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ABSTRACT ARTICLE HISTORY
A quasi-equigenerated monomial ideal / in the polynomial ring R = Received 3 October 2019

K[x1, ... xn] is a Freiman ideal if u(1?) = I(1)u(1) — (’(2’)) where [(l) is the ana- Eﬁﬁsﬁi;iiaﬁ\g“&oﬁﬁ

lytic spread of / and u(/) is the number of minimal generators of /. Freiman Walther
ideals are special since there exists an exact formula computing the min-
imal number of generators of any of their powers. In this work, we address
the question of characterizing which cover ideals of simple graphs
are Freiman.

KEYWORDS

Cover ideals of graphs; fiber
cone; Freiman ideals;
monomial ideals

MATHEMATICS SUBJECT
CLASSIFICATION
13F20; 13A30; 13C05; 05C25

1. Introduction

Given an homogeneous ideal I in a polynomial ring R = k[xy, ..., x,], it is in general a difficult prob-
lem to exactly compute the number of generators of each power of I In the case that I is generated

by a regular sequence and has u(I) = t generators, it is well-known that u(I™) = (’”t*jl’ 1). This is

the largest possible number of generators that I'"* can achieve. At the other extreme, in some cases
powers of an ideal can be generated by very few elements. For instance, the ideals with tiny square
defined in [3] provide a family of monomial ideals whose members can be generated by arbitrarily
many elements but satisfy (1) = 9.

However, there are large classes of monomial ideals for which the number of minimal genera-
tors of I" is well-behaved. If all generators of I have the same degree with respect to some stand-
ard (or non-standard) N-grading of R, then I is called equigenerated (or quasi-equigenerated).
Such an ideal cannot have a tiny square. In particular, when I is equigenerated or quasi-equigen-

erated a result of Herzog, Mohammadi Saem, and Zamani [7, Theorem 1.9] shows that w(?) >

(1) — (1(21)> where [(I) is the analytic spread of I. Furthermore in [8, Proposition 1.8], Herzog

and Zhu show a similar inequality, describing a lower bound for the number of generators of any
power of I. These inequalities are consequence of a famous theorem of Freiman [4], proved in
the context of additive number theory and stating that, for a finite set X C Z",

[2X| > (d+ 1)|X| - <d42r1>

where d is the dimension of the smallest affine subspace of Q" containing X and 2X = {a+b:
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a,b € X}. The lower bound for u(I?) is then obtained applying Freiman’s theorem to the set of
exponents of the generators of I.
In [8], Herzog and Zhu also consider the case in which this lower bound is met. They define a

Freiman ideal to be an equigenerated monomial ideal I such that w(12) = 1(Du(1) — <1(21>>. In [6],

Herzog, Hibi, and Zhu extend the same definition to quasi-equigenerated monomial ideals. What
makes a Freiman ideal very interesting is the fact that the number of generators of any power
can be computed by an exact formula in terms of the number of generators of the ideal and of
the analytic spread (see [8, Corollary 1.9]). This formula generalizes the formula existing in the
case of ideals generated by regular sequences, since for them I(I) = u(I).

The two papers [6, 8] provide several characterizations of Freiman ideals in terms of their
Hilbert polynomials and fiber cones. In particular [6, Theorem 1.3] shows that Freiman ideals are
exactly those ideals with linear Hilbert polynomials (that is, h; = 0 for all i > 2) and with fiber
cones having minimal multiplicity. This is a very restrictive property which, for ideals arising
from combinatorial structures, often guarantees strong combinatorial properties. Freiman ideals
in the classes of principal Borel ideals, Hibi ideals, Veronese type ideals, matroid ideals, and edge
ideals of graphs have been studied in [6, 8].

The aim of this article is to study Freiman ideals among cover ideal of graphs. Let G be a
finite simple graph on n vertices with edge set E. Identifying each vertex with a variable x; € R,
the cover ideal J(G) is defined to be

J(G):= [ (xx)CR
{xi> % }€E
Cover ideals are squarefree monomial ideals and have been studied by many authors in the last
twenty years. For an overview we refer to [13]. For a more detailed study of the foundational
results on cover ideals, we refer to [10].

In Section 2, we recall basic definitions and results about fiber cones, Freiman ideals and cover
ideals. Furthermore, we introduce the notion of equivalent vertices in graphs and explore their
relation to cover ideals.

In studying Freiman property for cover ideals, the first challenge is that cover ideals are often
not quasi-equigenerated. In Section 3, we approach this challenge. It is difficult to find a purely
combinatorial characterizations of quasi-equigeneratedness but we describe several criteria and
give explicit characterization for cover ideals of some classes of graphs including trees, circulant
graphs, and graphs with independence number one or two. Finally, we consider the behavior of
cover ideals of graphs obtained through various constructions.

In Section 4, we consider the Freiman property for cover ideals. We describe when the join of
two graphs is Freiman, then we relate squarefree Freiman ideals with ideals of minors of 2 x n
generic matrices and we prove that, in general, graphs that are close enough to be complete have
Freiman cover ideal. Since the defining ideal of the fiber cone of Freiman ideal has a 2-linear free
resolution, it is clear that, when is nonzero, it must be generated in degree 2. However, we also
find graphs for which the defining ideal of the fiber cone of the cover ideal is generated in any
possible degree n > 3, and hence their cover ideals are not Freiman.

Finally, in Section 5, we characterize Freiman cover ideals among different families of graphs.
We consider the family of the pairs of complete graphs sharing a vertex, the family of circulant
graphs, and the family of whiskered graphs. For all these families, we also explicitly compute the
analytic spread of the cover ideals.

2. Preliminaries

In this section, we recall definitions and several preliminary results about fiber cones, Freiman
ideals and cover ideals of graphs.
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2.1. Fiber cones and Freiman ideals

Let I be an homogeneous ideal in the polynomial ring R = k[xy, ..., x,|, where k is any field. The
fiber cone of I is the standard-graded k-algebra
o0 Ii
F(I) =@ —,
i=0 mI!
where m = (xi, ..., x,) is the homogeneous maximal ideal of R. The coefficients of the Hilbert ser-

Ii
mr

ies of the fiber cone are dimk( ) = u(Ii), where u(Ii) indicates as usual the minimal number

of generators of I'. The Krull dimension of F(I) is called analytic spread and it is usually denoted
by I(I); this invariant measures how fast the number of generators of the powers of I increase.

If the fiber cone of I is isomorphic to a polynomial ring in u(I) variables, the ideal I is called
of linear type. This happens if the generators of I form a regular sequence.

In order to study the Freiman property of ideals, we will consider (quasi-)equigenerated homo-
geneous ideals. We give the following definition.

Definition 2.1. Let I = (fi,....f;) C k[xl, cer Xn] be a monomial ideal. Write its monomial genera-

tors as f; =[], x?j. For o = (ay,...,a,) € N" we define

d“ (f,) = Z(; a,»c,»]..

We say that I is quasi-equigenerated of degree d if there exists o = (ay,...,a,) € NL,, such that,
for every j, k,

&, (f) = di(fi) = d.

We say that I is equigenerated if all its generators have the same degree (equivalently I is quasi-
equigenerated taking o = (1,1, ..., 1)).

It is known that the fiber cone of an equigenerated homogeneous ideal is an integral domain
because it is isomorphic to the k-algebra generated by its minimal generators. We recall this
result because, up to changing the grading on the polynomial ring, it can be extended to quasi-
equigenerated ideals.

Proposition 2.2 ([5, Proposition 4.8]). Let R = k[x,...,x,] be a (not necessarily standard)
N-graded polynomial ring in n variables over field k, and let m denote its homogeneous maximal
ideal. Suppose the ideal I = (fi,...,fu) is homogeneous and equigenerated of degree t with respect to
the grading of R. Then F(I,,) (and thus F(I)) is a domain.

Proof. Let I; = I' N R; be the itth graded component of I'. Then k&L, &L G --- = k[fis ..o fu]-
Since I is equigenerated with respect to the grading of R, I'/mI’ 2 I; for all i. Therefore

Kfi o fi] = D ( ! ) ~ D <1_> ~ F(I,).

h i h i
i—o \ml/ =0 \ mlIi

Thus F(I,,) is a domain. O

We specialize now to the case of ideals that can be generated by monomials. Let I =
(fi>--ft) € k[x1,...,x;] be a monomial ideal. Using the homomorphism T; — f;, we write the
fiber cone as

K[Ty, ... T})

F(I) = =
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where k[T, ..., T¢] is a polynomial ring over the same field k. The ideal Z C [T}, ..., T;] is called
the defining ideal of the fiber cone of I. We describe the structure of the defining ideal in the
monomial case:

Proposition 2.3. Let I = (fi,....f;) be a quasi-equigenerated monomial ideal. The defining ideal
I C k[Ty, ..., Ty] of the fiber cone F(I) is a homogeneous ideal, and when it is nonzero, it is gener-
ated by binomials of the form

T, T,
and such that {iy,....i,} 0 {j1, ....jr} = 0.

T T,

Proof. By Proposition 2.2, F(I) = k[fy, ....f;], hence F(I) is a toric ring and its defining ideal Z is
generated by binomials by [9, Proposition 10.1.1]. To see that Z is homogeneous, assume by way
of contradiction that it has a generator of the form T; ---T; — Tj ---T; with r #s. This it is
equivalent to say that, if I = (fi,....f;), then f; ---f; =f; ---f;. But, since I is quasi-equigenerated,
we may find o € N%, such that d,(fi) = d,(f;), for every i, j. This implies rd,(f;) = sd,(f,), and
hence d,(f;,) = 0, that is a contradiction. O

The next proposition states a criterion that we are going to use trough this paper, to show
when the ideals of F(I) generated by monomials of degree one (the variables T;) are primes.

Proposition 2.4. Let I = (fi,....f) C k[x1,....,x,] be a quasi-equigenerated monomial ideal. Let
S=k[T1,...., Ts), and T C S be the defining ideal of F(I). Let T = {Ty, ..., T;} and let J be an ideal
of S generated by some subset V C'T. Let ] be the image of J in F(I). The following
are equivalent:

1. ] is prime.

2. (ZLJJ) is either (0) or is generated by binomials.

3. M= S~ k[fi| T ¢ V).
Proof. (1) = (2) : Let  : S — §/J and p : S — S/Z be the natural maps. By Proposition 2.3, Z is
generated by binomials. Let o« — f§ be a binomial in Z with «, f monomials. If /(o — ff) # 0, then
either one or both of o, f§ are not in 7. If this happen for both, then /(o — f8) is a binomial in S/ 7.
Suppose o € J, and € J. Since p(J) =], we know that p(f) € ] and, since 0 = p(o — ) € ],
also p(«) € J. But p(a) is a product of elements of the form p(T;) where T; € V, thus if p(a) € J
then, the assumption of ] a prime ideal implies also p(T;) € J for some T; ¢ V. Since o is a monomial,
so is p(T;). Since p is a degree preserving map, p(T;) = p(T) for some T € V. Thus T —T; € Z.
However, as the defining ideal of a fiber cone, Z is generated in degree at least 2, a contradiction.

(2) = (3) Consider the map ¢ : S/J — k|[f; | Ti € V] given by T; — f;. Since S/J = k[T \ V]
we identify S/J with its isomorphic subring in S and view each nonzero T; € S/ J as T; € S. We
know that ker¢) consists of all polynomials in T; corresponding to relations in {f; | T; € V}. Such
elements of S are contained in (Z + J)/J, so ker(¢) CZ. Let g be a nonzero generator of
(Z+ J)/J. Then g is a binomial and g € 7 \ J. Since Z is generated by binomials correspond-
ing to the binomial relations on {fi, ....f;}, g corresponds to a binomial relation on {f; | T; € V}.
Therefore g € ker(¢), and thus (Z + J)/J = ker(¢).

(3) = (1) : This is clear since k[f; | T; ¢ V] is an integral domain. O

For a quasi-equigenerated monomial ideal, it has been shown in [6, Theorem 1.1] that

w(?) > 1 u(1) — (1(21) )
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We will refer to this fact as the Freiman inequality. When the equality holds in the Freiman
inequality, I is called a Freiman ideal. Quasi-equigenerated monomial ideals of linear type are
always Freiman ideals for which I(I) = u(I).

Freiman ideals are characterized by the following properties. A very interesting fact obtained
as a consequence, is that, if an ideal is Freiman, the number of generators of any power can be
exactly computed in term of u(I) and I(I).

Theorem 2.5 ([6, Theorem 1.3]). Let I be a quasi-equigenerated monomial ideal. The following

assertions are equivalent:

1. Iis a Freiman ideal.
u(v) = (I(I)jfjlfz)u(l) - (- 1)(l<1> 7’2) for every j > 1.
u(r) = (l(l)jtjfZ)/,t(I) - (G- 1)<Z<I> +jj’2> for some j > 2.

The Hilbert polynomial of F(I) is linear (that is, h; = 0 for all i > 2).
F(I) has minimal multiplicity.

S

F(I) is Cohen-Macaulay and its defining ideal T has a 2-linear free resolution.

2.2. Cover ideals of graphs
In the following we always consider simple finite graphs without multi-edges or loops.

Definition 2.6. Let G be a graph with vertex set V = {xi,...,x,} and edge set E. We say that a
monomial g € R is a (vertex) cover of G if for each edge {x;,x;} € E, either x;|g or xj|g (or both
conditions happen). We say that a vertex cover is minimal if it is not divisible by any other vertex
cover.

The generators of the cover ideal J(G) are the minimal vertex covers of G. In other words

J(G):= [ (xx)CR

{xi> X }EE

Definition 2.7. Given a graph G with V = {xi,...,x,}, an independent set of G is a subset U C
V such that for every x;,x; € U, {x;,x;} ¢ E. We denote by c(G) the independence number of G,
that is the maximal cardinality of an independent set of G. An independent set of G is said max-
imal if it is not contained in any other independent set.

Remark 2.8. A set U C V is an independent set of G if and only if the monomial hy = HWZU X;
is a cover of G and is maximal if and only if sy is a minimal cover.

We recall the following well-known notation. Given a graph G = (V,E) and a vertex x, the set
of neighbors of x is the set A'(x) containing all the vertices x; adjacent to x (i.e. {x,x;} is an edge
of G). We recall that the degree of a vertex is the number of adjacent vertices and a vertex of
degree 1 is called a leaf. A graph on n vertices such that each vertex has degree n - 1 is called
complete. Given a set of vertices U C V in G, the induced subgraph on U is the graph with vertex
set U, and edge set {{x,y} € E|x,y € U}.

Definition 2.9. We say that two vertices x and y of a graph G are equivalent if N'(x) = N (y).

Given two graphs G; = (V1,E1), Gy = (V3, E;) we say G <* G, if V1 C V,, G is the induced
subgraph of G, on Vi, and every vertex x € V, \ V; is equivalent to some vertex in V, as vertices
of G;. The relation <* defines a partial order and we say that a minimal element with respect to
it is a reduced graph. A reduced graph has no equivalent vertices.
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Example 2.10. Vertice b and d are equivalent in graph G below. The graph H <* G is reduced.

G: H:
(—®) (—®

Now, we show that in order to study cover ideals we can reduce to consider reduced graphs.

Lemma 2.11. Let G be a graph, I its cover ideal, and let x, y be two equivalent vertices of G. For
any minimal cover f of G, x divides f if and only if y divides f.

Proof. Let f be a minimal cover of G and assume that x divides f. Hence, by minimality, there
exists z € N'(x) = N (y) such that z does not divide f. If follows that y divides f. Clearly the con-
verse follows by the same argument. O

Theorem 2.12. Let G, <*G, be two graphs and let I, and I, be their cover ideals. Then their fiber
cones F(I;) and F(L,) are isomorphic.

Proof. Let Vi = {x1,...,x,} be the set of vertices of G;. We may assume the set of vertices of G,
to be Vy = {x3,...,x,, ¥} (if there are more vertices in V, it is possible to iterate the same argu-
ment of this proof). Since G;<*G,, there exists x; € V; equivalent to y. Say that I; = (fi,....f;)-
Hence by Lemma 2.11, I, = (g1, ..., &) where g = f; if x; does not divide f; and g; = yf; otherwise.
Now observe that f; ---f; = fu, - f, if and only if g ---g; = gn, -~ gn- It clearly follows that
F(I}) and F(I,) are isomorphic. O

3. Quasi-equigenerated cover ideals

In this section, we approach the question of understanding which cover ideals of graphs are
quasi-equigenerated.

Easy computations allow to observe that the cover ideal of any graph with 3 or 4 vertices is
quasi-equigenerated while the unique graph with 5 vertices and non-quasi-equigenerated cover
ideal is the path Ps (see below).

Indeed the cover ideal of Ps is

J(Ps) = (X1X3X5, X1X3X4, X2 X4, X2 X3X5)

and, assuming the existence of & € N such that, d,(fj) = dx(f), we get the relations a, = as,
a4 = a3 + as deriving the contradiction a; = 0.

Example 3.1. Let G be a graph whose cover ideal I is generated in only two different degrees
m; < m,. Assume that there exists x; dividing all the minimal covers of degree m; but not divid-
ing any of the minimal covers of degree m,. It follows that I is quasi-equigenerated setting a; =
my —my + 1 and a, = 1 for k # i.
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In general it seems not easy to find an exact classification of all the graphs having quasi-
equigenerated cover ideal. We provide here several criteria and the complete characterization for
some families of graphs. First we observe that for this study we can only consider graphs reduced
in the sense of Definition 2.9. For a graph G = (V,E) and a vertex x € V, we denote by G\ {x}
the induced subgraph on V'\ {x}.

Lemma 3.2. Let G be a n-vertex graph with equivalent vertices x,, and x,_,. Then J(G) is quasi-

equigenerated if and only if J(G\ {x,}) is quasi-equigenerated.

Proof. Suppose that J(G\ {x,}) = (fi,....fs) is quasi-equigenerated. Then there exists some o =
(a1, .. an-1) € NZT' such that d,(fi) = d,(f;) for all 1<ij<s Let feN. be defined by
(2ay,...,2a5—2,0,_1,a,—1). We know by Lemma 2.11 that each generator of J(G) is of the form
xlif; for some 1 <i<s where t; is the highest power of x,_; dividing f; (¢ € {0,1}). Thus
dp (xlify) = ap1ti + 2d,(fi) — an—1t; = 2d,(f;) and therefore J(G) is quasi-equigenerated.

Suppose J(G) = (g1, ... &) is quasi-equigenerated. We know by Lemma 2.11 that J(G \ {x,}) =
(}%, s f—,s) where for each i, t; is the highest power of x, dividing g;. Since J(G) is quasi-equigen-
erated, there exists some o = (ay,...,a,) € NJ, such that da(g,-) = d“(gj) for all 1 <i,j<s. Let
p=(ai,...an—1 +a,). Then dpg (%) = da(g,-) for all i, and hence J(G\ {x,}) is quasi-equigener-
ated. 0

The cover ideals of graphs of independence number two are always quasi-equigenerated.

Proposition 3.3. Let G be a graph such that ¢(G) = 2 and let I = J(G) be its cover ideal. Then I is
quasi-equigenerated.

Proof. After relabeling the vertices, let xy,...,x, be the vertices of G of maximal degree and let
F = x1x, - - - x, be the product of all the variables. The minimal covers of G are of the form Fx;!
for i < c¢and F(xlxj)’l where {x, x;} is an independent set of G of cardinality two and j,! > ¢. In

the case there are no vertices of G having maximal degree, then each vertex is contained in an
independent set of cardinality two, and therefore I is equigenerated. Otherwise, set a; = 2 for i <
c and a; = 1 for i > c. Hence, setting o = (a1, az, ..., ay), we get fori <g,

dy(Fx;') =2(c— 1)+ (n—c)
and for j,I > ¢,
dy (F(xlxjfl) =2c+(n—c—2).
This implies I quasi-equigenerated. O
Next result characterizes graphs with equigenerated cover ideals in term of independent sets.
Proposition 3.4. Let G = (V,E) be a graph of n vertices and let I be its cover ideal. The following

conditions are equivalent:

1. I is equigenerated;
2. All the maximal independent sets of G have the same cardinality.
Proof. It is a straightforward consequence of the definitions and of Remark 2.8. O

Next lemma describes a useful way to detect non-quasi-equigenerated cover ideals considering
the cover ideals of particular induced subgraphs.
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Definition 3.5. Let G = (V,E) be a graph of n vertices and let x; € V. We call G; the induced
subgraph on the set V'\ (N (x;) U {x;}).

Lemma 3.6. Let G = (V,E) be a graph of n vertices and let I = (fi,....f;) be its cover ideal. Then
if I is quasi-equigenerated (resp. equigenerated), the cover ideal J(G;) is quasi-equigenerated (resp.
equigenerated) for every i.

Proof. Let h; be a minimal cover h; of G; and let h be the product of the neighbors of x; in G.
Hence f; = hh; is a minimal cover of G and the minimal covers of G not divisible by x; are all of
this form. Let V'\ (N(x;) U{x;}) = {xi,, ..., x; }. It follows that, if I is quasi-equigenerated with
o= (a, ..., an),J(G;) is quasi-equigenerated with (a;,, ..., a;). O

The converse of this result is not true, since one can see that the cover ideal of the 6-cycle
J(Ce) is not quasi equigenerated, but J((Cs);) is quasi-equigenerated for every of its vertices x;. In

Theorem 3.12, we explicitly characterize which circulant graphs have quasi-equigenerated
cover ideals.

Remark 3.7. Lemma 3.6 gives rise to a criterion for non-quasi-equigeneratedness. Let G be a
graph containing an induced subgraph A such that J(A) is non-quasi-equigenerated.

A T T2 3 B

G

If there exist vertices x1,x,, x3 with x; € V(A), such that the induced subgraph on {x;,x,,x3} is
P;, then the graph G; (obtained following Definition 3.5) will have A as a connected component
with non-quasi-equigenerated cover ideal.

Gs

Thus by Lemma 3.6, J(G) is not quasi-equigenerated.

We describe which trees have quasi-equigenerated cover ideal. We recall that a tree is a graph
not containing any induced cyclic subgraph.

Theorem 3.8. Let T be a tree. J(T) is quasi-equigenerated if and only if every vertex of degree at
least 2 is adjacent to a leaf.

Proof. Suppose that T contains a vertex v of degree at least 2 which is not adjacent to any leaves.
Then there exist vertices a,b,x,y in T such that (a, b), (b, v), (v, x), and (x, y) are edges in T. Let
H be the set of all leaves adjacent to {a,b,x,y}, and consider the induced subgraph S of T on
{a,b,v,x,y} UH. Let x,...,x; be the vertices of T having exactly distance two from at least one
vertex among {a,b,v,x,y}. Following the notation of Definition 3.5, set G' := T; and for j =

] i—1 . . . . . .
2,...s, set G := G;- (clearly xi, ..., x; are pairwise not adjacent since T is a tree and hence x; is a

vertex of G1). The last graph obtained with this process is G* = §. By iterated applications of
Remark 3.7 to the graphs G’ we get that, if J(S) is not quasi-equigenerated then also J(T) is not
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quasi-equigenerated. By Lemma 3.2 we may assume that S has no two equivalent vertices. The
assumption of v not adjacent to any leaf implies that S is one of the five following graphs.

| | ]
I |

By inspection, with the help of Lemma 3.6, we get that the cover ideals of these five graphs
are not quasi-equigenerated and hence also J(T) is not quasi-equigenerated.

Suppose every degree 2 vertex of T is adjacent to a leaf. By Lemma 3.2, we may assume T to
be reduced in the sense of Definition 2.9. Thus every vertex of T is either a leaf or adjacent to
exactly one leaf. Therefore T is a whiskered graph. In [14] it is proved that cover ideals of whis-
kered graphs are equigenerated (we prove again this fact here in Proposition 5.7). O

3.1. Quasi-equigenerated circulant graphs

It is easy to observe that complete graphs have equigenerated cover ideal and that the cyclic
graph C, has equigenerated cover ideal only for n = 3,4,5,7. A natural generalization of com-
plete graphs and cyclic graphs is given by the class of circulant graphs. Results about ideals
related to circulant graphs are given for instance in [1, 11, 12]. Here we are interested in charac-
terizing which circulant graph has quasi-equigenerated cover ideal.

Definition 3.9. Let n be a positive integer and let 1 < s < |n/2|. Denote by Z, the cyclic group
with n elements let S = {1,2,...,s} C Z,.

The circulant graph C,(1,2,...,s) is defined as the graph with vertex set {xi,...,x,} and with
edge set formed by the edges {x;,xi;;} such that j € {*1,*2,..., *s} with the sums taken mod-
ulo n. Note that the cycle C,, is equal to C,(1) and the complete graph K, is C,(1,2, ..., |n/2]).

The graph in the next picture is the circulant graph Cs(1,2).

Our strategy is to apply Lemma 3.6 and consider the induced subgraphs of circulant graphs of the
form G;. For this purpose, we need to study the cover ideals of the family of graphs we now introduce.

Definition 3.10. Given two positive integers n,s > 1, we define the graph P(n,s) = (V,E) where
V = {x1,...x,} and

E:= {(x,-,xj) | li—j] < s}.

Notice that for s=1, P(, ;) = P, is the path on n vertices.
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Proposition 3.11. The cover ideal of the graph P is equigenerated if and only if either n <
s+1lorn=2s+2.

Proof. When n <s+1, the graph is complete and hence its cover ideal is equigenerated of
degree n — 1. If n = 25 + 2 we argue in the following way: observing that N'(xs11) = V' \ {x22},
there exists a unique minimal cover of Py, ;) not divisible by x;;; an it has degree 2s. For the
same reason, since N'(x;12) = V' \ {x;}, also the unique minimal cover not divisible by x;, has
degree 2s. All the remaining minimal covers are of the form x,;1x,+2h1h, where h; is a minimal
cover of the induced subgraph on {x,...,x;} and h, is a minimal cover of the induced subgraph
on {Xs3,....%X2}. But both these induced subgraphs are complete graphs with s vertices and
hence

deg(xs1X2mhy) = 2 + deg(hy) +deg (hy) =2 +2(s — 1) = 2s.

To show that all the other graphs of the family are not equigenerated first consider the case
where s+ 1 <n <2s+ 1. If n is even we have for 1 <j <mn,

2s+1 |
> T

and thus (x5, %) € E for every j. Using the symmetry of the graph, we get also (x:1,x)) € E for

e

1
s+=-——7j <s
o<

every j. Now, the unique minimal cover not divisible by x: has degree n - 1 but, since the
induced subgraphs on {xj,...,xs_1} and on {xs,5,...,x,} are complete (and have the same num-
ber of vertices), any minimal cover divisible by xzx:;1 has degree 2 +2(5 — 2) =n — 2 and there-
fore the cover ideal is not equigenerated. Similarly, if # is odd we get (Xest, %) € E for every j and

we show that the cover ideal is not equigenerated in an analogous way.
Finally, we observe that if G = P(,,y), then, for 0 <j <s,

anj = P(nfsflfj,s)-

It follows that by Lemma 3.6, since J (P(s+2, 5)) is not equigenerated, then J (P(S+2+(S+1+j),s>) is not
equigenerated and therefore J (P(25+3,S>), ] (P<25+4)5)),..., ] (P(35+2)5)) are not equigenerated. Since
2s+3+(s+14j)>3s+4, we can iterate this last process and conclude that for n >
2s+3,] (P(M)) is not equigenerated. 0

By convention we assume the cover ideals of a graph without edges to be equigenerated.

Theorem 3.12. Let I be the cover ideal of a circulant graph G = C,(1,2,...,s). The following condi-
tions are equivalent:

I is equigenerated;
I is quasi-equigenerated;
J(Gy) is equigenerated;

Either s > 51 or s =12,

Ll e

Proof. (1) = (2) is trivial.

(1) = (3) follows by Lemma 3.6.

(2) = (1) By Lemma 3.6, since I is quasi-equigenerated with o = (ay,...,a,),J(Gy) is quasi-equi-
generated with (a;,,...,a;,) correspondent to the vertices {x;,,...,x; } of G,. But, by the symmetry
of the circulant graphs, after relabeling the vertices, G; = G; for every i. Thus, we can set the
same values a; on the vertices of G, preserving the order given to those of G;. Now observe that
the vertices of G, are
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{1 oo Xi }

where the sums i; + k are taken modulo n. Hence a; = a;4; for every 1 <[ < c¢. Using induct-
ively this argument, we find that a; = a; for every i, | and therefore I is equigenerated.

(3) = (1) Any minimal cover of G not divisible by the variable x, is of the form hh; where h is
the product of the neighbors of x; and /; is a minimal cover of G,. Since J(G,) is equigenerated,
we get these last covers are all equigenerated. Since all the vertices x;, have the same number of
neighbors and G; = G; for every i, we get that I is equigenerated.

(3) <= (4) Observe that G; = P(,_»,_1 5) and conclude applying Proposition 3.11. O

3.2. Quasi-equigenerated join of graphs

Our next aim is to characterize how quasi-equigeneratedness of the cover ideal behaves with
respect to graph operations. We consider the operation of adding edges between vertices of
two graphs.

Definition 3.13. Let G; = (V1,E;) and G, = (V,, E,) be two graphs where V; = {xi, ...,x,} and
Vo ={y1,...ym} are two disjoint sets of vertices. Given two non-empty subsets U; C V; and
U, C V,, we define the graph

Gl @UI)U2 G2 = (Vl U V2,E1 UEZ U D)
where
D:= {(xh)’j) |x; € Uny; € U,}.

When U; = V; and U, = V, we simply denote G; & G, := G; @v,,v, G,. This last graph is some-
times called the join of G, and G.,.

Definition 3.14. We say that G, @y, u, G, is linked with covers if p; = Hx,»eUl x; and p, =
HyjeUZ y; are respectively covers of G; and G, (not necessarily minimal).

Proposition 3.15. Let G Dy, u,G, be linked with covers and let I} = (fi,....fs) C k[x1, ..., x,] and
L = (g1, 8) C k[y1,.... ym| be respectively the cover ideals of G, and G,. The cover ideal I of G is
contained in k[xl, o X> Y1 +e0> Yim] and it is generated by:

I= (fip2, .- fsP2>£1P1> > &P1)-

The monomial p1p, is a minimal cover if and only if p, and p, are both minimal covers of G, and
G,. The others are all minimal.

Proof. It is clear by the above definitions that p;p, € I. If p; and p, are both minimal covers of
the respective graphs, p;p, is a minimal cover (hence p;p, = fip, = p1g; for some i, j). Assume
instead that one of them, say p;, is not minimal and it is divisible by a cover h of G;. It follows
that hp, is a cover of G dividing p;p,. For f; # p;, the monomial f;p, is clearly a minimal cover
since there must exist x; dividing p; but not f;, and therefore we cannot remove any variable y;
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from p,, since otherwise we would uncover the edge (x;, y;). Similarly we can see that all the
monomials of the form gjp, are minimal covers if g; # p,. It is easy to observe that any cover not
of this form is not minimal. 0

Theorem 3.16. Let G,@y,,u, G2 be linked with covers and take py, p, as in Definition 3.14. Call I
the cover ideal of G and I; the cover ideal of G; for i=1, 2. Assume p;, p, are either both minimal
covers of the respective graphs or both non-minimal. The following conditions are equivalent:

1. I is quasi-equigenerated;
2. Both I, and I, are quasi-equigenerated

Proof. (1) = (2) We argue by way of contradiction and assume I, = (fi, ..., f;) not quasi-equigen-
erated. Assuming p;, p, both minimal or both non-minimal, we get by Proposition 3.15 that for
every i, fip, is a minimal cover of G. Since I; is not quasi-equigenerated the linear system defined
by the equations d,(f;) = d,(f;) has no solutions among the nonzero positive integers. It follows
that also the linear system defined by equations d,(fip2) = d,(fjp2) has no solutions, and hence I
is not quasi-equigenerated.

(2) = (1) Let I, = (f1,....f;) be quasi-equigenerated with o = (ay,...,a,) and I, = (g1, ...,g) with
B = (b1,....by). If py, p, are both minimal covers, by Proposition 3.15, it is easy to observe that I
is quasi-equigenerated with (ay,...,ap, b1, ..., by), since d,(f;) = dy(p1) and d/;(gj) = dg(p2) for
every i, j. Instead, if p;, p, are both non-minimal, the numbers A = d,(p1) — dy(f;) and B =

dp(p2) — dp(g) are both greater than zero. Hence, the ideal I is quasi-equigenerated with
(cay, cay, ..., can, dby, db,, ...,db,,) where ¢ = m and d = m. O
Remark 3.17. Observe that the argument used to prove Theorem 3.16 actually shows that if
J(G;) and J(G,) are not quasi-equigenerated then J(G) cannot be quasi-equigenerated. Anyway, if
one of them has quasi-equigenerated cover ideal, the assumptions on minimality of p; and p, are
needed, since it is possible to produce a counterexample in the case one is minimal as a cover
and the other is not. The counterexample is the graph G = Ps®y,, v, P, where U; = {x;,x3,x5} C

{xl,xz,X3,x4,X5} and VZ = {)’1,)/2}~

Indeed J(G) is quasi-equigenerated setting d, (x,) = 2 and d,(x;) = d, o) =1 for all j and i # 2.

4. Freiman cover ideals

In this section, we study Freiman property for quasi-equigenerated cover ideals by giving a gen-
eral structure theorem and characterizing Freiman cover ideals among some classes of graphs.
Our settings and notations, where not differently specified, will be the following: I will be the
cover ideal (quasi-equigenerated) of a graph G on n vertices or more generally, a quasi-equigener-
ated squarefree monomial ideal. We express the fiber cone of I as the ring
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k[Ty, ..., T}

—7

where the variables T; correspond to minimal generators of I via the usual ring homomorphism.
We consider the minimal covers of G using the equivalent notation induced by the maximal
independent sets described in Remark 2.8. For U a maximal independent of G, we call Ty the
correspondent variable in k[T1, ..., T;]. We set t = u(I) as the number of minimal generators of I
and I(I) as its analytic spread. Often, we will use the notation T;, Ty also for their corresponding

F(I) =

images in F(I) instead of writing T;, Ty.

Set a:=t—I(I) and call b the number of minimal generators of Z having degree 2 with
respect to the grading of the polynomial ring k[T, ..., T;|. The next lemma translates the Freiman
condition in term of the invariants a and b.

Lemma 4.1. Let I be a squarefree quasi-equigenerated monomial ideal and let T be the defining
ideal of the fiber cone F(I). For a, b defined as above, b < (“H) and I is Freiman if and only

2
ifo=("7").
Proof. Since Z is generated by binomials, u(I?) = (“2”1) — b. Thus we have

(t—;l) b (t—a)— (t;a)

and the equality holds if and only if I is Freiman. A straightforward computation leads to our
thesis. O

Remark 4.2. In Theorem 2.5, it is stated that the fiber cone of a Freiman ideal has a 2-linear free
resolution. An immediate consequence of this fact is that, when I is Freiman, the ideal 7 is gener-
ated in degree 2.

Example 4.3. We observe the following facts.

1. The cover ideals of complete graphs are Freiman of linear type. One can check this fact eas-
ily, but we shall prove a more general result in Theorem 4.10.

2. The graph in the following picture has cover ideal generated by fi = x1x%4%s5,f2 =
X1X3X4, f3 = X1X3Xs, fa = X2X3%4, f5 = X2%3%s5. Its fiber cone is isomorphic to the ring

k[T]; T27 T3> T43 TS]
(T2 Ts — T4 T3)

and hence the cover ideal is Freiman by Lemma 4.1.

3. Call H; the graph in next picture, that is the graph on 6 vertices xi, ..., x¢ whose independent
sets are {x1,%}, {x3, x4}, {x5, %6}, {x1, %3}, {x2, x5}, {x4, x5 }. The fiber cone of this graph is
isomorphic to the ring
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k[Ty, Ty, Ts, T4, Ts, T
(T\T,Ts — T4T5Ts)

and hence the cover ideal is not Freiman by Remark 4.2.

4. Starting with H;, one may inductively construct a family of graphs whose fiber cones have
principal defining ideal generated by a binomial of degree n for each n > 3 (clearly the cover
ideals of the graphs of this family are not Freiman). Indeed, for n > 3, define H,; as the

graph on the vertices xi,...,Xn4+2, having the same independent sets as H, except
{%2n—2, %} and having also the independent sets {x2,+1, X2n12}> {X2n—2> X2n11 b {Xom> X2n12 -

As application of Lemma 4.1, we can get a complete characterization of when the join of two
graphs is Freiman.

Theorem 4.4. Let G, and G, be two simple graphs and let G := Gy @ G,. Let I}, 1,1 be respectively
the cover ideals of Gy, Gy, G. Suppose I, and I, to be quasi-equigenerated. The following conditions
are equivalent:

1. 1is a Freiman ideal;
2. I, and I, are both Freiman ideals and at least one of them is of linear type.

Proof. Since I; and I, are quasi-equigenerated, so it is I by Theorem 3.16. Assume as in
Definition 3.13, I} = (fi,....fy) C k[xl, oo X and I, = (81>--&) C k[yl, e Y- Write their fiber
cones as

and

We claim that

k[T, ..., Ty, Uy, ..., U

Set Fi = x1%3 -+ - Xu, F2 = y192 - - - ¥ and observe that by Proposition 3.15, the generators of I are
of the form f;F, and gF,. Hence, using the usual homomorphism defined by T; — f;F, and U; —
gF1, we identify F(I) with the quotient of k[T, ..., T;, Uy, ..., U] by a defining ideal Z. Moreover,
notice that if g € Z7;, then F,q € 7 and analogously if g € Z,, then F;q € Z. We only need to
show that these are all the generators of Z. To do this, let

p=T, T, Uy Uy, =Ty T U,---U, €T

F(I) =

(observe that by Proposition 2.3, r; + r, = 3 + 4), hence we must have

S fi B2 G &, B = e S Fo'g - @, B
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Separating the variables, this implies f;, ---f, F" = fi, - fi,, F)'. Assuming by way of contradic-
tion r, < r4 (or analogously ry < r,), we get fi ---f, = fi, - fi,, Fi' ™ and, since I, is quasi-equi-
generated, we can find o € N2, such that

rld@((fil) = r3d0¢(fi1) + (7’4 - rZ)rlda(Fl)-

But this is a contradiction since r4 — r, = r; — r3 and since f; properly divides F;. Therefore, we
must have r, = ry, r; = r3, and hence p is in the ideal generated by other generators of Z of the
form F,q and F,q for q € Z; or q € 7, and this proves our claim.

Now, it is easy to observe that the analytic spread I(I) = I(I;) + I(I,). Following the notation
of Lemma 4.1, denote by by, by, b the number of minimal generators of degree 2, respectively of
T,,Z,,Z. Also write a; :=n—I(I,),a, := m — I(I,),a := n+m — I(I). Hence, clearly b = b; + b,

and a = a; + a,. Thus
611+1 a2+1 a+l
o= () () = (3

The first inequality is an equality if and only if both I; and I, are Freiman ideals, while the second
one is an equality if and only if one among g, and a, is zero, meaning that F(I;) or F(I,) is a poly-
nomial ring. By Lemma 4.1, I is a Freiman ideal if and only if both these conditions hold. O

In [6, Theorem 1.3], it is shown that a quasi-equigenerated ideal I is Freiman if and only if
F(I) has minimal multiplicity. We want to use this fact, together with the classification of homo-
geneous domain (among quotients of polynomial rings) of minimal multiplicity given in [2,
Section 4], in order to describe Freiman squarefree quasi-equigenerated monomial ideals as ideals
generated by minors of certain matrices.

Lemma 4.5. Let T = {T,..., T;} for some s>4 be a set of indeterminants, and let A,B,C,D C T
such that T, ¢ A, T, € B, T5 € C, and T, & D. Let {, € k[A],?, € k[B],¢; € k[C|, and ¢, € k[D] be
linear forms. Suppose that the matrix

CT3 + €3 dT4 + 64
satisfies det M = o(T1Ty — T, T;) for some o € k. Then €1 = €, = €3 = £, = 0.

_ <aT1+€1 bT2+1€2>

Proof. Since {; € k[A],¢; = > ,.oa4A where each ay € k. Similarly ¢, = >, pbpB, 3 =
Y cec ccC, and £y = > p dpD where each bg, cc,dp € k.

We may assume that AND = () =B NC. Indeed, suppose that AND is nonempty. Then
there is some term A € A also contained in D. Since the terms of detM are squarefree, we con-
clude that A € BN C as well. Thus, by applying a row operation to M, we can obtain an new
matrix,

M, _ aT1 + Zl sz + fz
T\ T+ 0 dTy+ 4,

with the same determinant as M but such that ¢; and ¢, share one fewer variables than in M.
Repeating this process we can eliminate all elements of A N D. Working symmetrically, the same
conclusion holds for BN C.

We also may assume that a =d =1, since scaling rows of matrices scales determinants
by constants.

Suppose {4 # 0. Since {4 is nonzero then (T} + ¢)(Ts + £4) contains terms T1D; for each 1 <
i <v. As these terms do not appear in the determinant, they must be canceled by terms of
(bT, + £,)(cT3 + £3). Thus T; e BUC, and so D C B. Since T; € C, (bT, + £,)(cTs + £3) con-
tains a term of the form T)B for each B € B. Since these terms do not appear in the determinant,
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they must be canceled with terms from the main diagonal. Thus D C B and so B = D. Since
terms of the form a4 T4A occur on the product of the main diagonal, but not in the determinant,
they must cancel with terms of (bT, + £,)(cT5 + ¢3). Thus Ty € BUC. Since T, D =B, T, €
C. However, this means that aT4B is a term of the product of the antidiagonal which doesn’t
appear in the determinant and thus must be canceled with a term from (T} + ¢;)(Ts + ¢,). This
cannot happen because B € D and thus B ¢ A.

Thus ¢4 = 0 and by symmetric arguments, {; = ¢, = {3 = 0. O

A generic n X m matrix over a field k (or over a ring) is a matrix whose entries are distinct
independent variables over k. We are now ready to prove the following theorem:

Theorem 4.6. Let I C k[xy, ..., x,] be a squarefree quasi-equigenerated monomial ideal. Then I is a
Freiman ideal if and only if the defining ideal of its fiber cone I is either (0) or it is generated by
the minors of a generic 2 X m matrix over k.

Proof. When Z = (0) or when it is generated by the minors of a 2 x m matrix, by the results in
[2, Section 4], F(I) has minimal multiplicity and hence I is Freiman.

Conversely assume F(I) to have minimal multiplicity and Z # (0). By [2, Theorem 4.3], and
since Z is generated by binomials, either Z is the ideal generated by the minors of a 2 X m matrix
of linear forms or is the ideal generated by the 2 x 2 minors of a generic 3 x 3 symmetric matrix
of linear forms (notice that the case in which F(I) is an hypersurface generated by a quadratic
binomial is included in the first case). But, since I is squarefree, for any choice of three mono-
mials f, g, h among the minimal generators of I, f> # gh, and thus the case of minors of a sym-
metric 3 X 3 matrix has to be excluded.

Suppose that I = I,(M) for some 2 x m matrix M, of linear forms. Since I is generated by
squarefree binomials of degree 2, we may assume by Lemma 4.5 that the entries of M are mono-
mials, and hence they are generic. ]

Next result will be useful in the following to study the Freiman property for the cover ideals
of some classes of graphs.

Proposition 4.7. Let G be a graph and I its cover ideal. Consider a vertex x belonging to only one
maximal independent set U of G. Then, the variable Ty, associated to the minimal cover hy, is a
prime element in the fiber cone F(I).

Proof. Consider the defining ideal of the fiber cone 7 = (qy,...,¢s). By Proposition 2.4, the vari-
able Ty is a prime element in F(I) if and only if it does not divide any monomial of the bino-
mials qi,...,qs. Let ¢ = o — f be a minimal generator of Z with o, f monomials, and assume by
way of contradiction Ty divides o. By Proposition 2.3, 7 is an homogeneous ideal and it follows
that there exist some minimal covers h;, h; of G and an integer u > 1 such that

W Ry, by, = hy,

jr+u'
But, since x is contained in only one independent set, then it divides every minimal cover of G

different from hy and this induces a contradiction since the degree of x in h/h; ...h; is now
strictly less than the degree of x in h;,...h; . O

An easy application of last proposition shows that the elements of a family of graphs including
complete graphs have cover ideal of linear type.

Definition 4.8. A graph of n+ 1 vertices is said to be almost complete if it has an induced com-
plete subgraph of n vertices. An almost complete graph having vertices X1, X2, ..., X,y is of the
form
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G =K, @U,{y} {y}

where K,, is the complete graph on the vertices x;,x,...,x, and U is a subset of this same set
of vertices.

Remark 4.9. A graph G is complete if and only if ¢(G) = 1 and it is almost complete if and only
if ¢(G) = 2 and the intersection of all the independent sets containing two elements is
non-empty.

Let G be an almost complete graph with n > 4 vertices and let I be its cover ideal. Let d =
n—|N ()], where N(y) is the set of neighbors of y.

1. IdeO,G:Kn+1.
2. If d=1, there exists a unique vertex x; not adjacent to y, and N(x;) = N(y). Thus, by
Theorem 2.12, I has fiber cone isomorphic to the fiber cone of J(K,).

Theorem 4.10. Let G = (V,E) be an almost complete graph with n > 4 vertices and let I be its
cover ideal. Then I is a quasi-equigenerated Freiman ideal of linear type.

Proof. Let U C V be the set of neighbors of y. Set F := x1x;---x,y. It is easy to check that the
cover ideal I of an almost complete graph G = (V,E) is generated by the monomials h; = ij’1
for x; € U, correspondent to the maximal independent set {x;} and gy = Fx;'y~! for x; € V\ U,
correspondent to the maximal independent set {x;,y}. In particular ¢(G) = 2 and therefore I is
quasi-equigenerated by Proposition 3.3.

By Proposition 4.7, all the minimal covers of G are prime elements in the fiber cone of I. It
follows that I is of linear type. 0

5. Families of graphs and Freiman cover ideals

In this section, we consider some different families of graphs having quasi-equigenerated cover
ideal and we characterize when their cover ideal are Freiman. We also provide explicit computa-
tions of their relations and analytic spreads.

5.1. Pairs of complete graphs sharing a vertex

Definition 5.1. Let m > n > 2. We define the graph A, ,, = K,®{4,}, v(x,_,)Km-1 as the graph
having vertex set

V= {xl)x2> o Xns V2, Y35 --~sym}

and edge set given by the union

m m

U om0 Y ).

n
E= U (.X,‘,Xj) @]
1<i<j 2<i<j

Theorem 5.2. Let m > n > 2 and let I be the cover ideal of the graph A, ,,. Then, I is quasi-equi-
generated and:

1.  The analytic spread of I is n+m — 2;
2. I is a Freiman ideal if and only if n < 3.
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Proof. Observe that ¢(G) = 2 and hence I is quasi-equigenerated by Proposition 3.3. If n=2, the
graph is almost complete and therefore I is Freiman of linear type by Theorem 4.10. Let F =
X1X2**XnY2Y3 - Ym. The minimal generators of I are Fx,' and the others are of the form
Fx; lyj’l for every possible choice of 1 <i<n—1 and 2 <j < m. Here we use a slightly differ-
ent notation for the fiber cone (with respect to Section 4), associating T to Fx,' and T;; to
in’lyj’l, and writing F(I) as the quotient of the polynomial ring k[T, T1,2, ..., T1,m> 12,25 --» Tu—1,m)
by a homogeneous binomial ideal Z.

Let g = o — f € Z where o, f§ are monomials. Observe that by Proposition 4.7, the image of T
is a prime element of F(I) and T divides o if and only if divides also . Therefore, assuming ¢
part of a set of minimal generators, we get that «, f are of the form T; ; T; - T;,j,- Moreover,
notice the following important facts:

2sj2 T

(%) T;; divides « if and only if there exists k # j such that T divides f.

(*x) For every iy # i5,j1 # j2, the binomial T; ; Tj, ;, — Ti,j, Ti,,;, is a minimal generator of 7.
If deg (q) =2 and o = T;;T; for the same i, then f§ is clearly forced to be equal to «, making
q=0. Hence all the minimal generators of Z of degree 2 are of the form described in (¥x). The

number of these generators is
n—1 m—1
= (1))

Now, we compute the analytic spread I(I) of I. With an abuse of notation we write also the ele-
ments of F(I) in the form T,T;; instead of writing their classes modulo Z. Define for i =
1,...,n — 2 the ideals:

Zi:= (T2 T3> Tym) C F(I)

and
i
Pi=> I; CF().
k=1
The fact (*) together with Proposition 2.4, shows that each ideal P; is prime. Moreover we want
to prove by induction that the height of P; is i. For i=1, consider the localization F(I)p and
observe that T and all the elements T;; with i # 1 are units in this ring. By the fact (), it is
easy to see that, for every j, k, Ty; and T, are associated in F(I)pl, and hence F(I)p1 =
k[TLZ](Tm) has dimension one. Assume now for some i < n — 2 that P,_; has height i - 1 and

show that P; has height i. The ideal ] := P% is prime in the ring R := g—f)l and the binomials of
the form T;;T;x — TixT;j € T \ Pi-1 for every j, k, and i <1< n — 1. Hence, again by the fact
(*%), Tij and T;y are associated in R;, and hence, as in the previous case, R; has dimension one,

implying F(I)p, to have dimension i. Finally, observe that

F(I)
'Pn72

is a polynomial ring in m variables and therefore I(I) = n — 2 + m. Set

a=puI)-II)=((n-1)(m—-1)+1)—(n+m—2)=(n—2)(m—2).

2 k[T, Ty1,2> > Tn1,m)

By Lemma 4.1, comparing b with (“er 1), we get



COMMUNICATIONS IN ALGEBRA® 4431

(n;1)<m2—1) < <(n—2)(n;—2)+1)

and I is a Freiman ideal if and only if the equality holds. If n =2, 3, the equality holds, otherwise
for m,n > 4, a straightforward computation shows that the inequality is strict and therefore I is
not Freiman in such cases. 0O

Remark 5.3. Following the notation of the preceding theorem, the defining ideal of the fiber
cone of the cover ideal of A, ,, can be seen to be generated by the minors of the n x m matrix

Til)jl Tfl»jz s Til»jm
Ty, Thjy Ti,,j,
Ti.jy Ti,j T,

This gives another argument to characterize when these ideals are Freiman using Theorem 4.6.

5.2. Circulant graphs

In Theorem 3.12, we classified which circulant graphs have (quasi-)equigenerated cover ideals.
Here we describe which of their cover ideals are Freiman. We recall that given a graph G and a
vertex x; € V(G), we call G; the induced subgraph of G on the set V(G) \ (N (xi) U {xi}).

Theorem 5.4. Let G=Cy(1,...,s). The cover ideal J(G) is Freiman if and only if s>"5*
or G € {Cs,C7}.

Proof. Both J(Cs) and J(C;) are of linear type and thus are Freiman. Since we only want to con-
sider graphs with equigenerated cover ideal, we suppose s > 2. First assume s < “>%. Then G; has
vertex set {Xoi1,Xsi2,...,Xn—s} Of size at least 3 and x,_, Xy—s—1,X,—s—» are contained in a clique
of G;. There exists a maximal independent set H in G, with x,_,_, € H.

Let ¢ : V — V be defined by ¢(x;) = x;;1 (modulo n). Note that ¢ preserves adjacency of ver-
tices. Since x, s, € H and s> 2,x, s 1,X,s € H, hence H, = {x;} UH,H, = {x;} U ¢(H),
and Hs = {x;} U¢*(H) are all independent sets of G. Similarly, we see that Hy = {x,} U
¢(H),Hs = {x,} U ¢*(H),Hs = {x,} U ¢*(H),H; = {x3} U ¢*(H), and Hg = {x3} U ’(H) are
all maximal independent sets of G. However we see then that

hi,hyhy, — hg by, i,

is a minimal generator of 7 of degree 3. Thus J(G) is not Freiman by Remark 4.2.

Suppose that s >25%. Then either |Gj| =2,|G;| =1, or |Gj| =0 for all i. If each |Gj| =0,
then G is complete and J(G) Freiman. If each |G;| = 1 then J(G) is generated by elements of the
form F(xaxa+s+1)’1. For each x,, there is exactly one element of this generating set not divisible
by x,, and thus J(G) is Freiman by Proposition 4.7.

If each |G;| =2 then J(G) is generated by elements of the form h,;, = F(xaxb)’1 where b €
{a+s+1,a+s+2}. As usual we consider T, to be the image of h,; in the fiber cone of J(G).
Let  — f be a binomial minimal generator of Z, where «, f§ are monomials. If T, 4,1 divides o,
then T, 44542 divides f, since T, o4s and T, 44542 are the only generators of J(G) which x, does
not divide. Since the highest power of x,. . dividing T, s+s+1 is one less than the highest power
dividing T, 41512, there must exist another T., dividing f and not divisible by x,1.11. As
|Garsi1] = 2, we know that the only such element is T,y11,,—1- But then the highest power of
x4—1 dividing f is one lower than the highest power dividing o unless another generator of J(G)
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which is not divisible by x,_; divides o. Continuing this process, we see that all the generators of
J(G) must divide both o and f, and therefore the fiber cone is a polynomial ring. Thus J(G) is
Freiman. O

5.3. Whiskered graphs

Definition 5.5. Given a graph G with V(G) = {x;,...,x,}, the whiskering of G is the graph G
with V(G) = V(G) U {y1,....yu} and E(G) = E(G) U {{x;,y;}|i = 1,...,n}. The graph in next pic-
ture is the whiskering of C;.

Definition 5.6. Given a graph G, let I = J(G) be its cover ideal. For any squarefree cover f € I
(non-necessarily minimal), we define Ay = {i | x; does not divide f} and

fu=f H)’i’

iEAf

Proposition 5.7. Let G be a graph on n vertices and let G be its whiskering. Then J(G) is minim-
ally generated by the set

{fw | f € J(G) squarefree cover}

and it is equigenerated of degree n.

Proof. Clearly, by definition, f,, is a cover of G. To show that they are all minimal covers of G,
take f,h € J(G) squarefree covers. Hence, we may find x; dividing f and not h (or we may find
the opposite case). It follows that x; divides f,, and not h,,, while y; divides h,, and not f,, and

therefore f,, and h,, are both minimal. Obviously each f,, has degree n, making J(G) equigener-
ated in degree n. O

Let G be a graph on n vertices and let J(G) be the cover ideal of the whiskering of G. We
make use of the following notation, using Proposition 5.7, to describe the minimal generators of

] (G). Since F = X1Xy -+ + X, is a cover of G, then F = F,, is also a minimal cover of G. The others

(1),

generators of | (G) are of the form

x;€U
where U is an independent set of G. In the case U = {x;}, we denote
h; == (in’l)w.

By these observations, it follows that ,u(] (G)) = n+ 1+ d where d denotes the number of inde-
pendent sets of G of cardinality at least two.



COMMUNICATIONS IN ALGEBRA® 4433

Theorem 5.8. Let G be a graph on n vertices and let I = J(G) be the cover ideal of the whiskering
of G. The analytic spread of I is I(I) = n + 1.

Proof. We proceed along the line of the computation of the analytic spread done in the proof of
Theorem 5.2. Let us associate the variable T to F and, for any independent set U of G, the vari-
able Ty to the cover hy (for U = {x;} we call the variables Ty := T;). Thus, we present F(I) as
the quotient of the polynomial ring k[T, T, ..., Ty, Tu,» ..., Ty,] by a homogeneous binomial ideal
Z. The generators of Z are of the form

TU,1 TUI2 s TUI, T — TU]1 T[]]2 s TU

Js

(5.1)

where ¢ +r=s, Uy, Uj, are independent sets of G, and U, # U, for every I, ji. With an abuse of
notation we write also the elements of F(I) in the form Ty instead of writing their classes modulo
7. Define now for i = 1, ..., n the ideals

Z;:=(Ty | U is an independent set of G and x; € U) C F(I).

Notice that Z; always contains T; and it is principal if and only if x ; is connected to any other
vertex of G. We define, fori =1, ..., n,

Pi=)Y I
k=1
and
Pn+1 = Pn + (T)’

and we observe that since any minimal cover of G belongs to some of the ideals Z;, the homoge-
neous maximal ideal of F(I) is equal to P,.;. We need to show that P; is a prime ideal of F(I) of
height i and this will imply our thesis.

Consider a binomial ¢ minimal generator of Z. Clearly, since q is of the form given in (5.1),
x; € U, for some v if and only if x; € U}, for some k, hence either g € P; or all the independent
sets Uy, U;, do not contain the vertices xi, ..., x;. By Proposition 2.4, it follows that for every i, P;
is a prime ideal.

We prove by induction that the height of P; is i. Consider the localization F(I )p1 and observe
that T and all the elements Ty such that x; ¢ U are units in this ring. Since, if {x;}CU, the
binomial TyT — Ty Ty} € Z, then Ty is associated to Ty in F(I)p,, and hence F(I)p, =
k[T1](z,) has dimension one. Applying the same argument inductively, as done in the proof of
Theorem 5.2, we get that F(I)p = k[T, ..., Til(r, . 1, has dimension i and therefore P; has
height i. 0

Theorem 5.9. Let G be a graph on n vertices. Let I = J(G) be the cover ideal of the whiskering of
G. Then I is Freiman if and only if G is almost complete.

Proof. We keep the same notation used the proof of Theorem 5.8 for the fiber cone F(I) and its
defining ideal 7. Let b be the number of minimal generators of 7 of degree 2, and let d be the
number of independent sets (not necessarily maximal) of G of cardinality at least 2. By Theorem
5.8, we have u(I) — I(I) = (n+1+d) — (n+ 1) = d, and therefore by Lemma 4.1,

< (457)- (8

and I is Freiman if and only if the equality holds.
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First assume ¢(G) = w > 3. Let U = {x;,,x;,,....x;,} be an independent set of G of maximal
cardinality. Observe that

TyT" ' — T, T, - T, (5.2)

is a minimal generator of Z of degree greater than 2. It follows by Remark 4.2, that I is
not Freiman.

Assume now c¢(G) = 2. Hence d denotes the number of independent sets of G containing
exactly two elements. If U = {x;,x;} is one of these sets, we have that

TyT — TiT; (5.3)

is a minimal generator of 7, and there are exactly d minimal generators of this form. Given two
independent sets U; = {x;,x;} and U, = {x;, X} sharing the vertex x;, we get that also

Ty, T — Tu, T (5.4)

is a minimal generator of Z. Observe that G is almost complete if and only if all the independent

sets containing two elements share the same fixed vertex. In this case, there are exactly (j) min-

imal generators of Z of this second form, implying b =d + (g) and completing part of the

proof. Naturally in this case, calling x; the common vertex of all the independent sets, the bino-
mials in (5.3) and (5.4) are the minors of the 2 x (d + 1) matrix:

T T, .. T,
(Ti Ty, ... TUd)'

In the other case, assuming G not almost complete, there must be two independent sets Uj,
U, of cardinality 2, such that Uy N U, = 0, indeed, if by way of contradiction this does not hap-
pen, there must exist three independent sets of the form {x;, x;}, {xj, x¢ }, {xk, x;}. But this would
imply that {x;,xj, x¢} is an independent set, contradicting the fact that ¢(G) = 2.

Now, set U; = {x;,,x;,} and U; = {x;,,%;,} and assume U, N U, = (). Clearly, the two bino-
mials Ty, T — T;, T}, and Ty, T — T;, T}, cannot be minors of the same 2 X m matrix, and therefore
I is not Freiman by Theorem 4.6. 0

Corollary 5.10. Let T be a reduced tree. The cover ideal of T is Freiman if and only
ifT:PZ)p47ﬁ3'

Proof. Apply Theorems 3.8 and 5.9. O
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