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Abstract In this work, we introduce an interval formulation that accounts for un-
certainty in supporting conditions of structural systems. Uncertainty in structural
systems has been the focus of a wide range of research. Different models of un-
certain parameters have been used. Conventional treatment of uncertainty involves
probability theory, in which uncertain parameters are modeled as random variables.
Due to specific limitation of probabilistic approaches, such as the need of a prior
knowledge on the distributions, lack of complete information, and in addition to
their intensive computational cost, the rationale behind their results is under debate.
Alternative approaches such as fuzzy sets, evidence theory, and intervals have been
developed. In this work, it is assumed that only bounds on uncertain parameters are
available and intervals are used to model uncertainty.

Here, we present a new approach to treat uncertainty in supporting conditions.
Within the context of Interval Finite Element Method (IFEM), all uncertain param-
eters are modeled as intervals. However, supporting conditions are considered in
idealized types and described by deterministic values without accounting for any
form of uncertainty. In the current developed approach, uncertainty in supporting
conditions is modeled as bounded range of values, i.e., interval value that capture
any possible variation in supporting condition within a given interval. Extreme inter-
val bounds can be obtained by analyzing the considered system under the conditions
of the presence and absence of the specific supporting condition. A set of numerical
examples is presented to illustrate and verify the accuracy of the proposed approach.
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1 Introduction

Uncertainties have been studied for improving the predictability of mathematical
models. Among others, interval finite element method handles uncertainties in in-
terval form due to the lack of knowledge about the system parameters [2, 4]. Within
the context of IFEM, all uncertain parameters are defined as intervals. While uncer-
tainty in load, materials, and geometry in structural system have been intensively
studied [3, 2, 6, 10, 11], in spite of their importance, uncertainty in supporting con-
ditions barely have had the needed attention. Modeling boundary conditions is one
of the most sensitive steps in the formulation of the mathematical model of a given
system. Usually, supporting conditions are idealized through simplifying the me-
chanical behavior of the actual structural supports. Such idealization, in addition to
disregarding the actual supporting conditions and uncertainty involved, may lead to
inaccurate evaluation of the actual behavior of the structure [1, 8].

The paper is structured as follows. First, to illustrate the proposed interval ap-
proach for handling uncertainty in supporting conditions, we briefly present key
features of Element-By-Element formulation of interval finite element. Uncertainty
bounds of supporting conditions is then obtained from the extreme conditions and
incorporated in the formulation. Examples are finally presented and discussed.

2 Formulation

Usually, in structural systems, supporting conditions are described such as roller,
pin, or fixed supports, and in some cases might be modeled as partial restraint. In all
these cases, supporting conditions are described by deterministic values. For exam-
ple, a pin support in plane problems considered to prevent two degrees of freedom
(displacements), in other words those degrees of freedom are set equal to zero (Fig-
ure la). In real life, such conditions rarely can be met, and any variation in these
conditions might happen. Thus, in order to capture uncertainty in a supporting con-
dition, we are modeling the condition as interval value that capture any possible
variation within a given interval. In the case of a pin support, for example, one
degree of freedom can take the values between zero (lower bound, fully restraint)
and a second value (upper bound, fully free) corresponding to the absence of the
constraint in direction of the considered degree of freedom (Figure 1b).

The treatment of uncertain supporting conditions can be achieved by expanding
our previous formulation of IFEM [10] through incorporating additional linear or
rotational elements whose stiffness is interval, that depends on the specific type of
the structure (approach 1). Experts can provide the interval value of the element
stiffness. Another way to handle this uncertain situation is to solve the system in
the absence of the specific constraint, under the condition that the system remains
geometrically stable, and calculate the displacement in the direction of the removed
constraint (approach 2). The obtained value of the displacement in the direction of
the removed constraint can be used as an upper bound of prescribed displacement
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Fig. 1 Truss structure with different boundary conditions. (a) pin-pin at node 1 and 3, (b) pin at
node 1 and roller at node 3.

for which the lower bound is zero.

The same approach can be used to account for uncertainty in the rigidity of the
structures’ joints. When joints connecting structural members are assumed to be
rigid, the relative rotation of the adjacent sections of the intersecting members is
considered equal to zero. By introducing the rigidity condition as interval, we can
consider more realistic behavior of these joints. All interval quantities will be intro-
duced in non-italic boldface font.

Our formulation of interval finite element method is based on the Element-By-
Element formulation [6] where each element has its own set of nodes, but the set of
elements is disassembled (Figure 2). A set of additional constraints is imposed to
satisfy the conditions of compatibility, these constraints have the form of CU =V,
where C, U, and V are a constraint matrix, displacement vector, and prescribed
displacement values if any, respectively. The constraint matrix describes the con-
nectivity conditions between local element degrees of freedom and corresponding
global nodal degrees of freedom in addition to the imposed boundary conditions.
For instance, for a joint demonstrated in Figure 2, the connectivity matrix has the
following form,

.10 0 0 0 -
C=|--01 0 - sin(¢) —cos(¢) O --- (1)
00 1 - 0 0 1 -

The matrix is obtained based on the following conditions
uj —Upcos(9) — Vysin(¢

)
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0, — O
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where ¢ is the angle of rotation between the local and global coordinate systems,
uj,v;jand 0 ; are local horizontal, vertical and rotational degrees of freedom of node
Jj that belongs to element e, respectively, and Uy, Vj and @ are global horizontal,
vertical and rotational degrees of freedom of the common node k. Then, the essential
boundary conditions are imposed by setting the corresponding components in C
equal to 1.

Node

Elements

Common Node (k) v,

_ U,

Element (e)

Fig. 2 Element- By-Element. Connection between element nodes and common nodes.

Under these constraints, the amended total potential energy using the Lagrange
multiplier approach takes the following form:
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T = EUTKU—UTPH.T(CU—V) (3)

where IT*, K, U, P and A are total potential energy, stiffness matrix, displacement
vector, load vector, and Lagrange multipliers’ vector, respectively. Invoking the sta-
tionarity of IT*, that is §IT* = 0, we obtain the following interval equilibrium equa-
tions, where in the present study, uncertainty is assumed only in the right-hand side,
K c'l[u] [P g
e SIE=B) ®

The advantage of this formulation is that it allows handling any prescribed inter-
val displacement as a part of the right-hand side, i.e., the load vector. Eliminating
overestimation due to interval dependency in the load vector has been achieved in
our previous work [3].

In approach 1, simply we can add a linear or rotation element with interval prop-
erty in direction of the considered support accounting for the level of uncertainty. In
approach 2, the system is solved after removing the constraint with uncertainty, the
obtained displacement value in the direction of the constraint represents the upper
bound of the uncertain supporting condition and the lower bound will be equal to
zero. This interval range of displacement in direction of the selected degree of free-
dom is used as prescribed interval displacement in the corresponding entry of V in
Equation 4.

In the case of uncertainty in joint rigidity (partially restrained connections) [5, 7]
, the system is solved for two extreme deterministic cases: (i) The system with all
joints considered rigid, and (ii) the system with hinges introduced at the joints with
uncertain rigidity. By deterministically solving (i) and (ii), the rotation of the rigid
joint and the rotations at each side of the hinge are calculated, respectively. These
values are used to determine the bounds of intervals that model the joints’ uncer-
tainties. The obtained intervals are used as prescribed rotations in the right-hand
side vector of the equilibrium system of Equation 4. In the next section, a number
of examples are introduced to illustrate the numerical results of the developed for-
mulation.

This formulation for handling uncertainty in supporting conditions and joints’
rigidity is an integral part of the previously developed interval finite element that
handles uncertainty in materials, geometry, and different loading conditions.

3 Example Problems

The proposed method is implemented in a MATLAB program using the interval
toolbox INTLAB to handle interval computations [9]. Three example problems are
chosen to illustrate and verify the present approach; a truss and two frames. The first
example is an eleven-bar truss as shown in Figure 3. The numerical results of this
example are obtained to illustrate the effect of uncertainty in boundary conditions.
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The second example is one story single-bay frame with uncertainty in a horizontal
boundary condition. This simple example is demonstrating the general applicability
of the proposed approach in different types of structures. The third numerical exam-
ple is the same frame structure analyzed in the second example but we illustrate the
effect of the uncertainty in joint rigidity.

These examples do not include any material or load uncertainty, which can be
handled straight forward by the previously developed IFEM. However, the numeri-
cal results illustrate how the proposed extension to IFEM approach provides exact
values of system response under uncertainty in structures’ supporting conditions and
joints’ rigidity.

3.1 Example 1: Planar truss with uncertainty in boundary
condition

The eleven-bar truss shown in Figure 3 is subjected to a horizontal concentrated load
P; =50 kN at node 2, and three downward concentrated loads of P, = 100 kN and
P = Py = 50 kN applied at nodes 4, 2 and 6, respectively. The cross-sectional areas
and the nominal value of Young’s modulus of all elements are A; = 0.01 m? and
E; =2 x 10" N/m?, respectively. The dimensions are also illustrated in the figure.

Fig. 3 Eleven-bar truss, pin supported at nodes 1 and 5.
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To investigate uncertainty in the horizontal constraint of node 5, the problem is
solved in the absence of that specific constraint (Figure 4) to obtain the upper bound
of prescribed displacement of that constraint.

Fig. 4 Eleven-bar truss, roller support at node 5.

Table 1 presents displacement values obtained by solving these two deterministic
cases; namely, pin-pin and pin-roller supporting conditions.

Table 1 Truss nodal displacements, pin-pin and pin-roller supporting conditions.

Node Pin-Pin Pin-Roller

u (mm) v (mm) u (mm) v (mm)
1 0.00000 0.00000 0.00000 0.00000
2 0.12789 -0.06873 0.23008 -0.07832
3 0.01658 -0.16232 0.10918 -0.20861
4 0.05916 -0.18295 0.15175 -0.24842
5 0.00000 0.00000 0.18519 0.00000
6 0.03226 -0.10190 0.11526 -0.11149

Therefore, the interval prescribed horizontal displacement of the support at node
5 is [0,0.18519] x 10~3 m. By imposing this condition in the corresponding en-
try of vector V as prescribed displacement, the interval solution is obtained. Table
2 presents the numerical values of displacements due to 100% uncertainty in the
horizontal constraint of node 5.

The results indicate that the bounds of nodal displacement match exactly the
displacement results obtained for extreme values given in Table 1. This observation
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Table 2 Interval displacements due to 100% uncertainty in the support at node 5.

u (mm) v (mm)
Node Lower Upper Lower Upper
1 0.00000 0.00000 0.00000 0.00000
2 0.12789 0.23008 -0.07832 -0.06873
3 0.01658 0.10918 -0.20861 -0.16232
4 0.05916 0.15175 -0.24842 -0.18295
5 0.00000 0.18519 0.00000 0.00000
6 0.03226 0.11526 -0.11149 -0.10190

holds true for internal and reaction forces. For instance, the axial force in elements 6
and 7 denoted by Ng and N7, respectively, and the horizontal reaction forces at node
1 and 5 denoted by R; and Rs, respectively, are presented in Table 3.

Table 3 Selected internal and reaction forces of the truss in Figure 4 due to 100% uncertainty.

Deterministic Interval
Forces (kN) Pin Roller Lower Upper
Ne -13.75631 -26.54092 -26.54092 -13.75631
N7 -11.05606 50.67348 -11.05606 50.67348
Ry 18.12184 -50.00000 -50.00000 18.12184
Rs -68.12184 0.00000 -68.12184 0.00000

3.2 Example 2: Planar frame with uncertainty in boundary
condition

The next example is a single-story frame subjected to a horizontal concentrated
load P = 5 kN applied at node 2. The modulus of elasticity, cross sectional area and
moment of inertia of all elements are equal to E = 2 x 10" N/m?, I =3 x 107*
m* and A = 8.37 x 1073 m?, respectively. In this frame, the effect of uncertainty in
the horizontal support at node 4 is studied. To calculate the prescribed displacement
interval, the horizontal support at this node is removed by replacing the fixed support
with a horizontal slider support (Figure 5) and the deterministic solution is obtained.
Table 4 presents the results of two cases: fixed support at node 4 and horizontal slider
support at node 4.

Therefore, the associated interval prescribed horizontal displacement of support
at node 4 is [0,1.73611] x 1073 m. The obtained interval solution is an exact en-
closure of the deterministic solutions of the two extreme cases: Fixed support and
slider support at node 4. Numerical results are introduced in Table 5, where u; and
6; denote the horizontal displacement and rotation of node 2 and 3, respectively.
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Fig. 5 Planar frame with uncertainty in support condition. (a) Fixed supports at nodes 1 and 4 (b)
Fixed at node 1 and slider support at node 4.

Table 4 Frame nodal displacements pin-pin and pin-roller supporting conditions.

Node Fixed-Fixed Fixed-Slider
u(x1073m) v(x102m) 6 (x103rad) u(x103m) v(x103m) 6 (x1073 rad)
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.62922 0.00637 -0.07733 1.49355 0.00637 -0.25020
3 0.62178 -0.00637 -0.07584 1.49355 -0.00637 0.09702
4 0.00000 0.00000 0.00000 1.73611 0.00000 0.00000

The forces N, and M, are the axial force and bending moment at the right-end of
element 2, respectively, and RM, denotes the reaction moment at node 4.

Table 5 Effect of 100% uncertainty in horizontal support of frame of Figure 5a.

Deterministic Interval
Forces (kN) Fixed Slider Lower Upper
ur(x 107> m) 0.62922 1.49355 0.62922 1.49355
63(x 1073 rad) -0.07584 0.09702 -0.07584 0.09702
N> (kN) -2.48929 0.00000 -2.48929 0.00000
M, (kN-m) -5.31309 -1.16427 -5.31309 -1.16427
RM4(kKN-m) 7.13337 -1.16427 -1.16427 7.13337

Numerical results show the large variability in displacements, internal forces, and
reactions due to uncertainty in supporting conditions.
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3.3 Example 3: Planar frame with uncertainty in joint rigidity

This example represents a case study of what is known in structural design as par-
tially restrained connections [5, 7]. The same frame of Figure 5 is used to illustrate
this case. The prescribed interval values at node 2 are obtained by replacing the rigid
joint at node 2 by a hinge (Figure 6b).

_ D/ . V7

(@) (b)

Fig. 6 Planar frame with uncertainty in joint rigidity. (a) Original (b) Hinge at node 2.

Solving the two extreme deterministic cases; the displacements and rotations for
the structure with rigid joints and the structure with a hinge at node 2 are obtained.
In the case of a hinge at node 2, two different rotation values are obtained for the
sections adjacent to the hinge, see Table 6. Thus, the prescribed interval rotations
are obtained as [—0.31980, —0.07733] x 1073 rad and [—0.0773,0.08849] x 1073
rad, which are imposed in the corresponding entries of vector V as prescribed dis-
placements.

Table 6 Deterministic rotations of node 2 for the rigid and hinge cases of frames in Figure 6.

Rigid Hinge
Node 8 (<10 7 rad) 8 (<10 3 rad)
1 0.00000 0.00000
2 0.07733 (-0.31980, 0.08849)
3 0.07584 0.18163
4 0.00000 0.00000

The selected results are presented in Table 7. The comparison between interval
and deterministic solutions reveals that the interval solution is an exact enclosure of
the deterministic analysis of extreme cases.
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Table 7 Effect of 100% uncertainty in joint 2 rigidity on displacements and forces of the frame in
Figure 6.

Deterministic Interval
Forces (kN) Fixed Slider Lower Upper
ur(x 107> m) 0.62922 1.06598 0.62922 1.06598
63(x 1073 rad) -0.07584 -0.18163 -0.18163 -0.07584
N> (kN) -2.48929 -3.46498 -3.46498 -2.48929
M, (kKN-m) -5.34878 0.00000 0.00000 5.34878
RM4(kN-m) 7.13337 10.84202 7.13337 10.84202

4 Conclusion

This paper presents a new approach in interval finite element method to study the ef-
fect of uncertainty in boundary conditions and joint rigidity. This approach treats the
uncertainty in supporting conditions as prescribed interval displacements defined in
the right-hand side of the system of equations. Exact enclosures of the correct so-
lution are obtained and any form of overestimation is eliminated. The numerical
examples illustrate that the proposed approach can successfully capture the effect of
uncertainty in supporting conditions and joints rigidity. Numerical results show the
large variability in displacements, internal forces, and reactions due to uncertainty
in supporting conditions. In addition, this formulation represent an integral part of
the IFEM developed previously by the author, and allows to consider uncertainties
in materials, geometry, loads, and boundary conditions.
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