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ABSTRACT: A spatially resolved version of the density-functional method
for solvation thermodynamics is presented by extending the free-energy
functional previously established in the one-dimensional, energy representa-
tion and formulating a new expression in a mixed four-dimensional
representation (three dimensions for position and one dimension for
energy). The space was further divided into a set of discrete regions with
respect to the relative position of a solvent molecule from the solute, and the
spatially decomposed energetics of solvation were analyzed for small
molecules with a methyl, amine, or hydroxyl group and alanine dipeptide
in solvent water. It was observed that the density of the solvation free energy
is weakly dependent on the solute site in the excluded-volume region and is
distinctively favorable in the first shells of the solute atoms that can readily
form hydrogen bonds with water. The solvent-reorganization term reduces faster with the separation from the solute than the
direct interaction between the solute and solvent, and the latter governs the energetics in the second shell and outer regions.
The sum of the contributions to the free energy from the excluded volume and first shell was found to deviate significantly from
the total sum over all the regions, implying that the solvation free energy is not spatially localized near the solute in a
quantitative sense. Still, a local description was shown to be valid as confirmed by the correlation of the total value of free energy
with the corresponding value obtained by integrating the free-energy density to the second shell. The theoretical framework
developed in the present work to spatially decompose the solvation free energy can thus be useful to identify stabilizing or
destabilizing regions of solvent proximate to a solute and to analyze the role that the displacement of interfacial water plays in
the thermodynamics of molecular association.

■ INTRODUCTION

Solvation free energy quantifies the influence of solvent on the
stability of a solute. It is a thermodynamic variable and
describes the effect of solute−solvent interaction as a whole. A
molecular picture is established, on the other hand, by
identifying chemically important groups of atoms and pursuing
local structure and energetics around them. The focus is then
the solvent molecules located proximately to the solute, and a
theoretical framework is required to bridge the spatially
resolved information to a spatially averaged observable such as
free energy. The scheme of spatial decomposition meets this
requirement. It expresses a thermodynamic, transport, or
spectroscopic quantity as a spatial integral of relevant,
molecular correlation functions and sets a basis for specifying
the important regions that determine the observable. The
spatial decomposition was conducted to analyze the energetics
and volumetrics of hydration1−4 and was adopted to
investigate the ion-pair contribution to the electrical

conductivity and the solvation-shell contributions to dynamic
and spectroscopic observables.5−16

The spatially resolved energetics have received much
attention recently in connection with ligand design for
proteins.17−28 The inhomogeneous solvation theory sets a
basis for investigating the energy and entropy of water
molecules at the biomolecular surface, and a practical strategy
has been proposed to identify the locations of water that are to
be displaced by ligands possibly with improved affinities. The
empirical schemes based on the accessible surface area and the
method of 3D-RISM (three-dimensional reference interaction
site model) can also be viewed as ones with spatial (regional)
decomposition.29−32 A set of thermodynamic parameters are
assigned to or determined for each group of atoms (functional
group), and in this procedure, the space around the solute is
effectively divided by specifying the contributions from the
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atom groups. Density functional theory (DFT) is an alternative
scheme for expressing the solvation free energy as an integral
over the space.33−43 The local signature for assessing the
solvent’s effect on the solute stability is then the indirect
(solvent-mediated) part of the solute−solvent potential of
mean force,35,42,44 which describes the solvent−solvent
correlation modified by the presence of the solute.
The present work performs the spatial decomposition of the

solvation free energy on the basis of the endpoint density-
functional formula. In the DFT formalism, the solvation free
energy is expressed as a functional of the solvent density
around the solute,33,34 and with the introduction of
approximations, the free energy can be evaluated from
distribution functions in pure solvent and in the solution
system of interest; note that these two are the initial and final
(endpoint) states of solute insertion. When the solute is placed
at the origin with fixed orientation, the solvent distribution
around it can be represented as a function of the position and
orientation of the solvent molecule. Such a six-dimensional
representation is not numerically advantageous, however, and a
scheme of dimensionality reduction is required for implement-
ing a density-functional method in practice. In previous
works,35,41,44−47 an endpoint DFT was formulated by adopting
the pair-interaction energy between the solute and solvent as
the one-dimensional coordinate for the distribution functions.
This is called the energy-representation method and was
applied to a variety of systems including protein and lipid
membrane.41,48−53 The solute−solvent configuration is then
projected onto the energy coordinate, and thus the spatial
information on the solvent around the solute is lost. To restore
a spatially decomposed view of the solvation free energy within
the DFT framework, therefore, it is necessary to formulate a
representation that retains both the spatial information and the
numerical feasibility.
In the present work, we formulate a functional for the

solvation free energy by adopting a mixed representation with
the position and energy. The energy refers to the pair energy
between the solute and solvent and acts as a proxy for the
solvent orientation relative to the solute. The coordinate for
the distribution functions is then four-dimensional with further
reduction possible by the division of the space into a set of
discrete regions, and a DFT expression can be developed in
parallel to the cases of the six-dimensional (full position and
orientation) and one-dimensional (energy) representations.42

We provide a formalism based on the Kirkwood charging
formula and conduct the spatial decomposition for the free
energies of solvation in water of small molecules with a methyl,
amine, or hydroxyl group and of alanine dipeptide at
representative conformations.
When the solvation free energy is spatially decomposed, the

contribution from a region and/or an atomic group can be
identified, for example, as hydrophobic or hydrophilic in
solvent water in terms of its sign. This is a useful feature for
quantitatively assessing the role of each contribution in the
solvation effect, whereas the decomposed values are not
observable in general. In the present work, we treat the solute−
solvent interaction in each region examined and discuss the
hydrophobicity or hydrophilicity of the methyl, amine,
hydroxyl, and phenyl groups in small molecules and of the
atomic sites in alanine dipeptide. Another feature of the spatial-
decomposition analysis is that the extent of spatial localization
can be addressed for the free energy of solvation. The total
value of the free energy is then compared to the partial

contribution from the excluded-volume, first-shell, and second-
shell regions of the solute, and it is seen that the solvation free
energy is not localized in the sense that the partial contribution
deviates significantly from the total. Still, a good correlation is
observed between the partial and total values, showing that a
local view is adequate for describing the free energetics of
solvation.

■ THEORY

In this section, we describe the DFT formalism for the
solvation free energy Δμ. We briefly summarize the develop-
ments in the six-dimensional (full position and orientation)
and one-dimensional (energy) representations and provide a
spatially decomposed expression for Δμ. We suppose that the
solute and solvent are both rigid and that the solution is at
infinite dilution with a single-component solvent. Actually, we
will note at the end of the section that the supposition of
rigidity is not necessary. The following developments can also
be extended straightforwardly when the solute is at finite
concentration and/or the solvent is a mixed one with more
than a single species.
The solvation free energy Δμ is the free-energy change for

turning on the solute−solvent interaction. When the solute is
located at the origin with fixed orientation, Δμ is expressed as

∫
∫

β μ
β

β
− Δ =

− {∑ + }
−

v U

U

X x X

X X
exp( )

d exp( ( ) ( ) )

d exp( ( ))
l l

(1)

where xl is the configuration of the lth solvent molecule, X
denotes the solvent configuration collectively, U(X) is the total
energy among the solvent, v(x) is the pair-interaction potential
between the solute and solvent, and β is the inverse of kBT with
the Boltzmann constant kB and the temperature T. Note that x
is a six-dimensional coordinate representing the position and
orientation of the solvent molecule relative to the solute. To
formulate an endpoint DFT expression for Δμ, we introduce a
set of intermediate states connecting the initial and final states
of the insertion process of the solute, where the initial and final
states are the pure-solvent system without solute and the
solution system of interest, respectively. Let λ be the coupling
parameter identifying the state and uλ(x) be the solute−solvent
interaction potential at the coupling parameter λ. When λ = 0,
the system is the pure solvent and u0 = 0 (no solute−solvent
interaction). The solute molecule at λ = 0 is a virtual particle
and is located in the system as a test particle. When λ = 1, the
solute interacts with the solvent at full coupling and u1 = v,
where v is the solute−solvent interaction of interest. Δμ is then
given by the Kirkwood charging formula of

∫ ∫μ λ
λ

ρΔ =
∂

∂
λ

λ
u

x
x

xd d
( )

( )
0

1
f

(2)

where ρλ
f is the one-body distribution of the solvent around the

solute at the coupling parameter λ. It is the ensemble average
of the instantaneous distribution of x defined as

∑ρ δ̂ = −x x x( ) ( )
l

l
f

(3)

with the superscript f meaning that the function is represented
over the full coordinate of position and orientation, and an
ensemble average at λ is written as
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∫
∫

β

β
⟨ ⟩ =

− {∑ + }
− {∑ + }

λ
λ

λ

u U

u U

X x X

X x X
...

d (...) exp( ( ) ( ) )

d exp( ( ) ( ) )
l l

l l (4)

The solvation free energy Δμ consists of the solute−solvent
interaction energy and the solvent-reorganization term. The
latter is the free-energy penalty corresponding to the change in
the solvent distribution upon insertion of the solute and is
introduced from the Kirkwood charging formula eq 2 through
partial integration as

∫ ∫ ∫μ ρ λ
ρ

λ
Δ = −

∂
∂λ
λv ux x x x x
x

d ( ) ( ) d d ( )
( )f

0

1 f

(5)

where ρf(x) denotes ρλ
f (x) at λ = 1 and is the density of solvent

in the solution system of interest. The second term of eq 5 is
the density functional and is the free energy of solvent
reorganization. To separate it further to the solute−solvent
pair contribution and the term incorporating the solvent−
solvent correlations, we define the indirect (solvent-mediated)
part ωλ

f (x) of the potential of mean force as

ρ ρ β ω= − { + }λ λ λux x x x( ) ( ) exp( ( ) ( ) )f
0
f f

(6)

where ρ0
f stands for ρλ

f at λ = 0. Equation 5 can then be
modified into42,44,47

∫ ∫

∫ ∫

μ ρ ρ ρ

ρ ρ
ρ

λ ω
ρ

λ
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− +
∂

∂λ
λ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
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v k Tx x x x x x

x
x
x

x x
x

d ( ) ( ) d ( ) ( )

( ) log
( )
( )

d d ( )
( )f

f
B

f
0
f

f

0
f 0

1
f

f

(7)

This is an exact expression. Its first term is the average sum of
the solute−solvent interaction energy at λ = 1, and the second
term is the pair entropy that quantifies the deviation of the
solvent distribution in the solution system (λ = 1) from that in
the pure solvent (λ = 0). The third term corresponds to the
change in the solvent−solvent correlations upon gradual
insertion of the solute with the coupling parameter λ. As
noted in refs 42 and 43, the integrand of eq 7 is of o(1/V) at
large distances from the solute, where V refers to the system
size and o(1/V) denotes a quantity that vanishes faster than 1/
V in the thermodynamic limit (V → ∞). There is then no
contribution to the integral from the bulk far from the solute,
and the integral value of eq 7 is assured to be independent of
the choice of ensemble (for example, canonical vs isothermal−
isobaric). This is because the ensemble dependence arises from
the presence of an O(1/V) correlation in the bulk region.3

The difficulty in using eq 7 in the computation of Δμ is the
high dimensionality of the full coordinate (position and
orientation) x. To make feasible the DFT route to Δμ, a
formulation is required which expresses Δμ only in terms of
distribution functions over a coordinate of reduced dimension.
The method of energy representation was formulated as a DFT
scheme over a one-dimensional coordinate.35,44 In this
method, the solute−solvent pair interaction v(x) in the
solution system of interest plays the key role and the
instantaneous distribution of its value ϵ is introduced as

∑ρ δ̂ ϵ = ϵ − v x( ) ( ( ))
l

l
e

(8)

where the sum is taken over the solvent molecules and the
superscript e is attached to emphasize that a function is
represented over the energy coordinate. A density-functional
treatment can then be implemented by restricting the set of
solute−solvent interaction potentials uλ(x) to those which are
constant over equi-energy surfaces of v(x). With this setup, uλ
is a composite function with the form of uλ(v(x)) and can be
written as uλ(ϵ) when ϵ denotes the value of v(x). At the
endpoints (λ = 0 and 1), u0(ϵ) = 0 and u1(ϵ) = ϵ since v(x) is
the potential function in the solution system of interest.
The Kirkwood charging formula in the energy representa-

tion is then given by

∫ ∫μ λ
λ

ρΔ = ϵ
∂ ϵ

∂
ϵλ

λ
u

d d
( )

( )
0

1
e

(9)

where ρλ
e is the distribution function in the presence of uλ and

is the ensemble average of eq 8 through eq 4. The indirect part
ωλ

e(ϵ) of the potential of mean force can also be defined in
parallel to eq 6 as35,42,44,47

ρ ρ β ωϵ = ϵ − { ϵ + ϵ }λ λ λu( ) ( ) exp( ( ) ( ) )e
0
e e

(10)

and eq 9 reduces to

∫ ∫

∫ ∫

μ ρ ρ ρ

ρ ρ
ρ

λ ω
ρ

λ

Δ = ϵ ϵ ϵ − ϵ ϵ − ϵ

− ϵ ϵ
ϵ
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∂ ϵ
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d k T( ) d ( ) ( )

( ) log
( )
( )

d d ( )
( )

e
B

e
0
e

e
e

0
e

0

1
e

e

(11)

where ρ0
e(ϵ) and ρe(ϵ) denote ρλ

e(ϵ) at λ = 0 and 1,
respectively. Equation 11 is exact, and it has a similar structure
to eq 7. The first term is equal to the average sum of the
solute−solvent interaction energy in the solution (λ = 1), and
the second term expresses the pair entropy in the energy
representation. The third term takes into account the effects of
solvent−solvent correlations and was approximated by a
combined Percus−Yevick (PY)-type and hypernetted-chain
(HNC)-type relationship in previous works.44,47,49 As in eq 7,
the solvent-reorganization term in eq 11 is the sum of the
second and third terms. It should be noted that although eq 7
is not easy to implement due to the high dimensionality of the
full coordinate x, eq 11 is straightforward to handle since the
energy coordinate ϵ is one-dimensional.
A notable feature of eq 8 is that the spatial information on

the solvent around the solute is projected out. To restore the
spatial resolution at the lowest possible dimensionality, a mixed
space-energy representation can be proposed by using the
solute−solvent pair energy ϵ as a proxy for the solvent
orientation relative to the solute and defining the instantaneous
distribution as

∑ρ δ δ̂ ϵ = − ϵ − vr r r x( , ) ( ) ( ( ))
l

l l
m

(12)

where r is the position of a solvent molecule and the
superscript m means the mixed representation. Equation 12 is
a marginal distribution of eq 3 obtained by projecting the full
coordinate x to (r,ϵ). A typical choice of r can correspond to
the center of mass of the solvent molecule or the oxygen site in
the case of water. A DFT expression for Δμ can be formulated
in a similar manner to that for eq 9 by considering the set of
solute−solvent interactions with the form of uλ(r,ϵ); u0(r,ϵ) =
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0 at λ = 0 and u1(r,ϵ) = ϵ holds at λ = 1. uλ can depend
explicitly on the position r only at the intermediate states (0 <
λ < 1). When the ensemble average of eq 12 at the coupling
parameter λ is written as ρλ

m(r,ϵ) and ρ0
m(r,ϵ) denotes ρλ

m(r,ϵ)
at λ = 0, the indirect part ωλ

m(r,ϵ) of the potential of mean
force can be introduced as

ρ ρ β ωϵ = ϵ − { ϵ + ϵ }λ λ λur r r r( , ) ( , ) exp( ( , ) ( , ) )m
0
m m

(13)

in the mixed representation. The Kirkwood charging formula
then reads as

∫ ∫μ λ
λ

ρΔ = ϵ
∂ ϵ

∂
ϵλ

λ
u

r
r

rd d d
( , )

( , )m

0

1

(14)

and modifies further into42
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k Tr r r

r r r
r
r

r r
r

d d ( , ) d d

( , ) ( , ) ( , ) log
( , )
( , )

d d d ( , )
( , )

m

m
B

m
0
m

m

0
m

0

1
m

m

(15)

where ρm(r,ϵ) means ρλ
m(r,ϵ) at λ = 1 for notational brevity. It

should also be noted that the distribution function ρλ
pos(r) of

the solvent position r satisfies

∫ρ ρ= ϵ ϵλ λr r( ) d ( , )pos m
(16)

and ρλ
e(ϵ) in the one-dimensional, energy representation is

related to ρλ
m(r,ϵ) through

∫ρ ρϵ = ϵλ λr r( ) d ( , )e m
(17)

by virtue of eqs 8 and 12. Equations 16 and 17 show that
ρλ
pos(r) and ρλ

e(ϵ) are marginal distributions of ρλ
m(r,ϵ), which is

the solvent density around the solute in a mixed representation
of position and energy. In the following, ρλ

pos(r) at λ = 1 is
denoted as ρpos(r).
As is so for eqs 7 and 11, eq 15 is an exact expression. The

spatial decomposition of Δμ can then be conducted by
rewriting eq 15 as

∫μ μΔ = Δdr r( )
(18)

∫ ∫
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μ ρ ρ ρ

ρ ρ
ρ

λ ω
ρ

λ

Δ = ϵ ϵ ϵ − ϵ ϵ − ϵ

− ϵ ϵ
ϵ

+ ϵ ϵ
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d k T dr r r r

r
r
r

r
r

( ) ( , ) ( , ) ( , )

( , ) log
( , )
( , )

d d ( , )
( , )

m
B

m
0
m

m
m

0
m

0

1
m

m

(19)

Δμ(r) is the free-energy density at r. When the first term of eq
19 is divided by the spatial density ρpos(r), the quotient is the
average sum at λ = 1 of the interaction energy with the solute
of the solvent molecules located at the position r. Actually,
Δμ(r) is not zero even when ρpos(r) is vanishingly small.
ρpos(r) is exactly zero when the solute−solvent interaction
energy is infinite at r and is numerically zero in a simulation of
finite length when r is contained in the excluded-volume

domain. In either case, Δμ(r) does not vanish and will be
unfavorable (positive) as the excluded-volume effect.
In numerical implementations, the spatial position is

expressed with finite bins. A molecular picture may also be
obtained by focusing on the solvation shells around chemically
important groups of atoms. When the space is divided into a
set of discrete regions, the contribution from each region to
Δμ can be formulated in the DFT framework by introducing

∑ρ δ̂ ϵ = Θ ϵ −i i vr x( ; ) ( ; ) ( ( ))
l

l l
d

(20)

where Θ(r;i) is the characteristic function for the ith region in
the space and is taken to satisfy

∑ Θ =

Θ Θ = ≠

i

i j i j

r

r r

( ; ) 1

( ; ) ( ; ) 0 for

i

(21)

for any position r in space. With eq 21, Θ(r;i) at a given r is
unity for a single i and vanishes for the other i’s. The division
of the space is then unique. A position in space is always
contained in one of the regions and can never belong to
multiple regions. Equation 20 is actually a marginal
distribution of eq 3 since it is obtained through the projection
from the full coordinate x in eq 3 to the continuous position
and energy (r,ϵ) in eq 12 and a further marginalization
expressed as

∫ ∫ρ ρ ρ̂ ϵ = Θ ̂ ϵ = ̂ ϵ
_

i ir r r r r( ; ) d ( ; ) ( , ) d ( , )
i

d m

region

m

(22)

An example of division is shown in Figure 1. Three centers
A, B, and C are specified, and the space is first divided into

three regions in terms of the distances from A, B, and C with
the boundaries given by the dashed lines. Each of the three
regions is then divided with respect to the distance from the
center, and the example of Figure 1 consists of 12 regions
represented by distinct colors. The regions in Figure 1 satisfy
eq 21 by construction and may not be spherical in spite of the
distance criteria used for the division. In the Results and

Figure 1. An example of division of the space. The three regions with
the boundaries written as dashed lines are closest to the centers A, B,
and C, respectively, from left to right, and are further divided into the
regions shown with distinct colors. The white part corresponds to the
“far-separated” region in the Results and Discussion.
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Discussion, we will divide the space as above. The centers A, B,
and C in Figure 1 do not have to refer to three atomic
positions. They may only be three sites arbitrarily chosen
within a solute molecule, which is not necessary to be a
triatomic one. When A, B, and C are positions of atoms, the
shells around them can be used to define the regions. Each
region may be a nonspherical part of a (spherical) shell,
though, and when the molecule is not triatomic, the shell
structures around the atoms other than A, B, and C are not
reflected to introduce the regions in Figure 1. A position in
space is specified only with the distances from A, B, and C, and
its distances with the other atoms are disregarded. It should be
remarked again that the regions can be introduced arbitrarily as
far as eq 21 is assured. The radial distances from a set of
specific atoms are only a convenient option for division with eq
21. When the solute is a protein, for example, its cavity or
active site may be adopted as a region. A grid can be employed,
too, since it satisfies eq 21.
The DFT expression for Δμ in the discretized space-energy

representation is formulated in parallel to that in the
continuous representation based on eq 12. The indirect part
ωλ

d(ϵ;i) of the potential of mean force is defined as

ρ ρ β ωϵ = ϵ − { ϵ + ϵ }λ λ λi i u i i( ; ) ( ; ) exp( ( ; ) ( ; ) )d
0
d d

(23)

and the Kirkwood charging formula is

∫ ∫∑μ λ
λ

ρΔ = ϵ
∂ ϵ

∂
ϵλ

λ
u i

id d
( ; )

( ; )
i 0

1
d

(24)

In these equations, ρλ
d(ϵ;i) is the ensemble average of eq 20 in

the presence of uλ(ϵ;i), where uλ(ϵ;i) is the solute−solvent
interaction at the coupling parameter λ in region i. u0(ϵ;i) = 0
and u1(ϵ;i) = ϵ are satisfied at the endpoints (λ = 0 and 1), and
the explicit dependence of uλ on i appears only at the
intermediate states. Equation 24 is then rewritten as

∑μ μΔ = Δ i( )
i (25)

∫ ∫

∫ ∫

μ ρ ρ ρ

ρ ρ
ρ

λ ω
ρ

λ

Δ = ϵ ϵ ϵ − ϵ ϵ − ϵ

− ϵ ϵ
ϵ

+ ϵ ϵ
∂ ϵ
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i
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( ; ) log
( ; )
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d d ( ; )
( ; )

d
B

d
0
d

d
d

0
d

0

1
d

d

(26)

where ρd(ϵ;i) denotes ρλ
d(ϵ;i) at λ = 1. Δμ(i) is the

contribution from region i to the (total) free energy Δμ of
solvation. The first term of eq 26 is the averaged interaction
energy of the solvent in region i with the solute in the solution
(λ = 1), and the rest is the solvent-reorganization term as in
eqs 7, 11, and 19. Actually, the energy-representation
expression for Δμ in a mixed solvent (solvent system involving
more than a single species) without spatial decomposition47,49

has the form of eqs 25 and 26. In other words, distinct regions
in space can be viewed as distinct species of a mixed solvent in
the energy-representation formalism.
Equations 25 and 26 are exact, and the structure of the latter

is similar to those of eqs 7, 11, and 19. The integration over the
coupling parameter λ is involved in the third term of eq 26 and
needs to be approximated to formulate an endpoint expression.

In the present work, we employ the combined PY-type and
HNC-type relationship as adopted in previous works to
approximate the third term of eq 11 in the (one-dimensional)
energy-representation method.44,47,49 The approximate ex-
pression for Δμ is given in Appendix A.
At the beginning of the present section, we supposed that

the solute and solvent are rigid. This supposition is actually not
necessary. When the solute and/or solvent is flexible, our
developments are valid when all the intramolecular degrees of
freedom are incorporated into x. The problem is then the high
dimensionality of x, whereas in the energy representation
introduced by eq 8, the coordinate of the distribution functions
is kept one-dimensional even with intramolecular degrees of
freedom of the solute and/or solvent. This is a useful feature of
the energy-representation formalism, and ϵ in the mixed space-
energy representation serves as a proxy for all the variables
other than the position, including the orientation and the
intramolecular flexibility. The dimension is at least two for the
orientation and grows for the intramolecular part with the
number of intramolecular degrees of freedom in the solute
and/or solvent molecule. Equations 8, 12, and 20 are thus
marginal distributions of eq 3 over coordinate sets with
(largely) reduced dimensions since many (usually infinite)
orientational and intramolecular configurations are projected
to a single value of ϵ.

■ METHODS
The solvent in the present work was TIP3P water,54 and the
solute species were ethane, methylamine, methanol, toluene,
aniline, phenol, and alanine dipeptide. The force field for the
solutes was OPLS-AA/L,55,56 and in the following, those
solutes except for alanine dipeptide are called small solutes.
The N- and C-termini of alanine dipeptide were capped with
−CO−CH3 and −NH−CH3, respectively, and the peptide was
treated as a neutral species. The system configurations were
generated through all-atom molecular dynamics (MD)
simulation using GROMACS 2016.3,57,58 and to obtain the
solvation free energy Δμ, three kinds of MD were conducted
for each solute species: the solution system of interest, pure
solvent (pure water), and an isolated solute in vacuum. The
force fields were the same among the three systems, and an
isothermal MD of the isolated solute was performed at 300 K
to prepare a set of intramolecular configurations. The solution
and pure solvent were simulated in the isothermal−isobaric
(NPT) ensemble at 300 K and 1 bar with the periodic
boundary conditions and minimum image convention. The
unit cell of MD was then cubic and contained 2000 water
molecules with a single solute for the solution. The simulation
length was 5 and 2 ns for the solution and pure solvent,
respectively, with a sampling interval of 0.1 and 1 ps. See
Appendix B for the detailed procedures of MD simulation.
Four conformational states were examined for alanine

dipeptide by using a restraining potential, whereas the small
solutes were simulated without any restraint. The structure of
alanine dipeptide is shown in Figure 2 with the dihedral angles
ϕ and ψ, and the conformations are denoted as follows.59−70

α ϕ ψ

ϕ ψ

α ϕ ψ

ϕ ψ

= − ° = − °

= − ° = °

= ° = °

= ° = − °

: 65 , 45

P : 65 , 145

: 45 , 65

C : 55 , 85

R
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L

7
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Alanine dipeptide was restrained by using flat-bottomed
potential functions operative on ϕ and ψ; the restraint was
harmonically active with a force constant of 0.1 kcal/mol/
degree2 when the dihedral angle deviates from the correspond-
ing reference listed in eq 27 by more than 10°. The
intramolecular contribution to the relative stability of each
conformation was also determined by performing a replica-
exchange MD of alanine dipeptide isolated in a vacuum, as
described in Appendix B.

■ RESULTS AND DISCUSSION
Small Solutes. Figure 3 shows the radial distribution

functions g(r) of water around the small solutes examined; the
abscissa r refers to the distance of the oxygen site of a solvent
water molecule from the methyl carbon (C), amine nitrogen
(N), hydroxyl oxygen (O), or the center of mass of the six
carbon atoms forming the phenyl ring (Ph). A sharper first
peak appears at a shorter distance for N and O than for C and
Ph. This simply reflects the hydrogen bonding with water, and
the peak is stronger around O than around N. A clear second
peak is present for N of methylamine and O of methanol.
Aniline and phenol have a bulky phenyl group next to the
amine or hydroxyl group, and the peak structure of g(r) is less
distinct. The major peak for Ph is located broadly at ∼5 Å,
with a small shoulder observed only for toluene at ∼3 Å. Ph is
taken to be the center of the phenyl ring, and with this setup,
the water coordination is seen mainly at farther distances than
in the cases of atomic C, N, and O. Actually, g(r) around C or
Ph is affected by the interaction of the neighboring site with
water. The first peak for C is weaker around ethane than
around methylamine and methanol, and the major peak for Ph
exhibits a similar tendency.
Let R be the minimum of the distances of the C, Ph, N, and

O sites in the solute with the oxygen site of the solvent water
molecule. On the basis of this R and Figure 3, we divide the
space into a set of regions as listed in Table 1. The solute
molecule has two sites for which distances with a solvent
molecule are considered, and the space is first divided into two
regions each of which is closer to one of the sites. The two
regions are then divided further in terms of the values of R, and
the number of regions is 9 for ethane and toluene and 10 for
methylamine, methanol, phenol, and aniline. The scheme of
division is actually similar to that in Figure 1, and as illustrated

in Figure 1, the regions in Table 1 satisfy eq 21 and are not
spherical. The region with the smallest R for each site

Figure 2. Structure of alanine dipeptide, with four conformational
states of αR, PII, αL, and C7

ax. The C1, N1, C2, C3, and N2 atoms refer to
carbon and nitrogen atoms on the main chain (and the termini), and
in the subsection Alanine Dipeptide, the space is divided in terms of
the distances from C1, N1, C2, C3, and N2. The dihedral angles ϕ and
ψ correspond to C1−N1−C2−C3 and N1−C2−C3−N2, respectively,
and are 180° at the trans conformations.

Figure 3. Radial distribution functions g(r) of water around ethane,
methylamine, methanol, toluene, aniline, and phenol, where r is the
distance of the oxygen site of a solvent water molecule from the
methyl carbon, amine nitrogen, hydroxyl oxygen, or the center of the
phenyl ring. C denotes the carbon atom in the methyl group for
ethane, methylamine, methanol, and toluene, and g(r) from the two C
sites for ethane were averaged on the basis of symmetry. Ph refers to
the center-of-mass position of the six carbon atoms in the phenyl ring
for toluene, aniline, and phenol, and N and O are the amine nitrogen
for methylamine and aniline and the hydroxyl oxygen for methanol
and phenol, respectively. g(r) in the plot is shifted upward by 4 and 2
for C and Ph, respectively. The dotted lines drawn vertically in the
figure correspond to the boundaries of the regions listed in Table 1.

Table 1. Division of the Space into Regions for the Small
Solutes

atom in the solute region distance (Å)a

C (ethane, methylamine, methanol,
and toluene)b

excluded volume R < 2.8
first shell 2.8 < R < 5.5
second shell 5.5 < R < 8.0
outer region 8.0 < R < 10.0

Ph (toluene, aniline, and phenol)c excluded volume R < 2.7
first shell 2.7 < R < 6.3
second shell 6.3 < R < 8.5
outer region 8.5 < R < 10.0

N and O (methylamine, methanol,
aniline, and phenol)d

excluded volume R < 2.4
first shell 2.4 < R < 3.4
second shell 3.4 < R < 6.0
outer region 1 6.0 < R < 8.0
outer region 2 8.0 < R < 10.0
far-separatede R > 10.0

aR is the minimum of the distances of the C, Ph, N, and O sites in the
solute with the oxygen site of the solvent water molecule. bC is the
carbon atom in the methyl group of ethane, methylamine, methanol,
and toluene. cPh is the center of mass of the six carbon atoms in the
phenyl ring of toluene, aniline, and phenol. dN is the amine nitrogen
of methylamine and aniline, and O is the hydroxyl oxygen of
methanol and phenol. eThe solvent water is separated by more than
10 Å from all of the C, Ph, N, and O sites in the solute.
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corresponds to the excluded volume. It is the spatial region in
which water overlaps with a solute atom and the solute−
solvent interaction energy is prohibitively large. Upon
dissolution of the solute, a number of solvent molecules
need to be displaced from the region to be occupied by the
solute, and the free-energy penalty corresponding to this
displacement is denoted as the excluded-volume effect. The
second and third regions of R around each site in Table 1 refer
to the first and second shells, respectively. A small shoulder is
present at ∼3 Å for Ph of toluene and is treated as part of the
first shell in Table 1. The far-separated region is where the
solvent molecule is separated by more than 10 Å from all of the
C, Ph, N, and O sites in the solute, and it is defined as a single
region with R > 10 Å. A notable feature of our spatial-
decomposition scheme is that it is not necessary to introduce a
region with respect to the position of a solute atom. Ph is the
center-of-mass site of six carbon atoms, for example, and does
not correspond to the position of a specific atom. A “coarse-
grained” unit such as the phenyl group may be employed for
the decomposition, and the regions can be defined in
accordance with the spatial resolution of interest. We divided
the space with Table 1 to highlight the roles of such atomic
groups as methyl, phenyl, amine, and hydroxyl.
The contribution Δμ(i) from region i to the solvation free

energy was evaluated from eq 26 with the approximate form in
Appendix A. It should be noted that the volume is different
among the regions, and to correct the effect of this difference,
we also computed the free-energy density Δμ(i)/v(i). v(i)
refers to the volume of region i and was computed at test-
particle insertion of the solute of which the intramolecular
motions were sampled in a vacuum (see Methods). Figure 4
shows Δμ(i)/v(i) for the small solutes examined; the
numerical value of Δμ(i)/v(i) is listed in the Supporting

Information. It is evident that Δμ(i)/v(i) is unfavorable
(positive) in the excluded-volume region for each site. The
solvent molecules need to be displaced from that region to
avoid the overlap with the solute, and this displacement
corresponds to the unfavorable density of free energy in Figure
4. Actually, Δμ(i)/v(i) in the excluded-volume region is weakly
dependent on the site and the solute species. The free-energy
density in the excluded volume is not affected strongly by the
chemical structure of the solute, though it is larger for Ph.
When the solvent water is located outside the excluded-volume
region, Δμ(i)/v(i) is favorable (negative) and reduces in
magnitude toward outer regions except at the Ph site of
phenol. The Δμ(i)/v(i) value in the first shell is distinctively
more favorable around the amine N and the hydroxyl O than
around the methyl C and the phenyl Ph, as expected from the
hydrogen bonding with water. The free-energy density is
comparable in magnitude only between the excluded-volume
regions and the first shells of N and O and is smaller in the
other regions.
The negative Δμ(i)/v(i) signifies the attractive interaction

between the solute and the solvent water, and to see the
repulsive and attractive effects in more detail, we further
examine the energetics on the basis of eq 26. Its first term,
denoted as u(i) hereafter, is the average sum of the interaction
energy of the solute with the solvent molecules located in
region i in the solution system of interest, and the rest of the
right-hand side of eq 26 describes the free-energy change due
to the solvent reorganization. Figure 4 then depicts the energy
density u(i)/v(i); see the Supporting Information for the
numerical value of u(i)/v(i). The energy density vanishes in
the excluded-volume region since there is no solvent in that
region when the solute−solvent interaction is operative in the
solution system. u(i)/v(i) is favorable, on the other hand,

Figure 4. Densities of the solvation free energy Δμ(i)/v(i) and of the solute−solvent interaction energy u(i)/v(i) in the regions around the solute
introduced in Table 1. The LJ long-range correction is added to Δμ(i) and u(i) in the far-separated region in Table 1, and Δμ(i)/v(i) and u(i)/v(i)
in the far-separated region are not shown since that region is unbounded and the densities were not determined. The bars representing the values of
Δμ(i)/v(i) and u(i)/v(i) are stacked for each solute, and the green bars refer to the outer regions for the methyl carbon (C) and the phenyl center
(Ph) and the outer region 1 for the amine nitrogen (N) and the hydroxyl oxygen (O). The values are multiplied by a factor of 2 in the second shell,
by a factor of 5 in the outer regions of C and Ph, and by factors of 5 and 20 in the outer regions 1 and 2 of N and O, respectively. u(i)/v(i) in the
excluded volume is not plotted because it is simply zero. The numerical values of Δμ(i)/v(i) and u(i)/v(i) are listed in the Supporting Information.
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throughout the regions outside the excluded volume. The
magnitude of u(i)/v(i) decreases in outer shells, reflecting
simply that the intermolecular interaction is weaker at the
farther distances. When compared among the first- or second-
shell contributions, Δμ(i)/v(i) in Figure 4 depends on the site
and solute species in fair correspondence with u(i)/v(i), as
shown in the correlation plot in the Supporting Information.
The preference order is parallel between Δμ(i)/v(i) and u(i)/
v(i) within each of the first and second shells, and the
distinction between the first shell and outer regions will be
seen next with regard to the solvent reorganization; (Δμ(i) −
u(i)) is equal to the second and third terms of eq 26 and is
called the solvent-reorganization term.
Figure 4 shows Δμ(i)/v(i) ≥ u(i)/v(i), and accordingly, the

solvent-reorganization term is unfavorable (positive). The
effect of solvent reorganization is particularly strong in the
region adjacent to the solute. Δμ(i)/v(i) is less than half of
u(i)/v(i) in magnitude in the first shell of each site, and the
direct interaction between the neighboring solute and solvent
molecules is negated by more than half due to the solvent
reorganization. Actually, the solvent-reorganization term
diminishes with the distance from the solute faster than
u(i)/v(i). Around the C and Ph sites, Δμ(i)/v(i) is
significantly different from u(i)/v(i) only in the excluded
volume and first shell, and Δμ(i)/v(i) ≃ u(i)/v(i) holds in the
second-shell and outer regions. The contribution from the
solvent reorganization to the free energy vanishes essentially
beyond the first shell of the nonpolar site. Around the N and O
sites, the difference between Δμ(i)/v(i) and u(i)/v(i) persists
to longer distances. It is appreciable in the second shell,
indicating that the solvent-reorganization effect in the solvation
free energy is not localized when the solute−solvent
interaction is strong.4 The decays of the direct-interaction
and solvent-reorganization terms are further discussed in the

second-to-last paragraph of Appendix A on the basis of the
mathematical expression for the free-energy functional.
According to Figure 4, Δμ(i)/v(i) and u(i)/v(i) at the

methyl C site are more favorable (more negative) for
methylamine and methanol than for ethane. This is consistent
with the structural result in Figure 3, and indeed, the radial
distribution function around C has a stronger peak structure
when the polar amine N or hydroxyl O is bonded than when
the nonpolar methyl group is attached. At the phenyl Ph site,
on the other hand, Δμ(i)/v(i) and u(i)/v(i) in the first shell
are larger in magnitude for toluene than for aniline and phenol.
It is considered that the strengthened energetics for toluene
corresponds to the shoulder present at a shorter distance.
Around the N and O sites, Δμ(i)/v(i) and u(i)/v(i) are more
favorable in the first shell for methylamine and methanol than
for aniline and phenol and are less in the second shell and
outer regions. The favorable interaction of N or O with water
is observed at farther distances near a bulky phenyl group.
Δμ(i) and u(i) are depicted in Figure 5. Their signs are of

course coincident with those of Δμ(i)/v(i) and u(i)/v(i) in
Figure 4, respectively. In the excluded-volume region, the
dependence of Δμ(i) on the site and solute species is governed
by the volume of the region v(i) since it was observed in Figure
4 that Δμ(i)/v(i) is almost constant throughout the excluded-
volume regions. Within methylamine, methanol, aniline, or
phenol, v(i) of the excluded volume is larger around C or Ph
than around N or O, as shown in the Supporting Information,
and the excluded-volume contribution to the solvation free
energy Δμ(i) is correspondingly larger at the nonpolar site.
Outside the excluded-volume region, Δμ(i) and u(i) decay
more slowly with the separation from the solute than the
densities Δμ(i)/v(i) and u(i)/v(i), reflecting the fact that v(i)
increases toward outer regions. At the C and Ph sites, the sum
of Δμ(i) over the first shell, second shell, and outer region is
overwhelmed by the excluded-volume Δμ(i). Although the

Figure 5. Solvation free energy Δμ(i) and the solute−solvent interaction energy u(i) in the regions around the solute introduced in Table 1. The
bars representing the values of Δμ(i) and u(i) are stacked for each solute, and u(i) in the excluded volume is not plotted because it is simply zero.
The green bars refer also to the outer regions for C and Ph, as in Figure 4. The LJ long-range correction is added to Δμ(i) and u(i) in the far-
separated region in Table 1 and is not shown in this figure. The numerical values of Δμ(i) and u(i) are listed in the Supporting Information.
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former sum contributes favorably to the solvation free energy,
it cancels the latter only partially. The excluded-volume
contribution is overturned by the first-shell contribution for
N of methylamine and for O of methanol and phenol, and it is
negated by the sum of the first- and second-shell contributions
for N of aniline. A favorable (negative) free energy of solvation
is thus carried by the amine or hydroxyl group for the polar
compounds examined in the present work.
According to Figure 5, the contribution to the solvation free

energy is appreciable also from the second shell. This is due to
the factor of v(i), and the solute−solvent energetics are not
spatially localized in the first solvation shell. In ref 4, the excess
partial molar energy was addressed for a series of ions in water,
and the contribution from the proximate region of the solute
was examined by taking its correlation to the total value of the
excess energy. Figure 6 provides the correlation plot of the

total sum of Δμ(i) over all the regions around each solute
against the partial sums over the excluded-volume and first-
shell regions and over the excluded-volume to second-shell
regions. The preference order of the total sum is well
reproduced by the partial sum to the second shell. The
difference of the partial sum from the total is positive for all of
the small solutes and amounts to 0.5−2 kcal/mol. This amount
of attractive interaction is spread in the outer regions beyond
the second shell, where the solvent-reorganization term is
small, as seen in Figure 5 and the tables for the small solutes in
the Supporting Information. The direct interaction between
the solute and solvent outside the second shell thus needs to
be taken into account to quantitatively evaluate the solvation
free energy. The correlation to the total sum of Δμ(i) is worse
for the partial sum over the excluded-volume and first-shell
regions. The partial sum to the first shell correlates to the total
only separately over ethane, methylamine, and methanol and
over toluene, aniline, and phenol. Even the sign of the total
sum is often not reproduced by the partial sum, which means
that the first-shell contribution is not always enough to
overturn the unfavorable contribution from the excluded
volume. Figure 6 thus shows that the solvation free energy is
not localized in the excluded-volume to second-shell regions,

while the preference order of solvation is governed by the
contributions to the second shell. The free-energetics of
solvation can be described by the interactions within the
second nearest neighbor through correlations.

Alanine Dipeptide. We now turn to alanine dipeptide.
Figure 7 depicts the radial distribution functions g(r) of water

around the C1, N1, C2, C3, and N2 atoms in Figure 2 at the four
conformations listed in eq 27 and Figure 2. The peak structure
is clearer around C1 and C3 than around C2. This corresponds
to the amide structure in alanine dipeptide, and the N1 and N2
atoms may stay at ∼3 Å due to the hydrogen bonding between
the amine and water. It is further seen among the four
conformations that the hydration structure is least distinct for
C7

ax. At the C7
ax conformation, the carbonyl oxygen at C1 forms

an intramolecular hydrogen bond with the amine hydrogen at
N2 and the coordination of a water molecule is prohibited with
the two amide groups. A peak is not present at ∼3 Å around
N2, in particular, and the first peaks are also weak for C1 and
C3. When αR and αL are compared, the latter has the first peaks
of C2 and C3 at shorter distances. The steric hindrance is
weaker for αL, and in addition, the peak structure is strongest
for PII around N2.
We then divide the space on the basis of Figures 2 and 7. R

is the minimum of the distances of the C1, N1, C2, C3, and N2
atoms in alanine dipeptide with the oxygen site of the solvent
water molecule, and the space is divided similarly to those in
Figure 1 and in Table 1 for the small solutes. Five regions are
first introduced by identifying the closest one of the five atoms,
and as shown in Table 2, the division is done further around
C1, N1, C2, C3, and N2 in terms of R. The number of regions is
then 26 for all of the four conformations. The excluded
volume, first shell, and second shell are introduced around
each of C1, N1, C2, C3, and N2, and the solvent molecule is far-
separated when R > 10 Å holds. In the second paragraph of the
Small Solutes subsection, we noted that it is not necessary to
set the spatial region with respect to the position of a solute
atom. We remark further at this point that only a partial set of

Figure 6. Correlations of the sum of Δμ(i) over all the regions around
the solute molecule against the sums over the excluded-volume and
first-shell regions of all the sites and over the excluded-volume to
second-shell regions. A single point in the figure corresponds to a
single solute species, and with the linear regression of the partial sum
to the second-shell region against the total sum, the slope is 0.88 with
a correlation coefficient of 0.99.

Figure 7. Radial distribution functions g(r) of water around the C1,
N1, C2, C3, and N2 atoms labeled in Figure 2, where r is the distance
from the oxygen site of a solvent water molecule. In the plot, g(r) is
shifted upward by 4, 3, 2, and 1 for C1, N1, C2, and C3, respectively,
and the dotted lines drawn vertically in the figure correspond to the
boundaries of the regions listed in Table 2.
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solute atoms may be employed to define the regions. The
main-chain atoms of C1, N1, C2, C3, and N2 were chosen for
the analyses in the present subsection since they specify the ϕ
and ψ angles in Figure 2 and we examine the dependence on
the conformation identified by ϕ and ψ through eq 27. The
space is still divided uniquely, as noted with respect to eq 21.
Each position in space belongs to one and only one of the
regions, and there is no double-counting. For example, any
position within the excluded-volume and first-shell regions

around the methyl groups bonded to C1, C2, and N2 is
contained in one of the regions in Table 2. Since these methyl
groups are not employed to introduce the spatial regions in
Table 2, they are not referenced when a position in space is
assigned to a region in the table.
Figure 8 shows Δμ(i)/v(i) and u(i)/v(i) for alanine

dipeptide at the four conformations of eq 27; the numerical
values of Δμ(i)/v(i) and u(i)/v(i) are provided in the
Supporting Information. As was observed for the small solutes
in Figure 4, Δμ(i)/v(i) in the excluded-volume region is
unfavorable (positive) for each of the C1, N1, C2, C3, and N2
atoms and depends weakly on the atomic site and the
conformation of alanine dipeptide. u(i)/v(i) is favorable
outside the excluded volume, on the other hand, and its
magnitude decreases monotonically with the separation from
the solute atom. Actually, Δμ(i)/v(i) is monotonic only in the
second-shell and outer regions when seen throughout the sites
and conformations. The first shells of the C1, C2, and N2 atoms
overlap with the excluded-volume regions of the neighboring
methyl groups, and these overlaps contribute unfavorably to
the first-shell Δμ(i)/v(i) for those atoms (note that any
position around the methyl groups belongs uniquely to one of
the regions in Table 2 and not to a distinct region other than
those in the table, as mentioned in the preceding paragraph).
Δμ(i)/v(i) and u(i)/v(i) are distinctively favorable in the

first shells of the N1 and C3 atoms. A similar tendency was
observed in the first shells of the N and O atoms in Figure 4,
and the hydrogen-bond availability with the solvent water is
reflected. The region around the C2 atom is hydrophobic in
the sense that Δμ(i)/v(i) is positive in its first shell. Indeed, C2
is the Cα atom of the alanine residue, and the unfavorable
interaction from the methyl side chain is reflected in the
energetics in the first shell. Note that alanine is regarded as a
hydrophobic amino acid. When compared over the five atomic

Table 2. Division of the Space into Regions around Alanine
Dipeptide

atoma region distance (Å)b

C1 and C2 excluded volume R < 2.8
first shell 2.8 < R < 4.3
second shell 4.3 < R < 6.0
outer region 1 6.0 < R < 8.0
outer region 2 8.0 < R < 10.0

C3 excluded volume R < 2.8
first shell 2.8 < R < 4.3
second shell 4.3 < R < 6.8
outer region 1 6.8 < R < 8.4
outer region 2 8.4 < R < 10.0

N1 and N2 excluded volume R < 2.5
first shell 2.5 < R < 3.5
second shell 3.5 < R < 5.5
outer region 1 5.5 < R < 8.0
outer region 2 8.0 < R < 10.0
far-separatedc R > 10.0

aThe C1, N1, C2, C3, and N2 atoms are labeled in Figure 2. bR is the
minimum of the distances of the C1, N1, C2, C3, and N2 atoms in
Figure 2 with the oxygen site of the solvent water molecule. cThe
solvent water is separated by more than 10 Å from all of the C1, N1,
C2, C3, and N2 atoms in alanine dipeptide.

Figure 8. Densities of the solvation free energy Δμ(i)/v(i) and of the solute−solvent interaction energy u(i)/v(i) in the regions around alanine
dipeptide introduced in Table 2. The LJ long-range correction is added to Δμ(i) and u(i) in the far-separated region in Table 2, and Δμ(i)/v(i)
and u(i)/v(i) in the far-separated region are not shown since that region is unbounded and the densities were not determined. The bars
representing the values of Δμ(i)/v(i) and u(i)/v(i) are stacked for each of C1, N1, C2, C3, and N2 and are shown for the conformations of αR, PII,
αL, and C7

ax from left to right. The values in the outer regions 1 and 2 are multiplied by factors of 5 and 10, respectively, and u(i)/v(i) in the
excluded volume is not plotted because it is simply zero. The molecular structure of alanine dipeptide is provided with the ϕ and ψ values in Figure
2, and the numerical values of Δμ(i)/v(i) and u(i)/v(i) are listed in the Supporting Information.
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sites and four conformations of alanine dipeptide, the
preference order of Δμ(i)/v(i) corresponds fairly to that of
u(i)/v(i) in the first or second shell, as seen in the correlation
plot in the Supporting Information. This feature holds
separately for the first- and second-shell contributions and is
common to the case for the small solutes described in the
preceding subsection. The solvent-reorganization term behaves
similarly, too. It is always unfavorable (Δμ(i)/v(i) ≥ u(i)/v(i))
and is large in the first solvation shell. The decay with the
separation from the solute is faster than that of u(i)/v(i), and
the effect is small beyond the second shell.
Figure 9 depicts Δμ(i) and u(i) of alanine dipeptide. In the

excluded-volume region, Δμ(i) is larger at the terminal atoms
of C1 and N2 than at N1, C2, and C3 due to the volume size
v(i). Outside the excluded-volume region, u(i) reduces
monotonically in magnitude with the distance from the solute
around the C1, N1, and C3 sites. The monotonic dependence is
observed only beyond the second shell around the C2 and N2
atoms, on the other hand, and the steric hindrance due to the
neighboring methyl group is evidenced there as a factor to
weaken the interaction with the first-shell water. Actually,
Δμ(i) is nonmonotonic also around C1. Although Figure 8
shows that the magnitude of Δμ(i)/v(i) is larger in the first
shell than in the second shell except for the C7

ax conformation,
the larger v(i) of the second shell leads to the less favorable
Δμ(i) in the first shell. The sum of Δμ(i) over the excluded-
volume to outer regions is plotted for each atom in Figure 10.
At the C2 site, the sum is unfavorable (positive) and the
contribution from the excluded volume is larger in magnitude
than that from the rest. The region around C2 is thus
hydrophobic as a whole, while the other atoms provide
hydrophilic environments with the negative sums of Δμ(i)
over the excluded-volume to outer regions.
To address the extent of localization of the solvation free

energy, the correlation plot is provided in Figure 11 for the
Δμ(i) sum over all the regions around alanine dipeptide
against the partial sums over the excluded-volume and first-

shell regions of all the five atomic sites and over the excluded-
volume to second-shell regions. The partial sums correlate well
with the total sum. Although they deviate significantly from the
total, the conformation dependence of the total free energy of
solvation is well reproduced. Actually, the sum of the excluded-
volume and first-shell contributions is positive and the sum to
the second shell is different from the total by several tens
percent. The solvation free energy is thus not spatially localized
near the alanine-dipeptide solute in view of its value, whereas a
local description is valid to describe the free energetics of
conformational variation by virtue of the correlations
evidenced in Figure 11.
Figure 10 shows the sum of Δμ(i) over the excluded-volume

to outer regions for each atom, and when compared among the
four conformations of αR, PII, αL, and C7

ax, it is evident that the
Δμ(i) sum depends on the conformation strongly at the C1,
C3, and N2 atoms. Although Δμ(i)/v(i) in Figure 8 is more
favorable in the first shells of N1 at the αR and αL
conformations than at PII and C7

ax, the corresponding volumes
v(i) are smaller at the former conformations and the
contribution from N1 is minor in determining the con-

Figure 9. Solvation free energy Δμ(i) and the solute−solvent interaction energy u(i) in the regions around alanine dipeptide introduced in Table 2.
The bars representing the values of Δμ(i) and u(i) are stacked for each of C1, N1, C2, C3, and N2 and are shown for the conformations of αR, PII, αL,
and C7

ax from left to right. u(i) in the excluded volume is not plotted because it is simply zero. The LJ long-range correction is added to Δμ(i) and
u(i) in the far-separated region in Table 2 and is not shown in this figure. The molecular structure of alanine dipeptide is provided with the ϕ and ψ
values in Figure 2, and the numerical values of Δμ(i) and u(i) are listed in the Supporting Information.

Figure 10. Sum of Δμ(i) over the excluded-volume to outer regions
for each of the C1, N1, C2, C3, and N2 atoms at the αR, PII, αL, and C7

ax

conformations of alanine dipeptide, with the contribution from the
far-separated region in Table 2 and the total sum value of Δμ(i). The
LJ long-range correction is added to Δμ(i) in the far-separated region.
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formation dependence of the total free energy of solvation.
The hydrophobic region around the C2 atom also makes a
minor contribution. Figure 9 shows that Δμ(i) around C2
depends weakly on the conformation in each region and does
not reflect the conformational difference. When the contribu-
tions from C1, C3, and N2 are compared, the excluded-volume
Δμ(i)s are similar among the four conformations and the
difference in the Δμ(i) sum for each of C1, C3, and N2 comes
from the first-shell and second-shell contributions. The total
sums of Δμ(i) and u(i) (the sums over all the regions and the
atoms) are the least favorable (most positive) with C7

ax among
the conformations examined, and this is due to the
contributions from the C1 and N2 atoms. Indeed, the C7

ax

conformation has an intramolecular hydrogen bond between
the carbonyl oxygen at C1 and the amine hydrogen at N2 and
the hydration structures around C1 and N2 are weakest, as was
seen in Figure 7. The most favorable conformation is αL, for
which the C1 and C3 contributions are larger in magnitude
than for the others. The carbonyl groups on C1 and C3 are the
closest for αL, and the interaction of a water molecule that is
proximate to C1 or C3 is further strengthened by the
interaction with C3 or C1, respectively. Note that the
interaction energy of a solvent molecule with the whole solute
is counted when the spatial region is assigned through eq 20 to
construct the distribution function. Still, the hydration
structures represented by the radial distribution functions in
Figure 7 are not distinct at the αL conformation. The
orientational features are averaged out in Figure 7, while
they are sensitively reflected in the energetics shown in Figures
8, 9, and 10. The preference order of the αR and PII
conformations is governed by the balance between the C3
and N2 contributions. Although the free-energy density Δμ(i)/
v(i) and the solute−solvent energy density u(i)/v(i) around
the C3 atom are comparable between the two conformations in
Figure 8, the C3 contributions in Figure 9 are more favorable
for αR than for PII since the space assigned to C3 is larger with
the former.
According to Figure 10, the total value of the solvation free

energy (total sum of Δμ(i)) is in the order of αL < αR < PII <

C7
ax. The interaction with water stabilizes the αL conformation

most, and to determine the overall stabilities of the four
conformations, the intramolecular contribution needs to be
added. The preference order is then PII > αR(1.2) > αL(5. 3) >
C7

ax (6.9) by counting both the intra- and intermolecular
effects, where the value in parentheses is the free-energy
difference relative to PII in kcal/mol. When the solvation free
energy is computed without spatial decomposition through eq
11, the order is PII > αR (1.3) > αL (5. 4) > C7

ax (6.8), and
when the exact calculation is done as described in the
Supporting Information, we have PII > αR (0.7) > αL (4. 7) >
C7

ax (6.4). The order of conformational preference is thus
unchanged with the spatial decomposition and the approx-
imation of the energy-representation method.

■ CONCLUSION
A spatial-decomposition formula was developed for the
solvation free energy. The density-functional method was
adopted in the mixed representation of position and energy,
and a free-energy functional was formulated with distribution
functions of the relative position and pair interaction energy of
the solute with the solvent. The free energy of solvation was
then analyzed in solvent water for small molecules with the
methyl, amine, or hydroxyl group and for alanine dipeptide at
four conformations. The radial distribution functions were
employed to define the excluded-volume, first-shell, second-
shell, and outer regions around a set of sites within the solute
molecule, and it was observed that the density of the solvation
free energy in the excluded-volume region depends weakly on
the site and on the species or structure of the solute. In the first
or second shell, the preference order is in fair correspondence
between the free-energy density and the density of the direct
interaction between the solute and solvent. The difference of
the solvation free energy from the solute−solvent energy is the
solvent-reorganization term, and it reduces in magnitude
toward outer regions faster than the direct interaction. The
extent of spatial localization of the free energetics of solvation
was examined by comparing the total free energy of solvation
with the partial sum consisting of the excluded-volume, first-
shell, and second-shell contributions. It was seen that the
solvation free energy is not spatially localized in the sense that
the partial sum deviates significantly from the total value. Still,
a good correlation was found between the partial and total free
energies, and a local description of the solvation free energy
can be justified on the basis of the correlation.
In the present paper, we formulated the spatial-decom-

position analysis of the solvation free energy and provided
illustrative results for small solutes and alanine dipeptide in
solvent water. The formulation is based on the density-
functional method over the position and energy coordinates
and is parallel to that in the one-dimensional energy-
representation formalism for a mixed solvent (solvent system
with more than a single species) when the space is divided into
discrete regions. Actually, the division scheme is arbitrary and
may be prepared according to the analysis contents sought. A
set of atomic groups can be introduced, for example, to divide
the space in terms of the closest distance within the set. In such
a case, the solvation free energy is expressed as a sum of the
contributions from the atomic groups and is in formal
correspondence with the accessible-surface-area scheme.29 As
done in the analysis of alanine dipeptide, furthermore, it is
possible to adopt only the atomic sites that are used to describe
the conformation.

Figure 11. Correlations of the sum of Δμ(i) over all the regions
around alanine dipeptide against the partial sums over the excluded-
volume and first-shell regions of all the five atomic sites and over the
excluded-volume to second-shell regions. A single point in the figure
corresponds to a single conformation of alanine dipeptide. With the
linear regression against the total sum, the slope is 0.54 and 0.75 for
the sums to the first and second shells, respectively, with correlation
coefficients of 0.99 and 1.00.
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The key equation for the spatial-decomposition analysis is eq
26, and its first and second terms (those without the
integration over the coupling parameter λ) are rewritten as
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where ωd(ϵ;i) denotes the indirect part of the potential of
mean force in the solution system (λ = 1), ⟨ωd⟩i is its average
in region i, and Nd(i) and N0

d(i) are the average numbers of
solvent molecules contained in region i for the solution and the
pure solvent (λ = 0), respectively. The indirect part of
potential of mean force was defined by eq 23, and ω1

d is written
as ωd for notational brevity. In a previous work,43 we discussed
the role of interfacial water in protein−ligand binding and
categorized the thermodynamic signature of water in terms of
the local density and the indirect part of the potential of mean
force in the six-dimensional representation over the position
and orientation. A lower-dimensional alternative for the
signature may be proposed on the basis of eqs 26 and 28,
which are formulated by adopting the energy as a proxy for the
orientation and are numerically easier to handle. As noted in
the Introduction, the spatially resolved energetics of water are
considered to be useful for ligand design,17−28,31,32,43 and the
present work employed the DFT in the mixed representation
of position and energy to elucidate which region of solvent
(water) leads to stabilization or destabilization of the solute. It
is thus expected that the spatial-decomposition extension of
the energy-representation formalism can be a basis for
addressing the role of water toward modification of ligand
affinities.

■ APPENDIX A: APPROXIMATE FUNCTIONAL FOR
FREE ENERGY

The approximate form for the solvation free energy Δμ is given
by a set of definitions and equations listed as
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where ωd(ϵ;i) = ω1
d(ϵ;i) for brevity of notation and ⟨...⟩0 means

the ensemble average in the pure solvent (λ = 0). ⟨...⟩0 is
implemented by virtually placing the solute molecule as a test
particle without disturbing the solvent configuration. χ0

d

describes the solvent−solvent correlation at two-body level
over the coordinates introduced by the solute at λ = 0, where
the instantaneous distribution of eq 20 (or eq 3, 8, or 12) is
constructed for the solvent molecule against the solute virtually
present in the system. σ0

d is the solvent-mediated part of the
response function of the solute−solvent distribution to the
solute−solvent interaction at λ = 0, and the procedure for
(pseudo)inverting χ0

d is described later with respect to eq 42.
The first lines of eqs 33 and 34 are the PY-type expressions,
and the second lines are HNC-type. Equations 33 and 34 are
the combined PY-type and HNC-type approximations written
in terms of ωd(ϵ;i) and σ0

d(ϵ;i), respectively, and are mixed
with the weighting function αd of eq 35. Equations 29−31 and
33−35 define the variables in their left-hand sides, and with
eqs 25 and 26, eq 32 evaluates Δμ approximately through a
combined PY-type and HNC-type relationship.
In the currently employed version of the energy-

representation method (in one dimension),44,47 the third
term of eq 11 is further turned into a simpler form by adopting
a specific uλ(ϵ) with which ρλ

e(ϵ) varies linearly with the
coupling parameter λ; no approximation is involved at this
point. The integration over λ is then performed analytically
with PY-type and HNC-type approximations for the λ
dependence of the indirect part of the potential of mean
force ωλ

e(ϵ) of eq 10. In the PY-type approximation, (exp
(−βωλ

e(ϵ)) − 1) is taken to be linear with respect to λ, and in
the HNC-type, ωλ

e(ϵ) is linear with λ. No special treatment is
necessary for the direct interaction potential. The value ϵ of
the solute−solvent pair interaction energy is adopted as the
abscissa for the distribution functions, and the approximations
are formulated only in terms of the λ dependence of ωλ

e(ϵ).
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The approximation in the present work is expressed as eqs
32−35, and its formulation is also done with the λ dependence
of ωλ

d(ϵ;i) of eq 23.
As in the one-dimensional case,44,47 uλ(ϵ;i) is chosen so that

ρλ
d(ϵ;i) varies linearly with λ. The integral over λ in the third

term of eq 26 then simplifies to
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and the derivative at λ = 0 is related to σ0
d(ϵ;i) of eq 31 as
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The PY-type and HNC-type approximations are formulated by
adopting the linear dependencies on λ of (exp (−βωλ

d(ϵ;i)) −
1) and ωλ

d(ϵ;i), respectively. When the linear dependence is
expressed with the derivative at λ = 0, the PY-type and HNC-
type relationships are given by
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respectively, since ωλ
d(ϵ;i) = 0 at λ = 0 by definition of eq 23.

When the linearity is written in terms of the value at λ = 1

βω λ βω− ϵ = + − ϵ −λ i iexp( ( ; )) 1 (exp( ( ; )) 1)d d
(40)

and

ω λωϵ = ϵλ i i( ; ) ( ; )d d
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are PY-type and HNC-type, respectively, where ωλ
d(ϵ;i) at λ =

1 is denoted as ωd(ϵ;i) of eq 29. The integration over λ in eq
36 can be carried out analytically with eqs 38−41, and the
approximate form of eqs 32−35 is obtained by using the PY-
HNC combination and the weighting function which are
parallel to those in the one-dimensional formulation.44,47

In our simulation setup, χ0
d has a nondegenerate, null

eigenvalue. Its pseudoinverse, expressed as (χ0
d)−1 in eq 31, was

then obtained by referring to the procedure in Appendix B of
ref 46 and Appendix B of ref 47. An auxiliary variable u was
determined up to an additive constant through
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and the additive constant was fixed by setting u (ϵ,i) = 0 at the
discretized energy coordinate corresponding to ϵ = 0 for the
farthest region i from the solute (the far-separated regions in
Tables 1 and 2).
It was observed in the Results and Discussion that the

solvent-reorganization term reduces faster with the separation
from the solute than the direct-interaction term between the
solute and solvent. This observation can be justified on the
basis of eq 26 by considering that the indirect part of the
potential of mean force ωλ

d decays faster than the direct
interaction. ρd then converges to ρ0

d at the rate corresponding
to the dependence of the direct interaction on the distance
from the solute, given that ρd is related to ρ0

d through eq 23
(note that u1 = ϵ and ρ1

d = ρd). Accordingly, the solvent-
reorganization term of eq 26 (second and third terms) is of

higher order than the first term with respect to (ρd − ρ0
d) since

[ρd − ρ0
d − ρd log(ρd/ρ0

d)] is of second order.
The computed value of the (total) solvation free energy Δμ

can be different between eqs 11 and 25 when the combined
PY-type and HNC-type approximation is introduced. The
difference is thus a measure of the performance of the
approximate treatment since eqs 11 and 25 themselves are
exact. The Δμ value obtained through the energy-representa-
tion method without spatial decomposition is listed in the
Supporting Information, as well as the (numerically) exact one
from the Bennett acceptance ratio method.71,72 When the
approximate Δμ’s with and without the spatial decomposition
are compared, the difference is within 0.1 kcal/mol for the
small solutes and is 0.4−0.6 kcal/mol for alanine dipeptide.
The relative free energies among the four conformations still
agree within 0.2 kcal/mol. When the comparison is done
between the approximate and exact Δμ’s, the deviation is seen
to be within 1.1 and 1.6 kcal/mol for the small solutes and for
the four conformations of alanine dipeptide, respectively.

■ APPENDIX B: DETAILED PROCEDURES OF
SIMULATION

As noted in the Methods, MD was performed for the solution
system of interest, pure solvent (pure water), and an isolated
solute in vacuum. The solution system was simulated in the
NPT ensemble by locating a single solute and 2000 water
molecules in the MD unit cell; the cell size was ∼39 Å. The
leapfrog stochastic dynamics algorithm was employed to
integrate the equation of motion at a time step of 2 fs and
an inverse friction constant of 2 ps,73 and the pressure was
regulated by the Parrinello−Rahman barostat at a coupling
time of 2 ps and an isothermal compressibility of 4.5 × 10−5

bar−1 with the isotropic coupling.74 Each water molecule was
kept rigid with SETTLE, and the LINCS method was used for
the solute molecule to fix the lengths of all the bonds.75,76 The
electrostatic interaction was handled by the smooth particle-
mesh Ewald (PME) scheme at a real-space cutoff of 12 Å, a
spline order of 4, a relative tolerance of 10−5 (inverse decay
length of 0.26 Å−1), and a reciprocal-space mesh size of 48 for
each of the x, y, and z directions.77 The Lennard-Jones (LJ)
interaction was truncated with the switching function in a
range of 10−12 Å.78 The geometric mean was adopted both
for the energy and length parameters to combine the LJ
interaction between unlike pairs of atoms, and the truncation
was done on an atom−atom basis for LJ as well as for the real-
space part of PME. The long-range correction for LJ was not
included in MD and was incorporated into the calculations of
the solvation free energy and solute−solvent interaction energy
by supposing that the solvent water is of bulk distribution
beyond 10 Å from any atom within the solute molecule. The
pure-solvent system was only of 2000 water molecules, and the
other MD setups were identical to those described above for
the solution system.
To simulate the isolated solute in a vacuum, a single solute

molecule was subject to an isothermal MD for 200 ns at a
sampling interval of 0.1 ps. In this simulation, the solute center
of mass was fixed at the origin and the electrostatic potential
was treated as its bare form of 1/r without cutoff; the other
procedures were the same as those for the solution and pure
solvent. The solute was inserted as a test particle into the pure-
solvent system at random position and orientation, and the
insertion was done without disturbing the solvent config-
uration after the MD of pure water had been performed
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independently. The number of insertions was 1000 per pure-
water configuration sampled, leading to the generation of 2 ×
106 solute−solvent configurations in total for the free-energy
calculation. Actually, the MD of the isolated solute was carried
out for 200 ns simply to prepare 2 × 106 intramolecular
configurations that were sampled at an interval of 0.1 ps and
were used for test-particle insertion.
For alanine dipeptide, a replica-exchange MD was also

performed in a vacuum to determine the intramolecular
contribution to the free energy of each conformation. A single
molecule was simulated at nine temperatures of 300, 350, ...,
650, and 700 K with an exchange interval of 1 ps,79 and the
simulation length was 4 μs at each temperature. No restraint
was employed, and the other simulation setups were the same
as those described in the preceding paragraph. The reweighting
was then conducted to obtain the probability for finding each
conformation of eq 27 with allowances of ±10°; for example,
the probability of −75° ≤ ϕ ≤ − 55° and −55° ≤ ψ ≤ − 35°
was evaluated for αR.
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