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Let I be an ideal whose symbolic Rees algebra is Noetherian. For m > 1, the m-th

symbolic defect, sdefect (I, m), of I is defined to be the minimal number of generators

of the module II(m> We prove that sdefect(I, m) is eventually quasi-polynomial as

a function in m. We compute the symbolic defect explicitly for certain monomial
ideals arising from graphs, termed cover ideals. We go on to give a formula for
the Waldschmidt constant, an asymptotic invariant measuring the growth of the
degrees of generators of symbolic powers, for ideals whose symbolic Rees algebra is
Noetherian.
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1. Introduction

Let R be a commutative Noetherian ring, and let I C R be an ideal. The power of I form a descending

chain of ideals

I>DrPo>ro...

which has been the subject of much study.

The generators of the powers of I are not difficult to explicitly compute. Indeed, I™ is generated by all

products of n elements taken among a generating set for I. However, the primary decomposition of the

powers of I is much more difficult to compute. Even in the case that I = p is a non-maximal prime ideal,
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p™ accrues new embedded associated primes. With this in mind, one might be interested in studying in
particular those primary components of I™ whose associated primes are also associated primes of I. The
symbolic powers of I are a construction which captures this information.

Definitions 1.1. The n-th symbolic power of I is

™= () (ynR)

peAss(I)

Under this definition, the primary decomposition of 1™ consists of all components of the primary de-
composition of I"™ whose associated primes are also associated primes of I. In particular, if p is prime, then
p(™ is the p—primary component of p”. Much like the ordinary powers of I, the symbolic powers of I form
a descending chain of ideals:

[:_)[(2):_)[(3):_)...

Further motivation for the study of symbolic powers comes from algebraic geometry. In the case that R
is a polynomial ring and [ is a radical ideal, the symbolic power has geometric meaning. Indeed, the results
of Zariski and Nagata in [22] and [16] show that the n-th symbolic power of I consists of all polynomials
which vanish to order at most n — 1 on the variety of I.

Studying the relationship between ordinary and symbolic powers of an ideal gives rise to a number of
interesting problem. From the definition it is clear that I™ C I("™). The opposite containment, however, does
not hold in general. Much effort has been invested into determining for which values of r the containment
I(") C I'™ holds. An overview of this topic, often called the containment problem, can be found in articles
like [12], [6], in the survey paper [19], and in [4].

While the containment problem is the most-explored line of inquiry into the relationship between symbolic
and ordinary powers, there are other avenues to investigate this relationship. One such method is to study the
module 7("™) /I™. This module is relatively unexplored: Herzog in [9] studies the module using homological
methods when [ is a prime ideal of height two in a three-dimensional local Noetherian ring. Arsie and Vatne
study the Hilbert function of 1™ /I"™ in [1], giving examples for ideals of coordinates of planes and set
of points in P™. More recently, in [8] Galetto, Geramita, Shin, and Van Tuyl have studied this module by
defining the m-th symbolic defect,

7(m)
sdefect(I,m) := p ( I ) ,

the number of minimal generators of I /I™. The symbolic defect measures how different ("™ is from
I™ in counting the number of generators which must be added to I" in order to make I(™. For instance,
the equality 1™ = I is equivalent to sdefect(I,m) = 0. In studying symbolic defect, there are many
interesting questions which arise. For instance:

1. For which ideals is sdefect(I, m) bounded as a function of m?
2. For which ideals does sdefect(I,m) =t for given m,t € N?
3. How does sdefect(I,m) grow as m grows to infinity?

In [8], the first two questions are analyzed for the defining ideal of a general set of points in P? or a set
of points forming a star configuration. Interesting results about the symbolic defect of edge ideals of graphs
can also be found in the recent work [14]. In this paper, we concern ourselves primarily with the asymptotic
behavior of the symbolic defect: with the question of how sdefect(I, m) grows as m goes to infinity.
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Another asymptotic invariant for the study of the containment problem for an ideal I C R is the
Waldschimdt constant, defined as

J(m)
a(r) = tim 2
m—o0 m
where «(I) = min{deg f | f € I}. This constant was introduced by Waldschmidt in [21]. Recently the
Waldschimdt constant has been connected to the containment problem by a result of Bocci and Harbourne
([4] Theorem 1.2). They use it to find a lower bound for the resurgence of an ideal I, which is defined as

p(D) = sup{= 1) ¢ I},

The Waldschimdt constant of squarefree monomial ideals can be computed as the optimum value of a linear
optimization problem as shown in [3].

In this paper, we study asymptotic invariants pertaining to the symbolic powers of I in the case where
I is an ideal with Noetherian symbolic Rees algebra. A notable class of ideals having this property are
monomial ideals [11]. In particular, we focus on the growth of sdefect(I,m), first by considering the case
when [ is an ideal in a Noetherial local or graded-local ring, and then specializing to the case in which I is
the cover ideal of a graph. In addition, we give a formula for the Waldschimdt constant &(1).

We now describe our main results and the structure of this paper. In Section 2, we prove in Theorem 2.4
that, when [ is an ideal with Noetherian symbolic Rees algebra, sdefect(I, m) is eventually quasi-polynomial
as a function of m.

In Section 3, we prove that the Waldschmidt constant of an ideal can be computed by considering only
the first few terms of the sequence (%) as long as I has Notherian symbolic Rees algebra. In

m

eN
particular, we prove in Theorem 3.6 that the Waldschimdt constant is equal to

I(m)
&(I) = minmen 2

where n is the highest degree of a generator of the symbolic Rees algebra of I.

In Section 4, we consider the cover ideal J(G) of a graph G. Cover ideals are generated by monomials
corresponding to vertex covers of graphs and they form an interesting family of squarefree monomial ideals.
Their structure has been studied in the recent years due to the relationships between their algebraic and
combinatorial properties. We provide all relevant definitions, but for an introductory text about cover and
edge ideals we refer to [20]. In [11] it is shown that the symbolic Rees algebra of cover ideals of graphs is
generated in degree at most two; this fact allows to easily compute their Waldschimdt constant, applying our
result of Section 3. After some preliminary description of vertex covers, we describe in Theorem 4.8 a family
of graphs achieving arbitrarily large symbolic defects and successively we recall a known characterization of
the graphs having sdefect(J(G),2) = 1.

In Section 5, we state, in Theorem 5.5, a recursive formula which computes the symbolic defect of cover
ideals of a class of graphs having sdefect(J(G),2) =1 and we give a criterion to compute the degree as
a quasi-polynomial of this family of graphs. As applications we compute symbolic defect of complete and
cyclic graphs.

Throughout this paper, for all the standard notations we refer to classical commutative algebra books
such as [2] and [7] and for theory of monomial ideals in polynomial rings we refer to the book [10]. For an
introductory text about cover and edge ideals we refer to [20].
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2. Asymptotic behavior of the symbolic defect

We start by considering the growth of sdefect(l,m) when I is an ideal (or homogeneous ideal) in a
Noetherian local (or graded-local) ring R.

Definition 2.1. A quasi-polynomial in Q is a function f : N — Q such that for some n € N there exist
rational polynomials fo,... f,—1 having the property that for all m € N, f(m) = f,(m) whenever m = r
mod n. The value n is called a quasi-period of f.

Definition 2.2. The Rees algebra of an ideal I is defined to be the graded ring
R(I) =P I't' C R[t]
i=0
and the symbolic Rees algebra of I is defined to be
R,(I) =@ 19t C Rt]
i=0

where ¢ is an indeterminate tracking the grading in the graded families of the powers and symbolic powers
of I, respectively.

We recall the useful fact that the property of a function being eventually quasi-polynomial can be read
off its generating function.

Lemma 2.3. [17, 4.4.1] If a numerical function ¢ : N — Z has generating function

for some dy,da,...,ds € N, and some polynomial q(z) € Z[z], then ¢(n) = Q(n) for n sufficiently large,
where Q(n) is a quasi-polynomial with quasi-period given by the least common multiple of dy, ..., d.

One of our main results is that sdefect(I, m) grows quasi-polynomially in m if the symbolic Rees algebra
of I, Rs(I) is a Noetherian ring.

Theorem 2.4. Let R be a Noetherian local or graded-local ring with mazimal (or homogeneous mazximal) ideal
m and residue field R/m = K. Let I be an ideal (or homogeneous ideal) of R such that Rs(I) is a Noetherian
ring, and let dy,...,ds be the degrees of the generators of Rs(I) as an R-algebra. Then sdefect(I,m) is
eventually a quasi-polynomial in m with quasi-period d = lem(dy, ..., ds).

Proof. We first note that for each m € N,

J(m)
O—>Im—>I(m)—>I—m—>0

is an exact sequence of R-modules. Taking direct sums, this gives a short exact sequence of R(I)-modules

0— R(I) — R;(I) — C(I) — 0
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where
</ 1m)
I) = — |t
o S}_}( )

Tensoring with R(I) = R(I)/mR(I) gives the exact sequence

0— K — R(I) — R,(I) — C(I) — 0

of R(I)-modules where

and

c(I) = é <%) .

m=0

In particular, each strand of the above sequence is of the form

m I(m) 7(m)
0— K,y — —

e Y (YR § TRy ) S

where K, = (I"™ NmI™)/mI™.
Let hz(p)(z) be the Hilbert series for C(I). We note that hey(2) = > sdefect(l,m)z™ since, by

m=0
Nakayama’s Lemma,
) 7(m) 7(m)
dlmK (7]771 +m[(m)) =l <_Im ) .

Furthermore,

har)(2) = hg; 1) (2) + hi (2) = by (2)

where hg- () (2), hi(2), and hgp)(2) are the Hilbert series of R,(I), K, and R(I) respectively.

Since R(I) is a Noetherian K-algebra generated in degree 1 and K is a homogeneous ideal of this ring,
hg(r) and hy are rational functions of z with denominators which are powers of (1 — z). Since Ry(I) is
a Noetherian ring, it follows that hp () is a rational function with denominator given by [T, (1 — z%),
where di,da, ..., ds are the degrees of the generators of I25(I) as a Noetherian K-algebra. Thus hg () (2) is
a rational function on z, and Lemma 2.3 show both that sdefect(I,m) is quasi-polynomial in m and that
the quasi-period d is given by lem(dy,...,ds). O

We note that, in particular, Theorem 2.4 holds for monomial ideals. Sections 4 and 5 of this paper are
dedicated to sharpening the results in Theorem 2.4 in the case of monomial ideals arising from vertex covers
of graphs.
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3. Computing the Waldschmidt constant

In this section we prove a decomposition for the symbolic powers of an ideal I having Noetherian symbolic
Rees algebra and we give an useful application. In order to do this, we use information about the relationships
between different symbolic powers of I captured in the symbolic Rees algebra. In particular, when R,([) is
Noetherian, its maximum generating degree can be used to understand the structure of 1™, as shown in
the following lemma.

Lemma 3.1. Let R be a N-graded Noetherian ring, and let I C R be a homogeneous ideal such that Rs(I) is
generated in degree at most n. Then

Jm) — pm ;@) pm=2) 4 (n)(m—n)

for all m > n.

Proof. Since the symbolic powers of I form a graded family of ideals, we have that
107 o g (@ pm=2) 4y () plm=n)

As the symbolic Rees algebra is generated in degree at most n, Rs(I) = R[I,I®¢?,... I(™t"]. Therefore
we have that

7m — Z I (I@yiz . (TM)yin,
11+2i0+...4+ni,=m

Thus
1 c g (@ pm=2) . () pim=n) 4
Decompositions of symbolic powers of ideals along the lines of Lemma 3.1 offer a method to computing
the Waldschmidt constant of ideals with finitely generated symbolic Rees algebra in terms of the initial
degrees of finitely many symbolic powers.
Definition 3.2. Given an ideal I in a N-graded ring R, we define
a(l) =min{deg f| f €I, f #0}.

Definition 3.3. Given an ideal I, the Waldschmidt constant, &(I), is defined by

For many details about Waldschmidt constant of squarefree monomial ideals see the paper [3]. The
resurgence of an ideal is another constant related to the containment problem.

Definition 3.4. Given an ideal I, its the resurgence, p(I), is defined by

p(1) = sup { 210 ¢ 17}
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The resurgence p(I) can be bounded below using the Waldschmidt constant. In particular

=

(I
(I

~—

p(I) =

jo3

~—

(see [4] Theorem 1.2).

Lemma 3.5. Let I be a homogeneous ideal such that Ry(I) is generated in degree at most n. For each
i€ {l,...,n}, let a; := a(IW). Then

arm + (ag — 2a1)ys + - -+ + (@, — nag)yn

a(l) = lim
m—00 m
where ya, ..., Y, are positive integers minimizing cym + (ag — 2a1)ye + - - - + (@, — nay )y, with respect to

the constraint 2ys + 3ys + - - - + ny, < m.
Proof. Since R,(I) = R[I,I¢?,... 1M™1"], we have that

7m) — Z (I@)v2(I®yws ... ([ )yn =22 ==y
2y2+3ys+-+nyn<m

Thus
a1y = min o (@)= (@) . (100)p =220 ) 295 4 8y 4oy <,
and setting a; = a(I")) this gives
o(1™) = min {om + (0 — 200 )y + -+ (an —non )y |20 + 3ys . ..ny < m}. O
We proceed to give a formula for the Waldschmidt constant in terms of finitely many symbolic powers.

Theorem 3.6. Let I be a homogeneous ideal such that Rs(I) is generated in degree at most n. Then

a([(m))
—

&(I) = ming,<n,
Proof. By Lemma 3.5, a(I™)) is the minimum value of

arm + (042 — 20&1)2/2 + -+ (an - nal)yn

subject to the condition 2ys + 3y3 + - - - + ny, < m, where a; = a(I?)). Equivalently, assuming that n!|m
and setting z; := iy;, we see that a(I(™)) is the minimum value of

oy — 20 oy — N
a1m+7( 2 1)22++Mzn (31)
2 n
subject to zo + 23 + - -+ + 2z, < m, and for each i, z; is a multiple of i. Let ¢ € {2,...,n} such that “e—=**
is minimal. Then
g — 20 oy — N L p——
a1m+(241)22+-~+("—1)zn2ma1+204121-. (3.2)
2 n c

=2



B. Drabkin, L. Guerrieri / Journal of Pure and Applied Algebra 224 (2020) 300-319 307

Since I' C I we have a; — io; < 0 for all i. Thus Equation (3.2) is minimized when z3 + - -+ + z,, = m.
Hence

n
Q. — ca Q. — ca
maoq + Z 67121- > maoq + mcil.
c c
=2
Thus, when n!lm, (3.1) is minimized at z. = m and z; = 0 for i # ¢ with a value of ™. Therefore
a(Im) e
i A 2 g
m—0o0 m Cc

We note that, in particular, Theorem 3.6 holds for monomial ideals.
4. Cover ideals and sdefect(Z, 2)

In Theorem 2.4 we found that sdefect(I, m) eventually grows quasi-polynomially when Rg(I) is Noethe-
rian. However, this theorem does not give significant insight into the actual computation of the symbolic
defect. In this section, we turn our attention to a specific class of ideals for which the symbolic defect has
combinatorial meaning: cover ideals of graphs. After defining cover ideals and recalling a few foundational
results, we turn our attention to the computation of sdefect(7,2). In Theorem 4.8 we construct a family
of cover ideals achieving arbitrarily large sdefect(7,2), and in Theorem 4.9, we describe the class of cover
ideals where sdefect(l,2) = 1.

In the following R = K[z1,...,x,] where K is a field.

Definition 4.1. Let G be a graph with vertex set {z1,...,z,} and edge set E. The cover ideal of G is defined
to be

J(@G):= () (zi,7) CR

{ziz;}€E

For m > 1, we say that a monomial g € R is an m-cover of G if for every edge {z;,z;} € E, there exists
one monomial of the form h;; = xf:rg with @ 4+ b > m such that h;; divides g.

The generators of J(G) are the monomials which correspond to the vertex 1-covers of G. For any m € N,
we see that

J@&M = (@z)"

{z’i 7z.i}€E

is generated by the monomials which correspond to vertex m-covers of G and J(G)™ is generated by the
monomials which correspond to vertex m-covers which decompose into the product of m vertex 1-covers.
We say that a vertex m-cover is minimal if it is not divisible by any other different vertex m-cover. Thus,
in the context of cover ideals, sdefect(J(G), m) counts the number of minimal vertex m-covers of G which
cannot be decomposed as a product of m vertex 1-covers. We call such m-covers indecomposable.

Herzog, Hibi and Trung proved the next important result:

Theorem 4.2 ([11], Theorem 5.1). Let G be a graph and let I = J(G) be its cover ideal. Then, the symbolic
Rees algebra Rs(I) is generated in degree at most 2.

As a corollary to this result and Theorem 2.4, we have the following:
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Corollary 4.3. Let G be a graph and let I = J(G) be its cover ideal. Then sdefect(I,m) is eventually
quasi-polynomial with quasi-period at most 2.

As another consequence of Theorem 4.2 and of Theorem 3.6, we have the following information about
the Waldschmidt constant of cover ideals.

Corollary 4.4. Let I = J(QG) be the cover ideal of a graph G with n vertices. Then

Proof. By Theorem 4.2, R, (I) is generated in degree 2. Hence, Theorem 3.6 implies that &(I) =

2%. Now the first result follows, since I?) < ZQT(I) =a(l). O

min,, < 5

We recall the very well known definition of bipartite graph.

Definition 4.5. A graph G = (V| E) is bipartite if there is a partition V = V; U V5 on the vertex set, such
that V1 NV, = 0 and for any edge {z;,z;} of G, z; € V1 and z; € V5.

The following theorem by Dupont and Villareal [5] characterizes the minimal indecomposable vertex
covers of bipartite graphs and the minimal indecomposable vertex 0,1 and 2-covers of non-bipartite graphs.
In the latter case, since Rs(I) is generated in degree 2, these vertex covers generate all the vertex m-covers
and therefore, in order to understand the symbolic defect of cover ideals, it is important to have a precise
overview of indecomposable vertex 2-covers. Given a graph G = (V, E), the set of neighbors of a vertex x;
is the set of vertices z; adjacent to z;, which means {x;,z;} is an edge of G. Given a set of vertices S C V'
in G, the induced subgraph on S is the graph with vertex set S, and edge set {{z,y} € E|x,y € S}.

Theorem 4.6 (/5], Theorem 1.7). Let f = z{* ... 28" € K[z1,...,2,].

(i) If G is bipartite, then f is an indecomposable minimal vertex m-cover of G if and only if m = 0 and
f=z; forsomel <i<norm=1and f =2z ...x; is such that ij_l is not a vertex 1-cover of G
for every i = j1,...,51. For m > 2, all the vertex m-covers of G are divisible by m vertex 1-covers.

(it) If G is non-bipartite, then the minimal indecomposable vertex 0,1 and 2-covers are of the form:

(a) (0-covers) m =0 and f = x; for some i,
(b) (1-covers) m =1 and f = xj, ...z is such that fx;l is not a vertex 1-cover of G for every
= g1 s
(c) (2-covers) m =2 and [ = x129- - xy, s the product of all the variables,
(d) (2-covers) m =2 and
fmalcalal ad m T,
is such that:
(1) each x;; is distinct,
(2) s+t+u=n,
(3) {xi - xi .} is the set of neighbors of {x;,,...,x;, } in G,
(4) 9 =xi ., - -xi,, is not a vertex cover of G, and u # 0,
(5) the induced subgraph on {x; . .,...,%i ..} has no isolated vertices and is not bipartite.

An important consequence for the theory of cover ideals of graph is the following result which is also a
corollary of work by Sullivant in [18]:
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Corollary 4.7. Let G be a bipartite graph, and let I = J(G). Then sdefect(I,m) =0 for all m € N.

Proof. As @ is bipartite, by Theorem 4.6(i), the graph G does not have indecomposable m-covers for m > 1.
Thus sdefect(I,m) =0. O

In contrast to this fact, we show that in general the symbolic defect of a cover ideal can be arbitrarily
large. In particular we describe now a family of graphs such that sdefect(J(G),2) grows as the number of
vertices of the graph grows.

Let for n € N, let T, be the graph on vertices {x1, za, 23, y1,...,Ys} such that the induced subgraph on
{x1,29,23} is C3 (the odd cycle of length three), the induced subgraph on {yi,...,yn} is a path of length
n — 1, and x3 is adjacent to y;. In the case of n = 3, this graph is pictured below:

Theorem 4.8. For all n > 5, sdefect(J(T},),2) = sdefect(J(T,,—1),2) + u(J(Pn_4)?) where P; is the path of
length i.

Proof. Let C' = z§'z52x3°y0 y5% - yP» be a minimal indecomposable vertex 2-cover of T),. Since every
non-bipartite induced subgraph of T,, contains the vertices x1,x2,x3, by Theorem 4.6(ii.5), we have that
ay = ay = agz = 1. Thus, by is nonzero. If by = 1, then by > 0. Consider
O =2 s 2y Y5’ -y

We claim that C’ is an indecomposable vertex 2-cover of T;,_1. Suppose that b; = 2 for some 4. Then, as C
is a minimal indecomposable vertex 2-cover for T}, we know that either b;_1 = 0 or b;;.1 = 0. Thus, either
Yi_2 Or y; has exponent equal to zero in C’, thus C” is a vertex 2-cover of T;,_1.

On the other hand, if b = 2, then by Theorem 4.6(ii) we know that by = 0 and b3 = 2. The vertices
Y4, - - -, Yn form the path of length n — 4, that is P,_4, and yZ“ -~y is a vertex 2-cover of this path. Thus,
we see that

sdefect(J(T},),2) > sdefect(J(Tp_1),2) + u(J(Pn_4)?).

n—1

To show the other inequality, let G = z1z2x3y]" - - - yfl_'l be an indecomposable 2-cover for T,,_1. Then
C = m120w3y1ys' -+ yn" ' is a vertex 2-cover for T,,. Moreover, we note that the set {y|y? divides C} is
exactly the set of neighbors of {y|y does not divide C'}. Thus, again by Theorem 4.6, we see that C' is an
indecomposable 2-cover of T,.

Let D = yff“ ---ydn be a minimal 2-cover of P,_4. We claim that H = T17223y3ySy3 D is an indecom-
posable 2-cover for T),. Certainly H is a 2-cover of T,. As {y|y? divides C} is exactly the set of neighbors
of {y|y does not divide C'} and H is divisible by xjz2x3, we see that H is indeed indecomposable by

Theorem 4.6. O

Last theorem shows that a graph having some vertex “very far” from an odd cycle can have very large
symbolic defect. Conversely, if every vertex is close to an odd cycle the symbolic defect is going to be
reasonably small. It is interesting to characterize which graphs have cover ideal I with sdefect(l,2) = 1.
This characterization has been done in [11] (Proposition 5.3) using the language of symbolic Rees algebras.



310 B. Drabkin, L. Guerrieri / Journal of Pure and Applied Algebra 224 (2020) 300-319

Our proof is different from the proof presented in [11] and use our terminology introduced above, thus we
include it below.

Recall that a graph is not bipartite if and only if it contains an odd cycle, which means that there is an
odd integer [ > 3 and [ vertices x;,, ¥;,, ..., such that for 1 < j <1, {zy;, s, , } are edges and {z;,, 74, }
is an edge.

Theorem 4.9. Let G be a graph with n vertices and let I = J(G). Then sdefect(I,2) = 1 if and only if G is
non-bipartite and every verter in G is adjacent to every odd cycle in G.

Proof. First assume sdefect(7,2) = 1. Hence G is not bipartite by Corollary 4.7 and hence there is at least an
odd cycle contained in G. Assume by way of contradiction that one vertex x; of G is not adjacent to the odd
cycle and let x;,,...,z;, be the vertices of G adjacent to z;. Clearly F' = z1x5 - - -z, is an indecomposable
vertex 2-cover by Theorem 4.6(ii), but in this case, by the same characterization of vertex 2-covers of graph,
we also have that Fa; 'z, ---x; is an indecomposable vertex 2-cover and hence sdefect(7,2) > 2.

Conversely, assume G is non-bipartite and every vertex in G is adjacent to every odd cycle in G and
let f=a{---2% € I® \ I? be an indecomposable minimal vertex 2-cover. The set {z; : a; = 1} is not
bipartite again by Theorem 4.6(ii), hence the induced graph on this set contains an odd cycle. Since any
vertex of the graph is adjacent to this odd cycle, then a; # 0 for every ¢ = 1,...,n. But this also implies
a; # 2 for every i since f is a minimal vertex 2-cover. Hence f = F and sdefect(I,2) =1. O

Remark 4.10. From the proof of Theorem 4.9 it is clear that when sdefect(,2) = 1 where I = J(G),
the unique generator of II(—? is F = z1@o...2,. Hence, for m > 3, using the decomposition of I(™) given
in Lemma 3.1 together with the fact that the symbolic Rees algebra R,(I) is generated in degree 2 (see
Theorem 4.2), we obtain

I(m) _ (F)I(m—Q) 4+ Im,

A consequence of Remark 4.10 is a lower bound on the resurgence of the cover ideal of this kind of graphs.
Such a bound is interesting when the degree of F' is strictly smaller than 2«(I), where a(I) is the minimal
degree of an element of 1.

Corollary 4.11. Let I = J(G) be the cover ideal of a graph G with n vertices such that sdefect(I,2) = 1.
Then

20‘75[) if 2 <a(l)
p(I)Z{ 1 z‘f%QZa(I).

Proof. By Remark 4.10, since the degree of F' = x1x5 ...z, is n and F is the unique generator of %, we
get a(I®) = min{n,2a(I)}. Hence the result follows from Definition 3.4 and Corollary 4.4. 0O

5. Cover ideals and the growth of symbolic defect

We now turn our attention to a more direct computation of the symbolic defect of cover ideals. Since
cover ideals have Noetherian symbolic Rees algebra, we know that their symbolic defects are given by
eventually quasi-polynomial functions. In this section we will directly study these quasi-polynomials for the
cover ideals of certain types of graphs. In Theorem 5.5 we give an explicit recursive formula for computing
this quasi-polynomial for a class of graphs satisfying sdefect(J(G),2) = 1. In Proposition 5.8 we apply this
recursive formula to establish a method for computing the degree of this quasi-polynomial for the same class
of graphs.
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Using the same notation as before, for a graph G on n vertices, we set F = x1---x, and I = J(G) =
(915---,9¢)- Since by Remark 4.10, (™) = (F)I(m=2) 4 ™ the possible elements of 1™ /I™ are images of
elements of the form F¥g; ---g; for some integers k, s such that m = 2k + s. It is possible to find an exact
formula for the symbolic defect in the case in which all the elements of this form are not in the ordinary
power ™. For this reason we give the following definition:

Definition 5.1. Let G be a graph of n vertices and I = J(G) be its cover ideal. Assume I = (g1,...,g:) and
sdefect(I,2) = 1 and let F = zy---x,. We say that G satisfies the Indecomposability Property if for any
integers k > 1 and s > 0, the monomial

Fkgil i, ¢ 12k+s.

The following lemma describes some graphs satisfying Indecomposability Property. Anyway, a combina-
torial interpretation of this property and a characterization of graphs fulfilling it are actually unknown.

Lemma 5.2. Let I = J(G) C R =Kz ... 2y be the cover ideal of a graph G. Assume sdefect(I,2) =1 and
let F =x1---xy,. Then G satisfies the Indecomposability Property if at least one of the following conditions
1s satisfied:

1. T=(q1,.-.,9t), deg F < 2a(I) and degg; = a(I) for everyi=1,...,c.

2. 1=1(g1,---,Gt,h1,...,hs) is generated in two different degrees deg g; = a1 < ag = deghy for all i,l and
deg F' < a1 + az. Moreover there exists j € {1,...,n} such that the variable x; divides g; for every i
but it does not divide h; for every l.

3. I=1(g1,---,9t,h1,...,hs) is generated in two different degrees degg; = a1 < ag = deghy for all i,l.
Moreover deg F' < oy + o, there are c indices ji, ..., jc, such that the variables x;,,...,x; divide Iy
for every l and do not divide g; for every i and as — a1 < c.

Proof. 1) The claim follows since deg F*g;, - -- g;. < (2k + s)a(I).
2) Take an element of the form

q:Fkgil"'gislhil"'h

G5

It follows that x?“l divides g but there is not bigger power of z; dividing ¢. By way of contradiction
suppose ¢ € 1%t Hence ¢ is divisible by at most k + s; generators of the form g; and by at least k + so
generators of the form h;. Hence there are two integers a, b such that a < k+s1,b > k+s2 and a+b = 2k+s
and ¢ is divisible by a generators of the form g; and by b generators of the form h;. Then,

degq = kdeg F + s1a1 + saap < (k + s1)a1 + (K + s2)az,

but there exists an integer ¢ > 0 such that (k + s1)a1 + (k4 s2)ag = (a4 ¢)ay + (b — ¢)az and hence, since
o < (g,

degg < (k+ s1)a1 + (k+ s2)as < acy + bas < degq

and this is a contradiction for what assumed on a and b.
3) As in the proof of (2), take

q=F"gi, - gi, hi, - hi

ED
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Let X :=mxy, - - - x1,. Thus X*¥52 divides ¢ and no bigger power of X divides it. Now, assuming by way of
contradiction ¢ € I?**% we get that ¢ is divisible by at least k + s; generators of the form g; and by at
most k + so generators of the form h;. As before there are two integers a, b such that a < k+s1, b > k + s9,
a+b =2k + s and m is divisible by a generators of the form g; and by b generators of the form h;.

Hence there exists an integer d > 0 such that k +s; = a —d and k + so = b+ d and we can write
deg g = aa + bay + w with w > de since we need to have X**52 dividing ¢. It follows that

degg = kdeg F + s1a1 + saas < (k+ s1)ag + (k + s2)as = aay + bag + d(ag — a1) < degq

since s — a1 < ¢ and this is a contradiction. O

We can give examples of graphs satisfying each one of the conditions of Lemma 5.2. Recall that a graph
is complete is for every two distinct vertices x;,x;, the pair {x;,x;} is an edge. We denote the complete
graph with n vertices by K,. A graph is a cycle with n vertices x1,xa, ..., x, if its edges are of the form
{z;,x;41} modulo n (i.e. also {x,,z1} is an edge). We denote the cycle with n vertices by C,,. Every cyclic
graph with an even number of vertices is bipartite.

Later complete graphs and the cycles Cs, Cs, C7 will be shown to satisfy condition 1 of Lemma 5.2. The
following graph satisfies condition 2 of Lemma 5.2.

Similarly, any graph consisting of 3-cycles all joined at a single vertex satisfies the same condition. The

following graph satisfies condition 3 of Lemma 5.2:

Remark 5.3. Not every graph satisfies the Indecomposability Property. For instance consider the graph
G = (V, E), pictured below.
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The cover ideal of this graph is

I= (91792793794) = ($1$2$3,$1$2y3,$1$3y27$2$3y1)

and we observe that, since F' = x1x2x3y1Yy2y3 has degree 6, the ideal I does not satisfy any of the conditions
of Lemma 5.2. Moreover we see that Fig; = gagzgs € I°.

We now concern ourselves with the computation of the symbolic defect for graphs satisfying the Inde-
composability Property. First we need a preliminary Lemma.

Lemma 5.4. Let I = J(G) C R = K|x1,...,2,] be a cover ideal of a graph, G, on n vertices and let
f eKlzy,...,x,] be such that

5T e 10

i#a,b

for alla,be {1,...,n}. Then f € 1™,

Proof. Suppose f = x{'x3> ---x% ¢ ™). Then there exists an edge {zs,z;} such that a, + a; < m. But
then fI[, .., i & (xs,2¢)™, and thus f][, .,z ¢ ™. g

Theorem 5.5. Let I = J(G) C R = Klzy...x,] where G is a graph such that sdefect(I,2) = 1 and let
F =ux-- x,. Assume that the graph G satisfies the Indecomposability Property.
Let v(I,m) be the number of minimal generators of I"™ which are not divisible by F'. Then for m > 3,

sdefect(I, m) = sdefect(I,m — 2) + v(I,m — 2).

Proof. By Remark 4.10 and by assuming sdefect(I,2) = 1, we have ™ = (F)I(™=2) 4 ™. Then the
minimal elements of (") \ I are of the form F¥g; ---g;. where g; are minimal generators of I and

s

m = 2k + s. Conversely, since the graph G satisfies the Indecomposability Property, any such monomial is
I¢ 2)

in (™) \ I"™. Hence, for g such that g is a minimal generator of I::—;, we have that Fg is in 1™ \ 1.

The module I("™) /T™ is generated by the images of the minimal generators of (F)I("™~2) which are either
generators of (F)(1(™=2)/I"™=2) or images of generators of (F)I™~2. It follows that sdefect(I,m) is equal
to sdefect(I,m — 2) plus the number of minimal generator of (F)I™~2 which are not already multiples of
Fg for some g € 1(m=2)\ "2,

By dividing F on both sides, we have that the last number coincides with the number of minimal

I"™=2 which are not multiple of any element of 71(™=2) \ I™~2 and we will show that this

generator of
number is v(I,m — 2). Let f be a minimal generator of I™~2. If f ¢ (F), then f is not a multiple of an

element of 1(™=2)\ I™~2 since we showed, in Remark 4.10, that 1(m=2)\ ["=2 C (F).
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On the other hand, assume f € (F). Then f = Fh for some h € R. Since Fh € I"™ 2, we know
Fh € (z,,2;)™ 2 for all x,,z; where {z,,z;} is an edge of G. Thus —-£-h € (x,,z;)™ * and so h € (™~

TsTt

by Lemma 5.4.
Then f € FI™= % and so by Remark 4.10, we get

fe @I = ()=t + (FHI 0 . (1) E

where J* = R for m even and J* = [ for m odd. Notice now that the minimal generators of all the
summands of the previous equation are contained in 1(™=2) \ I"~2 (since F ¢ I?). Therefore f is divisible
by some element in 7(™~2)\ ["™~2_ This proves the formula and the theorem. 0O

Remark 5.6. Let I be the cover ideal of the graph described in Remark 5.3. The reader will be able to check
that in this case, for m > 3, sdefect(I,m) is less than how much is predicted by the formula of Theorem 5.5.

In the simple case of complete graphs it is possible to apply Theorem 5.5 in order to find the explicit value
of the symbolic defect. We observe that, as stated in Corollary 4.3, the symbolic defect is a quasipolynomial
in m of quasi-period two.

Theorem 5.7. Let K, be the complete graph with n vertices and let I be its cover ideal. Call F' = x122 -+ - Ty, .
Then

nk+1 ifm=2k+2
Sdefe“([’m):{ nk  ifm=2k+1

and hence it grows as a linear quasipolynomial in m.

Proof. Observe that I = (g1,...,9,) where g; = Fx;!. Clearly by Theorem 4.9, sdefect(7,2) = 1, and,
since I satisfies condition 1 of Lemma 5.2, the graph satisfies the Indecomposability Property.

Since F' divides g;g; for ¢ # j, the minimal generators of I which are not divisible by F' are

m.o m m
919923 9n -

It follows that v(I,m) = n for every m > 1 and therefore the formula follows from Theorem 5.5. O

In other cases of graphs with sdefect(J(G),2) = 1 and satisfying the Indecomposability Property, it is
possible to establish how fast the symbolic defect is growing (i.e. its degree as a quasipolynomial in m)
simply looking at the generators of the cover ideal. To obtain this, we need some further result about the
degree in m of the quantity v(I,m). We recall that for an ideal I C R = Klzy...z,], the number of
generators of the power pu(I™) grows as a polynomial in m for m > 0. This is clear since the fiber cone of T
is a standard-graded Noetherian K-algebra and thus its Hilbert function is eventually given by a polynomial
(see [15, Theorem 13.2]). We call the degree of this polynomial the degree of p(I™).

In Proposition 5.8 we relate the degree in m of v(I,m) with the degree of pu(I™). In Proposition 5.9 we
recall how to compute p(I™) in the case in which the generators of I are algebraically independent over the
base field k. We will need this fact when discussing the symbolic defect of cyclic graphs.

Proposition 5.8. Let [ = J(G) C R = K[x1 ...x,] where G is a graph such that sdefect(I,2) = 1 and assume
that G satisfies Indecomposability Property.
Then for everyi=1,...,n we have

(58 ) < (585
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Moreover, take i such that u(”“ ) > M(H_T] ) for all j and let d be the degree of ,u((”‘” Bym) seen as a
polynomial in m for m > 0. Then for m > 0, sdefect(I,m) is a quasi-polynomial in m of degree d + 1.

Proof. Recall that from Remark 4.10, it follows that when the sdefect(,2) = 1, the unique generator of
2

% is F = x129 - x,. Hence v(I,m) is the number of minimal generators of I™ not divisible by at least

one variable. Since p(({1t%E +zé ©)™) is the number of minimal generators of I"™ not divisible by z;, we can see

easily the inequalities in (5.1). Now, assuming

H ;R =# .%‘jR

for all j, then ,u((IHJ Rym) and Zj 1 ,u((fo )™) have both degree d as polynomials in m.
The sequence {V(I m)}m>1 is bounded by a polynomial and it is non-decreasing since F' is not in the

set of minimal generators of I. Hence, it admits a (possibly infinite) limit as m grows to infinity. Therefore,
dividing both sides of (5.1) by m% and passing to the limit for m going to infinity, we can see that v(I,m)
is quasi-polynomial in m of degree d.

For a given m, let k = [”52]. By Theorem 5.5 we have

k
sdefect(I, m) Z v(I,2i+c)
=0

where ¢ = 0 if m is even and ¢ = 1 if m is odd (recall also that v(I,0) =1 and v(I,1) = u(I)). It follows

that sdefect(I,m) is quasi-polynomial in m of degree one more than the degree of v(I,m). O

Proposition 5.9. Let I = (g1,...,9s) be a squarefree monomial ideal in a polynomial ring over a field k.
Then:
1. The generators of I are algebraically independent over k if the matriz M;; = ggl} has maximal rank.

2. If the generators of I are algebraically independent over k, then

m+s—1
) =
urmy = ("7
s a polynomial in m of degree s — 1.

Proof. We note that 1 follows immediately from Jacobi’s criterion [13]. To prove 2, we first note that, since
g1, --.,gs are algebraically independent, ¢gi* --- g% = gll’1 .- gb if and only if a; = b; for 1 < i < 5. Thus
the number of minimal generators of I"™ is equal to the number of ways to distribute m objects between s
sets. Therefore

my_ (m+s—=1\ (m+s—1)---(m+1)
pl )_< s—1 )_ (s —1)!

which is a polynomial in m of degree s —1. O
Example 5.10. We consider the graph in the following picture. Its cover ideal is generated by
I = (21222475, T17374, T1T3T5, ToT3T4, T2T375)

and we observe that sdefect(I,2) = 1 and the graph satisfies condition 2 of Lemma .2. Hence the symbolic
defect of this cover ideal can be computed using the formula of Theorem 5.5. Moreover,
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I+$1R I+Q?jR
pl——= ) >nu(—21=
l‘lR .ﬁjR

for all 7, and J := I;%R = (m2x3x4,:ﬂ2x3:ﬂ5)x%. Applying Proposition 5.9, we see that u(J™) = m + 1,
and thus by Proposition 5.8 the degree of sdefect(I,m) as quasipolynomial in m is 2.

In Theorem 5.13, we are going to use again Propositions 5.8 and 5.9 in order to compute an explicit
formula of sdefect(I,m) and its degree in m when I is the cover ideal of a cyclic graph.

Let C, be the n-cycle and let I be its cover ideal. Since an even cycle is a bipartite graph, it is enough
to consider n = 2k 4+ 1 to be an odd number. For every ¢ = 1,...,n the monomials

i = TiTit2Tit4 * Tiyn—1 mod n

are 1-vertex covers of (), and their degree is minimal among the degrees of the minimal generators of I.
Indeed, any other generator of I, if exists, has degree greater than a(I). We are going to see in Lemma 5.11,
that if n > 9, C, does not satisfy the Indecomposability Property, but later we will be anyway able to prove
an alternative recursive formula for its symbolic defect.

Lemma 5.11. Let n = 2k+1 and let C,, be the n-cycle. Let I be the cover ideal of C,, and call F = x1x2 - - Ty,
Assume G is a minimal generators of I such that degG > «(I). Then:

1. There exists a minimal generator H of I and a positive even integer s < n such that deg H = deg G — 1
and

-1 -1 -1
G=Hrjo; [ TjoTi g Tjr 1 Tjs.
2. FG € I}. In particular FG is equal to the product of three minimal generators of I.

Proof. 1) All the generators of I of degree a(I) are of the form ¢; = ;%1214 - Titn—1 mod n, as
mentioned in the paragraph above. Hence, if we assume deg G > «(I), we have that there are two different
monomials z;x;41 and x4, dividing G, with i +1 < j. We can also assume without loss of generality
that, for every i + 1 < h < j, zp divides G if and only if z;_; and z,4; do not divide G. Clearly,
since G is a minimal 1-cover of C,,, x;12 and x;_; do not divide G. Thus, we have a sequence of indices
i+1,i+2,143,...,5—2,j —1, j such that the variables z;11,iy3,...,T;-3,%; divide G and all the others
in the sequence do not divide G. It follows that j — i is an odd number, otherwise we would have two
consecutive variables xpxp11 not dividing G and this is impossible since {h, h + 1} is an edge of C,,. Hence
the monomial

P L | R
H=Gr wipom; 5" T 1T

is a well defined 1-cover of (), and deg H = deg G — 1. This proves item 1 taking s = j — 4.
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2) We claim that
-1 -1 -1
FG=FHrjr; [ Tj40T; g T o 1Tj+s = Hgjgjrsp
and hence FG € I®. Indeed, this is equivalent to prove

-1 -1 -1
9iGjts+1 = PG5 Tjp0l g Tyl 1 Tjps
But this follows since, in the case j is odd, j + s + 1 is even and by definition

gj = TjTj42T 544 TnT2Xyg - Tj—3Tj—1

and

Gj+s+1 = Tj4s41Lj4s4+3 " " Lpn—-1L1L3 " " Tj4s—2Lj4s

and hence in the products, all the variables with odd index between j and j 4+ s appear twice and all the
variables with even index in the same interval do not appear. If j is even, the situation is reversed and the
result follows in the same way. O

Lemma 5.12. Let n = 2k+1 and let C,, be the n-cycle. Let I be the cover ideal of C,, and call F = x129 - - T, .
For m > 2, take q = F"fy --- f, where f; are minimal generators of I and m = 2h + s.

Then, q € 1™ \ I"™ if and only if deg f; = a(I) for every i. Moreover, all the monomials generating
I /™ are of this form.

Proof. A cyclic graph of odd order has sdefect(7,2) = 1 by Theorem 4.9. Hence, by Remark 4.10, we have
I0m) = (F)I(m=2) 4 "™ and the possible minimal generators of (™ /I™ are all of the form q = F"f,--- f,
described in the statement above. It is clear that ¢ € I(™). By item 2 of Lemma 5.11, if some f; has degree
greater than a(I), we note that F'f; is a product of three minimal generators of I, and thus we can rewrite
q as a product of F"~! and s + 2 minimal generators of I. Iterating this process as far as we can, we find
two possibilities for g, either:

i)g=F*f1--- fp with 2a + b = m and deg f; = a(I) for every i = 1,...,b, or

ii) g=Ff1--- fp with b+ 2 = m and there exists at least one f; such that deg f; > «(I).

In the first case, since deg ' =n < n+ 1 = 2a(I), we have

degg=adeg F+ba(l) < (2a +b)a(l) = a(I™)

and therefore ¢ ¢ I™.
In the second case, assuming deg fi > «(I), we have again by item 2 of Lemma 5.11, ¢ = hihohsfa... fp
with h; € I, and hence ¢ € I®*2 = ™. This proves the lemma. O

Theorem 5.13. Let n = 2k + 1 and let C,, be the n-cycle. Let I be the cover ideal of C, and call F' =
T1To -+ Tp. Define I* = (g1,...,9n) where g; = T;TiyoTita - Titn—1 mod n and let v(I*,m) be the number
of minimal generators of (I*)™ which are not divisible by F. Then:

1. For m > 3, sdefect(I,m) = sdefect(I,m — 2) + v(I*,m — 2).
2. The degree of sdefect(I,m) as a quasipolynomial in m is k.
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Proof. 1) In the case n < 7, it is possible to observe that all the minimal generators of I have the same
degree, equal to k+1. Hence the graph satisfies the Indecomposability Property, because it satisfies condition
1 of Lemma 5.2. In this case, by definition I = I'* and thus the result follows applying Theorem 5.5.

Now suppose that n > 9. We proceed along the method use to prove Theorem 5.5. Let m > 2 and let
q e 1™ \ I"™ a minimal generator of I(m)/Im. By Lemma 5.12, ¢ = F"f;--- f, where f; are minimal
generators and of I, m = 2h+s and deg f; = a(I) for every i. Hence for such a monomial ¢ € 1(m=2)\ 12,
we have Fg € I(™) \ I"™, again by Lemma 5.12.

Thus we have that, as in the proof of Theorem 5.5, the symbolic defect sdefect(I,m) is equal to
sdefect(I,m — 2) plus the number of minimal generators of (F)(I*)™~2 which are not multiples of Fg
for some g € 1(m=2)\ ™2,

Again as in the proof of Theorem 5.5, we have that the last number coincides with the number of minimal
generators of (I*)™~2 which are not multlples of any element of 1("~2)\ I"™~2 and we can prove that this
number is v(I*,m — 2) and this proves the formula in this case, using the same argument.

2) Applying the proof of Proposition 5.8 to the ideal I*, we see that this fact is equivalent to showing

that LL((M) ) is a quasipolynomial of degree k — 1 for some variable x; which maximizes such degree.

I*erlR

The symmetry of the cyclic graphs tells us that ,u((I ) = (5

consider the ideal £~ +$1R = (f3,f5,- fn)-

Notice that pu(I*/ xl) = k and we want to conclude the proof applying item 2 of Proposition 5.9. In order

to do this, by item (i) of Proposition 5.9, we need to show that the matrix M = M,; = gg’ } has maximal

)™) for every i. Hence we just

rank.

The matrix M;; has k rows and n — 3 columns. Consider the maximal square submatrix H obtained
taking the columns 3,5,...,n—2,n—1 of M and let 3 < j < n — 2 an odd number. Then, by definition of
g; for i # 1 and odd, we have

dg;
81’j

= 0 <= z; does not divide g; <= j < 1.

It is also easy to see that % =0 for i # 1 odd and % # (0. Hence the matrix H is upper triangular
with non zero elements on the diagonal and hence the rank of M is maximal. O
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