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ABSTRACT

We revisit the well-studied problem of triangle count estimation in

graph streams. Given a graph represented as a stream ofm edges,

our aim is to compute a (1± ε)-approximation to the triangle count

T , using a small space algorithm. For arbitrary order and a constant

number of passes, the space complexity is known to be essentially

Θ(min(m3/2/T ,m/
√
T )) (McGregor et al., PODS 2016, Bera et al.,

STACS 2017).

We give a (constant pass, arbitrary order) streaming algorithm

that can circumvent this lower bound for low degeneracy graphs.

The degeneracy, κ, is a nuanced measure of density, and the class of

constant degeneracy graphs is immensely rich (containing planar

graphs, minor-closed families, and preferential attachment graphs).

We design a streaming algorithm with space complexity Õ(mκ/T ).
For constant degeneracy graphs, this bound is Õ(m/T ), which is sig-
nificantly smaller than bothm3/2/T andm/

√
T . We complement our

algorithmic result with a nearly matching lower bound of Ω(mκ/T ).

CCS CONCEPTS

• Theory of computation → Streaming, sublinear and near

linear time algorithms; Graph algorithms analysis.
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1 INTRODUCTION

Triangle counting is a fundamental algorithmic problem for graph

streams. Indeed, the literature on this one problem is so rich, that

its study is almost a subfield in of itself. Since the introduction of

this problem by Bar-Yossef et al [9], there has been two decades

of research on streaming algorithms for triangle counting [9, 11,

13, 14, 22, 34, 38, 39, 41, 45ś48, 59, 60]. The significance of triangle
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counting is underscored by the wide variety of fields where it is

studied: database theory, theoretical computer science, and data

mining. From a practical standpoint, triangle counting is a core

analysis task in network science. Given the scale of real-world

graphs, this task is considered to be computationally intensive. In

database systems, triangle counting is used for query size estimation

in database join problems (see [5, 7] for details). These have led to

the theoretical and practical study of triangle counting in a variety

of computational models: distributed shared-memory, MapReduce,

and streaming [4, 8, 18, 20, 42, 51, 52, 54, 56ś58].

Despite the plethora of previous work in the streaming setting,

the following question has not received much attention. Are there

łnatural" graph classes that admit more efficient streaming algorithms

for triangle counting? This question has a compelling practical

motivation. It is well known from network science that massive

real-world graphs exhibit special properties. Could graph classes

that contain such real-world graphs have łbetter than worst-case"

streaming triangle algorithms?

Motivated by these considerations, we study the problem of

streaming triangle counting, parametrized by the graph degener-

acy (also called the maximum core number). We defer the formal

definition for later, but for now, it suffices to think of degeneracy

as a nuanced measure of graph sparsity. The class of constant de-

generacy graphs is extremely rich: it contains all planar graphs,

all minor-closed families of graphs, and preferential attachment

graphs. The degeneracy of real-world graphs is well studied, under

the concept of core decompositions. It is widely observed that the

degeneracy of real-world graphs is quite small, many orders of

magnitude smaller than worst-case upper bounds [24, 35, 36, 55].

In computational models other than streaming, the degeneracy is

known to be relevant for triangle counting. From the perspective of

running time of exact sequential algorithms, a seminal combinato-

rial algorithm of Chiba-Nishizeki gives anO(mκ) time algorithm for

exact triangle counting (m is the number of edges, and κ is the de-

generacy) [18]. Thus, for (say) constant degeneracy, this algorithm

beats the best known running time bounds of more sophisticated

matrix multiplication based algorithm (of course, the latter work for

all graphs) [2]. In distributed and query-based computational mod-

els, a number of results have shown that low degeneracy is helpful

in bounding communication or query complexities [30, 33, 36, 56].

This inspires the main question addressed by this paper.

Do there exist streaming algorithms for approximate triangle count-

ing on low degeneracy graphs that can beat known worst-case lower

bounds?
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1.1 Our results and significance

We focus on constant pass streaming algorithms, with arbitrary

order. Thus, we think of the input graph G = (V , E) represented as

an arbitrary list of (unrepeated) edges. Our algorithm is allowed

to make a constant number of passes over this list, but has limited

storage. As is standard, we use n for the number of vertices,m for

the number of edges, and T for the number of triangles in G.

We first define the graph degeneracy.

Definition 1.1. The degeneracy of a graph G, denoted κ(G), is
defined asmaxG′ subgraph of G {min degree of G ′}. In words, it is the
largest possible minimum degree of a subgraph of G.

In a low degeneracy graph, all induced subgraphs have low

degree vertices. The following procedure that computes the de-

generacy is helpful for intuition. Suppose one iteratively removed

the minimum degree vertex from G (updating degrees after every

removal). For any vertex v , consider the łobserved" degree at the

time of removal. One can prove that the degeneracy is the largest

such degree [1]. Thus, even thoughG could have a large maximum

degree, the degeneracy can be small if high degree vertices are

typically connected to low degree vertices.

Our main theorem follows.

Theorem 1.2. Consider a graph G of degeneracy at most κ, that

is input as an arbitrary edge stream. There is a streaming algorithm

that outputs a (1 ± ε)-approximation to T , with high probability1,

and has the following properties. It makes constant number of passes

over the input stream and uses space (mκ/T ) · poly(logn, ε−1).
To understand the significance of the bound mκ/T , note that

space complexity of streaming triangle counting is known to be

min(m3/2/T ,m/
√
T ) [11, 46]. Consider κ = O(1), which as men-

tioned earlier, holds for all graphs in minor-closed families and

preferential attachment graphs. In this case, the algorithm of Theo-

rem 1.2 uses space Õ(m/T ). This is significantly smaller than both

m3/2/T andm/
√
T . We note that for all graphs, κ ≤

√
2m, and thus,

the space is always Õ(m3/2/T ).
As an illustrative example, consider the wheel graph with n

vertices (take a cycle with n − 1 vertices, and add a central vertex

connected to all other vertices). Note that m = T = Θ(n) and
κ = O(1) (G is planar). The space bound given in Theorem 1.2

is only polylogarithmic, while all existing streaming algorithms

bounds (given in Table 1) are Ω(
√
n).

Our bound of Õ(mκ/T ) subsumes the term Õ(m3/2/T ), and dom-

inates the term Õ(m/
√
T ) when T = Ω(κ2). For real-world graphs,

T = Ω(κ2) is a naturally occurring phenomenon. In fact, real-world

large graphs are often characterized by following two properties: (1)

low sparsity, and (2) high triangle density [25, 50, 53, 61]. Thus, from

a practical standpoint, our bound offers significant improvement

over previously known bounds.

We complement Theorem 1.2 with a nearly matching lower

bound.

Theorem 1.3. Any constant pass randomized streaming algorithm

for graphs withm edges, T triangles, and degeneracy at most κ, that

provides a constant factor approximation to T with probability at

least 2/3, requires storage Ω(mκ/T ).
1We use łhigh probability" to denote errors less than 1/3.

We remark that all our results in this paper can be equivalently

stated in terms of arboricity as well. The arboricity of a graph G,

denoted asα , is the smallest integerp such that the edge set E(G) can
be partitioned into p forests. It is asymptotically same as degeneracy:

for every graph α ≤ κ ≤ 2α − 1.

1.2 Main ideas

We give a high-level description of our algorithm and proof. The

final algorithm has a number of moving parts, and is based on recent

advances in sublinear algorithms for clique counting [26, 29, 30].

The starting point for our algorithm (and indeed, most trian-

gle counting results related to degeneracy) is the classic sequen-

tial procedure of Chiba-Nishizeki. For every edge e = (u,v), the
size of intersection on neighborhoods of u and v is the number

of triangles containing e . This intersection can be determined eas-

ily in min(du ,dv ) operations, by searching for elements of the

smaller neighborhood in the larger one. (Here, du denotes the de-

gree of vertex u.) For convenience, let us define the degree of edge

e to be de := min(du ,dv ). Thus, we can enumerate all triangles in∑
e de time. The classic bound of Chiba-Nishzeki asserts that

∑
e de

= O(mκ).
As a warmup, let us get an O(mκ/T ) space streaming algorithm,

that uses a degree oracle. Define dE :=
∑
e de = O(mκ). With the

degree oracle, in a single pass, we can sample an edge e proportional

to its degree. In the second pass, pick a uniform random neighbor

w of the lower degree endpoint of e . In the third pass, determine

if e and w form a triangle. The probability of finding a triangle

is exactly 3T /dE . By sampling O(dE/T ) = O(mκ/T ) independent
random edges in the first pass, we can estimate T with O(mκ/T )
space.

The main challenge is in removing the degree oracle. As a first

step, can we effectively simulate sampling edges proportional to

their degree? We borrow a key idea from recent sublinear algo-

rithms for clique counting. First, we sample a set of uniform random

edges, denoted R. In a second pass, we compute the degree of all

edges in R. Now, we can run the algorithm described earlier, except

we only sample edges of R. Observe that in the latter sample, tak-

ing expectations over R, we do sample edges proportional to their

degree from the overall graph. Unfortunately, these samples are all

correlated by the choice of R. How large should R be to ensure that

this simulation leads to the right answer?

An alternate viewpoint is to observe that the above approach

can give an accurate estimate to the number of triangles incident

to R, denoted tR . We require R to be large enough, so that tR can

be used to estimate T . Let te be the number of triangles incident to

e . The {te } values can exhibit large variance, even when κ = O(1).
Consider a graph formed by (n−2) triangles that all share a common

edge. The graph is planar, so κ = O(1). But one edge is incident to
(n− 2) triangles, and all other edges are incident to a single triangle.
Thus, the {te } values have the largest possible variance, and one

cannot estimate T by computing
∑
e ∈R te for a small R. Note that,

for this example graph, our desired streaming algorithm uses only

polylogarithmic space (T = Θ(m), κ = O(1)).
Another key idea from sublinear clique counting saves the day:

assignment rules. The idea is to assign triangles uniquely to edges,

so that the distribution of assigned triangles has low variance. The
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overall algorithm will estimate the number of triangles assigned to

R, and not count the number of triangles incident to R. A natural,

though seemingly circular, rule is to assign each triangle to the

contained edge that itself participates in the fewest triangles. Using

properties of graph degeneracy, it is shown in [30] that the maxi-

mum number of assigned triangles to any edge isO(κ). (Technically,
this is not true. We have to leave some triangles unassigned.)

This leads to another technical complication. In the overall al-

gorithm, when a triangle incident to an edge is discovered, the

algorithm needs to determine if the triangle is actually assigned to

the edge. This requires estimating te for all edges e in the triangle,

a potentially space intensive operation. To perform this estimation

in O(mκ/T ) requires subtle modifications to the assignment proce-

dure. It turns out we can ignore triangles containing edges of high

degree, and thus, the above te estimation is only required for low

degree edges. Furthermore, we only need to determine if te = Ω(κ),
which allows for smaller storage algorithms.

All in all, by choosing parameters carefully, all steps can be

implemented using (mκ/T )poly(logn, ε−1) storage.

2 RELATED WORK

The triangle counting problem, a special case of more general sub-

graph counting problem, has been studied extensively in the stream-

ing setting. We present a summary of the significant prior works

in Table 1. The upper bounds stated in the table are for randomized

streaming algorithms that provide (1±ε)-approximation to the true

triangle count with probability at least 2/3. The Õ notion hides

polynomial dependencies on 1/ε and logn. The lower bounds are

primarily based on the triangle detection problem Ð detect whether

the input graph is triangle free or it contains at least T many tri-

angles. All the results presented in the table are for the arbitrary

order stream.

Jha et al. [37] designed a one pass Õ(m/
√
T )-space algorithm

with ±W -additive error approximation, whereW is the number of

two length paths (also called wedges). Bravermanet al. [13] gave a

two-pass Õ(m/T 1/3)-space algorithm to detect if the input graph is

triangle free or it has at least T many triangles. These results are

not directly comparable to our work.

The triangle counting problem has been studied in the context

of the adjacency list streaming model as well. This model is also

known as the vertex arrival model: all the edges incident on a vertex

arrive together. McGregor et al. [46] gave one-pass Õ(m/
√
T )-space

and two pass Õ(m3/2/T )-space algorithm for the triangle counting

problem in this model. We refer to [46] for other related work in

this model.

Bounded degeneracy graph family is an important class of graphs

from a practical point of view. Many real-world large graphs, spe-

cially from the domain of social networks and web graphs, often

exhibit low degeneracy( [12, 24, 35, 36, 55], also Table 2 in [12]).

Naturally, designing algorithms that are parameterized by degen-

eracy has been a theme of many works in the streaming settings;

some examples include matching size estimation [6, 23, 32], inde-

pendent set size approximation [21], graph coloring [12]. In the

general RAMmodel, the relation between degeneracy and subgraph

counting problems has been explored in [10, 19, 31].

In the graph query model, where the goal is to design sub-linear

time algorithms, Eden et al. [28] studied the triangle counting prob-

lem, and more generally the clique counting problem in bounded

degeneracy graphs. Although the model is significantly different

from the streaming model, we port some key ideas from there;

see Section 1.2 for a detailed discussion. The relevance of bounded

degeneracy has been further explored in the context of estimating

degree moments [27] in this model.

3 NOTATIONS AND PRELIMINARIES

For an integer k , we denote the set {1, 2, . . . ,k} by [k]. Throughout
the paper, we denote the input graph as G = (V , E). We assume G

has n vertices,m edges andT many triangles. We denote the degree

of a vertex v ∈ V by dv and its neighborhood by N (v). For an edge

e = {u,v}, we define its neighborhood N (e) to be that of the lower

degree end point: N (e) = N (u) if du < dv ; N (e) = N (v) otherwise.
Similarly, we define the degree of an edge: de = min{du ,dv }. For
a collection of edges R, we define dR =

∑
e ∈R de . In particular,

dE :=
∑
e ∈E de .

Chiba and Nishizeki [19] proved the following insightful con-

nection between the sum of degrees of the edges in a graph dE and

its degeneracy κ. 2

Lemma 3.1 (Lemma 2 in [19]). For a graph G withm edges and

degeneracy κ,

dE =
∑

e ∈E
de ≤ 2mκ .

As a corollary, we get the following result.

Corollary 3.2 ( [19]). For a graph G withm edges and degeneracy

κ, the maximum number of triangles in G is at most 2mκ.

We use the notation Õ( · ) to hide polynomial dependencies on

(1/ε) and logn terms, where ε is the error parameter. For designing

our algorithms, we focus on the expected space usage. This can be

easily converted into a worst-case guarantee by applying Markov

inequality Ð simply abort if the space usage runs beyond c times

the expected space usage, for some constant c . This only increases

the error probability by an additive 1/c amount.

We use the following variants of the Chernoff bound and Cheby-

shev inequality for analyzing our algorithms.

Theorem 3.3 (Chernoff Bound [17]). Let X1,X2, . . . ,Xr be

mutually independent indicator random variables with expectation µ.

Then, for every ε with 0 < ε < 1, we have

Pr

[���1
r

r∑

i=1

Xi − µ
��� ≥ εµ

]
≤ 2 exp

(
−ε2rµ/3

)

Theorem 3.4 (Chebyshev Ineqality [3]). Let X be a random

variable with expectation µ and variance Var[X ]. Then, for every
ε > 0,

Pr [|X − µ | ≥ εµ] ≤ Var[X ]
ε2µ2

.

2Note that Chiba and Nishizeki [19] stated their results in terms of arboricity. As
α ≤ κ for each graph G with arboricity α , the same result holds with respect to
degeneracy κ as well.
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Space Remarks Source

Õ
(
mn/T

)2
one pass [9]

Õ
(
m∆

2/T
)

one pass, ∆ = maximum degree [38]

Õ
(
mn/T

)
one pass, n known a priori [14]

Õ
(
m3/T 2

)
one pass, dynamic stream [41]

Õ
(
m∆/T

)
one pass, ∆ = maximum degree [48]

Õ
(
mJ/T +m/

√
T
)

one pass, J = maximum triangles incident on a edge [47]

C + Õ
(
P2/T

)
one pass, C = vertex cover, P2 = # of 2-paths [34]

Õ
(
m/

√
T
)

dependence on ε is 1/ε2.5 [22]

Õ
(
m3/2/T

)
multi-pass [11, 46]

Õ
(
m/

√
T
)

multi-pass [46]

Ω
(
n2

)
one pass, T = 1 [9]

Ω
(
n/T

)
multi-pass, T < n [38]

Ω
(
m
)

one pass,m ∈ [c1n, c2n2], T < n [13]

Ω
(
m/T

)
multi-pass [13]

Ω
(
m3/T 2

)
one pass, optimal [44]

Ω
(
m/T 2/3) multi-pass [22]

Ω
(
m/

√
T
)

multi-pass, form = Θ(n
√
T ) [22]

Ω
(
min{m/

√
T ,m3/2/T }

)
multi-pass [11]

Table 1: Prior work on the triangle counting problem

4 WARM-UP: AN ABSTRACT MODEL

In this section, we consider a streaming model equipped with a

degree oracle: queried with a vertex v , the oracle returns dv . Fur-

thermore, wemake a rather strong assumption: there is no cost asso-

ciated with the queries. McGregor et al. [46] designed a Õ(m3/2/T )
space 3-pass streaming algorithm in this model Ð their algorithm

makesO(m)many degree queries. We describe an Õ(mκ/T )-space 3
pass algorithm in this model. Our estimator makes 2m many degree

queries and requires 3-pass. For bounded degeneracy graph families,

this translates to a space reduction by a factor of O(
√
m). In the

next section, we show how to design a Õ(mκ/T )-space constant
pass algorithm in the traditional streaming model.

Our main idea is to sample edges from the stream with proba-

bility proportional to its degree. In general streaming settings, this

is not possible as we do not know the degree of the edges apriori.

However, the model that we consider here is tailor-made for this

purpose. It shows the effectiveness of degree-biased edge samples

in estimating triangle count and provides motivation for taking up

a similar sampling approach in the general streaming model.

We present our basic estimator in algorithm 1. In the full algo-

rithm, we will run multiple instances of this estimator in parallel

and report the łmedian of the meanž [15] as our final estimate.

Implementation Details. The degree proportional sampling is

achieved by using weighted reservoir sampling [16]. On arrival of

the edge e = {u,v} in the stream, we make two degree queries to

find de . The method IsAssigned is required to ensures that every

triangle is uniquely associated with one of its three edges. Other

than this, there is no constraints on the implementation of this

method. For example, we can associate every triangle to the edge

with lowest degree, breaking ties arbitrarily (but consistently). Let

Algorithm 1 A Triangle Estimator

1: procedure IdealEstimator(Graph G = (V , E))
2: Pass 1: Sample an edge e with probability de/dE .
3: Pass 2: Sample a vertexw from N (e) u.a.r.
4: Pass 3: Check if {e,w} forms a triangle.

5: if τ = {e,w} is a triangle then
6: Call IsAssigned(τ , e).
7: If returned YES, then set Y = 1; else set Y = 0.

8: else

9: Set Y = 0.

10: Set X = dE · Y .
11: return X .

te denote the number of triangles assigned to the edge e . Clearly,∑
e ∈E te = T .

Analysis. First, we show the estimator is unbiased.

E[X ] =
∑

e ∈E

de

dE
· E[X |e]

=

∑

e ∈E
de · E[Y |e]

=

∑

e ∈E
de ·

te

de
=

∑

e ∈E
te = T
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Now we bound the variance of the estimator.

Var[X ] ≤ E[X 2] =
∑

e ∈E

de

dE
· E[X 2 |e]

=

∑

e ∈E
de · dE · E[Y 2 |e]

=

∑

e ∈E
de · dE · te

de

= dE ·
∑

e ∈E
te = dE ·T

So, running Õ(Var[X ]/E[X ]2) = Õ(dE/T ) = Õ(mκ/T )-many esti-

mators independently in parallel suffices for a (1 ± ε)-approximate

estimate. Since each copy of the estimator requires constant space,

the overall space usage is bounded by Õ(mκ/T ).

5 OUR MAIN ALGORITHM

In this section, we present our streaming triangle estimator. As

promised, our algorithm does not assume access to a degree oracle.

If the model is indeed equipped with a degree oracle, then we can

save a few passes over the stream. Perhaps more importantly, the

number of queries to the oracle is upper bounded by the space usage

of our algorithm. Our main algorithmic result is the following.

Theorem 5.1. Consider a graph G of degeneracy at most κ, that

is input as an arbitrary edge stream. There is a streaming algorithm

that outputs a (1 ± ε)-approximation to T , with high probability3,

and has the following properties. It makes six passes over the input

stream and uses space (mκ/T ) · poly(logn, ε−1).

We describe our estimator in Algorithm 2. We set the parame-

ters r and ℓ later in the analysis. In analyzing our algorithm, the

procedure IsAssigned would play a crucial role. As discussed ear-

lier, IsAssigned takes as input a triangle and an edge, and outputs

whether the triangle is assigned to that edge. We want this proce-

dure to possess four properties: (1) For a given triangle, it is either

unassigned or assigned uniquely to one of its three participating

edges. (2) almost all the triangles are assigned, (3) For any fixed

edge, not too many triangles are assigned to it, and (4) The space

complexity of the procedure is bounded by Õ(mκ/T ). The first two
properties are required to ensure the overall accuracy of the estima-

tor. The third property would be central to bounding the variance

of the estimator. The final property will ensure the overall space

complexity of our triangle estimator is bounded by Õ(mκ/T ).
We analyze our triangle estimator assuming a black-box access

to a IsAssigned procedure that satisfies the above four properties.

In the next section, we will take up the task of designing such an

assignment procedure in the streaming setting. We make the above

discussion rigorous and formal below.

Assume τe denotes the number of triangles assigned to the edge e

by the procedure IsAssigned. We use τmax to denote the maximum

number of triangles that any edge has been assigned to: τmax =

maxe ∈E τe . Denote the number of triangles that IsAssigned assigns

to some edge by T = ∑
e ∈E τe . Then, for any positive constant ε

and δ , we define an (ε, δ )-accurate IsAssigned procedure below.

3We use łhigh probability" to denote errors less than 1/3.

Definition 5.2 ((ε, δ )-accurate IsAssigned). A procedure IsAs-

signed that assigns a triangle to an edge or leaves it unassigned, is

(ε, δ )-accurate if it satisfies the following four properties.

(1) Unique Assignment: For each triangle, it is either unassigned

or uniquely assigned to one of the three participating edges.

This implies, T ≤ T .

(2) Almost All Assignment: With probability at least 1 − δ , T ≥
(1 − 12ε)T .

(3) Bounded Assignment: With probability at least 1 − δ , τmax ≤
κ/ε .

(4) Bounded Space Complexity: Each call requires Õ (mκ/T ) bits
of space.

We now analyze our algorithm assuming a black-box access to

(ε,O(1/n5))-accurate IsAssigned. The analysis consists of two parts.
First, we show that for a certain settings of r and ℓ, our final estimate

X is indeed a (1 ± ε) approximation to the true triangle count. In

the sequel, we bound the space complexity of our algorithm.

Algorithm 2 Estimation of triangle count

1: procedure EstimateTraingle(Graph G = (V , E))
2: Pass 1: Sample r many edges u.a.r: R = {ei }ri=1.
3: Pass 2: Compute de for each e ∈ R.

4: for i = 1 to ℓ do

5: Sample an edge e ∈ R independently with prob. de/dR .
6: Pass 3: Sample a vertexw from N (e) u.a.r.
7: Pass 4: Check if {e,w} forms a triangle.

8: if τ = {e,w} is a triangle then
9: Call IsAssigned(τ , e).
10: If returned YES, then set Yi = 1; else set Yi = 0.

11: else

12: Set Yi = 0.

13: Set Y = 1
ℓ

∑
ℓ

i=1 Yi , and X =
m
r · dR · Y .

14: return X .

We begin with analyzing the quality of the (multi)set of uniform

random edges R. Collectively through Lemmas 5.3 and 5.5 and defi-

nition 5.4, we establish that for a suitable choice of the parameter r ,

the (multi)set R possesses desirable properties with high probability.

Lemma 5.3. LetdR =
∑
e ∈R de and τR =

∑
e ∈R τe . For any constant

ε > 0 we have

(1) E[dR ] = r · dEm and E[τR ] = r · T
m ,

(2) Pr
[
dR ≤ E [dR ] · lognε

]
≥ 1 − ε

logn
,

(3) Pr [|τR − E[tR ]| ≤ εE[τR ]] ≥ 1 − 1
ε2

· 1
r · m ·τmax

T .

Proof. We first compute the expected value of dR and τR . We

define two sets of random variables,Yd
i
andY t

i
for i ∈ [r ] as follows:

Yd
i
= dei , and Y t

i
= τei . Then, dR =

∑r
i=1 Y

d
i
and τR =

∑r
i=1 Y

t
i
.
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We have

E
[
Ydi

]
=

∑

e ∈E
Pr[ei = e] · E

[
Ydi |ei = e

]

=

1

m

∑

e ∈E
de

=

dE

m
.

Then, by linearity of expectation, we get E[dR ] = r · dE/m. Analo-

gously, we have E[τR ] = r · T /m.

We now turn our focus on the concentration of dR . This is

achieved by a simple application of Markov inequality.

Pr

[
dR ≥ E [dR ] ·

logn

ε

]
≤ ε

logn
.

To prove a concentration bound on τR , we study the variance of

τR . By independence, we have

Var[τR ] =
r∑

i=1

Var[Y ti ]

≤
r∑

i=1

E[(Y ti )
2]

=

r∑

i=1

∑

e ∈E
Pr[ei = e] E[(Y ti )

2 |ei = e]

=

r ·∑e ∈E τ
2
e

m

≤ r · τmax
∑
e ∈E τe

m

=

r · τmaxT
m

.

Then, the item (3) of the lemma follows by an application of Cheby-

shev inequality ( Theorem 3.4). □

We next define a collection of edges R as good if the conditions

in items (2) and (3) in Lemma 5.3 are satisfied. Formally, we have

the following definition.

Definition 5.4 (A good collection of edges). We call a fixed collec-

tion of edges R, ε-good if the following two conditions are true.

dR ≤ logn

ε
· |R | · dE

m
(1)

τR ∈
[
(1 − ε) · |R | · T

m
, (1 + ε) · |R | · T

m

]
(2)

Lemma 5.5 (Setting of r for an ε-good R). Let 0 < ε < 1/6 and

c > 6 be some constants, and r =
c logn

ε2
mτmax

T . Then, with probability

at least 1 − 1
6 logn

, R is ε-good.

Proof. The lemma follows by plugging in r =
c logn

ε2
mτmax

T
in Lemma 5.3 and using the bounds on c and ε . □

We have established that the random collection of edges R is good

with high probability. We now turn our attention to the random

variable Y , as defined on Line 13 Algorithm 2. Together in Lem-

mas 5.6 and 5.7 we show that, if R is good then for a suitably chosen

parameter ℓ, the random variable Y is well-concentrated around its

mean.

Lemma 5.6. Let R be a fixed collection of edges, and YR denote the

value of the random variable Y as defined on Line 13 Algorithm 2 on

R. Then,

(1) E[YR ] = τR

dR
,

(2) Pr [ |YR − E[YR ]| ≥ εE[YR ] ] ≤ exp
(
−ℓ · ε23 · τR

dR

)
.

Proof. Let ei be the edge sampled in the i-th iteration of the for

loop at line 4 in Algorithm 2. Then,

E[Yi = 1] =
∑

e ∈R
Pr[ei = e] Pr[Yi = 1|ei = e] ,

=

∑

e ∈R

de

dR
Pr[Yi = 1|ei = e] ,

=

∑

e ∈R

de

dR
· τe
de

=

∑

e ∈R

τe

dR

=

τR

dR
.

By linearity of expectation, we have the item (1) of the lemma. For

the second item, we apply Chernoff bound( Theorem 3.3). □

Lemma 5.7 (Setting of ℓ for concentration of YR ). Let 0 < ε < 1/6
and c > 20 be some constants, and ℓ =

c logn

ε2
· m ·dR

r ·T . Then, with

probability at least 1 − 1
5 logn

, |YR − E[YR ]| ≤ εE[YR ].

Proof. By Lemma 5.5, R is ε-good with probability at least 1 −
1

6 logn
. Condition on the event that R is ε-good. By definition of

a ε-good set, τR is tightly concentrated around its mean: τR ∈
[(1 − ε)rT/m , (1 + ε)rT/m] Then, by item 2. in lemma 5.6, we

have

Pr [ |YR − E[YR ]| ≥ εE[YR ] ]

≤ exp

(
−c logn

ε2
· mdR

rT · ε
2

3
· τR
dR

)

≤ exp

(
−c logn

3
· τR · m

rT

)

= o(1/n3) ,
where the last line follows from the concentration of τR for ε-good

R. Removing the condition on R, we derive the lemma. □

We have now all the ingredients to prove that our final estimate

is indeed close to the actual triangle count. The random variable Y

is scaled appropriately to ensure that its expectation is close to the

true triangle count.

Lemma 5.8. Assume r and ℓ is set as in Lemma 5.5 and Lemma 5.7

respectively. Then, there exists a small constant ε ′ such that with

probability at least 1 − 1
3 logn

, X ∈ [(1 − ε ′T ), (1 + ε ′T )].

Proof. With probability at least 1 − 1
5 logn

, YR is closely con-

centrated around its expected value τR/dR (by Lemma 5.7). More
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formally,

YR ∈
[
(1 − ε) τR

dR
, (1 + ε) τR

dR

]
.

Then, with high probability

XR ∈
[
(1 − ε) · m

r
· τR , (1 + ε) ·

m

r
· τR

]
.

Since R is good, with probability at least 1 − 1
c logn

,

tR ∈
[
(1 − ε)r · T

m
, (1 + ε)r · T

m
,

]

Then, with probability at least 1 − 2
c logn

,

XR ∈ [(1 − 2ε)T , (1 + 2ε)T ]

Removing the conditioning on R, and using the bound on T as

given in Definition 5.2, we have

X ∈
[
(1 − ε ′)T , (1 + ε ′)T

]

with probability at least 1 − 4
c logn

, for suitable chosen parameter

ε ′. □

This completes the first part of the analysis. We now focus on

the space complexity of Algorithm 2.

Lemma 5.9 (Space Complexity of Algorithm 2). Assuming an ac-

cess to a (ε, δ )-accurate IsAssigned method, Algorithm 2 requires

Õ(mκ/T ) bits of storage in expectation.

Proof. Clearly,O(r + ℓ) space is sufficient to store the set R and

sample ℓ many edges from it at Line 4. Recall from Lemmas 5.5

and 5.7 that r = Õ(mτmax/T ) and ℓ = Õ(mdR/(rT)), respectively.
Using the bound onT and τmax from the definition of (ε, δ )-accurate
IsAssigned method, we derive that O(r + ℓ) is Õ(mκ/T ) with high

probability.

We now account for the space complexity of the IsAssigned

method. It is called if the the edge-vertex pair {e,w} forms a triangle

(if condition at Line 8). Let Zi be an indicator random variable to

denote if IsAssigned is called during the i-th iteration of the for

loop at Line 4. Then,

Pr[Zi = 1|R] =
∑

e ∈R

de

dR
· te
de
=

tR

dR
.

Then, the expected number of calls to IsAssigned is bounded by

ℓ · tR
dR
= Õ

(
m tR
r T

)
. Note that tR can be much different from τR ,

as it counts the exact number of triangles per edge. However, we

show that with constant probability, tR is at most O(rT/m), which
bounds the expected number of calls by Õ(1). Since each call to

IsAssigned takes Õ(mκ/T ) bits of space, the lemma follows. We

now bound tR .

E[tR ] = r
∑

e ∈E

te

m
=

3rT

m

, where the last equality follows from the fact that
∑
e ∈E te = 3T .

An application of Markov inequality bounds the probability that

tR is more than cr T
m by a small constant probability, for any large

constant c > 10. □

Thus, assuming an access to a (ε,o(1/n5))-accurate IsAssigned
method, Lemmas 5.8 and 5.9 together prove our main result in The-

orem 5.1.

5.1 Assigning triangles to edges

In this section we give an algorithm for the IsAssigned procedure

in Algorithm 3. Recall from the previous section that we require

IsAssigned to be (ε, δ )-accurate (see Definition 5.2).

The broad idea is to assign a triangle to the edge with smallest

te . Recall that te is the number of triangles that the edge e partici-

pates in. However, computing te might be too expensive in terms

of space required for certain edges. As evident from the analysis

of Algorithm 2, we have a budget of Õ(mκ/T ) in terms of bits of

storage for each call to IsAssigned. In this regard, we define łheavyž

and łcostlyž edges and it naturally leads to a notion of žheavyž and

žcostlyž triangles. If a triangle is either łheavyž or łcostlyž, then we

do not attempt to assign it to any of its edges. Crucially, we show

that the total number of łheavyž and łcostlyž triangles are only a

tiny fraction of the total number of triangles in the graph.

We need to ensure that for any edge e , not too many triangles are

assigned to e by IsAssigned. We achieve this by simply disregarding

any edge with large te from consideration while assigning a triangle

to an edge. Formally we capture this by defining heavy edges and

triangles.

Definition 5.10 (ε-heavy edge and ε-heavy triangle ). An edge is

defined ε-heavy if te > κ/ε . A triangle is deemed ε-heavy if all the

three of its edges are ε-heavy.

If the ratio te/de is quite small for an edge e , then we need too

many samples from the neighborhood N (e) to estimate te . Roughly

speaking, O(de/te ) many samples are required for an accurate esti-

mation. In this regard, we define costly edges and costly triangles as

follows.

Definition 5.11 (ε-costly edge and ε-costly triangle). An edge e is

defined ε-costly if de/te > mκ/(εT ). A triangle is deemed ε-costly if

any of its three edges is ε-costly.

We first show that the number heavy triangles and costly triangles

are only a small fraction of the all triangles. Formally, we prove the

following lemma.

Lemma 5.12. The number of ε-heavy triangles and ε-costly trian-

gles are bounded by 2εT and εT respectively.

Proof. We begin the proof by first showing that the number of

costly triangles is bounded. To prove this, observe that for a costly

edge e , te < de · (εT /mκ). Then,
∑

e is costly

te <
εT

mκ

∑

e is costly

de <
εT

mκ
· dE = 2εT

, where the last inequality follows from lemma 3.1.

We now turn our attention to bounding the number of heavy

triangles. By a simple counting argument, the number of heavy edges

in G is at most εT /κ. Consider the subgraph of G induced by the

set of heavy edges, denoted asGheavy. It follows from the definition

of degeneracy that κGheavy
≤ κG . By Corollary 3.2, the number of

triangles in Gheavy is then at most κGheavy
· E(Gheavy) = εT . Since

any heavy triangle inG is present inGheavy, the lemma follows. □
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Wegive the details of the procedure in Algorithm 3. The technical

part of this method is handled by Assignment subroutine at Line 7.

Given a triangle τ , Assignment either returns ⊥ (τ is not assigned

to any edges) or returns an edge e . We remark here that the method

Assignment as described is randomized and may return different

e on different invocations. To ensure that every triangle is assigned

to an unique edge, as demanded in the item (1) of Definition 5.2,

we maintain a table of (key,value) pairs that maps triangles (key)

to edges or ⊥ symbol(value). In particular, when Assignment is

invoked with input τ , we first look up in the table to check if there

is an entry for the triangle τ . If it is there, then we simply return

the corresponding value from the table. Otherwise, we execute

Assignment with input τ ; create an entry for τ and and store

the return value together with τ in the table. Since the expected

number of calls to the IsAssigned routine is bounded by Õ(1)
(by Lemma 5.9), this only adds a constant space overhead.

Algorithm 3 Detecting Edge-Triangle Association

1: procedure IsAssigned(triangle τ = {e1, e2, e3}, edge e)
2: Let emin = Assignment(τ )
3: if emin =⊥ or emin , e then

4: return NO.

5: else

6: return YES.

7: procedure Assignment(triangle τ = {e1, e2, e3})
8: for each edge e ∈ τ do

9: if de >
mκ

2

ε2T
then

10: Ye = ∞
11: else

12: for j = 1 to s do

13: samplew from N (e) u.a.r.
14: If {e,w} forms a triangle, set Yj = 1;

15: Else set Yj = 0.

16: Let Ye =
de
s

∑
ℓ

j=1 Yj .

17: Let emin = argmine Ye .

18: if Yemin > κ/(2ε) then
19: return ⊥.
20: else

21: return emin.

We next analyze Algorithm 3. The following theorem captures

the theoretical guarantees of IsAssigned procedure.

Theorem 5.13. Let ε > 0 and c > 60 be some positive constants

and s =
c logn

ε2
· mκ

T . Then, Algorithm 3 leads to an (ε,o(1/n5))-
accurate IsAssigned procedure.

In the remaining part of this section, we prove the above theorem.

We have already discussed how to ensure IsAssigned satisfies item

(1) in Definition 5.2. We next take up item (3). We show that not

too many triangles are assigned to any fixed edge. In particular,

we show that if an edge is łheavyž, then with high probability no

triangles are assigned to it. In other words, if an edge e is assigned

a triangle by Assigned, then with high probability te ≤ κ/ε . It
follows then, that for any edge e , the number of triangles that are

assigned to e , denoted as τe , is at most κ/ε with high probability.

Lemma 5.14. Let e be an ε-heavy edge. Then with probability at

least 1 − 1
n5 , no triangles are assigned to e .

Proof. First assume e is not an ε-costly edge. Let τ be some trian-

gle that e participates in. We consider an execution of Assignment

on input τ . Clearly, Pr[Yj = 1] = te/de . By linearity of expectation,

E[Ye ] = te . An application of Chernoff bound( Theorem 3.3) yields

Pr[Ye < κ/(2ε)] ≤ Pr[Ye < te/2]

≤ exp

(
− 1

12
· sde
te

)

≤ exp

(
−c logn

ε2
· ste
de

)

≤ 1

n5

where the last inequality uses the fact that e is not ε-costly and

hence de/te ≤ mκ/(εT ).
Next assume e is an ε-costly edge. Since te > κ/ε , it follows

that de >
mκ

2

ε2T
. Then, the if condition on Line 9 is true and hence

Ye = ∞. So no triangles that e participates in, will be assigned to

it. □

We now consider item (2) in Definition 5.2. Let τ be a triangle

such that τ is neither ε-heavy nor ε-costly. We prove that, with

high probability, Assigned does not return ⊥ when invoked with

τ . By Lemma 5.12, this implies that T ≥ (1 − 3ε)T .

Lemma 5.15. Let τ be a triangle that is neither 4ε-heavy nor 4ε-

costly. Then with probability at least 1 − o(1/n5), Assigned (τ ) ,⊥.

Proof. Since τ is not 4ε-heavy, for each edge e ∈ τ , te ≤ κ/(4ε).
Since τ is not 4ε-costly, at least one edge is not 4ε-costly Ð let e

denote that edge. Then, de/te ≤ mκ/(4εT ). Together, they imply

de ≤ mκ2/(16ε2T ), and the if condition on Line 8 is not met. We

next show that, with high probability Ye < κ/(2ε).
By linearity of expectation, E[Ye ] = te . An application of Cher-

noff bound( Theorem 3.3), similar to the previous lemma, shows

that with probability at least 1− 1
n5 , Ye ≤ 2te ≤ κ/(2ε). Hence, with

high probability, the triangle τ is assigned to the edge e , proving

the lemma. □

We now have all the necessary ingredients to complete the proof

of the theorem.

Proof of Theorem 5.13. We have already argued how to en-

sure that IsAssigned procedure satisfies item (1) in Definition 5.2.

Lemmas 5.14 and 5.15 proves that IsAssigned satisfies item (2) and

item (3) of Definition 5.2. Finally, the space bound in item (4) is

enforced by the setting of the parameter s . □

6 LOWER BOUND

In this section we prove a multi-pass space lower bound for the

triangle counting problem. Our lower bound, stated below, is effec-

tively optimal.

Theorem 6.1. Any constant pass randomized streaming algorithm

for graphs withm edges, T triangles, and degeneracy at most κ, that

provides a constant factor approximation to T with probability at

least 2/3, requires storage Ω(mκ/T ).
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Our proof strategy follows along the expected line of reduction

from a suitable communication complexity problem. We reduce

from the much-studied set-disjointness problem in communica-

tion complexity. It is perhaps a canonical problem that has been

used extensively to prove multi-pass lower bounds for various

problems, including triangle counting [11, 13]. We consider the

following promise version of this problem. Alice and Bob have two

N -bit binary strings x and y respectively, each with exactly R ones.

They want to decide whether there exists an index i ∈ [N ] such
that xi = 1 = yi . We denote this as the disjN

R
problem.

The basis of the reduction is the following lower bound for the

disjN
R

problem. Assume R(disjN
R
) denote the randomized commu-

nication complexity for the disjN
R

problem. 4

Theorem 6.2 (Based on [40, 49]). For all R ≤ N /2, we have
R(disjN

R
) = Ω(R).

To prove our lower bound, we reduce the disjN
R

problem to

the following triangle-detection problem. Consider two graph

families G1 and G2; G1 is a collection of triangle-free graphs on n

vertices andm edges with degeneracy κ, and G2 consists of graphs

on same number of vertices and edges, and with degeneracy Θ(κ)
and has at least T many triangles. Given a graph G ∈ G1 ∪ G2 as

a streaming input, the goal of the triangle-detection problem

is to decide whether G ∈ G1 or G ∈ G2 with probability at least

2/3, making a constant number of passes over the input stream. A

lower bound for the triangle-detection problem immediately

gives a lower bound for the triangle counting problem.

To set the context for our lower bound result, it is helpful to com-

pare against prior known lower bounds. The multi-pass space com-

plexity of the triangle counting problem is Θ(min{m3/2/T ,m/
√
T })

[11, 22, 46] for graphs withm edges and T triangles. We first con-

sider the first termm3/2/T . Since κ = O(
√
m), our result subsume

the bound of Θ(m3/2/T ). Compared betweenmκ/T andm/
√
T , the

former is smaller when T > κ2. Necessarily, in our lower bound

proofs, we will be dealing with graph instances such that T > κ2.

For the purpose of proving a Ω(mκ/T ) lower bound, it is suf-
ficient to show that the Triangle-Detection problem requires

Ω(mκ/T ) bits of space for some specific choice of parameters. How-

ever, we cover the entire possible range of spectrum. Fix two param-

eters κ and r , such that r ≥ 2. Then, we can construct an instance

of the Triangle-Detection problem with degeneracy Θ(κ) and
T = κr such that solving it requires Ω(mκ/T ) bits of space. So in ef-

fect, we prove a more nuanced and arguably more general theorem

than the one give in Theorem 6.1. Formally, we show the following.

Theorem 6.3. Let κ and r be parameters such that r ≥ 2. Then

there is a family of instances with degeneracy Θ(κ) and T = κr such

that solving the Triangle-Detection problem requires Ω(mκ/T ) bits
of space.

Proof. We reduce from the disjN
N /3 problem. Let (x,y) be the

input instance for this problem. We then construct an input G

for the triangle-detection problem such that if (x,y) is a YES
instance, then G ∈ G1, and otherwise G ∈ G2. The graph G has a

fixed part and a variable part that depends on x and y. We next

describe the construction of the graph G.

4See [43] for the definition of the notion randomized communication complexity.

Let Gfixed = (A ∪ B, Efixed) be a complete bipartite graph on the

bi-partitionA and B. Then, Efixed = {{a,b} : a ∈ A, b ∈ B}. Further
assume |A| = |B | = p. We add N blocks of vertices to Gfixed and

denote them as V1,V2, . . . ,VN . Assume |Vi | = q for each i ∈ [N ].
We will set the parameters p and q later in the analysis. For each

index i ∈ [N ] such that xi = 1, Alice connects each every vertex in

Vi to each vertex in A. Denote this edge set as EA. For each index

i ∈ [N ] such that yi = 1, Bob connects each every vertex in Vi
to each vertex in B. Denote this edge set as EB . This completes

the construction of the graph G. To summarize,G = (V , E) where
V = A ∪ B ∪V1 ∪ . . .VN , and E = Efixed ∪ EA ∪ EB .

It is easy to see that the graph G is triangle-free if and only if

there does not exits any i ∈ [N ] such that xi = 1 = y1. We now

analyze various parameters of G. In both YES and NO case for the

disjN
N /3 problem, we have

n = |V | = 2p + Nq

m = |E | = p2 + 2 · N
3

· pq .

In the NO instance, the number of triangles T is at least p2q. As

argued above, in the YES instance, T = 0. Finally, we compute

the degeneracy κ in both the cases. Note that κ(Gfixed) = p, and

by definition (see Definition 1.1) κ(G) ≥ p. We claim that κ = p

in the YES instance and κ ≤ 2p in the NO instance. To prove the

claim, we use the following characterization of degeneracy. Let ≺
be a total ordering of the vertices and let d≺v denote the number of

neighbors of v that appears after v according to the ordering ≺. Let
d≺max = maxv ∈V d≺v . Then, κ ≤ d≺max. Now consider the following

ordering: V1 ≺ V2 ≺ . . .VN ≺ A ≺ B, and inside each set the

vertices are ordered arbitrarily. Then, in the YES instance, d≺max ≤ p

and in the NO instance d≺max ≤ 2p, proving our claim.

We now set the parameters p and q as p = κ and q = κr−2.
Then, m = Θ(Npq) since p = O(Nq). Assume there is a con-

stant pass o(mκ/T )-space streaming algorithmA for the Triagnle-

Detection problem. Then, following standard reduction,A can be

used to solve the disjN
N /3 problem with o(Npq · p/p2q) = o(N ) bits

of communication, contradicting the lower bound for the disjN
N /3

problem. □

7 FUTURE DIRECTIONS

In this paper, we studied the streaming complexity of the triangle

counting problem in bounded degeneracy graphs. As we empha-

sized in the introduction, low degeneracy is an often observed char-

acteristics of real-world graphs. Designing streaming algorithms

with better bounds on such graphs (compared to the worst case)

is an important research direction. There have been some recent

successes in this context Ð graph coloring [12], matching size es-

timation [6, 23, 32], independent set size approximation [21]. It

would be interesting to explore what other problems can admit

better streaming algorithms in bounded degeneracy graphs. One

natural candidate is the arbitrary fixed size subgraph counting prob-

lem, which asks for the number of occurrences of the subgraph in

the given input graph.
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Do there exist streaming algorithms for approximate subgraph

counting on low degeneracy graphs that can beat known worst-case

lower bounds?

We conclude this exposition with the following conjecture about

the fixed size clique-counting problem.

Conjecture 7.1. Consider a graph G with degeneracy κ that has T

many ℓ-cliques. There exists a constant pass streaming algorithm that

outputs a (1± ε)-approximation toT using Õ(mκℓ−2/T ) bits of space.
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