Session 9: Query Enumeration and Aggregation

PODS ’20, June 14-19, 2020, Portland, OR, USA

How the Degeneracy Helps for Triangle Counting in Graph
Streams

Suman K. Bera
sbera@ucsc.edu
UC Santa Cruz

Santa Cruz, California

ABSTRACT

We revisit the well-studied problem of triangle count estimation in
graph streams. Given a graph represented as a stream of m edges,
our aim is to compute a (1 + ¢)-approximation to the triangle count
T, using a small space algorithm. For arbitrary order and a constant
number of passes, the space complexity is known to be essentially
@(min(m3/2/T, m/VT)) (McGregor et al., PODS 2016, Bera et al.,
STACS 2017).

We give a (constant pass, arbitrary order) streaming algorithm
that can circumvent this lower bound for low degeneracy graphs.
The degeneracy, «, is a nuanced measure of density, and the class of
constant degeneracy graphs is immensely rich (containing planar
graphs, minor-closed families, and preferential attachment graphs).
We design a streaming algorithm with space complexity O(mi/T).
For constant degeneracy graphs, this bound is O(m/T), which is sig-
nificantly smaller than both m3/2|T and m/NT. We complement our
algorithmic result with a nearly matching lower bound of Q(mx/T).

CCS CONCEPTS

« Theory of computation — Streaming, sublinear and near
linear time algorithms; Graph algorithms analysis.

KEYWORDS
Triangle counting, Streaming Model, Degeneracy

ACM Reference Format:

Suman K. Bera and C. Seshadhri. 2020. How the Degeneracy Helps for Tri-
angle Counting in Graph Streams. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS’20),
June 14-19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3375395.3387665

1 INTRODUCTION

Triangle counting is a fundamental algorithmic problem for graph
streams. Indeed, the literature on this one problem is so rich, that
its study is almost a subfield in of itself. Since the introduction of
this problem by Bar-Yossef et al [9], there has been two decades
of research on streaming algorithms for triangle counting [9, 11,
13, 14, 22, 34, 38, 39, 41, 45-48, 59, 60]. The significance of triangle

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS’20, June 14-19, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7108-7/20/06. .. $15.00
https://doi.org/10.1145/3375395.3387665

457

C. Seshadhri

sesh@ucsc.edu

UC Santa Cruz
Santa Cruz, California

counting is underscored by the wide variety of fields where it is
studied: database theory, theoretical computer science, and data
mining. From a practical standpoint, triangle counting is a core
analysis task in network science. Given the scale of real-world
graphs, this task is considered to be computationally intensive. In
database systems, triangle counting is used for query size estimation
in database join problems (see [5, 7] for details). These have led to
the theoretical and practical study of triangle counting in a variety
of computational models: distributed shared-memory, MapReduce,
and streaming [4, 8, 18, 20, 42, 51, 52, 54, 56-58].

Despite the plethora of previous work in the streaming setting,
the following question has not received much attention. Are there
“natural” graph classes that admit more efficient streaming algorithms
for triangle counting? This question has a compelling practical
motivation. It is well known from network science that massive
real-world graphs exhibit special properties. Could graph classes
that contain such real-world graphs have “better than worst-case"
streaming triangle algorithms?

Motivated by these considerations, we study the problem of
streaming triangle counting, parametrized by the graph degener-
acy (also called the maximum core number). We defer the formal
definition for later, but for now, it suffices to think of degeneracy
as a nuanced measure of graph sparsity. The class of constant de-
generacy graphs is extremely rich: it contains all planar graphs,
all minor-closed families of graphs, and preferential attachment
graphs. The degeneracy of real-world graphs is well studied, under
the concept of core decompositions. It is widely observed that the
degeneracy of real-world graphs is quite small, many orders of
magnitude smaller than worst-case upper bounds [24, 35, 36, 55].

In computational models other than streaming, the degeneracy is
known to be relevant for triangle counting. From the perspective of
running time of exact sequential algorithms, a seminal combinato-
rial algorithm of Chiba-Nishizeki gives an O(mk) time algorithm for
exact triangle counting (m is the number of edges, and « is the de-
generacy) [18]. Thus, for (say) constant degeneracy, this algorithm
beats the best known running time bounds of more sophisticated
matrix multiplication based algorithm (of course, the latter work for
all graphs) [2]. In distributed and query-based computational mod-
els, a number of results have shown that low degeneracy is helpful
in bounding communication or query complexities [30, 33, 36, 56].
This inspires the main question addressed by this paper.

Do there exist streaming algorithms for approximate triangle count-
ing on low degeneracy graphs that can beat known worst-case lower
bounds?

Session 9: Query Enumeration and Aggregation

1.1 Our results and significance

We focus on constant pass streaming algorithms, with arbitrary
order. Thus, we think of the input graph G = (V, E) represented as
an arbitrary list of (unrepeated) edges. Our algorithm is allowed
to make a constant number of passes over this list, but has limited
storage. As is standard, we use n for the number of vertices, m for
the number of edges, and T for the number of triangles in G.

We first define the graph degeneracy.

Definition 1.1. The degeneracy of a graph G, denoted x(G), is
defined as maxg’ supgraph of G {min degree of G’}. In words, it is the
largest possible minimum degree of a subgraph of G.

In a low degeneracy graph, all induced subgraphs have low
degree vertices. The following procedure that computes the de-
generacy is helpful for intuition. Suppose one iteratively removed
the minimum degree vertex from G (updating degrees after every
removal). For any vertex v, consider the “observed" degree at the
time of removal. One can prove that the degeneracy is the largest
such degree [1]. Thus, even though G could have a large maximum
degree, the degeneracy can be small if high degree vertices are
typically connected to low degree vertices.

Our main theorem follows.

THEOREM 1.2. Consider a graph G of degeneracy at most x, that
is input as an arbitrary edge stream. There is a streaming algorithm
that outputs a (1 +)-approximation to T, with high probability!,
and has the following properties. It makes constant number of passes
over the input stream and uses space (mx /T) - poly(log n, e71).

To understand the significance of the bound mk/T, note that
space complexity of streaming triangle counting is known to be
min(m3/2/T, m/NT) [11, 46]. Consider k = O(1), which as men-
tioned earlier, holds for all graphs in minor-closed families and
preferential attachment graphs. In this case, the algorithm of Theo-
rem 1.2 uses space O(m/T). This is significantly smaller than both
m3/2/T and m/\/f We note that for all graphs, k < V2m, and thus,
the space is always 5(m3/ /7).

As an illustrative example, consider the wheel graph with n
vertices (take a cycle with n — 1 vertices, and add a central vertex
connected to all other vertices). Note that m = T = ©(n) and
k = O(1) (G is planar). The space bound given in Theorem 1.2
is only polylogarithmic, while all existing streaming algorithms
bounds (given in Table 1) are Q(+/n).

Our bound of O(mx/T) subsumes the term O(m3/? /T), and dom-
inates the term 5(m/ VT) when T = Q(x?). For real-world graphs,
T = Q(x?) is a naturally occurring phenomenon. In fact, real-world
large graphs are often characterized by following two properties: (1)
low sparsity, and (2) high triangle density [25, 50, 53, 61]. Thus, from
a practical standpoint, our bound offers significant improvement
over previously known bounds.

We complement Theorem 1.2 with a nearly matching lower
bound.

THEOREM 1.3. Any constant pass randomized streaming algorithm
for graphs with m edges, T triangles, and degeneracy at most k, that
provides a constant factor approximation to T with probability at
least 2/3, requires storage Q(mx/T).

1We use “high probability” to denote errors less than 1/3.

458

PODS ’20, June 14-19, 2020, Portland, OR, USA

We remark that all our results in this paper can be equivalently
stated in terms of arboricity as well. The arboricity of a graph G,
denoted as «, is the smallest integer p such that the edge set E(G) can
be partitioned into p forests. It is asymptotically same as degeneracy:
for every graph o < x < 2 — 1.

1.2 Main ideas

We give a high-level description of our algorithm and proof. The
final algorithm has a number of moving parts, and is based on recent
advances in sublinear algorithms for clique counting [26, 29, 30].

The starting point for our algorithm (and indeed, most trian-
gle counting results related to degeneracy) is the classic sequen-
tial procedure of Chiba-Nishizeki. For every edge e = (u,v), the
size of intersection on neighborhoods of u and v is the number
of triangles containing e. This intersection can be determined eas-
ily in min(dy, d,)) operations, by searching for elements of the
smaller neighborhood in the larger one. (Here, d;, denotes the de-
gree of vertex u.) For convenience, let us define the degree of edge
e to be d, := min(d,, dy,). Thus, we can enumerate all triangles in
>.e de time. The classic bound of Chiba-Nishzeki asserts that), de
= O(mx).

As a warmup, let us get an O(mk/T) space streaming algorithm,
that uses a degree oracle. Define dg :=), de = O(mx). With the
degree oracle, in a single pass, we can sample an edge e proportional
to its degree. In the second pass, pick a uniform random neighbor
w of the lower degree endpoint of e. In the third pass, determine
if e and w form a triangle. The probability of finding a triangle
is exactly 3T/dg. By sampling O(dg/T) = O(mxk/T) independent
random edges in the first pass, we can estimate T with O(mx/T)
space.

The main challenge is in removing the degree oracle. As a first
step, can we effectively simulate sampling edges proportional to
their degree? We borrow a key idea from recent sublinear algo-
rithms for clique counting. First, we sample a set of uniform random
edges, denoted R. In a second pass, we compute the degree of all
edges in R. Now, we can run the algorithm described earlier, except
we only sample edges of R. Observe that in the latter sample, tak-
ing expectations over R, we do sample edges proportional to their
degree from the overall graph. Unfortunately, these samples are all
correlated by the choice of R. How large should R be to ensure that
this simulation leads to the right answer?

An alternate viewpoint is to observe that the above approach
can give an accurate estimate to the number of triangles incident
to R, denoted tg. We require R to be large enough, so that tg can
be used to estimate T. Let t, be the number of triangles incident to
e. The {t¢} values can exhibit large variance, even when k = O(1).
Consider a graph formed by (n—2) triangles that all share a common
edge. The graph is planar, so k = O(1). But one edge is incident to
(n—2) triangles, and all other edges are incident to a single triangle.
Thus, the {t.} values have the largest possible variance, and one
cannot estimate T by computing). cg te for a small R. Note that,
for this example graph, our desired streaming algorithm uses only
polylogarithmic space (T = ©(m), k = O(1)).

Another key idea from sublinear clique counting saves the day:
assignment rules. The idea is to assign triangles uniquely to edges,
so that the distribution of assigned triangles has low variance. The

Session 9: Query Enumeration and Aggregation

overall algorithm will estimate the number of triangles assigned to
R, and not count the number of triangles incident to R. A natural,
though seemingly circular, rule is to assign each triangle to the
contained edge that itself participates in the fewest triangles. Using
properties of graph degeneracy, it is shown in [30] that the maxi-
mum number of assigned triangles to any edge is O(x). (Technically,
this is not true. We have to leave some triangles unassigned.)

This leads to another technical complication. In the overall al-
gorithm, when a triangle incident to an edge is discovered, the
algorithm needs to determine if the triangle is actually assigned to
the edge. This requires estimating t, for all edges e in the triangle,
a potentially space intensive operation. To perform this estimation
in O(mxk/T) requires subtle modifications to the assignment proce-
dure. It turns out we can ignore triangles containing edges of high
degree, and thus, the above ¢, estimation is only required for low
degree edges. Furthermore, we only need to determine if t, = Q(k),
which allows for smaller storage algorithms.

All in all, by choosing parameters carefully, all steps can be
implemented using (mx/T)poly(log n, 1) storage.

2 RELATED WORK

The triangle counting problem, a special case of more general sub-
graph counting problem, has been studied extensively in the stream-
ing setting. We present a summary of the significant prior works
in Table 1. The upper bounds stated in the table are for randomized
streaming algorithms that provide (1 + ¢)-approximation to the true
triangle count with probability at least 2/3. The O notion hides
polynomial dependencies on 1/¢ and log n. The lower bounds are
primarily based on the triangle detection problem — detect whether
the input graph is triangle free or it contains at least T many tri-
angles. All the results presented in the table are for the arbitrary
order stream.

Jha et al. [37] designed a one pass 5(m/\/f)—space algorithm
with +W-additive error approximation, where W is the number of
two length paths (also called wedges). Bravermanet al. [13] gave a
two-pass 5(m/T1/3)-space algorithm to detect if the input graph is
triangle free or it has at least T many triangles. These results are
not directly comparable to our work.

The triangle counting problem has been studied in the context
of the adjacency list streaming model as well. This model is also
known as the vertex arrival model: all the edges incident on a vertex
arrive together. McGregor et al. [46] gave one-pass O(m/VT)-space
and two pass o(m3/2/ T)-space algorithm for the triangle counting
problem in this model. We refer to [46] for other related work in
this model.

Bounded degeneracy graph family is an important class of graphs
from a practical point of view. Many real-world large graphs, spe-
cially from the domain of social networks and web graphs, often
exhibit low degeneracy([12, 24, 35, 36, 55], also Table 2 in [12]).
Naturally, designing algorithms that are parameterized by degen-
eracy has been a theme of many works in the streaming settings;
some examples include matching size estimation [6, 23, 32], inde-
pendent set size approximation [21], graph coloring [12]. In the
general RAM model, the relation between degeneracy and subgraph
counting problems has been explored in [10, 19, 31].

459

PODS ’20, June 14-19, 2020, Portland, OR, USA

In the graph query model, where the goal is to design sub-linear
time algorithms, Eden et al. [28] studied the triangle counting prob-
lem, and more generally the clique counting problem in bounded
degeneracy graphs. Although the model is significantly different
from the streaming model, we port some key ideas from there;
see Section 1.2 for a detailed discussion. The relevance of bounded
degeneracy has been further explored in the context of estimating
degree moments [27] in this model.

3 NOTATIONS AND PRELIMINARIES

For an integer k, we denote the set {1, 2, ..., k} by [k]. Throughout
the paper, we denote the input graph as G = (V, E). We assume G
has n vertices, m edges and T many triangles. We denote the degree
of a vertex v € V by d,, and its neighborhood by N(v). For an edge
e = {u, v}, we define its neighborhood N(e) to be that of the lower
degree end point: N(e) = N(u) if d, < dy; N(e) = N(v) otherwise.
Similarly, we define the degree of an edge: de = min{d,,, d,, }. For
a collection of edges R, we define dp =) .cg de. In particular,
dg = YecE de-

Chiba and Nishizeki [19] proved the following insightful con-
nection between the sum of degrees of the edges in a graph df and
its degeneracy k. 2

Lemma 3.1 (Lemma 2 in [19]). For a graph G with m edges and
degeneracy «,

dp = Zde <2mk.
ecE

As a corollary, we get the following result.

Corollary 3.2 ([19]). Fora graph G with m edges and degeneracy
K, the maximum number of triangles in G is at most 2mk.

We use the notation O(-) to hide polynomial dependencies on
(1/¢) and log n terms, where ¢ is the error parameter. For designing
our algorithms, we focus on the expected space usage. This can be
easily converted into a worst-case guarantee by applying Markov
inequality — simply abort if the space usage runs beyond c times
the expected space usage, for some constant c. This only increases
the error probability by an additive 1/c amount.

We use the following variants of the Chernoff bound and Cheby-
shev inequality for analyzing our algorithms.

THEOREM 3.3 (CHERNOFF BOUND [17]). Let X1, Xo,..., X, be
mutually independent indicator random variables with expectation p.
Then, for every e with 0 < ¢ < 1, we have

1 r
S|
i=1

THEOREM 3.4 (CHEBYSHEV INEQUALITY [3]). Let X be a random
variable with expectation y and variance Var[X]. Then, for every
>0,

Pr < 2exp (—ezr,u/?))

Var[X]

212

Pr{|X —pl>ep] <

2Note that Chiba and Nishizeki [19] stated their results in terms of arboricity. As
a < k for each graph G with arboricity a, the same result holds with respect to
degeneracy k as well.

Session 9: Query Enumeration and Aggregation

PODS ’20, June 14-19, 2020, Portland, OR, USA

Space Remarks Source
5(mn/T)2 one pass [9]
5~(mA2/T) one pass, A = maximum degree [38]
O(mn/T) one pass, n known a priori [14]
(z (m3 / Tz) one pass, dynamic stream [41]
O(mA/T) one pass, A = maximum degree [48]

5(m]/T + m/\/f) one pass, J = maximum triangles incident on a edge [47]
C+ 5(P2/T) one pass, C = vertex cover, P, = # of 2-paths [34]
5(m/\/f) dependence on ¢ is 1/¢%-> [22]
5(m3/2 /T) multi-pass [11, 46]
5(m/ \/T) multi-pass [46]

Q(nz) one pass, T =1 [9]

Q(n/T) multi-pass, T < n [38]

Q(m) one pass, m € [cin, czn?], T <n [13]

Q(m/T) multi-pass [13]
Q(m3/1?) one pass, optimal [44]
Q(m/T2/3) multi-pass [22]
Q(m/\/f) multi-pass, for m = ©(nVT) [22]

Q(min{m/VT, m3?/T}) multi-pass [11]

Table 1: Prior work on the triangle counting problem

4 WARM-UP: AN ABSTRACT MODEL

In this section, we consider a streaming model equipped with a
degree oracle: queried with a vertex v, the oracle returns d,,. Fur-
thermore, we make a rather strong assumption: there is no cost asso-
ciated with the queries. McGregor et al. [46] designed a 5(m3/ 2/T)
space 3-pass streaming algorithm in this model — their algorithm
makes O(m) many degree queries. We describe an 5(mK/T)—space 3
pass algorithm in this model. Our estimator makes 2m many degree
queries and requires 3-pass. For bounded degeneracy graph families,
this translates to a space reduction by a factor of O(y/m). In the
next section, we show how to design a O(mx/T)-space constant
pass algorithm in the traditional streaming model.

Our main idea is to sample edges from the stream with proba-
bility proportional to its degree. In general streaming settings, this
is not possible as we do not know the degree of the edges apriori.
However, the model that we consider here is tailor-made for this
purpose. It shows the effectiveness of degree-biased edge samples
in estimating triangle count and provides motivation for taking up
a similar sampling approach in the general streaming model.

We present our basic estimator in algorithm 1. In the full algo-
rithm, we will run multiple instances of this estimator in parallel
and report the “median of the mean” [15] as our final estimate.

Implementation Details. The degree proportional sampling is
achieved by using weighted reservoir sampling [16]. On arrival of
the edge e = {u, v} in the stream, we make two degree queries to
find d,. The method ISASSIGNED is required to ensures that every
triangle is uniquely associated with one of its three edges. Other
than this, there is no constraints on the implementation of this
method. For example, we can associate every triangle to the edge
with lowest degree, breaking ties arbitrarily (but consistently). Let

460

Algorithm 1 A Triangle Estimator

1: procedure IDEALESTIMATOR(Graph G = (V, E))
2 Pass 1: Sample an edge e with probability d /dE.
3 Pass 2: Sample a vertex w from N(e) u.a.r.
4 Pass 3: Check if {e, w} forms a triangle.
5 if 7 = {e, w} is a triangle then
6 Call IsASSIGNED(7, e).
7 If returned YES, then set Y = 1; else set Y = 0.
8 else
9 Set Y =0.

SetX =dg-Y.

return X.

10:
11:

te denote the number of triangles assigned to the edge e. Clearly,
2ecgte =T.

Analysis. First, we show the estimator is unbiased.

d
BX]=) 2% EIX|e]
ecE E
= Z de - E[Y]e]
ecE
=Zde-t—e=2te=T
ecE € e€E

Session 9: Query Enumeration and Aggregation

Now we bound the variance of the estimator.
de

Var[X] < E[X?] = - -E[X?|e]
ecE E
= > de - dg - B[Y?|e]
ecE
te
=Y dedp £
ecE €
:dE'Zte:dE'T
ecE

So, running O(Var[X]/E[X]?) = O(dg/T) = 5(mK/T)-many esti-
mators independently in parallel suffices for a (1 + ¢)-approximate
estimate. Since each copy of the estimator requires constant space,
the overall space usage is bounded by O(mx/T).

5 OUR MAIN ALGORITHM

In this section, we present our streaming triangle estimator. As
promised, our algorithm does not assume access to a degree oracle.
If the model is indeed equipped with a degree oracle, then we can
save a few passes over the stream. Perhaps more importantly, the
number of queries to the oracle is upper bounded by the space usage
of our algorithm. Our main algorithmic result is the following.

THEOREM 5.1. Consider a graph G of degeneracy at most x, that
is input as an arbitrary edge stream. There is a streaming algorithm
that outputs a (1 + ¢)-approximation to T, with high probability’,
and has the following properties. It makes six passes over the input
stream and uses space (mi/T) - poly(log n, ¢71).

We describe our estimator in Algorithm 2. We set the parame-
ters r and ¢ later in the analysis. In analyzing our algorithm, the
procedure IsAssIGNED would play a crucial role. As discussed ear-
lier, IsAssIGNED takes as input a triangle and an edge, and outputs
whether the triangle is assigned to that edge. We want this proce-
dure to possess four properties: (1) For a given triangle, it is either
unassigned or assigned uniquely to one of its three participating
edges. (2) almost all the triangles are assigned, (3) For any fixed
edge, not too many triangles are assigned to it, and (4) The space
complexity of the procedure is bounded by O(mi/T). The first two
properties are required to ensure the overall accuracy of the estima-
tor. The third property would be central to bounding the variance
of the estimator. The final property will ensure the overall space
complexity of our triangle estimator is bounded by O(mx /T).

We analyze our triangle estimator assuming a black-box access
to a ISAsSIGNED procedure that satisfies the above four properties.
In the next section, we will take up the task of designing such an
assignment procedure in the streaming setting. We make the above
discussion rigorous and formal below.

Assume 7, denotes the number of triangles assigned to the edge e
by the procedure ISASSIGNED. We use Tmax to denote the maximum
number of triangles that any edge has been assigned to: Tmax =
maxecE Te. Denote the number of triangles that ISASSIGNED assigns
to some edge by 7 = X .k Te. Then, for any positive constant ¢
and J, we define an (¢, §)-accurate IsSASSIGNED procedure below.

3We use “high probability” to denote errors less than 1/3.

PODS ’20, June 14-19, 2020, Portland, OR, USA

Definition 5.2 ((¢, §)-accurate ISASSIGNED). A procedure IsAs-
SIGNED that assigns a triangle to an edge or leaves it unassigned, is
(¢, 8)-accurate if it satisfies the following four properties.

(1) Unique Assignment: For each triangle, it is either unassigned
or uniquely assigned to one of the three participating edges.
This implies, 7" < T.

(2) Almost All Assignment: With probability at least 1 — 6, 7 >

(1-12¢)T.

(3) Bounded Assignment: With probability at least 1 — §, Tpax <
K/e.

(4) Bounded Space Complexity: Each call requires O (mx/T) bits
of space.

We now analyze our algorithm assuming a black-box access to
(¢, O(1/n°))-accurate IsAssIGNED. The analysis consists of two parts.
First, we show that for a certain settings of r and ¢, our final estimate
X is indeed a (1 + ¢) approximation to the true triangle count. In
the sequel, we bound the space complexity of our algorithm.

Algorithm 2 Estimation of triangle count

1: procedure ESTIMATETRAINGLE(Graph G = (V, E))
2: Pass 1: Sample r many edges uar: R = {e;}]_;.
3 Pass 2: Compute d, for each e € R.

4 fori=1to{do

5 Sample an edge e € R independently with prob. d./dg.
6 Pass 3: Sample a vertex w from N(e) u.a.r.

7 Pass 4: Check if {e, w} forms a triangle.

8 if 7 = {e, w} is a triangle then

9: Call IsAssIGNED(T, e).

10: If returned YES, then set Y; = 1; else set Y; = 0.

11: else

12: SetY; =0.

13 SetY=1%{ YiandX=2.dg-Y.
14: return X.

We begin with analyzing the quality of the (multi)set of uniform
random edges R. Collectively through Lemmas 5.3 and 5.5 and defi-
nition 5.4, we establish that for a suitable choice of the parameter r,
the (multi)set R possesses desirable properties with high probability.

Lemma 5.3. Letdg =) .cg de and TR =), .cR Te- For any constant
& > 0 we have

(1) E[dR] =r- de andE[rR] =r- %]

m

1
) Pr[dR <E[dg]- 8| > 1- e
(3) Pr[|zgr — E[tRr]| < eE[zr]] 2 1 - ﬁ -1 M Tmax

Proor. We first compute the expected value of dg and 7g. We
define two sets of random variables, Yid and Yit for i € [r] as follows:
Yid = de,;, and Yit = 7¢;. Then, dp = ¥7_; Yid and g = X7_, Yl.t.

Session 9: Query Enumeration and Aggregation

We have

o]
~
>
Il

Then, by linearity of expectation, we get E[dr] = r - dg/m. Analo-
gously, we have E[tg]| =7 - T /m.

We now turn our focus on the concentration of dg. This is
achieved by a simple application of Markov inequality.

logn P
e |~ logn’

Pr [dR > E|[dgr] -

To prove a concentration bound on g, we study the variance of
7R. By independence, we have

Z Var[Y.

Var[zg]

-

I * Tmax ZeEE Te
m
r - Tmax7

m

Then, the item (3) of the lemma follows by an application of Cheby-
shev inequality (Theorem 3.4). O

We next define a collection of edges R as good if the conditions
in items (2) and (3) in Lemma 5.3 are satisfied. Formally, we have
the following definition.

Definition 5.4 (A good collection of edges). We call a fixed collec-
tion of edges R, e-good if the following two conditions are true.

1
dg < 9B" gy % (1)
m
-
R |(1=e)- Rl — . (1+¢)-R|- — @)

Lemma 5.5 (Setting of r for an e-good R). Let 0 < ¢ < 1/6 and
¢ > 6 be some constants, andr = Clz# % Then, with probability

at least 1 — R is e-good.

1
6logn’
ProoF. The lemma follows by plugging in r = Cl(g’#%
in Lemma 5.3 and using the bounds on ¢ and ¢. O

We have established that the random collection of edges R is good
with high probability. We now turn our attention to the random
variable Y, as defined on Line 13 Algorithm 2. Together in Lem-
mas 5.6 and 5.7 we show that, if R is good then for a suitably chosen

462

PODS ’20, June 14-19, 2020, Portland, OR, USA

parameter ¢, the random variable Y is well-concentrated around its
mean.

Lemma 5.6. Let R be a fixed collection of edges, and YR denote the
value of the random variable Y as defined on Line 13 Algorithm 2 on
R. Then,

(1) E[YR
(2) Pr[Yk — B[YR]| 2 eE[Yr]] < exp (—€- & - 5£).

= IR
1=,

PROOF. Let e; be the edge sampled in the i-th iteration of the for
loop at line 4 in Algorithm 2. Then,

Z Pr[e; = e] Pr[Y; = 1]e; = e],

ecR

= Z < Pr[Y; = 1]e; = €],
eeR dr
eGR
eER
- R
"I
By linearity of expectation, we have the item (1) of the lemma. For
the second item, we apply Chernoff bound(Theorem 3.3). O

E[Y; =1] =

Te

Z

Lemma 5.7 (Setting of ¢ for concentration of Yg). Let0 < ¢ < 1/6

and ¢ > 20 be some constants, and £ = Clzzg" . m:gg. Then, with

|Yr — E[YR]| < €E[YR].

. 1

probability at least 1 — Slogn’
PROOF By Lemma 5.5, R is e-good with probability at least 1 —

610 . Condition on the event that R is ¢-good. By definition of
g n’

a e-good set, 7R is tightly concentrated around its mean: 7g €

[(1—&e)rT /m, (1+ e)rT /m] Then, by item 2. in lemma 5.6, we

have

Pr[|Yr - E[YR]| = ¢E[YR]]

< clogn mdgp ¢ R
xp | ——o= K E
P £2 rT 3 dg

< clogn m
<exp|- “TR - —
P 3 RT
= o(1/n’),
where the last line follows from the concentration of 7g for e-good
R. Removing the condition on R, we derive the lemma. O

We have now all the ingredients to prove that our final estimate
is indeed close to the actual triangle count. The random variable Y
is scaled appropriately to ensure that its expectation is close to the
true triangle count.

Lemma 5.8. Assumer and { is set as in Lemma 5.5 and Lemma 5.7
respectively. Then, there exists a small constant ¢’ such that with
probability at least 1 — 310gn Xe[(1-¢€T),1+T).

Proor. With probability at least 1 — ﬁ,
centrated around its expected value 7g /dg (by Lemma 5.7). More

YR is closely con-

Session 9: Query Enumeration and Aggregation

formally,

TR R
Y, 1-¢)—,(1 —
Re[< (o
Then, with high probability

XRE[(1_5)‘%'TR,(1+5)'?‘TR]-

Since R is good, with probability at least 1 — —-— lolg =

g € [(l—s)r-z,(1+£)r~z,]
m m

Then, with probability at least 1 — —*— Iozg =

Xr € [(1-2e)T,(1+2e)T]

Removing the conditioning on R, and using the bound on 7~ as
given in Definition 5.2, we have

Xe|1-eT,a1+e)T|

with probability at least 1 — for suitable chosen parameter

_4
clogn’
e m]

This completes the first part of the analysis. We now focus on
the space complexity of Algorithm 2.

Lemma 5.9 (Space Complexity of Algorithm 2). Assuming an ac-
cess to a (¢, §)-accurate ISASSIGNED method, Algorithm 2 requires
O(mx/T) bits of storage in expectation.

Proor. Clearly, O(r + €) space is sufficient to store the set R and
sample ¢ many edges from it at Line 4. Recall from Lemmas 5.5
and 5.7 that r = 5(mrmax/7') and ¢ = 5(de/(rT)), respectively.
Using the bound on 7~ and 7ax from the definition of (¢, §)-accurate
IsAssIGNED method, we derive that O(r + ¢) is O(mx/T) with high
probability.

We now account for the space complexity of the ISASSIGNED
method. It is called if the the edge-vertex pair {e, w} forms a triangle
(if condition at Line 8). Let Z; be an indicator random variable to
denote if ISASSIGNED is called during the i-th iteration of the for
loop at Line 4. Then,

te
Pr[Z; = 1|R] = Z =
 dr de dR

Then, the expected number of calls to ISAsSSIGNED is bounded by
¢ & _ 0§ (m tR)

I = Note that tg can be much different from 7p,
as it counts the exact number of triangles per edge. However, we
show that with constant probability, tg is at most O(r7” /m), which
bounds the expected number of calls by O(1). Since each call to
ISASSIGNED takes O(mx/T) bits of space, the lemma follows. We
now bound tg.
Bl =r .
ecE m

3T

m

, where the last equality follows from the fact that)}, te = 3T.
An application of Markov inequality bounds the probability that
tR is more than C;nT by a small constant probability, for any large
constant ¢ > 10.)

463

PODS ’20, June 14-19, 2020, Portland, OR, USA

Thus, assuming an access to a (g, o(1/n%))-accurate ISASSIGNED
method, Lemmas 5.8 and 5.9 together prove our main result in The-
orem 5.1.

5.1 Assigning triangles to edges

In this section we give an algorithm for the ISAssIGNED procedure
in Algorithm 3. Recall from the previous section that we require
IsASSIGNED to be (¢, §)-accurate (see Definition 5.2).

The broad idea is to assign a triangle to the edge with smallest
te. Recall that t is the number of triangles that the edge e partici-
pates in. However, computing t, might be too expensive in terms
of space required for certain edges. As evident from the analysis
of Algorithm 2, we have a budget of O(mx/T) in terms of bits of
storage for each call to ISASSIGNED. In this regard, we define “heavy”
and “costly” edges and it naturally leads to a notion of "heavy” and

“costly” triangles. If a triangle is either “heavy” or “costly”, then we

do not attempt to assign it to any of its edges. Crucially, we show
that the total number of “heavy” and “costly” triangles are only a
tiny fraction of the total number of triangles in the graph.

We need to ensure that for any edge e, not too many triangles are
assigned to e by IsAssiGNED. We achieve this by simply disregarding
any edge with large ¢, from consideration while assigning a triangle
to an edge. Formally we capture this by defining heavy edges and
triangles.

Definition 5.10 (¢-heavy edge and e-heavy triangle). An edge is
defined e-heavyif te > k/e. A triangle is deemed e-heavy if all the
three of its edges are &-heavy.

If the ratio te /d. is quite small for an edge e, then we need too
many samples from the neighborhood N(e) to estimate .. Roughly
speaking, O(d, /t.) many samples are required for an accurate esti-
mation. In this regard, we define costly edges and costly triangles as
follows.

Definition 5.11 (¢-costly edge and e-costly triangle). An edge e is
defined e-costly if de /te > mk/(eT). A triangle is deemed e-costly if
any of its three edges is e-costly.

We first show that the number heavy triangles and costly triangles
are only a small fraction of the all triangles. Formally, we prove the
following lemma.

Lemma 5.12. The number of e-heavy triangles and e-costly trian-
gles are bounded by 2¢T and €T respectively.

ProoF. We begin the proof by first showing that the number of
costly triangles is bounded. To prove this, observe that for a costly
edgee, te < de - (¢€T /mx). Then,

Z l’e<— Z d<— dp = 2¢T

e is costly e is costly

, where the last inequality follows from lemma 3.1.

We now turn our attention to bounding the number of heavy
triangles. By a simple counting argument, the number of heavy edges
in G is at most ¢T/k. Consider the subgraph of G induced by the
set of heavy edges, denoted as Gpeayy- It follows from the definition
of degeneracy that kg,,,,, < kg. By Corollary 3.2, the number of
triangles in Gpeayy is then at most KGheavy ° E(Gpeayy) = €T Since
any heavy triangle in G is present in Gpeayy, the lemma follows. O

Session 9: Query Enumeration and Aggregation

We give the details of the procedure in Algorithm 3. The technical
part of this method is handled by AssIGNMENT subroutine at Line 7.
Given a triangle 7, ASSIGNMENT either returns L (7 is not assigned
to any edges) or returns an edge e. We remark here that the method
ASSIGNMENT as described is randomized and may return different
e on different invocations. To ensure that every triangle is assigned
to an unique edge, as demanded in the item (1) of Definition 5.2,
we maintain a table of (key,value) pairs that maps triangles (key)
to edges or L symbol(value). In particular, when ASSIGNMENT is
invoked with input 7, we first look up in the table to check if there
is an entry for the triangle 7. If it is there, then we simply return
the corresponding value from the table. Otherwise, we execute
ASSIGNMENT with input 7; create an entry for 7 and and store
the return value together with 7 in the table. Since the expected
number of calls to the ISASSIGNED routine is bounded by 0(1)
(by Lemma 5.9), this only adds a constant space overhead.

Algorithm 3 Detecting Edge-Triangle Association

1: procedure IsASSIGNED(triangle 7 = {ey, e2, e3}, edge €)
2 Let emijn = ASSIGNMENT(T)

3 if eqin =L or epin # e then

4 return NO.

5: else

6 return YES.

7: procedure AsSIGNMENT(triangle 7 = {eq, ez, e3})
8 for each edge e € 7 do

9 if de > ™K then

10: Ye =0

11: else

12: for j=1tosdo

13: sample w from N(e) uv.a.r.

14: If {e, w} forms a triangle, set Y; = 1;
15: Else set Yj = 0.

16: Let Y, = % 3, v,

17: Let epin = argmin,, Ye.

18: if Ye , > k/(2¢) then

19: return L.
20: else
21: return epp.

We next analyze Algorithm 3. The following theorem captures
the theoretical guarantees of ISAssIGNED procedure.

THEOREM 5.13. Let ¢ > 0 and ¢ > 60 be some positive constants
ands = CIgzgn - K. Then, Algorithm 3 leads to an (e, o(1/n%))-

accurate ISASSIGNED procedure.

In the remaining part of this section, we prove the above theorem.
We have already discussed how to ensure ISASSIGNED satisfies item
(1) in Definition 5.2. We next take up item (3). We show that not
too many triangles are assigned to any fixed edge. In particular,
we show that if an edge is “heavy”, then with high probability no
triangles are assigned to it. In other words, if an edge e is assigned
a triangle by AssIGNED, then with high probability t, < k/e. It
follows then, that for any edge e, the number of triangles that are
assigned to e, denoted as 7, is at most k /¢ with high probability.

464

PODS ’20, June 14-19, 2020, Portland, OR, USA

Lemma 5.14. Let e be an ¢-heavy edge. Then with probability at
least 1 — #, no triangles are assigned to e.

ProoF. First assume e is not an e-costly edge. Let 7 be some trian-
gle that e participates in. We consider an execution of ASSIGNMENT
on input 7. Clearly, Pr[Y; = 1] = t./d.. By linearity of expectation,
E[Ye] = te . An application of Chernoff bound(Theorem 3.3) yields

Pr[Ye < x/(2¢)] < Pr[Ye < te/2]

1 sde
xp [-— . =€
P\

clogn st
Xp|— 82 . I

IA

IA

<L
<3
where the last inequality uses the fact that e is not e-costly and
hence d, /te < mk/(eT).
Next assume e is an e-costly edge. Since t, > «/¢, it follows

2
that d. > % Then, the if condition on Line 9 is true and hence
Ye = 0. So no triangles that e participates in, will be assigned to
it. O

We now consider item (2) in Definition 5.2. Let 7 be a triangle
such that 7 is neither e-heavy nor e-costly. We prove that, with
high probability, AssIGNED does not return 1 when invoked with
7. By Lemma 5.12, this implies that 7~ > (1 — 3¢)T.

Lemma 5.15. Let 7 be a triangle that is neither 4e-heavy nor 4¢-
costly. Then with probability at least 1 — o(1/n’), ASSIGNED (7) #.L.

ProoF. Since 7 is not 4¢-heavy, for each edge e € 7, t, < x/(4¢).
Since 7 is not 4e-costly, at least one edge is not 4¢-costly — let e
denote that edge. Then, de/t. < mx/(4¢T). Together, they imply
de < mx?/(166%T), and the if condition on Line 8 is not met. We
next show that, with high probability Y, < x/(2¢).

By linearity of expectation, E[Y.] = t.. An application of Cher-
noff bound(Theorem 3.3), similar to the previous lemma, shows
that with probability at least 1 — % Ye < 2t, < k/(2¢). Hence, with
high probability, the triangle 7 is assigned to the edge e, proving
the lemma. O

We now have all the necessary ingredients to complete the proof
of the theorem.

ProoF oF THEOREM 5.13. We have already argued how to en-
sure that ISASSIGNED procedure satisfies item (1) in Definition 5.2.
Lemmas 5.14 and 5.15 proves that ISASSIGNED satisfies item (2) and
item (3) of Definition 5.2. Finally, the space bound in item (4) is
enforced by the setting of the parameter s. O

6 LOWER BOUND

In this section we prove a multi-pass space lower bound for the
triangle counting problem. Our lower bound, stated below, is effec-
tively optimal.

THEOREM 6.1. Any constant pass randomized streaming algorithm
for graphs with m edges, T triangles, and degeneracy at most k, that
provides a constant factor approximation to T with probability at
least 2/3, requires storage Q(mx/T).

Session 9: Query Enumeration and Aggregation

Our proof strategy follows along the expected line of reduction
from a suitable communication complexity problem. We reduce
from the much-studied SET-DISJOINTNESS problem in communica-
tion complexity. It is perhaps a canonical problem that has been
used extensively to prove multi-pass lower bounds for various
problems, including triangle counting [11, 13]. We consider the
following promise version of this problem. Alice and Bob have two
N-bit binary strings x and y respectively, each with exactly R ones.
They want to decide whether there exists an index i € [N] such
that x; = 1 = y;. We denote this as the DISJg problem.

The basis of the reduction is the following lower bound for the
DISJI};’ problem. Assume R(DIS]g) denote the randomized commu-

nication complexity for the DIS]}];[problem. 4

THEOREM 6.2 (BASED ON [40, 49]). For all R < N/2, we have
R(DISJf{) = Q(R).

To prove our lower bound, we reduce the DISJg problem to
the following TRIANGLE-DETECTION problem. Consider two graph
families G1 and Ga; G1 is a collection of triangle-free graphs on n
vertices and m edges with degeneracy «, and G» consists of graphs
on same number of vertices and edges, and with degeneracy (k)
and has at least T many triangles. Given a graph G € G1 U G» as
a streaming input, the goal of the TRIANGLE-DETECTION problem
is to decide whether G € G; or G € G, with probability at least
2/3, making a constant number of passes over the input stream. A
lower bound for the TRIANGLE-DETECTION problem immediately
gives a lower bound for the triangle counting problem.

To set the context for our lower bound result, it is helpful to com-
pare against prior known lower bounds. The multi-pass space com-
plexity of the triangle counting problem is @(min{m3/ 2/T, m/NTY})
[11, 22, 46] for graphs with m edges and T triangles. We first con-
sider the first term m3/2/T. Since k = O(y/m), our result subsume
the bound of ©(m3/2/T). Compared between mx/T and m/VT, the
former is smaller when T > 2. Necessarily, in our lower bound
proofs, we will be dealing with graph instances such that T > 2.

For the purpose of proving a Q(mxk/T) lower bound, it is suf-
ficient to show that the TRIANGLE-DETECTION problem requires
Q(mxk /T) bits of space for some specific choice of parameters. How-
ever, we cover the entire possible range of spectrum. Fix two param-
eters k and r, such that r > 2. Then, we can construct an instance
of the TRIANGLE-DETECTION problem with degeneracy ©(x) and
T = k" such that solving it requires Q(mk/T) bits of space. So in ef-
fect, we prove a more nuanced and arguably more general theorem
than the one give in Theorem 6.1. Formally, we show the following.

THEOREM 6.3. Let k and r be parameters such that r > 2. Then
there is a family of instances with degeneracy O(k) and T = k" such
that solving the TRIANGLE-DETECTION problem requires Q(mxk /T) bits
of space.

Proor. We reduce from the DIS]% /3 problem. Let (x, y) be the
input instance for this problem. We then construct an input G
for the TRIANGLE-DETECTION problem such that if (x, y) is a YES
instance, then G € Gj, and otherwise G € G,. The graph G has a
fixed part and a variable part that depends on x and y. We next
describe the construction of the graph G.

4See [43] for the definition of the notion randomized communication complexity.

465

PODS ’20, June 14-19, 2020, Portland, OR, USA

Let Gfixed = (AU B, Egyeq) be a complete bipartite graph on the
bi-partition A and B. Then, Egyeq = {{a, b} : a € A, b € B}. Further
assume |A| = |B| = p. We add N blocks of vertices to Ggyeq and
denote them as V1, V3, ..., Vy. Assume |V;| = q for each i € [N].
We will set the parameters p and q later in the analysis. For each
index i € [N] such that x; = 1, Alice connects each every vertex in
Vi to each vertex in A. Denote this edge set as E4. For each index
i € [N] such that y; = 1, Bob connects each every vertex in V;
to each vertex in B. Denote this edge set as Eg. This completes
the construction of the graph G. To summarize, G = (V, E) where
V=AUBUViU...VN,and E = Egyeq UE4 U Ep.

It is easy to see that the graph G is triangle-free if and only if
there does not exits any i € [N] such that x; = 1 = y;. We now
analyze various parameters of G. In both YES and NO case for the
DIS_]% /3 problem, we have

n=1|V|=2p+ Ngq

N
m=|El=p*+2- = pq.

In the NO instance, the number of triangles T is at least p?q. As
argued above, in the YES instance, T = 0. Finally, we compute
the degeneracy « in both the cases. Note that k(Ggyeq) = p, and
by definition (see Definition 1.1) k(G) > p. We claim that k = p
in the YES instance and k < 2p in the NO instance. To prove the
claim, we use the following characterization of degeneracy. Let <
be a total ordering of the vertices and let d;; denote the number of
neighbors of v that appears after v according to the ordering <. Let
dmax = MaxXyey dgy. Then, k < d,. Now consider the following
ordering: Vi < V2 < ...VN < A < B, and inside each set the
vertices are ordered arbitrarily. Then, in the YES instance, d 5, < p
and in the NO instance d5,, < 2p, proving our claim.

We now set the parameters p and g as p = k and ¢ = 72,
Then, m = ©(Npq) since p = O(Ngq). Assume there is a con-
stant pass o(mk /T)-space streaming algorithm A for the TRIAGNLE-
DETECTION problem. Then, following standard reduction, A can be
used to solve the DISJ%/S problem with o(Npq - p/p?q) = o(N) bits

of communication, contradicting the lower bound for the DISJ% /3
problem. O

7 FUTURE DIRECTIONS

In this paper, we studied the streaming complexity of the triangle
counting problem in bounded degeneracy graphs. As we empha-
sized in the introduction, low degeneracy is an often observed char-
acteristics of real-world graphs. Designing streaming algorithms
with better bounds on such graphs (compared to the worst case)
is an important research direction. There have been some recent
successes in this context — graph coloring [12], matching size es-
timation [6, 23, 32], independent set size approximation [21]. It
would be interesting to explore what other problems can admit
better streaming algorithms in bounded degeneracy graphs. One
natural candidate is the arbitrary fixed size subgraph counting prob-
lem, which asks for the number of occurrences of the subgraph in
the given input graph.

Session 9: Query Enumeration and Aggregation

Do there exist streaming algorithms for approximate subgraph
counting on low degeneracy graphs that can beat known worst-case
lower bounds?

We conclude this exposition with the following conjecture about
the fixed size clique-counting problem.

Conjecture 7.1. Consider a graph G with degeneracy k that has T
many {-cliques. There exists a constant pass streaming algorithm that
outputs a (1 + £)-approximation to T using O(mit=2T) bits of space.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their
valuable feedback. The authors are supported by NSF TRIPODS
grant CCF-1740850, NSF CCF-1813165, CCF-1909790, and ARO
Award W911NF1910294.

REFERENCES

(1]

[2

=

(3]

[4

=

=

[12]

(13

[14]

[15]

(17

[18

[19

[20]

[21]

[n.d.]. Graph Degeneracy. https://en.wikipedia.org/wiki/Degeneracy_(graph_
theory).

N. Alon, R. Yuster, and U. Zwick. 1997. Finding and counting given length cycles.
Algorithmica 17, 3 (1997), 209-223.

Gerold Alsmeyer. 2011. Chebyshev’s Inequality. Springer Berlin Heidelberg,
Berlin, Heidelberg, 239-240.

S. Arifuzzaman, M. Khan, and M. Marathe. 2013. Patric: A parallel algorithm
for counting triangles in massive networks. In Proceedings of the International
Conference on Information and Knowledge Management (CIKM). 529-538.
Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. 2018. A Simple Sublinear-
Time Algorithm for Counting Arbitrary Subgraphs via Edge Sampling. In Proc.
10th Conference on Innovations in Theoretical Computer Science.

Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2017. On estimating maximum
matching size in graph streams. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1723-1742.

Albert Atserias, Martin Grohe, and Daniel Marx. 2008. Size bounds and query
plans for relational joins. In 2008 49th Annual IEEE Symposium on Foundations of
Computer Science. IEEE, 739-748.

H. Avron. 2010. Counting triangles in large graphs using randomized matrix trace
estimation. In Workshop on Large-scale Data Mining: Theory and Applications
(LDMTA), Vol. 10. 10-9.

Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. 2002. Reductions in Streaming
Algorithms, with an Application to Counting Triangles in Graphs. In Proc. 13th
Annual ACM-SIAM Symposium on Discrete Algorithms. 623-632.

Suman Bera, Noujan Pashanasangi, and C. Seshadhri. 2020. Linear Time Sub-
graph Counting, Graph Degeneracy, and the Chasm at Size Six. In Conference on
Innovations in Theoretical Computer Science Proc. 11th.

Suman K. Bera and Amit Chakrabarti. 2017. Towards Tighter Space Bounds for
Counting Triangles and Other Substructures in Graph Streams. In 34th Symposium
on Theoretical Aspects of Computer Science (STACS 2017), Vol. 66. 11:1-11:14.
Suman K Bera, Amit Chakrabarti, and Prantar Ghosh. 2019. Graph Coloring via
Degeneracy in Streaming and Other Space-Conscious Models. arXiv preprint
arXiv:1905.00566 (2019).

Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. 2013. How Hard Is
Counting Triangles in the Streaming Model?. In Proc. 40th International Collo-
quium on Automata, Languages and Programming. 244-254.

Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-
Spaccamela, and Christian Sohler. 2006. Counting Triangles in Data Streams. In
Proc. 25th ACM Symposium on Principles of Database Systems. 253-262.

Amit Chakrabarti. [n.d.]. CS49: Data Stream Algorithms Lecture Notes, Fall 2011.
http://www.cs.dartmouth.edu/~ac/Teach/data- streams-lecnotes.pdf

MT Chao. 1982. A general purpose unequal probability sampling plan. Biometrika
69, 3 (1982), 653-656.

H. Chernoff. 1952. A Measure of Asymptotic Efficiency for Tests of a Hypothesis
Based on the sum of Observations. Annals of Mathematical Statistics 23, 4 (1952),
493-507.

N. Chiba and T. Nishizeki. 1985. Arboricity and subgraph listing algorithms.
SIAM J. Comput. 14, 1 (1985), 210-223.

Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing
Algorithms. SIAM J. Comput. 14, 1 (1985), 210-223.

S. Chu and J. Cheng. 2011. Triangle listing in massive networks and its applica-
tions. In Proceedings of the International Conference on Knowledge Discovery and
Data Mining (SIGKDD). 672-680.

Graham Cormode, Jacques Dark, and Christian Konrad. 2017. Independent set
size approximation in graph streams. arXiv preprint arXiv:1702.08299 (2017).

466

[22

[23

[24

[25

[26

[27

@
=

'w
&,

‘%
3

@
2

®
=

'w
&

[39

[40

(41

[42]

[43

'S
&

[45

[46

[47

[48]

PODS ’20, June 14-19, 2020, Portland, OR, USA

Graham Cormode and Hossein Jowhari. 2014. A second look at counting triangles
in graph streams. Theoretical Computer Science 552 (2014), 44-51.

Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and Shanmugave-
layutham Muthukrishnan. 2017. The sparse awakens: Streaming algorithms
for matching size estimation in sparse graphs. In 25th European Symposium on
Algorithms, ESA 2017. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH,
Dagstuhl Publishing, 29.

M. Danisch, O. D. Balalau, and M. Sozio. 2018. Listing k-cliques in Sparse Real-
World Graphs. In Conference on the World Wide Web (WWW). 589-598.

Nurcan Durak, Ali Pinar, Tamara G Kolda, and C Seshadhri. 2012. Degree relations
of triangles in real-world networks and graph models. In Proceedings of the 21st
ACM international conference on Information and knowledge management. ACM,
1712-1716.

T.Eden, A. Levi, D. Ron, and C Seshadhri. 2015. Approximately counting triangles
in sublinear time. In Foundations of Computer Science (FOCS). 614-633.

Talya Eden, Dana Ron, and C Seshadhri. 2017. Sublinear Time Estimation of
Degree Distribution Moments: The Degeneracy Connection. In 44th International
Colloquium on Automata, Languages, and Programming (ICALP 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

T. Eden, D. Ron, and C. Seshadhri. 2018. Faster sublinear approximations of
k-cliques for low arboricity graphs. arXiv:cs.DS/1811.04425

T. Eden, D. Ron, and C. Seshadhri. 2018. On approximating the number of k-
cliques in sublinear time. In Symposium on Theory of Computing (STOC). 722-734.
T. Eden, D. Ron, and C. Seshadhri. 2020. Faster sublinear approximation of
the number of k-cliques in low-arboricity graphs. In Symposium on Discrete
Algorithms (SODA).

David Eppstein. 1994. Arboricity and bipartite subgraph listing algorithms.
Information processing letters 51, 4 (1994), 207-211.

Hossein Esfandiari, Mohammadtaghi Hajiaghayi, Vahid Liaghat, Morteza Mon-
emizadeh, and Krzysztof Onak. 2018. Streaming algorithms for estimating the
matching size in planar graphs and beyond. ACM Transactions on Algorithms
(TALG) 14, 4 (2018), 48.

L. Finocchi, M. Finocchi, and E. G. Fusco. 2015. Clique Counting in MapReduce:
Algorithms and Experiments. ACM Journal of Experimental Algorithmics 20
(2015), 1-7. https://doi.org/10.1145/2794080

David Garcia-Soriano and Konstantin Kutzkov. 2014. Triangle counting in
streamed graphs via small vertex covers. Tc 2 (2014), 3.

G. Goel and J. Gustedt. 2006. Bounded arboricity to determine the local struc-
ture of sparse graphs. In International Workshop on Graph-Theoretic Concepts in
Computer Science. Springer, 159-167.

S.Jain and C. Seshadhri. 2017. A Fast and Provable Method for Estimating Clique
Counts Using Turan’s Theorem. In Conference on the World Wide Web (WWW).
441-449.

Madhav Jha, C Seshadhri, and Ali Pinar. 2013. A space efficient streaming
algorithm for triangle counting using the birthday paradox. In Proc. 19th Annual
SIGKDD International Conference on Knowledge Discovery and Data Mining. 589
597.

Hossein Jowhari and Mohammad Ghodsi. 2005. New streaming algorithms for
counting triangles in graphs. In Computing and Combinatorics. Springer, 710-716.
John Kallaugher and Eric Price. 2017. A hybrid sampling scheme for triangle
counting. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms. Society for Industrial and Applied Mathematics, 1778-1797.
B. Kalyanasundaram and G. Schintger. 1992. The probabilistic communication
complexity of set intersection. SIAM Journal on Discrete Mathematics 5, 4 (1992),
545-557.

Daniel M Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. 2012. Counting
arbitrary subgraphs in data streams. In Proc. 39th International Colloquium on
Automata, Languages and Programming. 598-609.

M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis. 2012. Efficient
triangle counting in large graphs via degree-based vertex partitioning. Internet
Mathematics 8, 1-2 (2012), 161-185.

Eyal Kushilevitz. 1997. Communication complexity. In Advances in Computers.
Vol. 44. 331-360.

Konstantin Kutzkov and Rasmus Pagh. 2014. Triangle counting in dynamic graph
streams. In Proc. 14th Scandinavian Symposium and Workshops on Algorithm
Theory. 306-318.

Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and He Sun.
2011. Approximate Counting of Cycles in Streams. In Proc. 19th Annual European
Symposium on Algorithms. 677-688.

Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. 2016. Better Algorithms
for Counting Triangles in Data Streams. In Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. 401-411.

Rasmus Pagh and Charalampos E. Tsourakakis. 2012. Colorful triangle counting
and a mapreduce implementation. Inform. Process. Lett. 112, 7 (2012), 277-281.
Aduri Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. 2013.
Counting and sampling triangles from a graph stream. Proceedings of the VLDB
Endowment 6, 14 (2013), 1870-1881.

Session 9: Query Enumeration and Aggregation

[49]

[50

[51]

[52]

[53

[54]

A. A.Razborov. 1992. On the distributional complexity of disjointness. Theoretical
Computer Science 106, 2 (1992), 385-390.

Alessandra Sala, Lili Cao, Christo Wilson, Robert Zablit, Haitao Zheng, and
Ben Y Zhao. 2010. Measurement-calibrated graph models for social network
experiments. In Proceedings of the 19th international conference on World wide
web. ACM, 861-870.

T. Schank and D. Wagner. 2005. Approximating Clustering Coefficient and

Transitivity. Journal of Graph Algorithms and Applications 9 (2005), 265-275.

Issue 2.

T. Schank and D. Wagner. 2005. Finding, Counting and Listing All Triangles in
Large Graphs, an Experimental Study. In Experimental and Efficient Algorithms.
606-609.

Comandur Seshadhri, Tamara G Kolda, and Ali Pinar. 2012. Community structure
and scale-free collections of Erdés-Rényi graphs. Physical Review E 85, 5 (2012),
056109.

C. Seshadhri, A. Pinar, and T. G. Kolda. 2013. Fast Triangle Counting through
Wedge Sampling. arXiv:1202.5230. In Proceedings of the International Conference
on Data Mining (ICDM), Vol. 4. 5. http://arxiv.org/abs/1202.5230

467

[55

[56

[58

[59

[60

[61

]

]

]

PODS ’20, June 14-19, 2020, Portland, OR, USA

K. Shin, T. Eliassi-Rad, and C. Faloutsos. 2018. Patterns and anomalies in k-cores
of real-world graphs with applications. Knowledge and Information Systems 54, 3
(2018), 677-710.

S. Suri and S. Vassilvitskii. 2011. Counting triangles and the curse of the last
reducer. In Proceedings of the International Conference on World Wide Web (WWW).
607-614. https://doi.org/10.1145/1963405.1963491

K. Tangwongsan, A. Pavan, and S. Tirthapura. 2013. Parallel Triangle Counting
in Massive Streaming Graphs. In Proceedings of the International Conference on
Information and Knowledge Management (CIKM). ACM, 781-786.

C. E. Tsourakakis. 2008. Fast counting of triangles in large real networks with-
out counting: Algorithms and laws. In International Conference on Data Mining
(ICDM). 608-617.

C. E. Tsourakakis, U. Kang, G.L. Miller, and C. Faloutsos. 2009. Doulion: count-
ing triangles in massive graphs with a coin. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining (SIGKDD). 837-846.

C. E. Tsourakakis, M. N. Kolountzakis, and G. L. Miller. 2011. Triangle Sparsifiers.
Journal of Graph Algorithms and Applications 15, 6 (2011), 703-726.

Duncan] Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440.

	Abstract
	1 Introduction
	1.1 Our results and significance
	1.2 Main ideas

	2 Related Work
	3 Notations and Preliminaries
	4 Warm-up: An abstract model
	5 Our Main Algorithm
	5.1 Assigning triangles to edges

	6 Lower Bound
	7 Future Directions
	Acknowledgments
	References

