
Journal of Pure and Applied Algebra 224 (2020) 300–319
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Asymptotic invariants of ideals with Noetherian symbolic 

Rees algebra and applications to cover ideals

Benjamin Drabkin a,∗, Lorenzo Guerrieri b,∗

a University of Nebraska–Lincoln, Lincoln, NE, United States of America
b Università di Catania, Dipartimento di Matematica e Informatica, Viale A. Doria, 6,
95125 Catania, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 February 2018
Received in revised form 18 
December 2018
Available online 8 May 2019
Communicated by T. Hibi

MSC:
13F20; 05C25

Keywords:
Symbolic powers
Symbolic defect
Waldschimdt constant
Monomial ideals
Cover ideals of graphs

Let I be an ideal whose symbolic Rees algebra is Noetherian. For m ≥ 1, the m-th 
symbolic defect, sdefect(I, m), of I is defined to be the minimal number of generators 
of the module I(m)

Im . We prove that sdefect(I, m) is eventually quasi-polynomial as 
a function in m. We compute the symbolic defect explicitly for certain monomial 
ideals arising from graphs, termed cover ideals. We go on to give a formula for 
the Waldschmidt constant, an asymptotic invariant measuring the growth of the 
degrees of generators of symbolic powers, for ideals whose symbolic Rees algebra is 
Noetherian.
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1. Introduction

Let R be a commutative Noetherian ring, and let I ⊆ R be an ideal. The power of I form a descending 
chain of ideals

I ⊇ I2 ⊇ I3 ⊇ · · ·

which has been the subject of much study.
The generators of the powers of I are not difficult to explicitly compute. Indeed, In is generated by all 

products of n elements taken among a generating set for I. However, the primary decomposition of the 
powers of I is much more difficult to compute. Even in the case that I = p is a non-maximal prime ideal, 
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pn accrues new embedded associated primes. With this in mind, one might be interested in studying in 
particular those primary components of In whose associated primes are also associated primes of I. The 
symbolic powers of I are a construction which captures this information.

Definitions 1.1. The n-th symbolic power of I is

I(n) :=
⋂

p∈Ass(I)

(Inp ∩R)

Under this definition, the primary decomposition of I(n) consists of all components of the primary de-
composition of In whose associated primes are also associated primes of I. In particular, if p is prime, then 
p(n) is the p–primary component of pn. Much like the ordinary powers of I, the symbolic powers of I form 
a descending chain of ideals:

I ⊇ I(2) ⊇ I(3) ⊇ · · ·

Further motivation for the study of symbolic powers comes from algebraic geometry. In the case that R
is a polynomial ring and I is a radical ideal, the symbolic power has geometric meaning. Indeed, the results 
of Zariski and Nagata in [22] and [16] show that the n-th symbolic power of I consists of all polynomials 
which vanish to order at most n − 1 on the variety of I.

Studying the relationship between ordinary and symbolic powers of an ideal gives rise to a number of 
interesting problem. From the definition it is clear that Im ⊆ I(m). The opposite containment, however, does 
not hold in general. Much effort has been invested into determining for which values of r the containment 
I(r) ⊆ Im holds. An overview of this topic, often called the containment problem, can be found in articles 
like [12], [6], in the survey paper [19], and in [4].

While the containment problem is the most-explored line of inquiry into the relationship between symbolic 
and ordinary powers, there are other avenues to investigate this relationship. One such method is to study the 
module I(m)/Im. This module is relatively unexplored: Herzog in [9] studies the module using homological 
methods when I is a prime ideal of height two in a three-dimensional local Noetherian ring. Arsie and Vatne 
study the Hilbert function of I(m)/Im in [1], giving examples for ideals of coordinates of planes and set 
of points in Pn. More recently, in [8] Galetto, Geramita, Shin, and Van Tuyl have studied this module by 
defining the m-th symbolic defect,

sdefect(I,m) := μ

(
I(m)

Im

)
,

the number of minimal generators of I(m)/Im. The symbolic defect measures how different I(m) is from 
Im in counting the number of generators which must be added to Im in order to make I(m). For instance, 
the equality I(m) = Im is equivalent to sdefect(I, m) = 0. In studying symbolic defect, there are many 
interesting questions which arise. For instance:

1. For which ideals is sdefect(I, m) bounded as a function of m?
2. For which ideals does sdefect(I, m) = t for given m, t ∈ N?
3. How does sdefect(I, m) grow as m grows to infinity?

In [8], the first two questions are analyzed for the defining ideal of a general set of points in P 2 or a set 
of points forming a star configuration. Interesting results about the symbolic defect of edge ideals of graphs 
can also be found in the recent work [14]. In this paper, we concern ourselves primarily with the asymptotic 
behavior of the symbolic defect: with the question of how sdefect(I, m) grows as m goes to infinity.
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Another asymptotic invariant for the study of the containment problem for an ideal I ⊆ R is the 
Waldschimdt constant, defined as

α̂(I) = lim
m→∞

α(I(m))
m

,

where α(I) = min {deg f | f ∈ I}. This constant was introduced by Waldschmidt in [21]. Recently the 
Waldschimdt constant has been connected to the containment problem by a result of Bocci and Harbourne 
([4] Theorem 1.2). They use it to find a lower bound for the resurgence of an ideal I, which is defined as

ρ(I) = sup{m
r
|I(m) � Ir}.

The Waldschimdt constant of squarefree monomial ideals can be computed as the optimum value of a linear 
optimization problem as shown in [3].

In this paper, we study asymptotic invariants pertaining to the symbolic powers of I in the case where 
I is an ideal with Noetherian symbolic Rees algebra. A notable class of ideals having this property are 
monomial ideals [11]. In particular, we focus on the growth of sdefect(I, m), first by considering the case 
when I is an ideal in a Noetherial local or graded-local ring, and then specializing to the case in which I is 
the cover ideal of a graph. In addition, we give a formula for the Waldschimdt constant α̂(I).

We now describe our main results and the structure of this paper. In Section 2, we prove in Theorem 2.4
that, when I is an ideal with Noetherian symbolic Rees algebra, sdefect(I, m) is eventually quasi-polynomial 
as a function of m.

In Section 3, we prove that the Waldschmidt constant of an ideal can be computed by considering only 

the first few terms of the sequence 
(

α(I(m))
m

)
m∈N

as long as I has Notherian symbolic Rees algebra. In 

particular, we prove in Theorem 3.6 that the Waldschimdt constant is equal to

α̂(I) = minm≤n
α(I(m))

m
,

where n is the highest degree of a generator of the symbolic Rees algebra of I.
In Section 4, we consider the cover ideal J(G) of a graph G. Cover ideals are generated by monomials 

corresponding to vertex covers of graphs and they form an interesting family of squarefree monomial ideals. 
Their structure has been studied in the recent years due to the relationships between their algebraic and 
combinatorial properties. We provide all relevant definitions, but for an introductory text about cover and 
edge ideals we refer to [20]. In [11] it is shown that the symbolic Rees algebra of cover ideals of graphs is 
generated in degree at most two; this fact allows to easily compute their Waldschimdt constant, applying our 
result of Section 3. After some preliminary description of vertex covers, we describe in Theorem 4.8 a family 
of graphs achieving arbitrarily large symbolic defects and successively we recall a known characterization of 
the graphs having sdefect(J(G), 2) = 1.

In Section 5, we state, in Theorem 5.5, a recursive formula which computes the symbolic defect of cover 
ideals of a class of graphs having sdefect(J(G), 2) = 1 and we give a criterion to compute the degree as 
a quasi-polynomial of this family of graphs. As applications we compute symbolic defect of complete and 
cyclic graphs.

Throughout this paper, for all the standard notations we refer to classical commutative algebra books 
such as [2] and [7] and for theory of monomial ideals in polynomial rings we refer to the book [10]. For an 
introductory text about cover and edge ideals we refer to [20].
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2. Asymptotic behavior of the symbolic defect

We start by considering the growth of sdefect(I, m) when I is an ideal (or homogeneous ideal) in a 
Noetherian local (or graded-local) ring R.

Definition 2.1. A quasi-polynomial in Q is a function f : N → Q such that for some n ∈ N there exist 
rational polynomials f0, . . . fn−1 having the property that for all m ∈ N, f(m) = fr(m) whenever m ≡ r

mod n. The value n is called a quasi-period of f .

Definition 2.2. The Rees algebra of an ideal I is defined to be the graded ring

R(I) =
∞⊕
i=0

Iiti ⊆ R[t]

and the symbolic Rees algebra of I is defined to be

Rs(I) =
∞⊕
i=0

I(i)ti ⊆ R[t]

where t is an indeterminate tracking the grading in the graded families of the powers and symbolic powers 
of I, respectively.

We recall the useful fact that the property of a function being eventually quasi-polynomial can be read 
off its generating function.

Lemma 2.3. [17, 4.4.1] If a numerical function φ : N → Z has generating function

∞∑
n=0

φ(n)zn = q(z)∏s
i=1(1 − zdi)

for some d1, d2, . . . , ds ∈ N, and some polynomial q(z) ∈ Z[z], then φ(n) = Q(n) for n sufficiently large, 
where Q(n) is a quasi-polynomial with quasi-period given by the least common multiple of d1, . . . , dn.

One of our main results is that sdefect(I, m) grows quasi-polynomially in m if the symbolic Rees algebra 
of I, Rs(I) is a Noetherian ring.

Theorem 2.4. Let R be a Noetherian local or graded-local ring with maximal (or homogeneous maximal) ideal 
m and residue field R/m = K. Let I be an ideal (or homogeneous ideal) of R such that Rs(I) is a Noetherian 
ring, and let d1, . . . , ds be the degrees of the generators of Rs(I) as an R-algebra. Then sdefect(I, m) is 
eventually a quasi-polynomial in m with quasi-period d = lcm(d1, . . ., ds).

Proof. We first note that for each m ∈ N,

0 −→ Im −→ I(m) −→ I(m)

Im
−→ 0

is an exact sequence of R-modules. Taking direct sums, this gives a short exact sequence of R(I)-modules

0 −→ R(I) −→ Rs(I) −→ C(I) −→ 0
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where

C(I) =
∞⊕

m=0

(
I(m)

Im

)
tm.

Tensoring with R(I) = R(I)/mR(I) gives the exact sequence

0 −→ K −→ R(I) −→ Rs(I) −→ C(I) −→ 0

of R(I)-modules where

Rs(I) =
∞⊕

m=0

(
I(m)

mI(m)

)
tm

and

C(I) =
∞⊕

m=0

(
I(m)

(Im + mI(m))

)
tm.

In particular, each strand of the above sequence is of the form

0 −→ Km −→ Im

mIm
−→ I(m)

mI(m) −→ I(m)

(Im + mI(m))
−→ 0

where Km = (Im ∩mI(m))/mIm.
Let hC(I)(z) be the Hilbert series for C(I). We note that hC(I)(z) =

∞∑
m=0

sdefect(I, m)zm since, by 

Nakayama’s Lemma,

dimK

(
I(m)

Im + mI(m)

)
= μ

(
I(m)

Im

)
.

Furthermore,

hC(I)(z) = hRs(I)(z) + hK(z) − hR(I)(z)

where hRs(I)(z), hK(z), and hR(I)(z) are the Hilbert series of Rs(I), K, and R(I) respectively.
Since R(I) is a Noetherian K-algebra generated in degree 1 and K is a homogeneous ideal of this ring, 

hR(I) and hK are rational functions of z with denominators which are powers of (1 − z). Since Rs(I) is 
a Noetherian ring, it follows that hRs(I) is a rational function with denominator given by 

∏s
i=1(1 − zdi), 

where d1, d2, . . . , ds are the degrees of the generators of Rs(I) as a Noetherian K-algebra. Thus hC(I)(z) is 
a rational function on z, and Lemma 2.3 show both that sdefect(I, m) is quasi-polynomial in m and that 
the quasi-period d is given by lcm(d1, . . ., ds). �

We note that, in particular, Theorem 2.4 holds for monomial ideals. Sections 4 and 5 of this paper are 
dedicated to sharpening the results in Theorem 2.4 in the case of monomial ideals arising from vertex covers 
of graphs.
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3. Computing the Waldschmidt constant

In this section we prove a decomposition for the symbolic powers of an ideal I having Noetherian symbolic 
Rees algebra and we give an useful application. In order to do this, we use information about the relationships 
between different symbolic powers of I captured in the symbolic Rees algebra. In particular, when Rs(I) is 
Noetherian, its maximum generating degree can be used to understand the structure of I(m), as shown in 
the following lemma.

Lemma 3.1. Let R be a N-graded Noetherian ring, and let I ⊆ R be a homogeneous ideal such that Rs(I) is 
generated in degree at most n. Then

I(m) = Im + I(2)I(m−2) + · · · + I(n)I(m−n)

for all m > n.

Proof. Since the symbolic powers of I form a graded family of ideals, we have that

I(m) ⊇ Im + I(2)I(m−2) + · · · + I(n)I(m−n).

As the symbolic Rees algebra is generated in degree at most n, Rs(I) = R[I, I(2)t2, . . . , I(n)tn]. Therefore 
we have that

I(m) =
∑

i1+2i2+...+nin=m

Ii1(I(2))i2 · · · (I(n))in .

Thus

I(m) ⊆ Im + I(2)I(m−2) + · · · + I(n)I(m−n). �

Decompositions of symbolic powers of ideals along the lines of Lemma 3.1 offer a method to computing 
the Waldschmidt constant of ideals with finitely generated symbolic Rees algebra in terms of the initial 
degrees of finitely many symbolic powers.

Definition 3.2. Given an ideal I in a N-graded ring R, we define

α(I) = min{deg f | f ∈ I, f �= 0}.

Definition 3.3. Given an ideal I, the Waldschmidt constant, α̂(I), is defined by

α̂(I) = lim
m→∞

α(I(m))
m

.

For many details about Waldschmidt constant of squarefree monomial ideals see the paper [3]. The 
resurgence of an ideal is another constant related to the containment problem.

Definition 3.4. Given an ideal I, its the resurgence, ρ(I), is defined by

ρ(I) = sup
{m

r
|I(m) � Ir

}
.
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The resurgence ρ(I) can be bounded below using the Waldschmidt constant. In particular

ρ(I) ≥ α(I)
α̂(I)

(see [4] Theorem 1.2).

Lemma 3.5. Let I be a homogeneous ideal such that Rs(I) is generated in degree at most n. For each 
i ∈ {1, . . . , n}, let αi := α(I(i)). Then

α̂(I) = lim
m→∞

α1m + (α2 − 2α1)y2 + · · · + (αn − nα1)yn
m

where y2, . . . , yn are positive integers minimizing α1m + (α2 − 2α1)y2 + · · · + (αn − nα1)yn with respect to 
the constraint 2y2 + 3y3 + · · · + nyn ≤ m.

Proof. Since Rs(I) = R[I, I(2)t2, . . . , I(n)tn], we have that

I(m) =
∑

2y2+3y3+···+nyn≤m

(I(2))y2(I(3))y3 · · · (I(n))ynIm−2y2−...−nyn .

Thus

α(I(m)) = min
{
α
(
(I(2))y2(I(3))y3 . . . (I(n))ynIm−2y2−...−nyn

)
|2y2 + 3y3 + . . . nyn ≤ m

}
,

and setting αi = α(I(i))) this gives

α(I(m)) = min {α1m + (α2 − 2α1)y2 + · · · + (αn − nα1)yn|2y2 + 3y3 + . . . nyn ≤ m} . �
We proceed to give a formula for the Waldschmidt constant in terms of finitely many symbolic powers.

Theorem 3.6. Let I be a homogeneous ideal such that Rs(I) is generated in degree at most n. Then

α̂(I) = minm≤n
α(I(m))

m
.

Proof. By Lemma 3.5, α(I(m)) is the minimum value of

α1m + (α2 − 2α1)y2 + · · · + (αn − nα1)yn

subject to the condition 2y2 + 3y3 + · · · + nyn ≤ m, where αi = α(I(i))). Equivalently, assuming that n!|m
and setting zi := iyi, we see that α(I(m)) is the minimum value of

α1m + (α2 − 2α1)
2 z2 + · · · + (αn − nα1)

n
zn (3.1)

subject to z2 + z3 + · · · + zn ≤ m, and for each i, zi is a multiple of i. Let c ∈ {2, . . . , n} such that αc−cα1
c

is minimal. Then

α1m + (α2 − 2α1)
2 z2 + · · · + (αn − nα1)

n
zn ≥ mα1 +

n∑ αc − cα1

c
zi. (3.2)
i=2
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Since Ii ⊆ I(i), we have αi − iα1 ≤ 0 for all i. Thus Equation (3.2) is minimized when z2 + · · · + zn = m. 
Hence

mα1 +
n∑

i=2

αc − cα1

c
zi ≥ mα1 + m

αc − cα1

c
.

Thus, when n!|m, (3.1) is minimized at zc = m and zi = 0 for i �= c with a value of mαc

c . Therefore

lim
m→∞

α(I(m))
m

= αc

c
. �

We note that, in particular, Theorem 3.6 holds for monomial ideals.

4. Cover ideals and sdefect(I, 2)

In Theorem 2.4 we found that sdefect(I, m) eventually grows quasi-polynomially when RS(I) is Noethe-
rian. However, this theorem does not give significant insight into the actual computation of the symbolic 
defect. In this section, we turn our attention to a specific class of ideals for which the symbolic defect has 
combinatorial meaning: cover ideals of graphs. After defining cover ideals and recalling a few foundational 
results, we turn our attention to the computation of sdefect(I, 2). In Theorem 4.8 we construct a family 
of cover ideals achieving arbitrarily large sdefect(I, 2), and in Theorem 4.9, we describe the class of cover 
ideals where sdefect(I, 2) = 1.

In the following R = K[x1, . . . , xn] where K is a field.

Definition 4.1. Let G be a graph with vertex set {x1, . . . , xn} and edge set E. The cover ideal of G is defined 
to be

J(G) :=
⋂

{xi,xj}∈E

(xi, xj) ⊆ R.

For m ≥ 1, we say that a monomial g ∈ R is an m-cover of G if for every edge {xi, xj} ∈ E, there exists 
one monomial of the form hij = xa

i x
b
j with a + b ≥ m such that hij divides g.

The generators of J(G) are the monomials which correspond to the vertex 1-covers of G. For any m ∈ N, 
we see that

J(G)(m) =
⋂

{xi,xj}∈E

(xi, xj)m

is generated by the monomials which correspond to vertex m-covers of G and J(G)m is generated by the 
monomials which correspond to vertex m-covers which decompose into the product of m vertex 1-covers. 
We say that a vertex m-cover is minimal if it is not divisible by any other different vertex m-cover. Thus, 
in the context of cover ideals, sdefect(J(G), m) counts the number of minimal vertex m-covers of G which 
cannot be decomposed as a product of m vertex 1-covers. We call such m-covers indecomposable.

Herzog, Hibi and Trung proved the next important result:

Theorem 4.2 ([11], Theorem 5.1). Let G be a graph and let I = J(G) be its cover ideal. Then, the symbolic 
Rees algebra Rs(I) is generated in degree at most 2.

As a corollary to this result and Theorem 2.4, we have the following:
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Corollary 4.3. Let G be a graph and let I = J(G) be its cover ideal. Then sdefect(I, m) is eventually 
quasi-polynomial with quasi-period at most 2.

As another consequence of Theorem 4.2 and of Theorem 3.6, we have the following information about 
the Waldschmidt constant of cover ideals.

Corollary 4.4. Let I = J(G) be the cover ideal of a graph G with n vertices. Then

α̂(I) = α(I(2))
2

Proof. By Theorem 4.2, Rs(I) is generated in degree 2. Hence, Theorem 3.6 implies that α̂(I) =
minm≤2

α(I(m))
m . Now the first result follows, since α(I(2))

2 ≤ 2α(I)
2 = α(I). �

We recall the very well known definition of bipartite graph.

Definition 4.5. A graph G = (V, E) is bipartite if there is a partition V = V1 ∪ V2 on the vertex set, such 
that V1 ∩ V2 = ∅ and for any edge {xi, xj} of G, xi ∈ V1 and xj ∈ V2.

The following theorem by Dupont and Villareal [5] characterizes the minimal indecomposable vertex 
covers of bipartite graphs and the minimal indecomposable vertex 0,1 and 2-covers of non-bipartite graphs. 
In the latter case, since Rs(I) is generated in degree 2, these vertex covers generate all the vertex m-covers 
and therefore, in order to understand the symbolic defect of cover ideals, it is important to have a precise 
overview of indecomposable vertex 2-covers. Given a graph G = (V, E), the set of neighbors of a vertex xi

is the set of vertices xj adjacent to xi, which means {xi, xj} is an edge of G. Given a set of vertices S ⊆ V

in G, the induced subgraph on S is the graph with vertex set S, and edge set {{x, y} ∈ E|x, y ∈ S}.

Theorem 4.6 ([5], Theorem 1.7). Let f = xa1
1 . . . xan

n ∈ K[x1, . . . , xn].

(i) If G is bipartite, then f is an indecomposable minimal vertex m-cover of G if and only if m = 0 and 
f = xi for some 1 ≤ i ≤ n or m = 1 and f = xj1 . . . xjl is such that fx−1

ji
is not a vertex 1-cover of G

for every i = j1, . . . , jl. For m ≥ 2, all the vertex m-covers of G are divisible by m vertex 1-covers.
(ii) If G is non-bipartite, then the minimal indecomposable vertex 0,1 and 2-covers are of the form:

(a) (0-covers) m = 0 and f = xi for some i,
(b) (1-covers) m = 1 and f = xj1 . . . xjl is such that fx−1

ji
is not a vertex 1-cover of G for every 

i = j1, . . . , jl,
(c) (2-covers) m = 2 and f = x1x2 · · ·xn is the product of all the variables,
(d) (2-covers) m = 2 and

f = x0
i1 · · ·x

0
isx

2
is+1

· · ·x2
is+t

xis+t+1 · · ·xis+t+u

is such that:
(1) each xij is distinct,
(2) s + t + u = n,
(3) {xis+1 , . . . , xis+t

} is the set of neighbors of {xi1 , . . . , xis} in G,
(4) g = xis+1 · · ·xis+t

is not a vertex cover of G, and u �= 0,
(5) the induced subgraph on {xis+t+1 , . . . , xis+t+u

} has no isolated vertices and is not bipartite.

An important consequence for the theory of cover ideals of graph is the following result which is also a 
corollary of work by Sullivant in [18]:
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Corollary 4.7. Let G be a bipartite graph, and let I = J(G). Then sdefect(I, m) = 0 for all m ∈ N.

Proof. As G is bipartite, by Theorem 4.6(i), the graph G does not have indecomposable m-covers for m > 1. 
Thus sdefect(I, m) = 0. �

In contrast to this fact, we show that in general the symbolic defect of a cover ideal can be arbitrarily 
large. In particular we describe now a family of graphs such that sdefect(J(G), 2) grows as the number of 
vertices of the graph grows.

Let for n ∈ N, let Tn be the graph on vertices {x1, x2, x3, y1, . . . , yn} such that the induced subgraph on 
{x1, x2, x3} is C3 (the odd cycle of length three), the induced subgraph on {y1, . . . , yn} is a path of length 
n − 1, and x3 is adjacent to y1. In the case of n = 3, this graph is pictured below:

x1

x2 x3 y1 y2 y3

Theorem 4.8. For all n ≥ 5, sdefect(J(Tn), 2) = sdefect(J(Tn−1), 2) + μ(J(Pn−4)2) where Pi is the path of 
length i.

Proof. Let C = xa1
1 xa2

2 xa3
3 yb11 yb22 · · · ybnn be a minimal indecomposable vertex 2-cover of Tn. Since every 

non-bipartite induced subgraph of Tn contains the vertices x1, x2, x3, by Theorem 4.6(ii.5), we have that 
a1 = a2 = a3 = 1. Thus, b1 is nonzero. If b1 = 1, then b2 > 0. Consider

C ′ = xa1
1 xa2

2 xa3
3 yb21 yb32 · · · ybnn−1.

We claim that C ′ is an indecomposable vertex 2-cover of Tn−1. Suppose that bi = 2 for some i. Then, as C
is a minimal indecomposable vertex 2-cover for Tn, we know that either bi−1 = 0 or bi+1 = 0. Thus, either 
yi−2 or yi has exponent equal to zero in C ′, thus C ′ is a vertex 2-cover of Tn−1.

On the other hand, if b1 = 2, then by Theorem 4.6(ii) we know that b2 = 0 and b3 = 2. The vertices 
y4, . . . , yn form the path of length n − 4, that is Pn−4, and yb44 · · · ybnn is a vertex 2-cover of this path. Thus, 
we see that

sdefect(J(Tn), 2) ≥ sdefect(J(Tn−1), 2) + μ(J(Pn−4)2).

To show the other inequality, let G = x1x2x3y
a1
1 · · · yan−1

n−1 be an indecomposable 2-cover for Tn−1. Then 
C = x1x2x3y1y

a1
2 · · · yan−1

n is a vertex 2-cover for Tn. Moreover, we note that the set {y | y2 divides C} is 
exactly the set of neighbors of {y | y does not divide C}. Thus, again by Theorem 4.6, we see that C is an 
indecomposable 2-cover of Tn.

Let D = yd4
4 · · · ydn

n be a minimal 2-cover of Pn−4. We claim that H = x1x2x3y
2
1y

0
2y

2
3D is an indecom-

posable 2-cover for Tn. Certainly H is a 2-cover of Tn. As {y | y2 divides C} is exactly the set of neighbors 
of {y | y does not divide C} and H is divisible by x1x2x3, we see that H is indeed indecomposable by 
Theorem 4.6. �

Last theorem shows that a graph having some vertex “very far” from an odd cycle can have very large 
symbolic defect. Conversely, if every vertex is close to an odd cycle the symbolic defect is going to be 
reasonably small. It is interesting to characterize which graphs have cover ideal I with sdefect(I, 2) = 1. 
This characterization has been done in [11] (Proposition 5.3) using the language of symbolic Rees algebras. 
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Our proof is different from the proof presented in [11] and use our terminology introduced above, thus we 
include it below.

Recall that a graph is not bipartite if and only if it contains an odd cycle, which means that there is an 
odd integer l ≥ 3 and l vertices xi1 , xi2 , . . . , xil such that for 1 ≤ j < l, {xij , xij+1} are edges and {xil , xi1}
is an edge.

Theorem 4.9. Let G be a graph with n vertices and let I = J(G). Then sdefect(I, 2) = 1 if and only if G is 
non-bipartite and every vertex in G is adjacent to every odd cycle in G.

Proof. First assume sdefect(I, 2) = 1. Hence G is not bipartite by Corollary 4.7 and hence there is at least an 
odd cycle contained in G. Assume by way of contradiction that one vertex xi of G is not adjacent to the odd 
cycle and let xj1 , . . . , xjc be the vertices of G adjacent to xi. Clearly F = x1x2 · · ·xn is an indecomposable 
vertex 2-cover by Theorem 4.6(ii), but in this case, by the same characterization of vertex 2-covers of graph, 
we also have that Fx−1

i xj1 · · ·xjc is an indecomposable vertex 2-cover and hence sdefect(I, 2) ≥ 2.
Conversely, assume G is non-bipartite and every vertex in G is adjacent to every odd cycle in G and 

let f = xa1
1 · · ·xan

n ∈ I(2) \ I2 be an indecomposable minimal vertex 2-cover. The set {xi : ai = 1} is not 
bipartite again by Theorem 4.6(ii), hence the induced graph on this set contains an odd cycle. Since any 
vertex of the graph is adjacent to this odd cycle, then ai �= 0 for every i = 1, . . . , n. But this also implies 
ai �= 2 for every i since f is a minimal vertex 2-cover. Hence f = F and sdefect(I, 2) = 1. �
Remark 4.10. From the proof of Theorem 4.9 it is clear that when sdefect(I, 2) = 1 where I = J(G), 
the unique generator of I

(2)

I2 is F = x1x2 . . . xn. Hence, for m ≥ 3, using the decomposition of I(m) given 
in Lemma 3.1 together with the fact that the symbolic Rees algebra Rs(I) is generated in degree 2 (see 
Theorem 4.2), we obtain

I(m) = (F )I(m−2) + Im.

A consequence of Remark 4.10 is a lower bound on the resurgence of the cover ideal of this kind of graphs. 
Such a bound is interesting when the degree of F is strictly smaller than 2α(I), where α(I) is the minimal 
degree of an element of I.

Corollary 4.11. Let I = J(G) be the cover ideal of a graph G with n vertices such that sdefect(I, 2) = 1. 
Then

ρ(I) ≥
{

2α(I)
n if n

2 < α(I)
1 if n

2 ≥ α(I).

Proof. By Remark 4.10, since the degree of F = x1x2 . . . xn is n and F is the unique generator of I
(2)

I2 , we 
get α(I(2)) = min{n, 2α(I)}. Hence the result follows from Definition 3.4 and Corollary 4.4. �
5. Cover ideals and the growth of symbolic defect

We now turn our attention to a more direct computation of the symbolic defect of cover ideals. Since 
cover ideals have Noetherian symbolic Rees algebra, we know that their symbolic defects are given by 
eventually quasi-polynomial functions. In this section we will directly study these quasi-polynomials for the 
cover ideals of certain types of graphs. In Theorem 5.5 we give an explicit recursive formula for computing 
this quasi-polynomial for a class of graphs satisfying sdefect(J(G), 2) = 1. In Proposition 5.8 we apply this 
recursive formula to establish a method for computing the degree of this quasi-polynomial for the same class 
of graphs.



B. Drabkin, L. Guerrieri / Journal of Pure and Applied Algebra 224 (2020) 300–319 311
Using the same notation as before, for a graph G on n vertices, we set F = x1 · · ·xn and I = J(G) =
(g1, . . . , gt). Since by Remark 4.10, I(m) = (F )I(m−2) + Im, the possible elements of I(m)/Im are images of 
elements of the form F kgi1 · · · gis for some integers k, s such that m = 2k + s. It is possible to find an exact 
formula for the symbolic defect in the case in which all the elements of this form are not in the ordinary 
power Im. For this reason we give the following definition:

Definition 5.1. Let G be a graph of n vertices and I = J(G) be its cover ideal. Assume I = (g1, . . . , gt) and 
sdefect(I, 2) = 1 and let F = x1 · · ·xn. We say that G satisfies the Indecomposability Property if for any 
integers k ≥ 1 and s ≥ 0, the monomial

F kgi1 · · · gis /∈ I2k+s.

The following lemma describes some graphs satisfying Indecomposability Property. Anyway, a combina-
torial interpretation of this property and a characterization of graphs fulfilling it are actually unknown.

Lemma 5.2. Let I = J(G) ⊆ R = K[x1 . . . xn] be the cover ideal of a graph G. Assume sdefect(I, 2) = 1 and 
let F = x1 · · ·xn. Then G satisfies the Indecomposability Property if at least one of the following conditions 
is satisfied:

1. I = (g1, . . . , gt), degF < 2α(I) and deg gi = α(I) for every i = 1, . . . , c.
2. I = (g1, . . . , gt, h1, . . . , hs) is generated in two different degrees deg gi = α1 < α2 = deg hl for all i, l and 

degF < α1 + α2. Moreover there exists j ∈ {1, . . . , n} such that the variable xj divides gi for every i
but it does not divide hl for every l.

3. I = (g1, . . . , gt, h1, . . . , hs) is generated in two different degrees deg gi = α1 < α2 = deg hl for all i, l. 
Moreover degF < α1 + α2, there are c indices j1, . . . , jc, such that the variables xj1 , . . . , xjc divide hl

for every l and do not divide gi for every i and α2 − α1 ≤ c.

Proof. 1) The claim follows since degF kgi1 · · · gis < (2k + s)α(I).
2) Take an element of the form

q = F kgi1 · · · gis1hi1 · · ·his2
.

It follows that xk+s1
j divides q but there is not bigger power of xj dividing q. By way of contradiction 

suppose q ∈ I2k+s. Hence q is divisible by at most k + s1 generators of the form gi and by at least k + s2
generators of the form hl. Hence there are two integers a, b such that a ≤ k+s1, b ≥ k+s2 and a +b = 2k+s

and q is divisible by a generators of the form gi and by b generators of the form hl. Then,

deg q = k degF + s1α1 + s2α2 < (k + s1)α1 + (k + s2)α2,

but there exists an integer c ≥ 0 such that (k + s1)α1 + (k + s2)α2 = (a + c)α1 + (b − c)α2 and hence, since 
α1 < α2,

deg q < (k + s1)α1 + (k + s2)α2 ≤ aα1 + bα2 ≤ deg q

and this is a contradiction for what assumed on a and b.
3) As in the proof of (2), take

q = F kgi1 · · · gis hi1 · · ·his .

1 2
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Let X := xk1 · · ·xkc
. Thus Xk+s2 divides q and no bigger power of X divides it. Now, assuming by way of 

contradiction q ∈ I2k+s, we get that q is divisible by at least k + s1 generators of the form gi and by at 
most k+ s2 generators of the form hl. As before there are two integers a, b such that a ≤ k+ s1, b ≥ k+ s2, 
a + b = 2k + s and m is divisible by a generators of the form gi and by b generators of the form hl.

Hence there exists an integer d ≥ 0 such that k + s1 = a − d and k + s2 = b + d and we can write 
deg q = aα1 + bα2 + w with w ≥ dc since we need to have Xk+s2 dividing q. It follows that

deg q = k degF + s1α1 + s2α2 < (k + s1)α1 + (k + s2)α2 = aα1 + bα2 + d(α2 − α1) ≤ deg q

since α2 − α1 ≤ c and this is a contradiction. �

We can give examples of graphs satisfying each one of the conditions of Lemma 5.2. Recall that a graph 
is complete is for every two distinct vertices xi, xj , the pair {xi, xj} is an edge. We denote the complete 
graph with n vertices by Kn. A graph is a cycle with n vertices x1, x2, . . . , xn if its edges are of the form 
{xi, xi+1} modulo n (i.e. also {xn, x1} is an edge). We denote the cycle with n vertices by Cn. Every cyclic 
graph with an even number of vertices is bipartite.

Later complete graphs and the cycles C3, C5, C7 will be shown to satisfy condition 1 of Lemma 5.2. The 
following graph satisfies condition 2 of Lemma 5.2.

a

b

c

d

e

f

x

Similarly, any graph consisting of 3-cycles all joined at a single vertex satisfies the same condition. The 
following graph satisfies condition 3 of Lemma 5.2:

x1

x2 x3

x4

Remark 5.3. Not every graph satisfies the Indecomposability Property. For instance consider the graph 
G = (V, E), pictured below.
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x1

y1

x2

y2

x3

y3

The cover ideal of this graph is

I = (g1, g2, g3, g4) = (x1x2x3, x1x2y3, x1x3y2, x2x3y1)

and we observe that, since F = x1x2x3y1y2y3 has degree 6, the ideal I does not satisfy any of the conditions 
of Lemma 5.2. Moreover we see that Fg1 = g2g3g4 ∈ I3.

We now concern ourselves with the computation of the symbolic defect for graphs satisfying the Inde-
composability Property. First we need a preliminary Lemma.

Lemma 5.4. Let I = J(G) ⊆ R = K[x1, . . . , xn] be a cover ideal of a graph, G, on n vertices and let 
f ∈ K[x1, . . . , xn] be such that

f
∏
i�=a,b

xi ∈ I(m)

for all a, b ∈ {1, . . . , n}. Then f ∈ I(m).

Proof. Suppose f = xa1
1 xa2

2 · · ·xan
n /∈ I(m). Then there exists an edge {xs, xt} such that as + at < m. But 

then f
∏

i�=s,t xi /∈ (xs, xt)m, and thus f
∏

i�=s,t xi /∈ I(m). �
Theorem 5.5. Let I = J(G) ⊆ R = K[x1 . . . xn] where G is a graph such that sdefect(I, 2) = 1 and let 
F = x1 · · ·xn. Assume that the graph G satisfies the Indecomposability Property.

Let ν(I, m) be the number of minimal generators of Im which are not divisible by F . Then for m ≥ 3,

sdefect(I,m) = sdefect(I,m− 2) + ν(I,m− 2).

Proof. By Remark 4.10 and by assuming sdefect(I, 2) = 1, we have I(m) = (F )I(m−2) + Im. Then the 
minimal elements of I(m) \ Im are of the form F kgi1 · · · gis where gi are minimal generators of I and 
m = 2k + s. Conversely, since the graph G satisfies the Indecomposability Property, any such monomial is 
in I(m) \ Im. Hence, for g such that g is a minimal generator of I

(m−2)

Im−2 , we have that Fg is in I(m) \ Im.
The module I(m)/Im is generated by the images of the minimal generators of (F )I(m−2), which are either 

generators of (F )(I(m−2)/Im−2) or images of generators of (F )Im−2. It follows that sdefect(I, m) is equal 
to sdefect(I, m − 2) plus the number of minimal generator of (F )Im−2 which are not already multiples of 
Fg for some g ∈ I(m−2) \ Im−2.

By dividing F on both sides, we have that the last number coincides with the number of minimal 
generator of Im−2 which are not multiple of any element of I(m−2) \ Im−2 and we will show that this 
number is ν(I, m − 2). Let f be a minimal generator of Im−2. If f /∈ (F ), then f is not a multiple of an 
element of I(m−2) \ Im−2 since we showed, in Remark 4.10, that I(m−2) \ Im−2 ⊆ (F ).
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On the other hand, assume f ∈ (F ). Then f = Fh for some h ∈ R. Since Fh ∈ Im−2, we know 
Fh ∈ (xs, xt)m−2 for all xs, xt where {xs, xt} is an edge of G. Thus F

xsxt
h ∈ (xs, xt)m−4 and so h ∈ I(m−4)

by Lemma 5.4.
Then f ∈ FI(m−4), and so by Remark 4.10, we get

f ∈ (F )I(m−4) = (F )Im−4 + (F 2)Im−6 + . . . + (F )�m
2 	J∗

where J∗ = R for m even and J∗ = I for m odd. Notice now that the minimal generators of all the 
summands of the previous equation are contained in I(m−2) \ Im−2 (since F /∈ I2). Therefore f is divisible 
by some element in I(m−2) \ Im−2. This proves the formula and the theorem. �
Remark 5.6. Let I be the cover ideal of the graph described in Remark 5.3. The reader will be able to check 
that in this case, for m ≥ 3, sdefect(I, m) is less than how much is predicted by the formula of Theorem 5.5.

In the simple case of complete graphs it is possible to apply Theorem 5.5 in order to find the explicit value 
of the symbolic defect. We observe that, as stated in Corollary 4.3, the symbolic defect is a quasipolynomial 
in m of quasi-period two.

Theorem 5.7. Let Kn be the complete graph with n vertices and let I be its cover ideal. Call F = x1x2 · · ·xn. 
Then

sdefect(I,m) =
{

nk + 1 if m = 2k + 2
nk if m = 2k + 1

and hence it grows as a linear quasipolynomial in m.

Proof. Observe that I = (g1, . . . , gn) where gi = Fx−1
i . Clearly by Theorem 4.9, sdefect(I, 2) = 1, and, 

since I satisfies condition 1 of Lemma 5.2, the graph satisfies the Indecomposability Property.
Since F divides gigj for i �= j, the minimal generators of Im which are not divisible by F are 

gm1 , gm2 , . . . , gmn .
It follows that ν(I, m) = n for every m ≥ 1 and therefore the formula follows from Theorem 5.5. �
In other cases of graphs with sdefect(J(G), 2) = 1 and satisfying the Indecomposability Property, it is 

possible to establish how fast the symbolic defect is growing (i.e. its degree as a quasipolynomial in m) 
simply looking at the generators of the cover ideal. To obtain this, we need some further result about the 
degree in m of the quantity ν(I, m). We recall that for an ideal I ⊆ R = K[x1 . . . xn], the number of 
generators of the power μ(Im) grows as a polynomial in m for m 
 0. This is clear since the fiber cone of I
is a standard-graded Noetherian K-algebra and thus its Hilbert function is eventually given by a polynomial 
(see [15, Theorem 13.2]). We call the degree of this polynomial the degree of μ(Im).

In Proposition 5.8 we relate the degree in m of ν(I, m) with the degree of μ(Im). In Proposition 5.9 we 
recall how to compute μ(Im) in the case in which the generators of I are algebraically independent over the 
base field k. We will need this fact when discussing the symbolic defect of cyclic graphs.

Proposition 5.8. Let I = J(G) ⊆ R = K[x1 . . . xn] where G is a graph such that sdefect(I, 2) = 1 and assume 
that G satisfies Indecomposability Property.

Then for every i = 1, . . . , n we have

μ

((
I + xiR

xiR

)m)
≤ ν(I,m) ≤

n∑
μ

((
I + xjR

xjR

)m)
. (5.1)
j=1
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Moreover, take i such that μ( I+xiR
xiR

) ≥ μ( I+xjR
xjR

) for all j and let d be the degree of μ(( I+xiR
xiR

)m) seen as a 
polynomial in m for m 
 0. Then for m 
 0, sdefect(I, m) is a quasi-polynomial in m of degree d + 1.

Proof. Recall that from Remark 4.10, it follows that when the sdefect(I, 2) = 1, the unique generator of 
I(2)

I2 is F = x1x2 · · ·xn. Hence ν(I, m) is the number of minimal generators of Im not divisible by at least 
one variable. Since μ(( I+xiR

xiR
)m) is the number of minimal generators of Im not divisible by xi, we can see 

easily the inequalities in (5.1). Now, assuming

μ

(
I + xiR

xiR

)
≥ μ

(
I + xjR

xjR

)

for all j, then μ(( I+xiR
xiR

)m) and 
∑n

j=1 μ(( I+xjR
xjR

)m) have both degree d as polynomials in m.
The sequence {ν(I, m)}m≥1 is bounded by a polynomial and it is non-decreasing since F is not in the 

set of minimal generators of I. Hence, it admits a (possibly infinite) limit as m grows to infinity. Therefore, 
dividing both sides of (5.1) by md and passing to the limit for m going to infinity, we can see that ν(I, m)
is quasi-polynomial in m of degree d.

For a given m, let k = [m−2
2 ]. By Theorem 5.5 we have

sdefect(I,m) =
k∑

i=0
ν(I, 2i + c)

where c = 0 if m is even and c = 1 if m is odd (recall also that ν(I, 0) = 1 and ν(I, 1) = μ(I)). It follows 
that sdefect(I, m) is quasi-polynomial in m of degree one more than the degree of ν(I, m). �
Proposition 5.9. Let I = (g1, . . . , gs) be a squarefree monomial ideal in a polynomial ring over a field k. 
Then:

1. The generators of I are algebraically independent over k if the matrix Mij = { ∂gi
∂xj

} has maximal rank.
2. If the generators of I are algebraically independent over k, then

μ(Im) =
(
m + s− 1

s− 1

)

is a polynomial in m of degree s − 1.

Proof. We note that 1 follows immediately from Jacobi’s criterion [13]. To prove 2, we first note that, since 
g1, . . . , gs are algebraically independent, ga1

1 · · · gas
s = gb11 · · · gbss if and only if ai = bi for 1 ≤ i ≤ s. Thus 

the number of minimal generators of Im is equal to the number of ways to distribute m objects between s
sets. Therefore

μ(Im) =
(
m + s− 1

s− 1

)
= (m + s− 1) · · · (m + 1)

(s− 1)!

which is a polynomial in m of degree s − 1. �
Example 5.10. We consider the graph in the following picture. Its cover ideal is generated by

I = (x1x2x4x5, x1x3x4, x1x3x5, x2x3x4, x2x3x5)

and we observe that sdefect(I, 2) = 1 and the graph satisfies condition 2 of Lemma 5.2. Hence the symbolic 
defect of this cover ideal can be computed using the formula of Theorem 5.5. Moreover,
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μ

(
I + x1R

x1R

)
≥ μ

(
I + xjR

xjR

)

for all j, and J := I+x1R
x1R

= (x2x3x4, x2x3x5) R
x1R

. Applying Proposition 5.9, we see that μ(Jm) = m + 1, 
and thus by Proposition 5.8 the degree of sdefect(I, m) as quasipolynomial in m is 2.

x2

x1 x4

x5

x3

In Theorem 5.13, we are going to use again Propositions 5.8 and 5.9 in order to compute an explicit 
formula of sdefect(I, m) and its degree in m when I is the cover ideal of a cyclic graph.

Let Cn be the n-cycle and let I be its cover ideal. Since an even cycle is a bipartite graph, it is enough 
to consider n = 2k + 1 to be an odd number. For every i = 1, . . . , n the monomials

gi = xixi+2xi+4 · · ·xi+n−1 mod n

are 1-vertex covers of Cn and their degree is minimal among the degrees of the minimal generators of I. 
Indeed, any other generator of I, if exists, has degree greater than α(I). We are going to see in Lemma 5.11, 
that if n ≥ 9, Cn does not satisfy the Indecomposability Property, but later we will be anyway able to prove 
an alternative recursive formula for its symbolic defect.

Lemma 5.11. Let n = 2k+1 and let Cn be the n-cycle. Let I be the cover ideal of Cn and call F = x1x2 · · ·xn. 
Assume G is a minimal generators of I such that degG > α(I). Then:

1. There exists a minimal generator H of I and a positive even integer s < n such that degH = degG − 1
and

G = Hxjx
−1
j+1xj+2x

−1
j+3 · · ·x−1

j+s−1xj+s.

2. FG ∈ I3. In particular FG is equal to the product of three minimal generators of I.

Proof. 1) All the generators of I of degree α(I) are of the form gi = xixi+2xi+4 · · ·xi+n−1 mod n, as 
mentioned in the paragraph above. Hence, if we assume degG > α(I), we have that there are two different 
monomials xixi+1 and xjxj+1 dividing G, with i + 1 < j. We can also assume without loss of generality 
that, for every i + 1 < h < j, xh divides G if and only if xh−1 and xh+1 do not divide G. Clearly, 
since G is a minimal 1-cover of Cn, xi+2 and xj−1 do not divide G. Thus, we have a sequence of indices 
i +1, i +2, i +3, . . . , j−2, j−1, j such that the variables xi+1, xi+3, . . . , xj−3, xj divide G and all the others 
in the sequence do not divide G. It follows that j − i is an odd number, otherwise we would have two 
consecutive variables xhxh+1 not dividing G and this is impossible since {h, h + 1} is an edge of Cn. Hence 
the monomial

H = Gx−1
i+1xi+2x

−1
i+3 · · ·xj−1x

−1
j

is a well defined 1-cover of Cn and degH = degG − 1. This proves item 1 taking s = j − i.
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2) We claim that

FG = FHxjx
−1
j+1xj+2x

−1
j+3 · · ·x−1

j+s−1xj+s = Hgjgj+s+1

and hence FG ∈ I3. Indeed, this is equivalent to prove

gjgj+s+1 = Fxjx
−1
j+1xj+2x

−1
j+3 · · ·x−1

j+s−1xj+s.

But this follows since, in the case j is odd, j + s + 1 is even and by definition

gj = xjxj+2xj+4 · · ·xnx2x4 · · ·xj−3xj−1

and

gj+s+1 = xj+s+1xj+s+3 · · ·xn−1x1x3 · · ·xj+s−2xj+s

and hence in the products, all the variables with odd index between j and j + s appear twice and all the 
variables with even index in the same interval do not appear. If j is even, the situation is reversed and the 
result follows in the same way. �
Lemma 5.12. Let n = 2k+1 and let Cn be the n-cycle. Let I be the cover ideal of Cn and call F = x1x2 · · ·xn. 
For m ≥ 2, take q = Fhf1 · · · fs where fi are minimal generators of I and m = 2h + s.

Then, q ∈ I(m) \ Im if and only if deg fi = α(I) for every i. Moreover, all the monomials generating 
I(m)/Im are of this form.

Proof. A cyclic graph of odd order has sdefect(I, 2) = 1 by Theorem 4.9. Hence, by Remark 4.10, we have 
I(m) = (F )I(m−2) + Im and the possible minimal generators of I(m)/Im are all of the form q = Fhf1 · · · fs
described in the statement above. It is clear that q ∈ I(m). By item 2 of Lemma 5.11, if some fi has degree 
greater than α(I), we note that Ffi is a product of three minimal generators of I, and thus we can rewrite 
q as a product of Fh−1 and s + 2 minimal generators of I. Iterating this process as far as we can, we find 
two possibilities for q, either:

i) q = F af1 · · · fb with 2a + b = m and deg fi = α(I) for every i = 1, . . . , b, or
ii) q = Ff1 · · · fb with b + 2 = m and there exists at least one fi such that deg fi > α(I).
In the first case, since degF = n < n + 1 = 2α(I), we have

deg q = a degF + bα(I) < (2a + b)α(I) = α(Im)

and therefore q /∈ Im.
In the second case, assuming deg f1 > α(I), we have again by item 2 of Lemma 5.11, q = h1h2h3f2 . . . fb

with hi ∈ I, and hence q ∈ Ib+2 = Im. This proves the lemma. �
Theorem 5.13. Let n = 2k + 1 and let Cn be the n-cycle. Let I be the cover ideal of Cn and call F =
x1x2 · · ·xn. Define I� = (g1, . . . , gn) where gi = xixi+2xi+4 · · ·xi+n−1 mod n and let ν(I�, m) be the number 
of minimal generators of (I�)m which are not divisible by F . Then:

1. For m ≥ 3, sdefect(I, m) = sdefect(I, m − 2) + ν(I�, m − 2).
2. The degree of sdefect(I, m) as a quasipolynomial in m is k.
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Proof. 1) In the case n ≤ 7, it is possible to observe that all the minimal generators of I have the same 
degree, equal to k+1. Hence the graph satisfies the Indecomposability Property, because it satisfies condition 
1 of Lemma 5.2. In this case, by definition I = I� and thus the result follows applying Theorem 5.5.

Now suppose that n ≥ 9. We proceed along the method use to prove Theorem 5.5. Let m ≥ 2 and let 
q ∈ I(m) \ Im a minimal generator of I(m)/Im. By Lemma 5.12, q = Fhf1 · · · fs where fi are minimal 
generators and of I, m = 2h +s and deg fi = α(I) for every i. Hence for such a monomial q ∈ I(m−2) \Im−2, 
we have Fq ∈ I(m) \ Im, again by Lemma 5.12.

Thus we have that, as in the proof of Theorem 5.5, the symbolic defect sdefect(I, m) is equal to 
sdefect(I, m − 2) plus the number of minimal generators of (F )(I�)m−2 which are not multiples of Fg

for some g ∈ I(m−2) \ Im−2.
Again as in the proof of Theorem 5.5, we have that the last number coincides with the number of minimal 

generators of (I�)m−2 which are not multiples of any element of I(m−2) \ Im−2 and we can prove that this 
number is ν(I�, m − 2) and this proves the formula in this case, using the same argument.

2) Applying the proof of Proposition 5.8 to the ideal I�, we see that this fact is equivalent to showing 
that μ(( I

�+xiR
xiR

)m) is a quasipolynomial of degree k − 1 for some variable xi which maximizes such degree. 
The symmetry of the cyclic graphs tells us that μ(( I

�+xiR
xiR

)m) = μ(( I
�+x1R
x1R

)m) for every i. Hence we just 
consider the ideal I

�+x1R
x1R

= (f3, f5, . . . , fn).
Notice that μ(I�/x1) = k and we want to conclude the proof applying item 2 of Proposition 5.9. In order 

to do this, by item (i) of Proposition 5.9, we need to show that the matrix M = Mij = { ∂gi
∂xj

} has maximal 
rank.

The matrix Mij has k rows and n − 3 columns. Consider the maximal square submatrix H obtained 
taking the columns 3, 5, . . . , n − 2, n − 1 of M and let 3 ≤ j ≤ n − 2 an odd number. Then, by definition of 
gi for i �= 1 and odd, we have

∂gi
∂xj

= 0 ⇐⇒ xj does not divide gi ⇐⇒ j < i.

It is also easy to see that ∂gi
∂xn−1

= 0 for i �= 1 odd and ∂gn
∂xn−1

�= 0. Hence the matrix H is upper triangular 
with non zero elements on the diagonal and hence the rank of M is maximal. �
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