comparison
between eq 17 and eq 20. In this study, we measure overlaps
by using the matrix defined by eq 13 for the following reasons.
First, the matrix elements Oγα have a clear physical meaning
they are proportional to the contribution of the observations
collected at the γth state to the partition function of the αth
state. More importantly, the asymmetry of the matrix O is an
indicator of the lack of convergence of the FEP simulations.
This information is lost when forcing the detailed balance
condition satisfied by taking the average of all data weighted by
their UWHAM weights. Last but not least, constructing a
matrix defined by eq 20 is as computationally time-consuming
as solving the UWHAM equations exactly. For large data
ensembles, it is convenient to analyze the data by LWHAM
and construct an approximation of the overlapping states
matrix O based on jump probabilities during the LWHAM
analysis.

■ CONCLUSION
In this study, we have applied the analysis tools UWHAM and
LWHAM to compute the free energies for data ensembles
generated by multi-state simulations in FEP simulations of
protein−ligand binding involving a closed perturbation map.

Figure 6. Heat map of the overlapping state matrix. The black lines
indicate the boundaries of 85% of the total contribution of the
partition function of each diagonal state. The green lines indicate a
neighborhood size of four for each state. The pink lines indicate a
neighborhood size of 15 for each state. The raw data set obtained
from state 61 shows the narrowest overlap with its neighbors, and the
raw data set obtained from state 25 shows the widest overlap with its
neighbors.
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When UWHAM is applied, it leads to the unique and best
estimate of the density of states since measurements have been
taken at all the simulation states in the thermodynamic cycle.
Hence, it is guaranteed that there is no hysteresis of cycle
closure for the ligand binding free energy predictions. This
does not mean the UWHAM estimates are exact, only that the
signed errors in the estimates are constrained to cancel. In the
example we focus on, the simulations at some states along the
edge of ligand 2 to ligand 3 are far from convergence, as
indicated by the estimation of ΔFpro23 with BAR exhibiting
considerable bias from the benchmark, while this can be
improved by UWHAM or LWHAM to include the
contributions from neighboring λ states with lower barriers
that can be more easily crossed.
To avoid the requirements of large memory and computa-

tional power to solve the UWHAM equations involving the
weighting from all states, we pointed out that LWHAM can be
used to effectively extract information from adjacent λ states
for free energy estimation based on neighborhood criteria. To
determine an optimal neighborhood size, we suggested plotting
the estimate of the free energy change for an FEP
transformation as a function of neighborhood size using
LWHAM and then looking for a plateau, as illustrated in
Figure 4. We also described an approach that applies LWHAM
using the smallest neighborhood size, ±1, to obtain the relative
binding affinities using the same inputs as BAR but which
removes the hysteresis and can lead to improved free energy
estimates. By using the global jump formula of ST-SWHAM,
we constructed the overlapping states matrix (jump proba-
bilities matrix) to measure the extent of configurational space
overlap. This overlapping states matrix serves as a useful tool to
identify locations where additional λ states can be added
nearby to achieve better sampling.
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