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Numerical Reconstruction of Radiative Sources in an Absorbing and Nondiffusing
Scattering Medium in Two Dimensions\ast 

Hiroshi Fujiwara\dagger , Kamran Sadiq\ddagger , and Alexandru Tamasan\S 

Abstract. We consider the two dimensional quantitative imaging problem of recovering a radiative source
inside an absorbing and scattering medium from knowledge of the outgoing radiation measured at
the boundary. The medium has an anisotropic scattering property that is neither negligible nor
large enough for the diffusion approximation to hold. We present the numerical realization of the
authors' recently proposed reconstruction method. For scattering kernels of finite Fourier content in
the angular variable, the solution is exact. The feasibility of the proposed algorithms is demonstrated
in several numerical experiments, including simulated scenarios for parameters meaningful in optical
molecular imaging.

Key words. transport equation, inverse problems, numerical source reconstruction, attenuated x-ray transform,
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1. Introduction. We consider the inverse source problem for radiative transport in a
bounded, strictly convex domain D \subset \BbbR 2 with boundary \partial D, as modeled by the linearized
Boltzmann equation. Let S1 = \{ \xi \in \BbbR 2 ; | \xi | = 1 \} be the unit circle and
\Gamma \pm := \{ (x, \xi ) \in \partial D \times S1 ; \pm \nu (x) \cdot \xi > 0 \} be the incoming ( - ), respectively, outgoing (+),
unit tangent subbundles of the boundary, where \nu (x) is the outer unit normal at x \in \partial D.

The medium is characterized by the absorption coefficient \mu \mathrm{a}(x), scattering coefficient
\mu \mathrm{s}(x), and scattering kernel p(x, \xi \cdot \xi \prime ), all of which are assumed known, real valued, non-
negative, essentially bounded functions. For any x \in D and \xi \in S1, the scattering kernel (a
conditional probability) satisfies

\int 
S1 p(x, \xi \cdot \xi \prime )d\sigma \xi \prime = 1. The total attenuation is defined as

\mu \mathrm{t} = \mu \mathrm{a} + \mu \mathrm{s}.
Generated by an unknown source q, in the steady state case, and assuming no incoming

radiation from outside the domain, the density of particles I(x, \xi ) at x \in D traveling in the
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direction \xi satisfies the problem

\xi \cdot \nabla xI(x, \xi ) + \mu \mathrm{t}(x)I(x, \xi )

= \mu \mathrm{s}(x)

\int 
S1

p(x, \xi \cdot \xi \prime )I(x, \xi \prime )d\sigma \xi \prime + q(x), (x, \xi ) \in D \times S1,
(1.1a)

I(x, \xi )
\bigm| \bigm| 
\Gamma  - 

= 0.(1.1b)

The unknown source q is assumed square integrable and compactly supported in D. Under
the above assumptions on \mu a, \mu s, p, and q, the forward problem (1.1) is well posed [10], with
a unique solution I in the space

\{ f \in L2(D \times S1) ; (x, \xi ) \mapsto \rightarrow \xi \cdot \nabla f(x, \xi ) \in L2(D \times S1) \} .

For well-posedness results under various other assumptions, see [1, 8, 9, 22] and the generic
result in [36].

For a given medium, i.e., \mu \mathrm{a}, \mu \mathrm{s}, and p are known, we consider the following inverse source
problem: Determine q in D from the measurement

(1.2) I(x, \xi ) = I\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}(x, \xi ), (x, \xi ) \in \Gamma +,

of the directional outflow at the boundary. In the presence of scattering, this problem is
equivalent to inverting a smoothing operator, and therefore it is ill-posed.

When \mu \mathrm{a} = \mu \mathrm{s} = 0, this is the classical x-ray tomography problem of Radon [31], where q
is to be recovered from its integrals along lines, a problem which is well understood both on its
theoretical and numerical facets (see, e.g., [16, 18, 26] and references therein). For \mu \mathrm{a} \not = 0 but
\mu \mathrm{s} = 0, this is the problem of inversion of the attenuated x-ray transform in two dimensions,
solved by different methods in [2] and [28]; see [4, 6, 19, 23, 24, 27] for later approaches and
some numerical implementation.

The inverse source problem in a scattering media considered here, i.e., \mu \mathrm{s}p \not = 0, has
also been considered under various limiting constraints (e.g., [5, 17, 20, 21, 34]) with a most
general result showing that the source is uniquely and stably determined by the outflow in [36].
However, the numerical solutions for the inverse source problem based on the above mentioned
results have yet to be realized.

In the special case of a weakly (anisotropic) scattering media, where \| 1 - p\| \ll 1, one may
recover the source by devising algorithms for the iterative method proposed in [5]. However,
based on a perturbation argument of the nonscattering case in [28], the method does not
extend to strongly anisotropic scattering media considered here. Moreover, even in the case
of a weakly scattering media, the requirement of solving one forward problem (a computa-
tionally extensive procedure) at each iteration renders the method inefficient from an imaging
perspective.

When only partial data is available, the only known source reconstruction result is in the
recent work of Klibanov and collaborators in [35], where the domain is a slab and measure-
ments are available on each side on a finite segment.

In here we present a numerical reconstruction method based on the authors' recent theoret-
ical results in [14] and propose one algorithm to recover the radiative sources. As demonstrated
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NUMERICAL RECONSTRUCTION OF RADIATIVE SOURCES 537

in the numerical experiments below, the algorithms can handle the quantitative imaging of
sources in a nonsmall scattering medium that is far from diffusive approximation, with appli-
cations to optical molecular imaging [29, 30].

Key to the reconstruction method is the realization that any finite Fourier content in the
angular variable of the scattering kernel splits the problem into a nonscattering one and a
boundary value problem for a finite elliptic system. The role of the finite Fourier content has
been independently recognized in [25]. However, in general, the scattering kernel does have
an infinite Fourier content. Such is the case in the numerical experiments below, where we
work with the ubiquitous (two dimensional version of) the Henyey--Greenstein kernel

(1.3) p(x, \xi \cdot \xi \prime ) = p(\xi \cdot \xi \prime ) = 1

2\pi 

1 - g2

1 - 2g\xi \cdot \xi \prime + g2
for all x \in D.

In (1.3) the parameter 0 \leq g \leq 1 models a degree of anisotropy with g = 0 being the isotropic
case and g = 1 being the ballistic case. In the proposed reconstruction we use an approximate
scattering kernel obtained by truncating the Fourier modes in the angular variable. The error
estimate in the data due to such truncation (see section 3 below) allows us to interpret the
reconstruction as a minimum residual solution, where for a given a priori noise level, the
degree of truncation dictates the number of significant Fourier modes. Moreover, we devise a
locally optimal criterion for the choice of the order of this truncation, which is independent
of the unknown source.

The theoretical method originated in Bukhgeim's theory of A-analytic functions developed
in [7] to treat the nonattenuating case and in [2] for the absorbing but nonscattering case and
extends the ideas in [32, 33] to the scattering case. One of the numerical results in the first
experiment below has been announced in [14].

2. Preliminaries. In this section we establish notation, while presenting the basic ideas
of the reconstruction in the nonscattering case. The presentation follows the authors' ideas
in [14, 32, 33], while the notation is that used by practitioners in optical tomography, e.g., [3].
We also depart from the original notation in [7] (used so far in [14, 32, 33]) and work with the
positive Fourier modes. This will allow for the natural indexing of sequences. For the ana-
lytical framework, which specifies the regularity of the coefficients and proves the appropriate
convergence of the ensuing series, we refer to [14]. We identify points x = (x1, x2) \in \BbbR 2 with
their complex representative z = x1 + ix2 \in \BbbC . The method considers the transport model
(1.1) in the Fourier domain of the angular variable. For \xi = \xi (\theta ) = (cos \theta , sin \theta ) \in S1, let

(2.1) I(z, \xi ) =
\sum 
m\in \BbbZ 

Im(z)e - im\theta 

be the Fourier series representation of I in the angular variable. From the analysis of the
forward problem (e.g., [10]), for a square integrable source and essentially bounded coefficients,
the solution I of (1.1) is at least square integrable in the angular variable and thus the series
(2.1) is summable in L2 sense. Moreover, since I is real valued, I - m = Im and the angular
dependence is completely determined by the sequence of its nonnegative Fourier modes

D \ni z \mapsto \rightarrow \langle I0(z), I1(z), I2(z), . . .\rangle .
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Similarly, let

p(z, \xi \cdot \xi \prime ) =
\sum 
m\in \BbbZ 

pm(z)e - im\tau 

be the Fourier series representation of the scattering kernel, where \tau is the angle formed by
\xi and \xi \prime \in S1. We assume that \theta \mapsto \rightarrow p(z, cos(\theta )) is uniformly in z \in D sufficiently smooth,
such that its Fourier coefficients pn have sufficient decay in n for the convergence analysis of
ensuing series; see such details in [14, 33]. Moreover, since p(z, cos \tau ) is both real valued and
even in \tau , pm are real valued and pm = p - m for m \in \BbbZ .

By introducing the Cauchy--Riemann gradients in the spatial domain \partial = (\partial x1  - i\partial x2)/2
and \partial = (\partial x1 + i\partial x2)/2, the advection operator becomes \xi \cdot \nabla x = e - i\theta \partial + ei\theta \partial . A projection
on the basis \{ eim\tau \} in L2(0, 2\pi ) reduces the original transport equation (1.1a) to the infinite
dimensional elliptic system

\partial I - 1(z) + \partial I1(z) + \mu \mathrm{t}(z)I0(z) = 2\pi \mu \mathrm{s}(z)p0(z)I0(z) + q(z)

and

(2.2) \partial Im(z) + \partial Im+2(z) + \mu \mathrm{t}(z)Im+1(z) = 2\pi \mu \mathrm{s}(z)pm+1(z)Im+1(z), m \not =  - 1.

In particular, in the nonattenuated and nonscattering case (when \mu \mathrm{t} \equiv 0 \equiv \mu \mathrm{s}) the system
corresponding to (2.2) is

(2.3) \partial Jm(z) + \partial Jm+2(z) = 0, m \not =  - 1.

The system (2.3) was originally introduced (in a context more general than needed here) in [7],
and it was shown that their solutions satisfy a Cauchy like integral formula, where the interior
values in D are recovered from their boundary values. More precisely, for each m \geq 0 and
each z \in D fixed,

(2.4) Jm(z) =
1

2\pi i

\int 
\partial D

Jm(\zeta )

\zeta  - z
d\zeta +

1

2\pi i

\int 
\partial D

\biggl\{ 
d\zeta 

\zeta  - z
 - d\zeta 

\=\zeta  - \=z

\biggr\} \infty \sum 
j=1

Jm+2j(\zeta )

\Biggl( 
\zeta  - z

\zeta  - z

\Biggr) j

.

In the absorbing and nonscattering case (\mu \mathrm{s} = 0 but \mu \mathrm{a} \geq 0) the system (2.2) becomes

(2.5) \partial Im(z) + \partial Im+2(z) + \mu \mathrm{t}(z)Im+1(z) = 0, m \not =  - 1.

The system (2.5) has been studied first in [2] and shown that an integrating operator can be
found to reduce it to (2.3). We briefly describe the explicit construction of the integrating
factor introduced in [12] and its convolution form in [32] to be used in our reconstruction
algorithms below. For brevity assume that \mu \mathrm{a} and \mu \mathrm{s} are extended by zero outside the domain.

For (x, \xi ) \in \BbbR 2 \times S1, let \bfitD [\mu \mathrm{t}](x, \xi ) =
\int \infty 
0 \mu \mathrm{t}(x+ t\xi ) dt be the divergent beam transform,

\bfitR [\mu \mathrm{t}](s, \xi ) =
\int \infty 
 - \infty \mu \mathrm{t}(s\xi + t\xi \bot ) dt be the Radon transform, and \bfitH [f ](s) = 1

\pi p.v.
\int \infty 
 - \infty 

f(t)
s - t dt

be the Hilbert transform, where \xi \bot \in S1 denotes the counterclockwise rotation of \xi by \pi /2.
Let us define

(2.6) h[\mu \mathrm{t}](x, \xi ) = \bfitD [\mu \mathrm{t}](x, \xi ) - 
1

2
(I  - i\bfitH )\bfitR [\mu \mathrm{t}](x \cdot \xi \bot , \xi \bot ),
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where \bfitH \bfitR [\mu \mathrm{t}](x \cdot \xi \bot , \xi \bot ) = \bfitH [\bfitR [\mu \mathrm{t}](\cdot , \xi \bot )](x \cdot \xi \bot ) = 1
\pi p.v.

\int \infty 
 - \infty 

\bfitR [\mu \mathrm{t}](t,\xi \bot )
x\cdot \xi \bot  - t

dt. While there are

many possible such integrating factors to reduce the system (2.5) to (2.3), the key feature of
the construction in [12] is the fact that all the negative modes of \theta \mapsto \rightarrow h[\mu \mathrm{t}](x, \xi (\theta )) (and thus
of e\pm h) vanish, as shown in [6, 12, 26]. Let \{ \alpha k(x) ; k \in \BbbZ \geq 0 \} and \{ \beta k(x) ; k \in \BbbZ \geq 0 \} be the
corresponding sequences of the Fourier modes,

(2.7) e - h[\mu \mathrm{t}](x,\xi ) =
\infty \sum 
k=0

\alpha k(x)e
ik\theta , eh[\mu \mathrm{t}](x,\xi ) =

\infty \sum 
k=0

\beta k(x)e
ik\theta .

Then, as shown in [32, Lemma 4.1], if

(2.8) Jm =

\infty \sum 
k=0

\alpha kIm+k, m \geq 0,

where \{ Im \} is a solution to (2.5), then \{ Jm \} is a solution of (2.3), and conversely, if

(2.9) Im =

\infty \sum 
k=0

\beta kJm+k,

where \{ Jm \} solves (2.3), then \{ Im \} is a solution of (2.5). Moreover, the Cauchy problem
for (2.3) (and thus for (2.5)) has at most one solution.

3. Reconstruction in the presence of scattering. We consider now the scattering case,
when the scattering kernel p is of polynomial type in the angular variable, i.e.,

p(z, cos \theta ) =

M\sum 
m= - M

pm(z)eim\theta = p0(z) + 2

M\sum 
m=1

pm(z) cos(m\theta ),

where M is the degree of the polynomial. We stress that no smallness is assumed on the
Fourier modes pm for m = 0, . . . ,M .

In this case the transport equation (1.1a) reduces to the system

\partial I
(M)
 - 1 + \partial I

(M)
1 + \mu \mathrm{t}I

(M)
0 = 2\pi \mu \mathrm{s}p0I

(M)
0 + q,(3.1a)

\partial I(M)
m + \partial I

(M)
m+2 + \mu \mathrm{t}I

(M)
m+1 = 2\pi \mu \mathrm{s}pm+1I

(M)
m+1, 0 \leq m \leq M  - 1,(3.1b)

\partial I(M)
m + \partial I

(M)
m+2 + \mu \mathrm{t}I

(M)
m+1 = 0, m \geq M.(3.1c)

The basic idea in the reconstruction starts from the observation that the system (3.1c)
is of the type (2.5). Therefore, via the integrating formulas (2.8) for m \geq M , the problem

reduces to finding \{ J (M)
m \} m\geq M a solution of the Cauchy problem for the elliptic system (2.3).

Moreover, from the data on the boundary (1.1b) and (1.2), we pose

I\mathrm{b}\mathrm{d}(\zeta , \xi ) =

\Biggl\{ 
0, (\zeta , \xi ) \in \Gamma  - ;

I\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e}(\zeta , \xi ), (\zeta , \xi ) \in \Gamma +,
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and we can recover for each m \geq M

I(M)
m (\zeta ) =

1

2\pi 

\int 2\pi 

0
I\mathrm{b}\mathrm{d}
\bigl( 
\zeta , \xi (\theta )

\bigr) 
eim\theta d\theta , \zeta \in \partial D,

and by using (2.8) we find the boundary data

J (M)
m

\bigm| \bigm| 
\partial D

=

\infty \sum 
k=0

\alpha kIk+m

\bigm| \bigm| 
\partial D

, m \geq M.

Next we use the Cauchy-like integral formula (2.4) to recover the interior values
\{ Jm(z) ; z \in D \} form \geq M . Finally, we use (2.9) to recover the interior values \{ Im(z) ; z \in D \} ,

I(M)
m

\bigm| \bigm| 
\partial D

=

\infty \sum 
k=0

\beta kJk+m

\bigm| \bigm| 
\partial D

m \geq M.

Recursively and in decreasing order starting with the index m = M - 1 to m = 0, we solve
the elliptic problems (3.1b) as follows. By applying \partial to (3.1b), we are lead to solving

\bigtriangleup I(M)
m = 4\partial 

\Bigl\{ 
 - \partial I

(M)
m+2 + (2\pi \mu \mathrm{s}pm+1  - \mu \mathrm{t})I

(M)
m+1

\Bigr\} 
in D,(3.2a)

while on the boundary

I(M)
m (\zeta ) =

1

2\pi 

\int 2\pi 

0
I\mathrm{b}\mathrm{d}
\bigl( 
\zeta , \xi (\theta )

\bigr) 
eim\theta d\theta , \zeta \in \partial D,(3.2b)

for 0 \leq m \leq M  - 1. This is the boundary value problem of the Poisson equation in D. Since

I
(M)
M \in H1(D) the right-hand side of (3.2a) lies in H - 1(D). Since the trace at the boundary is

in H1/2(\partial D) the unique solution I
(M)
M - 1 \in H1(D), and thus the regularity requirement needed

to carry the argument to the next index down is satisfied. Recursively, we recovered I
(M)
M - 1,

I
(M)
M - 2, . . . , and I

(M)
0 in D.

Finally, since I
(M)
 - 1 = I

(M)
1 , from the recovered I

(M)
1 and I

(M)
0 , we can now use (3.1a) to

reconstruct the unknown source q in D.

Remark 3.1. In general, the scattering kernel p is not of polynomial type. An immediate
application of the well posedness of the forward problem in L2(D\times S1) gives an error estimate
in the measured outflow due to the approximation in the scattering kernel.

Proposition 3.2. Let \mu t, \mu s, p be such that the forward problem (1.1) has a unique solution
and let \~p be such that \int 

D\times S1

| p(x, \xi \cdot \xi \prime ) - \~p(x, \xi \cdot \xi \prime )| 2 d\sigma \xi dx \leq \epsilon 2

for some 0 < \epsilon < 1, and let \~I be the unique solution for (1.1) corresponding to \~p. Then,

(3.3)
\bigm\| \bigm\| \bigm\| I| \Gamma +  - \~I| \Gamma +

\bigm\| \bigm\| \bigm\| \leq C\epsilon ,

where C > 0 is a constant depending only on \mu t, \mu s, p, and the domain.
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Proof. It is easy to see that the differences of the two corresponding solutions h = I  - \~I
satisfy

\xi \cdot \nabla xh+ \mu \mathrm{t}h = \mu \mathrm{s}

\int 
S1

\~ph d\sigma \xi \prime + \mu \mathrm{s}

\int 
S1

(\~p - p)I d\sigma \xi \prime ,

h
\bigm| \bigm| 
\Gamma  - 

= 0.

By interpreting the last term as a source and using the classical estimates in the forward
model (see, e.g., [36, Theorem 2.1]), we obtain

\bigm\| \bigm\| \bigm\| I| \Gamma +  - \~I| \Gamma +

\bigm\| \bigm\| \bigm\| 
L2(\Gamma +)

\leq sup
D

\mu \mathrm{s}

\bigm\| \bigm\| \bigm\| \bigm\| \int 
D\times S1

| (\~p - p)I| d\sigma \xi \prime dx
\bigm\| \bigm\| \bigm\| \bigm\| 

\leq sup
D

\mu \mathrm{s} \| I\| L2(D\times S1) \| p - \~p\| L2(D\times S1) \leq C\epsilon .

For the two dimensional Henyey--Greenstein kernel (1.3), with 0 \leq g < 1, considered in
the numerical simulations

p(\xi \cdot \xi \prime ) = 1

2\pi 

1 - g2

1 - 2g\xi \cdot \xi \prime + g2
=

1

2\pi 

\Biggl( \sum 
m\in \BbbZ 

g| m| eim\theta 

\Biggr) 

and its Mth order truncation

(3.4) p(M)(\xi \cdot \xi \prime ) = 1

2\pi 

\left(  \sum 
| m| \leq M

g| m| eim\theta 

\right)  ,

one obtains a refined estimate in terms of the anisotropic parameter g. Namely,\int 
D\times S1

| p(\xi \cdot \xi \prime ) - p(M)(\xi \cdot \xi \prime )| 2d\sigma \xi dx = \pi 

\int 
S1

| p(\xi \cdot \xi \prime ) - p(M)(\xi \cdot \xi \prime )| 2d\sigma \xi 

=

\infty \sum 
m=M+1

g2m =
g2M+2

1 - g2
,

where the second last equality uses Parseval's identity.
For a given level of noise, a sufficiently large choice of M yields that the difference (3.3)

between the exact data and the hypothetical data (which would be obtained had the scattering
been of polynomial type) falls under the noise level. Therefore our reconstruction produces
a source for which the corresponding boundary data is indistinguishable from the exact data
within the level of noise. This is the most we can hope to reconstruct. It is worth noting
that, for the scattering kernels of polynomial type, the method above does produce the exact
solution in a stable manner, as shown by the authors in [14, Corollary 6.1].
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4. Numerical implementations.

4.1. Evaluation of the Hilbert transform. An accurate calculation of the Hilbert trans-
form is one of the crucial steps in our algorithm. This transform appears in computing the
integrating factor in (2.6) and its Fourier modes in the angular variable (2.7). In order to
perform a reliable numerical integration we need to properly account for the presence of the
singularity in the kernel. The next simple lemma is key to our numerical treatment of the
Hilbert transform.

Lemma 4.1. Suppose that f \in C1
0 (\BbbR ) and supp f \subset [a, b]. Then

p.v.

\int \infty 

 - \infty 

f(t)

s - t
dt =

\left\{                           

 - 
\int b

a
g(s, t) dt+ f(s) log

s - a

b - s
, s \in (a, b);\int b

a

f(t)

s - t
dt, s /\in [a, b];\int b

a
ga(t) dt, s = a;\int b

a
gb(t) dt, s = b,

where g, ga, gb are bounded and continuous functions defined by

g(s, t) =

\left\{   
f(s) - f(t)

s - t
, s \not = t;

f \prime (s), s = t,

ga(t) =

\left\{   
f(t)

a - t
, t > a;

0, t = a,

gb(t) =

\left\{   
f(t)

b - t
, t < b;

0, t = b.

It means that the integrals on the right-hand side are those in the sense of Riemann.

Proof. First, for s \in (a, b), then

p.v.

\int \infty 

 - \infty 

f(t)

s - t
dt = lim

\epsilon \downarrow 0

\biggl\{ 
 - 
\int s - \epsilon 

a

f(s) - f(t)

s - t
dt+

\int s - \epsilon 

a

f(s)

s - t
dt

 - 
\int b

s+\epsilon 

f(s) - f(t)

s - t
dt+

\int b

s+\epsilon 

f(s)

s - t
dt

\biggr\} 
,

since f \in C1 the function g(s, t) is bounded continuous function on \BbbR 2, and thus the calculation
is followed by

=  - 
\int b

a
g(s, t) dt+ f(s) lim

\epsilon \downarrow 0

\biggl\{ \int s - \epsilon 

a

dt

s - t
+

\int b

s+\epsilon 

dt

s - t

\biggr\} 
= f(s) log

s - a

b - s
 - 
\int b

a
g(s, t) dt.
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Second, for s /\in [a, b], the integrand of the transform f(s)
s - t is regular as a function of t \in [a, b].

Finally, for s = a, then

p.v.

\int \infty 

 - \infty 

f(t)

a - t
dt = lim

\epsilon \downarrow 0

\biggl( \int a - \epsilon 

 - \infty 

f(t)

a - t
dt+

\int \infty 

a+\epsilon 

f(t)

a - t
dt

\biggr) 
= lim

\epsilon \downarrow 0

\int \infty 

a+\epsilon 

f(t)

a - t
dt,

since f(t) \equiv 0 for t < a  - \epsilon . By virtue of f \in C1 and f(a) = f \prime (a) = 0, ga is bounded
and continuous on the interval t \geq a. Similar consideration works for the case s = b, which
completes the proof.

Another choice of nonzero interval of f may give a different expression. For example, if
we adopt [a\prime , b\prime ] \supset [a, b], then

p.v.

\int \infty 

 - \infty 

f(t)

s - t
dt = f(s) log

s - a\prime 

b\prime  - s
 - 
\int b\prime 

a\prime 
g(s, t) dt.

It is easily seen by calculation that both expressions are equivalent. Therefore we can theoret-
ically choose any nonzero interval to evaluate the Hilbert transform as the Riemann integral
of bounded and continuous functions.

For the case of a < s < b, we split the interval at s in numerical computation:

p.v.

\int \infty 

 - \infty 

f(t)

s - t
dt = f(s) log

s - a

b - s
 - 
\int s

a
g(s, t) dt - 

\int b

s
g(s, t) dt,

because g(s, t) may not be smooth on t = s. It is also convenient to employ the midpoint rule
in order to avoid implementation of f \prime appeared in g.

4.2. Computation of Cauchy-type integral formula. Assume that \partial D has a param-
eterization \zeta (\omega ), 0 \leq \omega < 2\pi , and D contains the origin for simplicity. Suppose that
0 = \omega 0 < \omega 1 < \cdot \cdot \cdot < \omega K - 1 < \omega K = 2\pi . Take \zeta k \in \partial D with Arg \zeta k \in [\omega k, \omega k+1), where
Arg \zeta \in [0, 2\pi ) is the argument of \zeta \in \BbbC . Let us consider the discretization of the complex
integral of an integrable function f(\zeta ) =

\sum K - 1
k=0 fk\Psi k(\zeta ) on \partial D, which is\int 

\partial D
f(\zeta ) d\zeta =

\int 2\pi 

0
f
\bigl( 
\zeta (\omega )

\bigr) 
\zeta \prime (\omega ) d\omega =

K - 1\sum 
k=0

fk

\int 2\pi 

0
\Psi k \circ \zeta (\omega )\zeta \prime (\omega ) d\omega .

We consider two examples as \Psi k. If \Psi k \circ \zeta is the characteristic function of the interval
[\omega k, \omega k+1], then the integral is approximated by

(4.1)

\int 
\partial D

f(\zeta ) d\zeta =
K - 1\sum 
k=0

fk

\int \omega k+1

\omega k

\zeta \prime (\omega ) d\omega \approx 
K - 1\sum 
k=0

fk\zeta 
\prime 
k(\omega k+1  - \omega k),

where \zeta \prime k is the derivative at a certain point in the interval [\omega k, \omega k+1). On the other hand, if
one can choose \Psi k \circ \zeta to be the continuous and piecewise-linear function with \Psi k \circ \zeta (\omega \ell ) = \delta k\ell 
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(Kronecker's delta) and \omega k = Arg \zeta k, then the trapezoidal rule gives an approximation as\int 
\partial D

f(\zeta ) d\zeta =
K - 1\sum 
k=0

fk

\int \omega k+1

\omega k - 1

\Psi k

\bigl( 
\zeta (\omega )

\bigr) 
\zeta \prime (\omega ) d\omega \approx 

K - 1\sum 
k=0

fk\zeta 
\prime 
k

Arg \zeta k+1  - Arg \zeta k - 1

2
,

where \zeta \prime k = \zeta \prime (\omega k), \zeta  - 1 = \zeta K - 1  - 2\pi and \zeta K = \zeta 0 + 2\pi by virtue of the periodicity.
For the purpose of numerical computation, we express the integral in the second term on

the right-hand side of (2.4) as

1

2\pi i

\int 
\partial D

\biggl( 
d\zeta 

\zeta  - z
 - d\zeta 

\zeta  - z

\biggr) 
F (\zeta ) =

1

\pi 

\int 2\pi 

0
Im

\biggl( 
\zeta \prime (\omega )

\zeta (\omega ) - z

\biggr) 
F
\bigl( 
\zeta (\omega )

\bigr) 
d\omega 

with F being the series in (2.4).

4.3. Proposed algorithm. In this subsection, we present the numerical algorithm for the
source reconstruction.

Suppose that \mu \mathrm{a}, \mu \mathrm{s}, and p on D are known. Assume that \partial D has a smooth parameteriza-
tion \zeta (\omega ), 0 \leq \omega < 2\pi . Without loss of generality, we can assume that the domain D contains
the origin. I\mathrm{b}\mathrm{d}(\zeta , \xi ) on \Gamma + are sampled at (\zeta k, \xi (\theta n)), where \zeta 0, . . . , \zeta K - 1 are K distinct points
on \partial D, and \theta n = 2\pi n/N . We assume that 0 \leq Arg \zeta 0 < Arg \zeta 1 < \cdot \cdot \cdot < Arg \zeta K - 1 < 2\pi .

Step 1. Fix positive integers M and S. The integer S should be chosen sufficiently
large, at least S \geq M + 3. Let \zeta \prime k = \zeta \prime (Arg \zeta k), 0 \leq k < K. Choose the segmentation
0 = \omega 0 < \omega 1 < \cdot \cdot \cdot < \omega K = 2\pi so that Arg \zeta k \in [\omega k, \omega k+1). From the periodicity we assert
that \omega j+K = \omega j + 2\pi , j \in \BbbZ . We introduce an inscribed polygonal domain Dh \approx D and take
a triangulation \scrT = \{ \tau \ell \} of Dh, i.e., each \tau \ell is a triangular domain, \tau \ell \cap \tau k = \emptyset if \ell \not = k,
and Dh =

\bigcup 
\ell \tau \ell . Let P1(\scrT ) denote the set of the piecewise linear continuous functions with

respect to \scrT . We denote by V the set of vertices of \scrT .

Step 2. Compute

\alpha s,k =
1

N

N - 1\sum 
n=0

exp
\Bigl( 
 - h[\mu \mathrm{t}](\zeta k, \xi (\theta n))

\Bigr) 
e - is\theta n

and

\beta s,\ell =
1

N

N - 1\sum 
n=0

exp
\Bigl( 
h[\mu \mathrm{t}](z\ell , \xi (\theta n))

\Bigr) 
e - is\theta n

for 0 \leq s \leq S, 0 \leq k < K, and z\ell \in V . The function h[\mu \mathrm{t}] is evaluated by the use of the
midpoint rule as stated so far.

Step 3. Compute

\scrI m,k =
1

N

N - 1\sum 
n=0

I\mathrm{b}\mathrm{d}
\bigl( 
\zeta k, \xi (\theta n)

\bigr) 
eim\theta n

for 0 \leq m \leq S and 0 \leq k < K.
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Step 4. Compute

\scrJ m,k =
\sum 

0\leq s,s+m\leq S

\alpha s,k\scrI s+m,k

for M \leq m \leq S and 0 \leq k < K.

Step 5. Compute \scrJ m(z\ell ) for M \leq m \leq S  - 2 and z\ell \in V \cap D, where

(4.2) \scrJ m(z) =
1

2\pi i

K - 1\sum 
k=0

\zeta \prime k
\zeta k  - z

\scrJ m,k\Delta \omega k

+
1

\pi 

K - 1\sum 
k=0

\biggl\{ 
Im

\biggl( 
\zeta \prime k

\zeta k  - z

\biggr) \biggr\} \left\{   \sum 
m+2\leq m+2j\leq S

\scrJ m+2j,k

\Biggl( 
\zeta k  - z

\zeta k  - z

\Biggr) j
\right\}   \Delta \omega k

with \Delta \omega k = \omega k+1 - \omega k, implied by (4.1). We can change it to \Delta \omega k = (Arg \zeta k+1 - Arg \zeta k - 1)/2
if the piecewise-linear approximation to Jm

\bigm| \bigm| 
D

is valid.

Step 6. Compute \scrJ m(\zeta \ell ) for M \leq m \leq S and \zeta \ell \in V \cap \partial D by interpolating
\{ \scrJ m,k ; 0 \leq k < K \} obtained in Step 4.

Step 7. For z\ell \in V , compute

\scrI M (z\ell ) =
\sum 

0\leq s,s+M\leq S - 2

\beta s,\ell \scrJ s+M (z\ell )

and

\scrI M+1(z\ell ) =
\sum 

0\leq s,s+M+1\leq S - 2

\beta s,\ell \scrJ s+M+1(z\ell ).

Step 8. For m = M+1,M, . . . , 1, 0 (in descending order), find a piecewise linear continu-
ous function \scrI m| \partial D =

\sum 
a\ell \varphi \ell by interpolating \{ \scrI m,k ; 0 \leq k < K \} obtained in Step 3, where

\varphi \ell is a periodic and piecewise linear continuous function on \partial D with \varphi \ell (vk) = \delta \ell k (Kronecker's
delta), vk \in V \cap \partial D. A more detailed example follows the algorithm description.

Step 9. For m = M  - 1,M  - 2, . . . , 1, 0 (in descending order), find an approximation
\scrI m \in P1(\scrT ) to Im \in H1(D) by solving the Dirichlet problem of the Poisson equation (3.2)
with the standard P1 finite element method [11]. The variational formulation for (3.2) is
approximated as follows: Find \scrI m \in P1(\scrT ) with (3.2b) to satisfy

 - 
\int 
Dh

\nabla \scrI m \cdot \nabla \varphi dx = 4

\int 
Dh

\partial \{  - \partial \scrI m+2 + (2\pi \mu \mathrm{s}pm  - \mu \mathrm{t})\scrI m+1\} \varphi dx

=  - 4
\sum 
\tau \in \scrT 

\int 
\tau 
\{  - \partial \scrI m+2 + (2\pi \mu \mathrm{s}pm  - \mu \mathrm{t})\scrI m+1\} \partial \varphi dx

for any \varphi \in P1(\scrT ) with \varphi | V \cap \partial Dh
= 0.

First for m = M  - 1, Steps 7 and 8 give \scrI M+1 and \scrI M on the right-hand side at z\ell \in V ,
which leads the interpretation \scrI M+1, \scrI M \in P1(\scrT ). Particularly, if \scrI M+1(x) = a\ell x1+ b\ell x2+ c\ell 
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on a triangle \tau \ell , then \partial \scrI M+1| \tau \ell = (a\ell  - ib\ell )/2. Similarly for the test function \varphi \in \scrP 1(\scrT ),
we can find \partial \varphi . The integration on the right-hand side can be evaluated by a Gauss-type
numerical integration [11] on each triangle \tau . Then we can obtain \scrI m - 1 \in P1(\scrT ) by solving
the linear system.

For m = M  - 2,M  - 3, . . . , 1, 0, we can find approximations \scrI m \in P1(\scrT ) similarly.

Step 10. For each triangle \tau \ell \in \scrT , let \scrI 1| \tau \ell = a\ell x1 + b\ell x2 + c\ell . Then reconstruction of
q| \tau \ell is given by (3.1a) as

q\ell = Re(a\ell ) + Im(b\ell ) +
\bigl\{ 
\mu \mathrm{t}(z\ell ) - 2\pi \mu \mathrm{s}(z\ell )p0(z\ell )

\bigr\} 
Re
\bigl( 
\scrI 0(z\ell )

\bigr) 
.

This ends the algorithm.

In Step 8, there may be a mismatch between the measurement points on the boundary
and vertices of the triangulation for reconstruction. We solve this mismatch by interpolating
the data on formers. Below we detail an example.

Let us assume that
\sum 

k \scrI m,k\chi k gives an interpolation of \{ \scrI m,k ; 0 \leq k < K \} , where \chi k is
square integrable on \partial D. Then a1, . . . , aL can be determined as its best approximation in the
sense of least square

min
a1,...,aL

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
\ell 

a\ell \varphi \ell  - 
\sum 
k

\scrI m,k\chi k

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\partial D)

.

It is clear that there exists a unique minimizer. In particular, if the D is the unit circle and
the measurement points \zeta k are equispaced, then the minimizer satisfies the system of linear
equations

2\pi 

L

\left(       
2
3

1
6 0 \cdot \cdot \cdot 1

6
1
6

2
3

1
6 \cdot \cdot \cdot 0

. . .
. . .

. . .

0 \cdot \cdot \cdot 1
6

2
3

1
6

1
6 0 \cdot \cdot \cdot 1

6
2
3

\right)       

\left(       
a1
a2
...

aL - 1

aL

\right)       =

\left(       
b1
b2
...

bL - 1

bL

\right)       ,

where

b\ell =
\sum 
k

\scrI m,k

\int 2\pi 

0
\chi k(\theta )\varphi \ell (\theta ) d\theta .

Hence the boundary value is given by \scrI m(v\ell ) = a\ell . The similar strategy is applicable for
Step 6.

4.4. A locally optimal truncation criterion. We give a criteria on the choice of M . In
the proposed algorithm, \scrI 0 is obtained in complex values. On the other hand, the exact value
of the zeroth Fourier mode I0 is real-valued since I is so. Therefore the imaginary part of
\scrI 0 comes as errors in reconstruction. It is reasonable to consider that the errors in the real
and the imaginary part interact with each other. This observation leads a choice of M to
minimize the imaginary part of I0, which is expected to reduce the error in the real part
efficiently. Based on this consideration, we call M optimal which attains a local minimum of
the imaginary part

(4.3) E\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{g} =

\Biggl\{ \sum 
\tau \in \scrT 

\bigm| \bigm| \tau \ell \bigm| \bigm| \bigl\{ \mu \mathrm{t}(z\ell ) - 2\pi \mu \mathrm{s}(z\ell )p0(z\ell )
\bigr\} 2\bigl( 

Im \scrI 0(z\ell )
\bigr) 2\Biggr\} 1/2

,
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where | \tau \ell | is the area of \tau \ell and
\bigl\{ 
\mu \mathrm{t}(z\ell ) - 2\pi \mu \mathrm{s}(z\ell )p0(z\ell )

\bigr\} 
Im \scrI 0(z\ell ) corresponds to the imaginary

part of reconstructed q on \tau \ell . In order to obtain an optimal M , we reconstruct the source
for several values of M , then choose a value which minimizes E\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{g}. We stress here that the
optimality indicator in (4.3) does not require knowledge of the unknown source.

5. Numerical experiments. In this section we demonstrate the numerical feasibility of
the proposed algorithm for two numerical examples. All computations are processed with
IEEE754 double precision arithmetic. In both numerical experiments, the measurement data
is generated by solving the forward problem (1.1) by the piecewise-constant upwind approxi-
mation [13]. Therefore it is natural to use the characteristic function as the interpolation basis
\Psi k in subsection 4.2 and \chi k in Step 8. The triangulation is generated by FreeFem++ [15].

The scattering coefficient is \mu \mathrm{s} \equiv 5. Physically, It means that the particle scatters on
average every 1/5 unit of length. Given that D is the unit disc, particles scatter on average
10 times before getting out. We use the two dimensional version of the Henyey--Greenstein
scattering kernel in (1.3)

p(\xi \cdot \xi \prime ) = 1

2\pi 

1 - g2

1 - 2g\xi \cdot \xi \prime + g2

with the anisotropy parameter g = 1/2. This choice is halfway between the ballistic g = 1
and isotropic g = 0 case. The Fourier expansion of the scattering kernel in (3.4)

1

2\pi 

1 - g2

1 - 2g cos \theta + g2
=

1

2\pi 

\Biggl( \sum 
m\in \BbbZ 

g| m| eim\theta 

\Biggr) 
yields the simple form of the modes pm = gm/2\pi for all m \geq 0.

In the discretization of the boundary, we adopt S = 128, while for the midpoint rule in
the computations of the integral transforms, we use 100 sampling points.

Experiment 5.1 (see [14]). Let

R = ( - 0.25, 0.5)\times ( - 0.15, 0.15),

B1 = \{ (x1, x2) ; (x1  - 0.5)2 + x22 < 0.32 \} ,

B2 =

\left\{   (x1, x2) ; (x1 + 0.25)2 +

\Biggl( 
x2  - 

\surd 
3

4

\Biggr) 2

< 0.22

\right\}   
be the rectangular, respectively, circular subsets of D as shown in Figure 1.

The source, to be reconstructed, is

(5.1) q(x) =

\left\{     
2 in R;

1 in B2;

0 otherwise.

The absorption coefficient \mu \mathrm{a}(x) is given by

\mu \mathrm{a}(x) =

\left\{     
2 in B1;

1 in B2;

0.1 otherwise.
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D

R

B1

B2

Figure 1. Locations of inclusions in numerical examples. The medium is relatively strongly absorbing inside
the dotted balls, while the source q(x) is located in the gray regions.

ζ=(1,0)
×

2I(ζ,
ξ)

arg ξ

Figure 2. Boundary data I\mathrm{b}\mathrm{d}(\zeta , \xi ) on \partial D \times S1, obtained by the numerical computation of the forward
problem in the unit disc (in grey). For \zeta \in \partial D (indicated by \times ), the red curve is \{ \zeta + 2I(\zeta , \xi )\xi ; \xi \in S1 \} (on
the left). The right figure is a magnification of the curve at \zeta = (1, 0).

To generate the measurement data I\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e} in (1.2), which is the outflow on \Gamma +, we solve
the forward problem using the numerical method in [13] with a triangular mesh of 5,542,718
triangles and 360 equispaced velocity intervals to describe the velocity directions. We disregard
the value I(x, \xi ) of the solution for x \in D and only keep the boundary values. The obtained
data with (1.1b) is depicted in Figure 2. In this figure, for x \in \partial D indicated by cross symbols
(\times ), the graph of

\bigl( 
I(\zeta , \xi ), \xi 

\bigr) 
, \xi \in S1, is shown by a red (closed) curve in the polar coordinate

with the center at each \zeta . In other words, the red curve is the graph of \{ \zeta + 2I(\zeta , \xi )\xi ; \xi \in S1 \} 
for \zeta \in \partial D indicated by the cross symbols. By the assumption of no incoming radiation, i.e.,
I| \Gamma  - = 0, the red curve never appears inside | x| < 1 indicated by gray in this expression.

To better exhibit the effect of scattering, in the second representation of the data I
\bigm| \bigm| 
\Gamma +

in Figure 3 we use the same coordinates as those used in a classical sinogram for the Radon
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\xi \bot 

O

\zeta 
\zeta \cdot \xi \bot 

0 π/� π 3π/� 2π
-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

arg ξ�

ζ⋅ξ�

 0
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 0.2
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 0.35

Figure 3. Left: Projection of the measurement data I\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e} on \Gamma +. The red arrows, I(\zeta , \xi ) with \xi = (1, 0),
are projected to the plane with Arg \xi \bot = \pi /2. Right: Projection of I\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e} on \Gamma + corresponding to Figure 2.
The horizontal axis is the argument of the projection plane, and the vertical axis is the distance from the
projected origin.

transform data. More precisely, the horizontal axis is the argument of the projection plane with
direction \xi \bot , while the vertical axis is the distance from the projected origin. In the absence
of scattering, p = 0, this representation would be exactly the sinogram for the attenuated
Radon transform data. Note in Figure 3 how the scattering had combined and smeared out
the features from the three locations of the source.

To avoid an inverse crime, the triangulation used in the reconstruction is different from
that in the forward problem. In particular the reconstruction mesh consists of 6,998 triangles
with 5,400 vertices (much less than the 5,542,718 triangles used in the forward problem) and
is generated without any information of the location of the subsets R, B1, and B2. The com-
putational time for reconstruction with M = 6 is 340 seconds on Xeon E5-2650 v4 (2.2GHz,
12 cores) with OpenMP. Almost all computational time is occupied by the computation of the
discrete Fourier transform of e - h and eh in Step 2, and the boundary integral (4.2) in Step 5,
as 117 seconds, 79 seconds, and 141 seconds, respectively.

The reconstructed q(x) withM = 6 is shown in Figure 4. Its cross sections along the dotted
diameters x2 =  - 

\surd 
3x1 and x2 = 0, passing through the origin and the center of B2 and R,

respectively, are depicted in Figure 5. The reconstructed q(x) shows a quantitative agreement
with the exact source in (5.1). Similar to the x-ray and attenuated X-ray tomography, the
artifacts appear due to the co-normal singularities in the source but also in the attenuation.

Figure 6 shows the relation between M , errors in the corresponding imaginary part (4.3)
(computed independent of q), and pseudoerrors (this requires knowledge of q) in the recon-
structed q defined by

(5.2)

\left\{   \sum 
\tau \ell : q \mathrm{i}\mathrm{s} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{o}\mathrm{u}\mathrm{s}

| \tau \ell | | q(z\ell ) - q\ell | 2
\right\}   

1/2

,

where | \tau \ell | is the area of \tau \ell , z\ell is the center of the triangle \tau \ell , and the summation runs over
the triangles where q is continuous (in particular, constant in the example). From the figures,
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Figure 4. Reconstructed source with M = 6.
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Figure 5. Section of the reconstructed source along the dotted lines in Figure 4, | x2 +
\surd 
3x1| < 0.05 (on

the left) and | x2| < 0.05 (on the right), respectively. The arrow on the right figure indicate \partial B1 where the
scattering coefficient is discontinuous.

the error in the imaginary part scaled on the right axis is sufficiently smaller the pseudoerror
scaled on the left axis. Both errors take minimum aroundM = 5 and increase after that. More
precisely, the error of the imaginary part (4.3) is minimum at M = 6, while the pseudoerror
of reconstructed q is minimum at M = 3. According to the criteria stated before, we adopt
M = 6, which causes | pM | < 2.49\times 10 - 3 in the setting.

Experiment 5.2. Let us consider the situation that \mu \mathrm{a} is given by the modified Shepp--
Logan phantom [37], which occupies the ellipse

D =

\biggl\{ 
(x1, x2) ;

x21
a2

+
x22
b2

< 1

\biggr\} 
, a = 0.69, b = 0.92.
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Figure 6. The truncation parameter M and pseudoerrors in reconstructed source (+, left axis) and corre-
sponding imaginary part (\times , right axis) in Experiment 1.

R

Q1
Q2

Figure 7. Discontinuous interface of \mu a (solid curves) in the Shepp--Logan phantom and the locations of
support of the source q (gray).

We consider three disjoint domains in D (Figure 7),

Q1 = \{ (x1 + 0.4)2 + x22 < 0.12 \} ,
Q2 = \{ (x1  - 0.22)2 + x22 < 0.052 \} ,
R = \{  - 0.2 < x1 < 0.2, - 0.705 < x2 <  - 0.505 \} ,

and the internal source is given by

q(x) =

\left\{     
2 in Q1 \cup Q2;

1 in R;

0 otherwise.

The boundary measurement is generated by solving the forward problem with 1,554,282
triangles and 360 velocity directions, and is shown in Figure 8. The numbers of measurement
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Figure 8. Boundary data I\mathrm{b}\mathrm{d} on \partial D\times S1 is shown by red curves, and the ellipse domain D is filled by gray
(on the left), projection of measurement data I\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{e} on \Gamma + (on the right).
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Figure 9. Numerical reconstruction of the source q(x) (real part) on D with M = 8 in Experiment 2.

points are K = 3,000 on \partial D, and N = 360 on S1. On the contrary, the reconstruction mesh
consists of 6,010 triangles with 3,106 vertices. Similarly as in the previous experiment, the
latter mesh is generated without any information of \mu \mathrm{a} and q. The boundary nodes on the
ellipse generated by FreeFem++ are not equispaced with respect to their angles.

Figure 9 depicts the reconstructed q(x) on D with M = 8, while Figure 10 is its sections
on the dotted lines. The computational time for reconstruction with M = 8 is 247 seconds
on Xeon E5-2650 v4 (2.2GHz, 12 cores) with OpenMP. From the results, the support of q is
clearly and quantitatively reconstructed, while the profile of \mu \mathrm{a} does not appear.

The pseudoerrors in the reconstructed source and the errors of the corresponding imagi-
nary part are shown in Figure 11. Our proposed optimality criterion yields to choose M = 8
and M = 40 as reasonable orders of truncation.
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Figure 10. Cross sections of the reconstructed source q(x) with M = 8 on the dotted lines in Figure 9,
| x2| < 0.01 (on left) and | x2 + 0.605| < 0.01 (on right).
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Figure 11. The truncation parameter M and pseudoerrors in reconstructed source (+, left axis) and
corresponding imaginary part (\times , right axis).

Figure 12 shows sections of the reconstructed q(x) with M = 40 on the dotted lines in
Figure 9. Although the value of (4.3) at M = 40 is smaller than that at M = 8, the peak of
the source in Q2 is not obtained well with M = 40. The possible reason for this fact is that
the size of Q2 is small relative to the size of the triangular mesh, yielding that the discrete
L2-norm used in computing the pseudoerror in (5.2) be less effective.

In general, the choice of an optimal truncation parameter M is not clear. However,
our algorithm includes an optimality criterion which is independent of the knowledge of the
source, thus making it feasible. The numerical experiments based on this choice were shown
to produce accurate reconstructions.

D
ow

nl
oa

de
d 

04
/0

1/
20

 to
 1

40
.7

8.
10

7.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

554 H. FUJIWARA, K. SADIQ, AND A. TAMASAN

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

q
(x

)

x1

along x2=0.000
exact

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

q
(x

)

x1

along x2=-0.605
exact

Figure 12. Cross sections of the reconstructed source q(x) with M = 40 on the dotted lines in Figure 9,
| x2| < 0.01 (on left) and | x2 + 0.605| < 0.01 (on right).
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