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ABSTRACT

Clique and near-clique counts are important graph properties with
applications in graph generation, graph modeling, graph analytics,
community detection among others. They are the archetypal
examples of dense subgraphs. While there are several different
definitions of near-cliques, most of them share the attribute that
they are cliques that are missing a small number of edges. Clique
counting is itself considered a challenging problem. Counting
near-cliques is significantly harder more so since the search space
for near-cliques is orders of magnitude larger than that of cliques.

We give a formulation of a near-clique as a clique that is missing
a constant number of edges. We exploit the fact that a near-clique
contains a smaller clique, and use techniques for clique sampling
to count near-cliques. This method allows us to count near-cliques
with 1 or 2 missing edges, in graphs with tens of millions of edges.
To the best of our knowledge, there was no known efficient method
for this problem, and we obtain a 10x − 100x speedup over existing
algorithms for counting near-cliques.

Our main technique is a space efficient adaptation of the
Turán Shadow sampling approach, recently introduced by Jain
and Seshadhri (WWW 2017). This approach constructs a large
recursion tree (called the Turán Shadow) that represents cliques
in a graph. We design a novel algorithm that builds an estimator
for near-cliques, using a online, compact construction of the Turán
Shadow.
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1 INTRODUCTION

Subgraph counting is an important tool in graph analysis that goes
by many names such as motif counting, graphlet analysis, and
pattern counting. The aim is to count the number of occurrences
of a (generally small) subgraph in a much larger graph. Among
these subgraphs, cliques are arguably the most important. Even
the simplest clique, the triangle, has a rich history of algorithms
and applications. There has been much recent focus on counting
cliques in large graphs [5, 11, 14, 16, 19, 42].

While clique counts are important, the requirement that every
edge in the clique be present is excessively rigid. Data is often noisy
or incomplete, and it is likely that cliques that are missing even
an edge or two are significant. Hence, it is important to also look
at counts of patterns that are extremely close to being cliques. We
will call these structures near-cliques but they are also known as
quasi-cliques [23, 27] and defective cliques [46] and have several
applications ranging from clustering to prediction. Recent work on
has used the fraction of near-cliques to k-cliques to define higher
order variants of clustering coefficients [45].

In the bioinformatics literature, near-cliques (or defective cliques,
as they are known) have been used to predict missed protein-protein
interactions in noisy PPI networks [46] and have been shown to
have good predictive performance. An alternative viewpoint of
looking at near-cliques views them as dense subgraphs. Mining
dense subgraphs is an important problem with many applications
in Network Analysis. [2, 8, 15, 22, 31]

Counting cliques is already challenging, and counting
near-cliques introduces more challenges. Most importantly,
near-cliques do not enjoy the recursive structural property of
cliques - that a subset of a clique is also a clique. This rules out most
recursive backtracking algorithms for clique counting. Moreover,
empirical evidence suggests that the number of near-cliques in
real world datasets is order of magnitudes higher than that of
cliques, making the task of counting them equally difficult if not
more. Fig. 1i shows the ratio of 3 different types of near-cliques
to the number of k-cliques for k = 5 for 4 real world graphs. The
number of near-cliques is often ten times higher than the number
of k-cliques.

There are several different ways of defining near-cliques. [38]
define α-quasi-cliques as cliques that are missing a α fraction of the
edges. Other formulations define them in terms of graph properties
like degree of every vertex in the near-clique or diameter of the
near-clique. A set S of size n is called a k−plex if every member of
the set is connected to n − k others. A k-club is a subset S of nodes
such that in the subgraph induced by S , the diameter is k or less. All
these formulations have the common property that they represent
a clique that is missing a few edges. We formulate near-cliques in

1966



WWW ’20, April 20ś24, 2020, Taipei, Taiwan Shweta Jain and C. Seshadhri

a slightly different way, as cliques that are missing 1 or 2 edges.
The advantage of defining them this way is that they allow us to
leverage the machinery of clique counting. Every such near-clique
has a smaller clique contained in it. By sampling the smaller cliques
and using them as hints to find near-cliques, we give an estimate
for the total number of near-cliques. In ğ6.1 we show an interesting
application of such near-cliques where we run our algorithm on a
citation network to discover papers that perhaps should have cited
other papers but did not.

1.1 Problem description

A k-clique is a set of k vertices such that there is an edge between
all pairs of vertices belonging to the set. We define (k, 1)-clique
and (k, 2)-clique below. For the rest of this paper, whenever we say
near-cliques, we will imply the following 3 kinds of near-cliques
(unless mentioned otherwise)

Definition 1.1. A (k, 1)-clique is a k-clique with exactly 1 edge
missing.

For (k, 2)-cliques, there are 2 configurations possible - one in
which the missing edges share a vertex, and one in which they
don’t.

Definition 1.2. A Type 1 (k, 2)-clique is a k-clique with exactly 2
edges missing such that the missing edges share a vertex.

Definition 1.3. A Type 2 (k, 2)-clique is a k-clique with exactly 2
edges missing such that the missing edges do not share a vertex.

The different types of near-cliques are shown in Fig. 2. We want
to estimate the number of (k, 1)-cliques and (k, 2)-cliques in G.
Note that all our near-cliques are induced and obtaining counts
of non-induced near-cliques is simply a matter of taking a linear
combination of the number of k-cliques and near-cliques. For the
sake of brevity, we skip a detailed discussion.

We stress that we make no distributional assumption on the
graph. All probabilities are over the internal randomness of the
algorithm itself (which is independent of the instance).

1.2 Our contributions

We provide a randomized algorithm based on TuránShadow
called PEANUTS which estimates the counts of (k, 1)-cliques and
(k, 2)-cliques. In addition, we also provide a heuristic algorithm
called Inverse-TS based on PEANUTS which takes roughly the
same time as PEANUTS (and in some cases, upto 10x less time)
but drastically reduces the space required. Our implementation of
Inverse-TS on a commodity machine showed significant savings
in terms of time in obtaining counts of near-cliques over other
methods like color-coding and brute force counting and showed
consistently low error over 100s of runs of the algorithm.

Leveraging cliques for near-cliques: Data being noisy,
cliques are brittle and as a result, number of near-cliques is
often very large. However, it is not at all clear how one can
count their number without looking at every set of k−vertices,
which is computationally very expensive. PEANUTS uses the
fact that near-cliques themselves contain cliques, and leverages
TuránShadow to count near-cliques. There exist algorithms
for generic pattern counting which can be used for counting

near-cliques but there is no known algorithm dedicated to finding
near-cliques that exlploits the clique-like structure of near-cliques
to give a faster estimate.

Extremely fast: PEANUTS is based on the observation that
every near-clique contains a smaller clique. Thus, we can use cliques
as clues for finding near-cliques. We leverage a fast clique-counting
algorithm (TuránShadow) to achieve fast and accurate near-clique
counting. Fig. 1ii shows the time taken by Inverse-TS, color-coding
(cc) and brute force (bf) to count the number of (7, 1)-cliques for
a variety of graphs. Inverse-TS is able to estimate their number to
within 2% error in a graph (com-lj) with 4 million vertices and 34
million edges in 452 seconds which is at least 100 times faster than
cc and bf. As we will show later, similar performance is found in
the estimation of other near-cliques and on other graphs.

Extremely accurate: Similar to TuránShadow, Inverse-TS uses
the seminal result from extremal combinatorics, called Turán’s
theorem which allows for efficiently sampling cliques, which
translates to fast and accurate estimation of the number of
near-cliques. Fig. 1iii shows the error in the estimate obtained
for number of Type 2 (5, 2)−cliques (a specific configuration of
(5, 2)−cliques) in a variety of graphs using Inverse-TS. As we can
see, all the errors were within 2%. Moreover, unlike color-coding,
Inverse-TS allows us to control the number of samples we take, and
even using 500K samples, Inverse-TS was more accurate and took
less time than color-coding (6).

For many of the graphs we experimented with, the brute force
algorithm had not terminated within 1 day and thus was unable to
give us ground truth values, but in the cases where the algorithm did
terminate, we saw that Inverse-TS gave < 5% error and mostly < 2%.
For the cases where the brute force algorithm did not terminate, we
looked at the output of 100 runs of our algorithm. In all cases, the
algorithm showed very good convergence properties (more details
in ğ6).

Excellent space efficiency: TuránShadow requires that the
entire shadow be generated and stored, which for a graph with
100s of millions of edges can potentially require large amount of
memory. Our practical implementation of Inverse-TS addresses
this by removing the separation in the Shadow construction and
sampling phases and instead, performs sampling while the shadow
is being constructed in an online fashion. This eliminates the need
for storing the entire Shadow and consequently gives savings of
orders of magnitude in space required. The purple bars in Fig. 1iv
show the factor savings in the maximum shadow size required to
be stored at any point (instantaneous shadow size or inst SS) for
Inverse-TS vs the space required by TuránShadow. There is atleast
100x savings in space using Inverse-TS.

Comparison with other algorithms: We do a thorough
analysis of Inverse-TS by deploying it on a number of real-world
graphs of varying sizes. In most cases we observed that Inverse-TS
was considerably fast while showing consistently low error over
100s of runs of the algorithm. We also do a thorough comparison
of Inverse-TS with other generic pattern-counting algorithms
like color-coding. Fig. 1ii shows the time required for counting
(7, 1)-cliques by the different methods. Across all of our experiments
we observe that Inverse-TS was at least 10 times faster on most
graphs as compared to other algorithms.
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More importantly though, for any h, TuránShadow provides
an efficient way of sampling a u.a.r. h-clique from G. Let Ch be
the set of all h-cliques in G and let f : Ch → R

+ be a bounded
function over all h-cliques, then we can obtain an unbiased estimate
for F =

∑

K ∈Ch

f (K) by obtaining the average of f over a set of

uniformly sampled h-cliques and scaling by the total number of
h-cliques. In other words, we can use this clique sampler to obtain
an unbiased estimate of the sum (and mean value) of any bounded
function over h-cliques. We exploit this fact to obtain an estimate
of the number of near-cliques.

To estimate the number of (k, 1)-cliques, we make the following
observation: Every (k, 1)-clique has exactly two k − 1-cliques
embedded in it. Let Ck−1 be the set of (k, 1)-cliques in G and Ck−1
be the set of k − 1-cliques inG , and ∀K ∈ Ck−1, let f (K) = number
of (k, 1)-cliques that clique K is contained in, then

∑

K ∈Ck−1

f (K) =

2|Ck−1 |. However, since every (k, 1)-clique is counted twice, the
variance of the estimator can be pretty large. We observe that if
the missing edge in a (k, 1)-clique is (u,v),u < v , exactly one of
the k − 1-cliques contains u and the other contains v . In order to
reduce the variance, we define f (K) = number of (k, 1)-cliques
that clique K is contained in, such that u ∈ K i.e. we break ties
based on the direction of the missing edge. With this formulation,

∑

K ∈Ck−1

f (K) = |Ck−1 |.

For (k, 2)-cliques, there are 2 possible configurations, as shown
in Fig. 2. Type 1 consists of exactly one k − 1-clique embedded in it.
Hence, we set f (K) = number of Type 1 (k, 2)-cliques that a given
k − 1-clique K is contained in. Type 2 (k, 2)-cliques are a bit more
complicated. A Type 2 (k, 2)-clique has exactly four k − 2-cliques
embedded in it. If the edges (u,v) and (w,x) are missing, then there
is an induced cycle involving u,v,w and x and every edge of this
cycle gives a different k−2-clique of the four k−2-cliques embedded
in the (k, 2)-clique. Letmin(u,v,w,x) = u and letmin(w,x) = w .
Then, for k − 2-clique K , we set f (K) = number of (k, 2)-cliques
such that u,w ∈ K .

As long as f is bounded and is a łwell behaved function” i.e.
has low variance, we can efficiently estimate F using TuránShadow
as a black box. Improving the running time of the black box only
improves the running time of the overall algorithm. We observe
that in TuránShadow, most of the time is spent in constructing the
Shadow, but only a small fraction of it is used to gather samples.
Thus, if we can first sample and determine which areas of the
Shadow the samples lie in, we can save time by developing only
those parts of the Shadow instead of developing the whole Shadow.
Additionally, when the number of samples are fixed (as is the case in
the practical implementation of our algorithm), we can interleave
the development of the parts of the Shadow with sampling for
h-cliques from those parts, thus obtaining our estimate of F in an
online fashion. This leads to considerable savings in space and time.

Outline: In ğ3 we set some basic notation. In ğ4 we show our
basic framework PEANUTS and an optimized version of it called
Inverse-TS. Depending on which type of pattern we want to count,
we propose and analyze different counters in ğ5. Finally, in ğ6
we provide a detailed experimental study of Inverse-TS and its
comparison with the state-of-the-art.

3 PRELIMINARIES

We set some notation. The input graph G has n vertices and m

edges. We will assume thatm ≥ n. Let α be the degeneracy of the
graph. Recall that the degeneracy is the maximum outdegree of any
vertex when the edges of the graph are oriented according to the
degeneracy ordering of the vertices in G. Let Nv (G) represent the
neighborhood of v and let N+v (G) represent the outneighborhood
of v when the vertices are ordered by degeneracy.

We use łu.a.r." as a shorthand for łuniform at random".
We will be using the following (rescaled) Chernoff bound.

Theorem 3.1. [Theorem 1 in [12]] Let X1,X2, . . . ,Xk be a

sequence of iid random variables with expectation µ. Furthermore,

let Xi ∈ [0,B]. Then, for ε < 1, Pr[|
∑k
i=1 Xi − µk | ≥ εµk] ≤

2 exp(−ε2µk/3B).

4 MAIN ALGORITHM

At the core of TuránShadow lies an object called the shadow. We
define an analogous structure called Prefixed-Shadow.

Definition 4.1. Let Ck (G) be the set of all k−cliques in G.
A k-clique Prefixed-Shadow S for graph G is a set of triples
{(Pi , Si , ℓi )} where Pi ⊆ V , Si ⊆ V and ℓi ∈ N such that
∀(Pi , Si , ℓi ) ∈ S,∀c ∈ Cℓi (Si ), Pi ∪ c is a unique k-clique in G and
there is a bijection between Ck (G) and

⋃

(Pi ,Si , ℓi )∈S

⋃

c ∈Cℓi
(Si )

Pi ∪ c .

Moreover, if the multiset {(Si , ℓi )} is such that ∀(Si , ℓi ), ρ2(Si ) >
1 − 1/(ℓi − 1) where ρ2(Si ) represents the edge density of Si , then
S is a k-clique Prefixed-Turán-Shadow of G.

It is easy to see that {(v,N+v ,h − 1)} is an h-clique
Prefixed-Shadow of G.

We will briefly recap how TuránShadow constructs the shadow.
It orders the vertices ofG by degeneracy and converts it into a DAG.
As shown in [14], to count k-cliques in G it suffices to count the
number of k − 1-cliques in the outneighborhood of every vertex.
Hence, for every vertex v ∈ V , TuránShadow counts the number
of k-cliques with v as the lowest order vertex by looking at the
number of k − 1-cliques in the outneighborhood of v , and it applies
this procedure recursively. When the outneighborhood becomes
dense enough, instead of continuing to expand the partial clique, it
adds the outneighborhood to the shadow and continues until there
are no more outneighborhoods left to be added to the shadow.

Algorithm PrefixedTuránShadowFinder carries out exactly the
same steps as Shadow-Finder in [19], except that at each stage it
also maintains the partial clique P .

Claim 4.2. Given a graph G and integer k ,

PrefixedTuránShadowFinder returns a k-clique

Prefixed-Turán-Shadow of G. Its running time is O(|V |k+1).

Proof. When the function returns,T is empty, and any element
(P , S, ℓ) ∈ S was added to S only when ρ2(S) > 1 − 1/(ℓ − 1). Thus,
if S is a Prefixed-Shadow, it is also a Prefixed-Turán-Shadow.

By Theorem 5.2 in [19], multiset {(S, ℓ)} is a shadow and hence,
there is a bijection between Ck (G) and

⋃

(P,S, ℓ)∈S Cℓ(S). Thus, it
suffices to prove that ∀(P , S, ℓ) ∈ T ∪S,∀c ∈ Cℓ(S), P ∪c is a unique
k-clique in G. We will prove this using induction. At the start of
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Algorithm 1: PrefixedTuránShadowFinder(G,k)

1 InitializeT = {(∅,V ,k)} and S = ∅

2 While ∃(P , S, ℓ) ∈ T such that ρ2(S) ≤ 1 − 1
ℓ−1

3 Construct the degeneracy DAG D(G |S )

4 Let N+s denote the outneighborhood (within D(G |S )) of
s ∈ S

5 Delete (P , S, ℓ) fromT

6 For each s ∈ S

7 If ℓ ≤ 2 or ρ2(N
+

s ) > 1 − 1
ℓ−2

8 Add (P ∪ {s},N+s , ℓ − 1) to S

9 Else, add (P ∪ {s},N+s , ℓ − 1) toT

10 Output S

the first iteration, P is empty, S = V and ℓ = k , S = {(P , S, ℓ)} and
T is empty. Thus, for the base case, the hypothesis is trivially true.

Suppose the hypothesis is true at the start of some iteration
and lets say element E = (P ′, S ′, ℓ′) is deleted from T at the start
of this iteration. Each Es = (P ′ ∪ {s},N+s , ℓ

′ − 1) for s ∈ S ′ is
added to S or toT . Let K(E) = {P ′ ∪ c |c ∈ Cℓ′(S

′)} denote the set
of k-cliques obtained from E. It suffices to prove that: (i) for any
k−clique K ∈ K(E),K ∈

⋃

s K(Es ), (ii) |K | =
∑

s |K(Es )|.
Consider a k-clique K = P ′ ∪ c, c ∈ Cℓ′(S

′). Let s be the lowest
order vertex in c according to the degeneracy ordering inG |S ′ . Then,
c \ {s} is an ℓ − 1-clique in N+s . Thus, K ∈ K(Es ). Additionally, for
c ∈ Cℓ′(S

′) the smallest vertex in c defines a partition over Cℓ′(S
′).

Hence, |Cℓ′(S
′)| =

∑

s ∈S ′ |Cℓ′−1(N
+

s )| i.e. |K(E)| =
∑

s ∈S ′ |K(Es )|.
Hence, proved.

The out-degree of every vertex is at most |V | and the depth of
the recursive calls is atmost k − 1. When processing an element
(P , S, ℓ) it constructs the graph G |S which takes time atmost |V |2

since it queries every pair of vertices in S and |S | < |V |. Thus, the

time required is O(|V |k+1). □

Algorithm 2: Sample(S)
Inputs: S: k−clique Prefixed-Turán-Shadow of some graph
G

Output: B: k−vertex set

1 Letw(S) =
∑

(P ′,S ′, ℓ′)∈S

( |S ′ |
ℓ′

)

2 Set probability distribution D over S such that (P , S, ℓ) ∈ S is

sampled with probability
( |S |
ℓ

)

/w(S)

3 Sample a (P , S, ℓ) from D

4 Choose a u.a.r. ℓ−tuple c from S

5 Let B = P ∪ {c}

6 return B

Claim 4.3. The probability of any k-clique K in G being returned

by a call to Sample is 1
w (S )

.

Proof. Let E = (P , S, ℓ) ∈ S where S is the k-clique
Prefixed-Shadow of some graph G. Note that w(S) =

∑

(P ′,S ′, ℓ′)∈S

( |S ′ |
ℓ′

)

. Let c be an ℓ−clique in S and let K = P ∪ c then K

must be a unique k−clique in G.
Pr (K is sampled) = Pr (E is sampled from D) ∗

Pr (c is sampled from S) =
(|S |
ℓ
)

w (S )
∗ 1

(|S |
ℓ
)
=

1
w (S )

. Thus, every

k−clique in G has the same probability of being returned by
Sample. □

We will first describe PEANUTS. Essentially, it constructs the
Prefixed-Turán-Shadow of G, samples h-cliques, obtains f for the
sampled h-clique and estimates the value of F .

Algorithm 3: PEANUTS(G,h, s, Func)
Inputs:G: input graph,h: clique size // = k for cliques, k−1
for (k, 1)-clique and Type 1 (k, 2)-clique, k − 2 for Type 2
(k, 2)-clique
s : budget for samples, Func : Function that returns f (K) for
h-clique K .

Output: F̂ : estimated F

1 S = PrefixedTurnShadowFinder(G, h)

2 Letw(S) =
∑

(P,S, ℓ)∈S

( |S |
ℓ

)

3 For i = 1, 2, ..., s:

4 K = Sample(S)

5 If K is a clique, set Xi = Func(G,K)

6 else set Xi = 0

7 W =W + Xi

8 let F̂ = W
s w(S)

9 return F̂

Theorem 4.4. Let f be a function overh-cliques, bounded above by

B such that given an h-clique, it takes O(Tf ) time to obtain the value

of f . Let F̂ be the output of PEANUTS, then E[F̂ ] = F . Moreover, given

any ε > 0,δ > 0 and number of samples s = 3w(S)B ln (2/δ )/ε2F ,

then with probability at least 1 − δ (this probability is over the

randomness of PEANUTS; there is no stochastic assumption on G),

|F̂ − F | ≤ εF .

Let S denote the h-clique Turán shadow of G and size(S) =
∑

(S, ℓ)∈S |S |. The running time of PEANUTS is O(αsize(S) + sTf +

m + n) and the total storage is O(size(S) +m + n).

Proof. TheXi are all iid random variables and by the arguments
in Claim 4.3, every h-clique in G has the same probability of being

returned by Sample. E[Xi ] =
∑

K ∈Ck (G)

f (K )

w (S )
=

F
w (S )

. Suppose Xi ∈

[0,B]. By Theorem 3.1, Pr [|
∑s
i=1 Xi − sE[Xi ]| ≥ εsE[Xi ] ≤ δ when

s = 3w(S)B ln (2/δ )/ε2F .
The running time and storage required are a direct consequence

of the running time and storage required for TuránShadow
(Theorem 5.4 in [19]. The only difference is the addition of sTf
in the running time which is the time required to obtain f for s
samples.

□

1970



WWW ’20, April 20ś24, 2020, Taipei, Taiwan Shweta Jain and C. Seshadhri

4.1 Inverse-TS

We observed that with TuránShadow, bulk of the time is spent in
building the tree, and only a small fraction is needed for sampling.
To give a few examples, for the web-Stanford graph, construction of
the shadow took 155 seconds for approximating number of 7 cliques,
while taking 50K samples required 0.2 seconds. Similar results
were observed for all other graphs we experimented with. Thus,
naturally, to optimize the performance of TuránShadow it would be
beneficial to minimize the fraction of the shadow that is required to
be built. Consider one extreme of minimizing building the shadow
- we will call it level 1 sampling. Let N+v be the outneighborhood

of v in DG, Φv =
( |N +v |

h−1

)

and Φ =
∑

v
Φv . {(v,N

+

v ,h − 1)} is an

h-clique Prefixed-Shadow of G. If we sample a v with probability
proportional to Φv , and sample h − 1-tuple of vertices from N+v
u.a.r., the probability of sampling a particular h − 1-clique in N+v
would be Φv/Φ ∗ 1/Φv = 1/Φ. If there are Ch h-cliques in G then
the probability that a sampled set of h−vertices is a clique is Ch/Φ
(we call this the success ratio). Hence, number of samples required
to find a h-clique would be O(Φ/Ch ). But Φ is typically very large
compared to Ch and hence the number of samples required would
be very large. In other words, most of the h−vertex sets picked will
not be cliques.

TuránShadow remedies this by first finding the Turán shadow
and then sampling within the subgraphs of the shadow which are
dense and hence require lesser samples to find a k-clique. Thus,
TuránShadow saves on the number of samples required at the cost
of building the shadow.

The advantage of level 1 sampling is that we do not need to
spend time finding the Turán Shadow. We mimic the process
of sampling an h-clique from this Prefixed-Shadow, but boost
the success ratio by using the latter approach. In particular, we

sample a v proportional to Φv =
( |N +v |

h−1

)

, and obtain the h −

1-clique Prefixed-Turán-Shadow S of N+v . Suppose the shadow size

ϕv =
∑

(P,S, ℓ)∈S

(S
ℓ

)

then probability of sampling a h − 1-clique =
Ch−1(G |N +v )/ϕv . Thus, the success ratio goes fromCh−1(G |N +v )/Φv
toCh−1(G |N +v )/ϕv . Since ϕv is typically much smaller than Φv , the
success ratio is much improved. However, to account for the fact
that we are now sampling u.a.r. in a search space of size ϕv and
not Φv , we give a smaller weight (ϕv/Φv ) to every clique obtained
from N+v .

For an element E = (P , S, ℓ) ∈ S where S is the k−clique
Prefixed-Turán-Shadow of a graphG , letK(E) = {P ∪ c, c ∈ Cℓ(S)}

denote the set of k-cliques obtained from E.

Lemma 4.5. Let F̂ be the value returned by Inverse-TS. Then E[F̂ ] =

F .

Proof. Consider an h-clique K ∈ Ch (G) and let v be the lowest
order vertex according to degenerecy ordering of vertices in G . Let
E = (v,N+v ,h − 1) then, K ∈ K(E).

Let Sv be theh−1-clique Prefixed-Turán-Shadow ofG |N +v and let
Ev = (P , S, ℓ) be the element in Sv such thatK = v∪P∪c, c ∈ Cℓ(S).

Pr (K is sampled in Step 11) = Pr (E is sampled) ∗

Pr (Ev is sampled) ∗ Pr (c is sampled) = Φv
Φ

∗
(|S |
ℓ
)

ϕv
∗ 1

(|S |
ℓ
)
=

Φv

Φϕv

Thus, E[Xi ] =
∑

v ∈V

∑

K ∈K(Ev )

Φv

Φϕv

ϕv
Φv

f (K) =
∑

K ∈Ck (G)

f (K )
Φ
=

F
Φ

Algorithm 4: Inverse-TS(G,h, s, Func)

1 Order G by degeneracy and convert it to a DAG DG.

2 LetM be a map,W = 0

3 Set probability distribution D over V where p(v) =
∑

v
Φv/Φ.

4 For i = 1, 2, ..., s:

5 Independently sample a vertex v from D.

6 IfM[v] exists, set S = M[v]

7 else

8 S = Pre f ixedTurnShadowFinder (G |N +v
,h − 1)

9 M[v] = S

10 Let ϕv =
∑

(P,S, ℓ)∈S

( |S |
ℓ

)

11 Let K = {v} ∪ Sample(S)

12 If K is a clique, set Xi =
ϕv
Φv

∗ Func(G,K)

13 else set Xi = 0

14 W =W + Xi

15 let F̂ = W
s Φ

16 return F̂

Moreover, W =

s
∑

i=1
Xi . Therefore, E[W ] = E[

s
∑

i=1
Xi ] =

s
∑

i=1
E[Xi ] = s

F
Φ
.

Hence, E[F̂ ] = E[Ws Φ] = F . □

Theorem 4.6. Let f be a function over h-cliques, bounded above

by B such that given an h-clique, it takes O(Tf ) time to obtain the

value of f . Given any ε > 0,δ > 0 and number of samples s =

3ΦB ln (2/δ )/ε2F , Inverse-TS outputs an estimate F̂ such that with

probability at least 1 − δ , |F̂ − F | ≤ εF .

Let S denote the k-clique Turán shadow of G and

size(S) =

∑

(S, ℓ)∈S |S |. The running time of Inverse-TS is

O(min(sαh ,αsize(S)) + sTf + m + n) and the total storage is

O(size(S) +m + n).

Proof. TheXi are all iid random variables and by the arguments
in Lemma 4.5, their expectation µ = F/Φ. Suppose Xi ∈ [0,B].
By Theorem 3.1, Pr [|

∑s
i=1 Xi − µs | ≥ εsµ] ≤ δ when s =

3ΦB ln (2/δ )/ε2F .
The degeneracy of G can be computed in time linear in the size

of the graph [24]. For any v , the map M[v] in Inverse-TS stores
the h − 1-clique Prefixed-Turán-Shadow of N+v . For any v that gets
sampled in Step 5, Inverse-TS checks if the Prefixed-Turán-Shadow
ofN+v has been constructed and if so, it uses the already-constructed
shadow. If not, it constructs it in Step 8 and stores it in M . Thus,
in the worst case, it calculates the Prefixed-Turán-Shadow of N+v
for every v i.e. it calculates the Prefixed-Turán-Shadow of G which
requires time O(αsize(S)) according to Thm. 5.4 from [19]. On the
other hand, given any v , the size of N+v is atmost α so constructing

the h − 1-clique Prefixed-Turán-Shadow takes time at most O(αh )
(Claim 4.2) and it samples s such vertices from D so time required

is O(sαh ).
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There are s h-vertex sets sampled in Step 11 and checking if the
sampled vertices form a clique takes time h2, while calculating f

given that the sampled set is a clique, takes time Tf .
Thus, the total time required by Inverse-TS is

O(min(αsize(S), sαk ) + sTf +m + n).
□

Depending on which structure we are counting, we can find
appropriate values for B and Tf . Notice that in the worst case,
depending on the structure of the graph, Inverse-TS may end up
building the entire shadow in which case it will not provide any
savings over PEANUTS. However, practically, we observe that
we get significant savings in the amount of shadow built using
Inverse-TS in most cases. Unless specified otherwise, all results in
this paper are obtained using Inverse-TS.

5 COUNTING CLIQUES AND
NEAR-K-CLIQUES

5.1 Counting (k, 1)-cliques

Algorithm 5: Func-(k, 1)-Clique(G,K)

1 f ′ = 0

2 Let u and v be two distinct vertices from K

3 Let nbrs = Nu ∪ Nv

4 For nbr ∈ nbrs:

5 If nbr is connected to all vertices in K except 1 vertex, say
w and nbr > w , then f ′ = f ′ + 1

6 return f ′

Definition 5.1. Let (u,v),u < v , be the missing edge in a
(k, 1)-clique J . The lower-order k − 1-clique in J is the k − 1-clique
J \ {u}, and J \ {v} is the higher-order k − 1-clique in J .

Claim 5.2. Let f (K) for k − 1-clique K denote the number of

(k, 1)-cliques that K is the lower-order k − 1-clique in. Then F =
∑

K ∈Ck−1(G)
f (K) = total number of (k, 1)-cliques in G.

Proof. Every (k, 1)-clique has exactly 1 lower-order k−1-clique.
If f (K) denotes the number of (k, 1)-cliques thatK is a part of and is
the lower-order clique in, then

∑

K ∈Ck−1(G)
f (K) = F = total number

of (k, 1)-cliques in G. □

Claim 5.3. For input k − 1-clique K , Func-(k, 1)-Clique returns

f (K).

Proof. For anynbr ∈ V , ifK∪{nbr } is a (k, 1)-clique, then either
nbr ∈ Nu or nbr ∈ Nv or both. For a given K , Func-(k, 1)-Clique
finds the set of nbr (nbrs) that are connected to every vertex in K

except one. Thus, every {nbr } ∪ K for nbr ∈ nbrs is a (k, 1)-clique
and it is counted in f ′ iff K is a lower-order k − 1-clique. Thus, the
value returned, f ′ = f (K). □

Theorem 5.4. Letdmax be themaximum degree of any vertex inG .

Then B =min(2dmax ,n) and Tf = O(dmax ) for Func-(k, 1)-Clique.

Proof. By Claim 5.2, F =total number of (k, 1)-cliques inG . For
any (k, 1)-clique J = K∪{nbr } thatK is the lower-order k−1-clique
in, either nbr ∈ Nu or nbr ∈ Nv or both. Thus the number of
(k, 1)-cliques in which it is the lower-order k − 1-clique is atmost
2dmax . On the other hand, there can be atmost n nbr , thus B =
min(2dmax ,n). Finding nbrs takes time O(dmax ) and checking if
nbr ∈ nbrs forms a (k, 1)-clique with K takes time O(1). Hence,
Tf = O(dmax )

□

5.2 Counting Type 1, (k, 2)-cliques

Algorithm 6: Func-(k, 2)-Clique-Type1(G,K)

1 f ′ = 0

2 For u ∈ K :

3 For v ∈ K ,v > u:

4 Let nbrs be the set of vertices connected to all vertices
in K except u and v

5 f ′ = f ′ + |nbrs |

6 return f ′

Claim 5.5. Let f (K) for k − 1-clique K denote the number of Type

1 (k, 2)-cliques that K is contained in. Then F =
∑

K ′∈Ck−1(G)
f (K ′) =

the total number of Type 1 (k, 2)-cliques in G.

Proof. Every Type 1 (k, 2)-clique contains exactly 1 k −1-clique
(Fig. 2). Thus,

∑

K ′∈Ck−1(G)
f (K ′) = F = the total number of Type 1

(k, 2)-cliques in G. □

Claim 5.6. For input k − 1-clique K , Func-(k, 2)-Clique-Type1

returns f (K).

Proof. Given K , for every distinct pair of vertices u and
v ∈ K ,v > u, Func-(k, 2)-Clique-Type1 finds the set of vertices
nbrs such that ∀nbr ∈ nbrs , nbr is connected to all vertices in
K except u and v . Thus, K ∪ {nbr } is a k-clique with exactly
2 edges missing - (u,nbr ) and (v,nbr ) with the missing edges
having a vertex in common (nbr ) i.e. it is a Type 1 (k, 2)-clique.
Thus, Func-(k, 2)-Clique-Type1 returns the number of Type 1
(k, 2)-cliques that K is contained in i.e. it returns f (K). □

Theorem 5.7. B = min(3dmax ,n), Tf = O(dmax ) for

Func-(k, 2)-Clique-Type1.

Proof. For any 3 vertices u,v,w ∈ K and for any (k, 2)-clique
J = K ∪ {nbr } that K is contained in, atleast one of
(u,nbr ), (v,nbr ), (w,nbr ) ∈ E(G). Thus, any K can be a part of
atmost min(3dmax ,n) Type 1 (k, 2)-cliques. For every pair (u,v)
in K , Func-(k, 2)-Clique-Type1 calculates the number of vertices
connected to all in K but u and v which takes time O(dmax ). Thus,
Tf = O(dmax ). □

1972



WWW ’20, April 20ś24, 2020, Taipei, Taiwan Shweta Jain and C. Seshadhri

Algorithm 7: Func-(k, 2)-Clique-Type2(G,K)

1 f ′ = 0

2 Let deдen(u) denote the position of u in the degeneracy
order of G.

3 For u ∈ K :

4 Forw ∈ K ,deдen(w) > deдen(u):

5 Let nbrsu = N+u be the set of out-nbrs of u such that
they are connected to all vertices in K exceptw and
∀nbru ∈ nbrsu,deдen(w) < deдen(nbru).

6 Let nbrsw be the set of neighbors ofw in G such that
they are connected to all vertices in K except u

7 For x ∈ nbrsu:

8 For v ∈ nbrsw :

9 If (nbru,nbrw) ∈ E(G) : f ′ = f ′ + 1

10 return f ′

5.3 Counting Type 2 (k, 2)-cliques

Definition 5.8. Given a Type 2 (k, 2)-clique J , v,x ∈ J , the set
K = J \ {v,x} is the lowest order k − 2-clique of J if it fulfills all
the following conditions:

(1) (u,v) < E(G), (w,x) < E(G) (note that this implies that K is
a k − 2-clique).

(2) deдen(u) < deдen(v)

(3) deдen(u) < deдen(w) < deдen(x).

Note that u,v,w and x are all distinct and J consists of exactly 4,
k − 2-cliques: J \ {v,x}, J \ {v,w}, J \ {u,x} and J \ {u,w} (Fig. 2),
and the lowest order k − 2-clique of J is the one which has the
vertex (u) with minimum position in the degeneracy ordering of G
and the minimum neighbor of u.

Claim 5.9. Let f (K) for k − 2-clique K denote the number of

Type 2 (k, 2)-cliques that K is the lowest-order k − 2-clique in. Then

F =
∑

K ′∈Ck−2(G)
f (K ′) = total number of Type 2 (k, 2)-cliques in G.

Proof. Every Type 2 (k, 2)-clique has exactly one lowest
order k − 2-clique in it. If f (K) denotes the number of Type
2 (k, 2)-cliques that K is the lowest-order k − 2-clique in, then

∑

K ′∈Ck−2(G)
f (K ′) =total number of Type 2 (k, 2)-cliques in G. □

Claim 5.10. For input k − 2-clique K , Func-(k, 2)-Clique-Type2

returns f (K).

Proof. Given a k − 2-clique K , Step 3 and Step 4 loop over all
possible candidates for u and w , maintaining the condition that
deдen(u) < deдen(w). In Step 5, Func-(k, 2)-Clique-Type2 picks
the outneighbors of u that are potential candidates for x (nbrsu)

such that (w,x) < E(G) and deдen(w) < deдen(x). In Step 6, it
picks potential candidates for v (nbrsw) i.e. neighbors ofw that are
connected to all vertices in K except u. Finally, in Step 9, it checks if
v and x are connected. Thus, f ′ in Step 9 is incremented iff all the
conditions of a lowest order k − 2-clique of a Type 2 (k, 2)-clique
are fulfilled. Thus, the returned value f ′ = f (K). □

Theorem 5.11. B =min(n2,k2αdmax /2), Tf = O(α + dmax ) for

Func-(k, 2)-Clique-Type2.

Proof. Given K , there can be atmost k2/2 candidates for (u,w).
There can be at most α candidates for x (since it has to be an
outneighbor of u) and atmost dmax candidates for v (neighbors of
w). On the other hand, there can be atmost n candidates for x and
v each. Thus, B =min(n2,k2αdmax /2)

Given a set of k − 2 vertices, it takes O(k2) time to check if it
forms a clique. There are O(k2) candidates for (u,w) each. There
are atmost α candidates for x and dmax candidates for v whose
connections to each of the k − 2 vertices need to be checked. This
takes time O(α + dmax ). Altogether, Tf = O(α + dmax ). □

6 EXPERIMENTAL RESULTS

Preliminaries: We implemented our algorithms in C++ and
ran our experiments on a commodity machine equipped with
a 1.4GHz AMD Opteron(TM) processor 6272 with 8 cores and
2048KB L2 cache (per core), 6144KB L3 cache, and 128GB
memory. We performed our experiments on a collection of graphs
from SNAP [36], including social networks, web networks, and
infrastructure networks. The largest graph has more than 100M
edges. Basic properties like degneracy, maximum degree etc. of
these graphs are presented in Table 1. We consider the graph to
be simple and undirected. Code for all experiments is available at:
https://bitbucket.org/sjain12/counting-near-cliques

Our practical implementation differs slightly from Inverse-TS
in two ways: we fix the number of samples to 500K. Moreover,
since the number of samples are fixed, we can sample from D in
Inverse-TS all at once and maintain counts of the number of cliques
to be sampled from each outneighborhood. We can then explore
the outneighborhoods in an online fashion, sampling as we build
the shadow. Once the samples from a vertex’s outneighborhood
have been ontained, we no longer need the shadow of the
outneighborhood and the shadow can be discarded. Thus, we don’t
need to store the entire shadow but only the shadow of the current
vertex’s outneighborhood.

We focus on counting near-k-cliques for k ranging from 5 to 10.
Accuracy and convergence of Inverse-TS: We picked some

graphs for which the exact near-clique counts are known (for all
k ∈ [5, 10]). For each graph and near-clique type, for sample size in
[10K,50K,100K,500K,1M], we performed 100 runs of the algorithm.
We show here results for amazon0601 for k = 7, though similar
results were observed for other graphs and k . We plot the spread
of the output of Inverse-TS, over all these runs. The results are
shown in Fig. 3. The red line denotes the true answer, and there
is a point for the output of every single run. As we can see, the
output of Inverse-TS fast converges to the true value as we increase
the number of samples. For 500K samples, the range of values is
within 5% of the true answer which is much less compared to the
spread of cc. Similar results were observed for other graphs for
which the exact counts were available, except soc-pokec. The error
was mostly < 5% and often < 1% as can be seen from Tab. 1.

In cases like soc-pokec the error can be high. This happens
when most of the samples end up empty, either because the
sampled vertices did not form a clique, or the samples belonged to
out-neighborhoods that did not have a clique of the required size
or the sampled clique does not participate in any near-cliques. This
can be detected by observing how many of the samples taken in
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k=5 k=7 k=10

graph vertices edges degen dmax estimate % error time estimate % error time estimate % error time type

web-Stanford 2.82E+05 1.99E+06 71 38625

2.36E+10 0.85 142 8.99E+11 - 216 2.16E+14 - 129 (k, 1)
1.15E+11 0.46 8283 7.33E+11 - 3802 1.12E+14 - 1087 (k, 2) Type 1
1.12E+10 1.19 5396 2.51E+11 - 538 1.04E+14 - 293 (k, 2) Type 2
6.21E+8 3.47E+10 5.82E+12 k

web-Google 8.76E+05 4.32E+06 44 6332

6.76E+08 0.44 13 2.19E+09 0.45 12 2.41E+10 0.41 10 (k, 1)
2.08E+09 0.48 276 4.45E+09 0.01 172 2.05E+10 - 42 (k, 2) Type 1
7.18E+07 1.10 21 2.93E+08 0.01 18 7.70E+09 0.01 13 (k, 2) Type 2
1.05E+08 6.06E+08 1.29E+10 k

amazon0601 4.03E+05 4.89E+06 10 2752

1.17E+07 0.00 4 2.88E+06 0.01 3 3.76E+04 0.02 1.5 (k, 1)
5.38E+07 0.01 10 7.84E+06 0.01 7 8.70E+04 0.01 3 (k, 2) Type 1
3.16E+06 0.01 4 1.30E+06 0.01 5 2.96E+04 0.00 3 (k, 2) Type 2
3.64E+06 9.98E+05 9.77E+03 k

web-BerkStan 6.85E+05 6.65E+06 201 84230

4.89E+11 0.93 397 2.89E+13 - 470 1.85E+16 - 704 (k, 1)
1.89E+12 0.32 20534 7.39E+13 - 6080 1.43E+16 - 5383 (k, 2) Type 1
6.61E+10 0.09 12400 7.32E+11 - 605 1.65E+14 - 646 (k, 2) Type 2
2.19E+10 9.30E+12 5.79E+16 k

as-skitter 1.70E+06 1.11E+07 111 35455

3.94E+10 4.52 1180 5.44E+11 - 1034 7.91E+13 - 800 (k, 1)
2.97E+11 1.63 31724 2.48E+12 - 16220 2.27E+13 - 10461 (k, 2) Type 1
2.34E+10 1.37 4132 3.97E+11 - 2598 8.55E+13 - 1038 (k, 2) Type 2
1.17E+09 7.30E+10 1.43E+13 k

cit-Patents 3.77E+06 1.65E+07 64 793

4.12E+07 0.01 10 7.20E+07 0.01 6 9.06E+05* 42.22 4 (k, 1)
1.11E+08 1.83 17 1.31E+08 2.29 8 1.43E+06* 49.11 5 (k, 2) Type 1
1.31E+08 0.01 6 6.76E+08 3.36 9 2.54E+07* 31.35 5 (k, 2) Type 2
3.05E+06 1.89E+06 2.55E+03 k

soc-pokec 1.63E+06 2.23E+07 47 14854

4.22E+08* 8.48 218 5.41E+07* 9.96 81 7.67E+08 4.24 55 (k, 1)
2.40E+09* 6.19 218 1.59E+09* 4.6 136 1.67E+09 0.02 68 (k, 2) Type 1
3.34E+08 0.00 38 6.78E+08* 7.61 95 1.28E+09 0.01 64 (k, 2) Type 2
5.29E+07 8.43E+07 1.98E+08 k

com-lj 4.00E+06 3.47E+07 360 14815

2.85E+11 0.11 200 4.28E+14 - 452 1.18E+19 - 558 (k, 1)
4.63E+11 0.34 756 5.11E+14 - 613 1.22E+19 - 680 (k, 2) Type 1
5.39E+10 0.53 269 1.24E+14 - 581 4.23E+18 - 568 (k, 2) Type 2
2.47E+11 4.51E+14 1.47E+19 k

soc-LJ 4.84E+06 8.57E+07 372 20333

6.32E+11 0.03 677 1.01E+15 - 779 4.14E+19 - 960 (k, 1)
1.03E+12 0.17 1504 1.27E+15 - 1107 4.57E+19 - 1320 (k, 2) Type 1
1.34E+11 0.41 506 2.77E+14 - 1007 1.17E+19 - 1111 (k, 2) Type 2

4.49E+14 k

com-orkut 3.07E+06 1.17E+08 253 33313

1.56E+11 - 9507 2.26E+12 - 16546 4.66E+13 - 26370 (k, 1)
1.46E+12 - 21213 7.82E+12 - 24148 1.04E+14 - 29881 (k, 2) Type 1
2.37E+11 - 3879 3.51E+12 - 11617 1.60E+14 - 22676 (k, 2) Type 2
1.57E+10 3.61E+11 3.03E+13 k

Table 1: Table shows the sizes, degeneracy, maximum degree of the graphs, the counts of 5, 7 and 10 cliques and near-cliques obtained using

Inverse-TS, the percent relative error in the estimates (for those graphs for which we were able to get exact numbers within 24 hours), and

time in seconds required to get the estimates. The rows whose types are k in the rightmost column show the number of k-cliques.For most

instances, the algorithm terminated in minutes. Values marked with * have significant errors which are addressed in Tab. 2

graph k revised estimate revised % error time type

cit-Patents 10
648944 1.91 130 (k, 1)
2.84E+06 1.06 130 (k, 2) Type 1
3.69+07 0.27 130 (k, 2) Type 2

soc-pokec 5
3.91E+08 0.51 284 (k, 1)
2.27E+09 0.44 371 (k, 2) Type 1

soc-pokec 7
4.92E+08 0.01 288 (k, 1)
1.53E+09 0.24 347 (k, 2) Type 1
6.27E+08 0.47 298 (k, 2) Type 2

Table 2: Table revised estimates, revised error and time in seconds

for the counts of near-cliques obtained using PEANUTS with 500K

samples for the erroneous estimates in Tab. 1 (marked with *).

Step 11 were cliques with non-zero f . If this number is << 5000, the
estimates are likely to have substantial error. This can be remedied
by either taking more samples or using PEANUTS. Tab. 2 shows the
revised estimates obtained using PEANUTS using 500K samples,
for values in Tab. 1 that have substantial error (marked with an
asterisk).

For the graphs for which we could not get exact numbers (since
the bf algorithm did not terminate in 1 day), we were unable to
obtain error percentages. However, even for such graphs we saw
good convergence over 100 runs of the algorithm.

Running time: The runtimes for near-cliques of size 7 are
presented in Tab. 1. We show the time for a single run in each

case. In all cases except com-orkut, the algorithm terminated in
minutes (for com-orkut, it took less than a day) where cc and bf
did not terminate in an entire day (and in some cases, even after 5
days).

Comparison with other algorithms: Our exact brute-force
procedure is a well-tuned algorithm that uses the degeneracy
ordering and exhaustively searches outneighborhoods for cliques
(based on the approach by Chiba-Nishizeki [9]). Once a clique is
found, we count all the near-cliques the clique is a part of and sum
this quantity over all cliques.

On average, color-coding took time anywhere between 2x to
100x time taken by Inverse-TS, while giving poorer accuracy. Brute
force took evenmore time. Inverse-TS has reduced the time required
to obtain these estimates from days to minutes.

6.1 Near-cliques in practice

One of the important applications of near-cliques is in finding
missing edges that likely should have been present in the graph in
the first place.We deployed our algorithm on a citation network [37].
Using Inverse-TS we were able to obtain several sets of papers in
which, ever pair of paper either cited or was cited by the other
paper (depending on the chronological order of the papers), except
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