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Online Exploration and Coverage Planning
in Unknown Obstacle-Cluttered Environments

Xinyue Kan, Hanzhe Teng, and Konstantinos Karydis

Abstract—Online coverage planning can be useful in appli-
cations like field monitoring and search and rescue. Without
prior information of the environment, achieving resolution-
complete coverage considering the non-holonomic mobility con-
straints in commonly-used vehicles (e.g., wheeled robots) remains
a challenge. In this paper, we propose a hierarchical, hex-
decomposition-based coverage planning algorithm for unknown,
obstacle-cluttered environments. The proposed approach ensures
resolution-complete coverage, can be tuned to achieve fast explo-
ration, and plans smooth paths for Dubins vehicles to follow at
constant velocity in real-time. Gazebo simulations and hardware
experiments with a non-holonomic wheeled robot show that
our approach can successfully tradeoff between coverage and
exploration speed and can outperform existing online coverage
algorithms in terms of total covered area or exploration speed
according to how it is tuned.

Index Terms—Nonholonomic Motion Planning, Robotics in
Agriculture and Forestry, Online Coverage Planning.

I. INTRODUCTION

HE paper addresses online coverage planning in un-

known environments for vehicles with non-holonomic
constraints. Efficient field coverage is essential for tasks such
as environmental monitoring [1], map reconstruction [2], lo-
cating survivors [3], and autonomous exploration of forested
areas [4]. In all these applications, regions to be explored may
be unknown and partially observable. Even if the environment
map can be obtained prior to departure, unexpected unvisitable
areas may occur, such as collapsed trees following a storm.
Hence, it is necessary to develop approaches that enable
online exploration and coverage planning of irregularly-shaped
environments with potential unexpected obstacles.

Depending on the application, various different types of
unmanned vehicles—including aerial (fixed-wing aircraft), sur-
face, ground (wheeled/legged robots), and underwater ones
(e.g., [5]-[10])—can be deployed. A common challenge among
most of them is the presence of non-holonomic mobility
constraints, often manifested as a minimum turning curvature
constraint. A way to take into consideration this constraint is by
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using a Dubins vehicle model [11], which specifies the vehicle
to move in fixed-speed straight lines and counter/clockwise
turns. More complex paths can be designed by concatenating
straight-line and turning maneuvers.

When the environment is known, existing approaches
(e.g., [6], [12]-[14]) decompose the region into a set of
non-overlapping subregions, and then plan paths within each
subregion. In practice, however, regions to be explored can
be unknown. Exhaustive search strategies, like back-and-forth
parallel swath motions [15], [16] or spiral paths [17], alter
the robot’s direction of motion if obstacles are encountered.
This may lead to incomplete coverage when the region oc-
cluded by the obstacle has not been visited. In contrast,
many existing online coverage methods [15], [18]-[20] lead
to abrupt velocity and orientation changes when encountering
obstacles. This effect becomes pronounced especially when
operating in obstacle-cluttered environments, and can hinder
tasks for which the success rate is sensitive to the quality of
sensor input, e.g., in field reconstruction [2], [21] and survivor
localization [22]. To mitigate this challenge, we propose an
online approach that plans smooth trajectories that minimize
the frequency of acceleration-deceleration events.

To represent the environment we consider a uniform hexag-
onal grid where a cell’s dimension is determined by the robot’s
sensor footprint. Hexagon-based partitioning enjoys several
benefits, including regular tessellation [23], uniform travel dis-
tance to all adjacent cells, and better description of non-convex
regions [24]. The effectiveness of hexagonal cell decomposi-
tion has been shown in applications including potential-field-
based path finding [25], field search [26] and offline path
finding [27] in known environments, and online underwater
mine countermeasure [28] with no restricted areas. Different
from those approaches, we focus on describing unknown,
obstacle-cluttered, bounded environments with duplicates of
regular hexagons, which fill a plane with no gap or overlap.

We propose an online, hierarchical coverage planning ap-
proach for Dubins vehicles. At the high level, a Hex-
Decomposition Coverage Planning (HDCP) algorithm is pro-
posed. Based on information collected from the robot’s ob-
servations up to the current time, the robot selects a feasible
hexagon subregion to explore next. At the low level, Dubins-
curve-based paths are planned in real-time. Closed-form solu-
tions for feasible paths (e.g., start and goal positions for line
segments, angles for arcs) are provided. The proposed HDCP
algorithm aims to cover the entire unknown (yet bounded)
environment, whereas its variant, HDCP-E, is used for fast
exploration. The proposed method is evaluated in Gazebo
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simulations in three forest/farm-like environments and in one
baseline empty environment, and compared against Spanning
Tree Coverage (STC) [19], Boustrophedon motions and the
A* search algorithm (BA*) [20], and Multi-robot Hex Decom-
position Exploration (M-HDE) [29] in terms of covered area
and exploration speed. We observe that unknown environments
with random obstacles can be fully covered. HDCP covers the
most amount of free space, whereas HDCP-E achieves the
highest coverage area per unit time. The proposed method is
evaluated experimentally with a non-holonomic wheeled robot.

Contributions: This paper has three key contributions.

1) We develop a hex-decomposition-based online coverage
planning algorithm, HDCP, that guarantees resolution-
completeness in unknown, cluttered spaces.

2) We propose the variant HDCP-E, to trade-off between
fast exploration and resolution-completeness.

3) We offer closed-form solutions for planning smooth
paths that robots can follow at constant speed.

The major difference between HDCP and our previous work
M-HDE [29]-which also applies hexagonal cell decomposi-
tion in unknown environments—is the sensor-footprint-based
decomposition strategy herein which ensures full coverage
within each subregion. Further, M-HDE is developed mainly
for online exploration tasks. If applied to coverage tasks (as in
this work) it performs worse because it prioritizes visiting the
most unexplored area. Doing so leaves uncovered subregions
and necessitates returning back to fill in holes.

II. RELATED WORK

Several methods have been proposed to tackle the cov-
erage path planning problem. When prior map information
is available, planning can be offline [30]. Most planners
use some form of decomposition, like Boustrophedon [6],
[31], Semi-boustrophedon [14], Morse [12], or Line-sweep-
based [13] decomposition, to partition the free space into
a set of non-overlapping cells. For online coverage plan-
ning, using information collected by on-board sensors, similar
cellular-decomposition-based strategies [15], [20], [32] are
also applied. Resolution-complete coverage can be obtained
by ensuring that all cells can be visited, and then apply-
ing “lawnmower” motions within each cell. Another popular
approach used for coverage planning is the Spanning Tree
algorithm [19], [33]. However, paths generated by those meth-
ods may contain sharp turns which can reduce efficiency and
increase fuel consumption for non-holonomic robots [34].

A common way to consider non-holonomic constraints is
to generate feasible paths using a Dubins model for offline
coverage planning [6], [14], [35], [36]. Lewis et al. [14] solve
the offline coverage problem as a traveling salesman problem,
and add constraints to ensure planned paths consist of line
segments and curves of a given minimum radius only. Yu
et al. [37] proposed a graphical-optimization-based smooth
planning strategy for Dubins vehicles. The method reduces the
total coverage time, but at the expense of high computational
complexity. Function-based smooth coverage planning meth-
ods generate paths represented by functions like clothoids [38]
and Bézier curves [39], [40]. Due to their smoothness, Bézier

curves enable fast coverage and energy efficiency, but at
the price of complex calculations. Online coverage planning
methods that are directly applicable to Dubins vehicles remain
limited. One approach is to obtain an offline solution for
coverage paths using any available prior knowledge, and then
replan according to the information collected through sensors
as the robot moves to avoid collisions [41]-[44]. Another
way is to modify existing online coverage approaches, such
as online STC [19] and online BA* [20], to decelerate and
make smooth turns that satisfy the minimum turning radius
constraints. Our proposed work fills in the gap by utilizing
sensor-based decomposition and directly incorporating non-
holonomic constraints.

III. PROBLEM SETUP

Consider a robot tasked to survey an unknown, bounded,
obstacle-cluttered space S. The robot is equipped with navi-
gation sensors (e.g., LIDAR, depth camera) and observation
sensors (e.g., RGB/thermal camera, mine detector). Navigation
sensors are used to plan collision-free paths, while observation
sensors are used to complete the designated task. Different
from target search problems in which the search terminates
once targets are located, the goal here is to cover the entire
field with observation sensors.

We use two coordinate systems. Cartesian coordinates link
to high-level objectives (e.g., to represent a point of interest in
a map) and enable onboard sensor data inference (e.g., visual
scene understanding). Cube coordinates are necessary to plan
paths in hexagon subregions that form a hex grid. Thus, we
use a two-layer environment map where a 2D hex grid plane
is overlaid on top of a Cartesian plane.
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Fig. 1. (a) Top view of the 2D hex frame H (dashed red) and world frame
W (solid black). (b) Six adjacent cells of a subregion. (c) Covered area by
the robot’s observation sensors as it completes a circular path within a hex
cell. The blue dashed circle filled with yellow depicts the sensor footprint, red
solid lines represent paths, and the covered area is marked in gray.

We place a world (fixed) frame W (Fig. 1(a) solid black
lines) in Cartesian plane, with axes W, Wy. The robot is
modeled in Cartesian plane as a Dubins vehicle, i.e.

Wi=Wycosh Wy: Wosing |, é:ud s

where (W, y) is the robot’s position, and 6 is its heading.
Speed v is constant, and ug € {—1,0,1}.

We place another a frame H (Fig. 1(a) dashed red lines) in
hex grid plane as the frame of reference for cube coordinates.
Cube coordinates correspond to three axes (7 x, #y, 2).! The
directions of axes are given in Fig. 1(a).> The origin of frame
H matches frame W, as well as a robot’s departing position.

Key variables used in this paper are listed in Table 1.

ICube coordinates have three axes in the 2D case.
2More details can be found in [29].
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TABLE I
LIST OF KEY VARIABLES USED IN THE PAPER.
Sk, Si, S; subregions
(Fa,Ty, 7 2) | cube coordinate in hex grid plane
(W, Wy) cartesian coordinate in Cartesian plane
r hexagon grid radius
Tt circular path radius
Tmin robot minimum turning radius
lr radius of observation sensor footprint
L starting point on circular path in Sk
W ok tangent point on circular path in Si
« angle between W iy, and WV @y, in Sy,
l length of straight-line path for Transitioning Mode
T step index for hex grid plane planning
Pr a robot’s path in hex grid plane
Vr a set of task-complete subregions
Er a set of explored subregions by navigation sensor
D, Doy feasible path and shortest feasible path from S; to S;

In the hex grid plane, a hexagon subregion is Sy, with its
cube coordinate (¥ zy, #yy,, 7 2;). * The position of the center
of S, in frame W is

3
x’” =|2 ; y [z e 2] T -
Y 0o B —@r

2T

N

Each S}, has six adjacent cells (Fig. 1(b)), forming a set

N(Sk) ={(zr,ype — Lz +1) , (xp+ 196 — 1, 21) ,
(zp + Lyg, 2z — 1) . (@p,ye + 1,2 — 1),
(T —Lye + 1L 21) 5 (o — Liyg, 2z + 1)} .

Hex side length r is determined based on the observation
sensor footprint, taken here to be a circular disk of radius I,
(Fig. 1(c)).* Radius I, depends on the selected sensor’s range
and is chosen by the user so that to achieve object detection
of acceptable (by the user) accuracy. Once [, is determined,
the goal is to achieve full coverage for circumscribed circle of
each hexagon cell. Suppose the radius of circular paths is 7,
chosen such as r,,,;,, < 1y < [,.. Ideally, setting r; = [, ensures
complete coverage of the circumscribed circle of a hexagon
cell with no redundancy. However, in practice we may often
have r; < [, in which case more sensor data are collected but
at the expense of efficiency (defined as newly covered area per
unit time). Given [, and ¢, then r = [, + 4.

Our method assumes the following. 1) The navigation sensor
detection radius is large enough to at least detect obstacles
in adjacent subregions. 2) There is sufficient battery life to
achieve full coverage. 3) 7, 1S reasonably small compared
to the sensor footprint and obstacle density.

IV. ONLINE HIERARCHICAL COVERAGE PLANNING

We propose a hierarchical approach to cover an unknown
environment. High level planning runs on the hex grid. A robot
determines a sequence of subregions to visit in the next several
time steps (Section IV-A). Low level planning runs on the
Cartesian plane. A robot plans circular and straight-line paths
to complete an observation task in current subregion and move
to next subregion, respectively (Section IV-B).

3We drop superscript H in cube coordinates for clarity of presentation.
4This is reasonable as there are a few ways to achieve a circular footprint,
e.g., via rotation with gimbals or by using multiple sensors.

A. Hex Decomposition Coverage Planning

We first describe our proposed Hex Decomposition Cov-
erage Planning (HDCP) approach. HDCP works at the hex
grid plane, and ensures resolution-complete coverage of hex-
decomposed unknown regions. In each subregion, a robot is
deployed to complete the observation task, entering into an
Observing Mode. A subregion is visited, if the robot has
finished Observing Mode in this subregion. Re-entering a
visited subregion will not trigger another Observing Mode.
A subregion is explored if it has been covered by navigation
sensors, i.e. having been marked as obstacle-free or obstacle-
occupied region. Once a robot completes an observation task
within one subregion, it enters into a Transitioning Mode and
moves to another subregion. Only Observing Mode triggers
observation sensors; navigation sensors collect information
continuously during both modes.

We demonstrate the detailed process for HDCP in Algo-
rithm 1. Upon departure, the robot initiates robot-centric
frames H and W, whose origins are at robot’s departure
position, for high-level and low-level planning, respectively.
A bounded unknown space S consists of unknown but finite
number of subregions Sy. Let 7 be the step of high-level
planning which records when a subregion was visited, i.e. pair
(7, Sk) represents a robot’s position in hex plane at step 7.

A robot’s path in hex grid plane up to step 7 is then
defined as P, = {(¢, k)|t € [1,7],Sx € S}. Let V, be
the set containing visited subregions up to step 7, i.e. unique
subregions in P,. |V, | < |P;|, where |-| denotes set cardinality.
Let & = {(Sk,u)|Sk € S,u € {0,1}} be the set containing
all explored subregions and their status u by navigation sensors
up to step 7. u = 0 represents that a subregion is obstacle-
free, otherwise u = 1. & ,—¢ returns all explored obstacle-
free subregions, &; ,—1 returns obstacle-occupied, unvisitable
subregions.

Suppose a robot finishes its observation task within sub-
region S; at step 7, and needs to determine the next sub-
region S; to visit at step 7 4+ 1 (line 10 of Algorithm 1).
To decrease the number of repeatedly visited subregions,
an unvisited subregion is preferred. To minimize the total
travel distance, a robot prefers one of its adjacent subregions
before moving to subregions further away (Fig. 2(a)). Let
Cr = V; U&;y=1 be the set of all “undesired” choices of
S;, i.e. either already visited or obstacle-occupied. Then, set
Q,(S:) = {S; € N(S) | S; & C.},0 < [Q,(S) < 6
contains candidates of .S5;, denoted as S7, which are unvisited,
obstacle-free subregions adjacent to S;.

As we seek to complete tasks for the entire free space within
the unknown region efficiently, it is undesirable to leave any
isolated subregion unvisited. The cost of coming back to “fill
a hole” later can be avoided by finishing all nearby areas first
before moving away. Let function f(-) calculate the number
of visited or obstacle-occupied neighbors of a candidate S as
f(S7) = IN(S}) ne.l. f(S}) = 6 indicates that all adjacent
subregions of candidate S7 are either visited or obstacle-
occupied, which makes this S]* a “hole” and hence should
be prioritized to visit.
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Algorithm 1 Hex Decomposition Coverage Planning
1: procedure HDCP

2 7+ 1,5, < (0,0,0), empty sets P-, V;, &, i)i,j
3 while S; # () do

4 Move to S; according to Eq. (7) and Appendix
5: PT(—PTU(T,SZ‘)

6: if S; € V., then

7 Observing mode, V, «+ V, U S;

8 end if

9: Update &, by navigation sensor results

10: Si, (i)i,j — NCXtHCX(Si, (‘:T, (:I)i,j)

11: T—T1T+1

12: end while

13: end procedure X
14: procedure NEXTHEX(S;, &, ®; ;)
15: if Q,(S;) # 0 then

16: Obtain S; according to Eq. (1), ®; ; + 0
17: else if Q" # () then

18: if |£,| # |E,_1] or &;; = () then

19: Obtain S; according to Eq. (2)

20: (i)i,j — GetAStarPath(Si, Sj, g-r)

21: else Sj — Ci)id‘[l], (i)iq,j — (i)i)j [2 : end]
22 end if

23 else S« 0, ®; ;< 0

24: end if

25: return S;, ®; ;

26: end procedure

When |Q-(S;)] > 0, there exists at least one candidate
S;-‘ that is adjacent to S;. Under this condition, among all
candidates S7, the next subregion that a robot prioritizes to
visit, S, is determined as

arg max f(S3)

; (1)
s.t. S; € Q-(Si) , 12+(S:)| >0 .

Given (1), among all unvisited adjacent subregions the
robot will choose the one with the maximum visited/obstacle-
occupied neighbors as S; (line 16 of Algorithm 1). This
strategy ensures that the robot does not leave any isolated
unvisited subregions, to avoid the need to return to this area.

If |Q-(S;)| = 0, the task has been completed for all adjacent
subregions of S;. Under this condition, the robot will move
to a subregion S; that is nonadjacent to S; (Fig. 2(b)). Let
Q. ={S; €V, | N(S7)\C; # (0} be the set that contains
all candidates S;f, which are visited subregions with unvisited
obstacle-free neighbors. If Q' is not empty, the robot selects
S; from all candidates S7 as

argmax t
% )
st. (t,87)ePr, S;e€Q, ,tell,r].

Per (2), the robot revisits a nearest-in-the-past visited subre-
gion S; which has unvisited obstacle-free adjacent subregions
(line 19 of Algorithm 1). Once S; is chosen, we seek a path
in hex grid, which contains a sequence of subregions on the
way to move to .S;. In order to determine an optimal feasible
path, we need some definitions.

Definition 1: A feasible path between obstacle-free sub-
regions S; and S; in hex grid plane, denoted as ®; ;, is a
list of ordered obstacle-free subregions® such that if only the
movement to an adjacent subregion is allowed for each step,
a robot starting from \S; can reach S; in finite steps.

Definition 2: A shortest feasible path, denoted as <f>i,j, is
the path among all feasible paths ®; ; which contains the least
number of subregions.

Definition 3: A subregion is visitable if and only if 1) this
subregion is obstacle-free, and 2) there exists one (shortest)
feasible path from the departure position to this subregion.

Each subregion in the feasible path and shortest feasible
path is an adjacent subregion of its preceding and following
subregions in the ordered list. The feasible path and shortest
feasible path are not unique between two subregions. From the
current position .S;, there must exist at least one feasible path
to any subregion on path P, which is a subset of path P,.

A shortest feasible path ‘i)i,j can be obtained according
to function GetAStarPath (line 20 of Algorithm 1). Given
all explored subregions &, GetAStarPath applies the A*
algorithm [45] with distance cost ¢ in 2D hex grid

3)

While following @i’j (line 21 of Algorithm 1), more
subregions are explored by the navigation sensor. If &, is
updated, (iu needs to be updated accordingly (lines 18-20
of Algorithm 1). Note that <i>i7j may contain 1) unvisited
subregions, and 2) subregions with unvisited obstacles-free
neighbors. If at any step, an unvisited subregion is encountered,
the robot enters Observing Mode to complete the task for
the subregion (lines 6-8 of Algorithm 1), then switches to
Transitioning Mode. If a subregion with unvisited obstacle-
free neighbors is encountered, we discard <i>i7 ; and move to an
adjacent unvisited subregion (line 16 of Algorithm 1).

When Q.(S;) = Q. = 0, coverage is complete. HDCP
establishes that in a bounded environment, for given dis-
cretization resolution, the coverage process terminates in finite
time, leaving no unvisited area that is visitable according
to Definition 3. Coverage using HDCP is complete to the
resolution of the smallest allowed hexagon cell, which can
be referred as resolution-completeness [46].

Lemma 1 In an unknown, bounded environment, online cov-
erage using HDCP (Algorithm 1) is resolution-complete.
Proof of Lemma 1 We prove Lemma 1 by contradiction.
Assume the coverage terminates according to Algorithm |
and there still exists a visitable, yet unvisited, subregion S,.
Suppose the departure position of the coverage is .5),. Since
Sq is visitable, there must exist a shortest feasible path @p’q
according to Definition 3. Denote the mth subregion on the
shortest feasible path as ®,, ,[m)].

According to Definition 1, ®, ,[1] must be an adjacent
subregion to S, ®, (1] € N(S,). Since the progress has
terminated, Q. = (. Recalling the definition of Q’, we can
deduce (6) from (4) and (5),

q(Sks Skr) = (lzk — zpr | + lyk — Y | + |26 — 210 [) /2

SThe first subregion in the ordered list is adjacent to S;, while the last
subregion is S; itself.
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Fig. 2. (a) Movement to an adjacent subregion, (b) movement to a non-
adjacent subregion, (c) outer tangent line path, (d) inner tangent line path.

Dy (1] €N(Sp) “)
Q. =0 = N(Sp) CCr , (5)

$pq[1] € N(Sp) » N(Sp) CCr = dpqll] €Cr . (6)

Since ®, (1] & Erue, then @p)q[lj € V.. Similarly, we
have @, ,[m] € V; for m = 2,--- ,|®, 4|. Therefore, S, =
®,  [|®pqll € V-. Hence, S, is already visited, which leads
to the contradiction.

B. Dubins Path Planning

Next, we discuss Dubins Path Planning for Observing Mode
and Transitioning Mode. For a robot currently in S;, it first
enters into Observing Mode. For an observation task, it is re-
quired that the observation sensor covers the entire subregion,
which leads to a circular path. Let "V 11; be the starting point on
the circular path. The robot follows a full circle, (Cs,);, and
then returns to " ,;. Once arriving at " y;, the robot enters
into Transitioning Mode, in which the robot aims to move to
the starting point " 11; for the next subregion S;. Constrained
by the vehicle model, feasible paths always consist of arcs
and straight lines, without turns sharper than robot’s minimum
turning capability.

Figures 2(c), (d) show the planned path, which comprises
an arc of angle o and a straight line of length [. The straight
line is chosen to be tangent to both circular paths in S; and 5.
Let the tangent point in S; be W ;, the corresponding tangent
point in .S; will become the starting point w +j. Among outer
tangent points (Fig. 2(c)) and inner tangent points (Fig. 2(d)),
following the robot’s current moving direction, we select the
one that is the closest to " y; along the circular path. Using
geometry (closed-form solutions for tangent points are given
in the Appendix), « and [ are

a=cos 11— ||V — Weu|2/202) ,
L= 1" s

(M
- Yoil .

The combined path for Observing and Transitioning Mode
between S; and S; is (Car)i(CoLi)i— ;. By utilizing tangent
points to switch among arcs and straight line paths, generated
combined paths are smooth.

C. Trading-off Exploration Coverage and Speed

In some scenarios such as waypoint coverage [9] and water
sample collection [47], full coverage within subregions does
not need to be enforced. In this case, the exploration process
of unknown environments can be accelerated by combining

Observing and Transitioning Mode, which is referred to as
HDCP-E. In HDCP-E, full circle trajectory (Ca); is removed
from planned paths to accelerate exploration of more hexagon
subregions. At the same time, observation sensors are en-
abled throughout the process. The modified paths become
(CaLl)iHj. Hence, HDCP-E inherits the advantage of smooth
and continuous paths from HDCP.

The two variants (HDCP and HDCP-E) reveal the trade-
off between exploitation and exploration. HDCP guarantees
resolution-complete coverage of unknown yet bounded space
by 1) visiting all subregions, and 2) achieving full coverage
within each subregion, whereas HDCP-E enables fast and
complete exploration in terms of visiting all subregions. Im-
portantly, the next-subregion-selection strategy (Algorithm 1)
can also be applied to other cell-decomposition-based coverage
algorithms to obtain the order of visiting subregions.

V. EXPERIMENTS, RESULTS, AND DISCUSSION

Our proposed variants are evaluated in Gazebo simulation
and experimentally with a non-holonomic wheeled robot. Their
performance is compared against 1) online BA* [20], 2) online
STC [19], and 3) M-HDE [29] in terms of total coverage area
and average exploration speed.

A. Simulation

1) Simulation Setup: Figures 3(a)-(c) show three 20m x 20m
2D simulated forest/farm-like environments in Gazebo (ran-
dom, uniform, and in-row placement, respectively). Two type
of trees, which are different in terms of size and shape, are
used. Ten trees of each type are placed in each environment,
hence all three environments have same amount of free space.
In the random environment (Fig. 3(a)), trees are placed ran-
domly to represent a forest-like unstructured environment. In
the uniform environment (Fig. 3(b)), trees are arranged and
lined up strictly. In the in-row environment (Fig. 3(c)), trees are
loosely lined up, with slightly-varying spacing between them.
This environment approximates a more realistic intercropping
agricultural field. We further consider the baseline scenario of
operating in an empty environment bounded by square walls.

We deploy the non-holonomic wheeled robot Turtlebot to
cover the entire area without prior knowledge of the environ-
ment map. The robot is equipped with an RPLidar laser scan-
ner as the navigation sensor, and an Astra Pro stereo camera
as the observation sensor. Both perception® and planning are
online. To reduce the uncertainty in obstacle detection caused
by online perception and odometry drift, we run ten trials for
every obstacle-cluttered scenario.

Camera observations are chosen to have high accuracy with
[, = 0.5 m. Hence, for HDCP, HDCP-E, and M-HDE, the
hex subregion side length is » = 1 m. The robot moves at
a constant velocity of 1 m/s. For BA* and STC, the square
side length is 1 m;’ the robot moves forward at 1 m/s, and
decelerates to 0.3 m/s when taking sharp turns.®

6We use the open-source LIDAR-based obstacle detector published in
https://github.com/tysik/obstacle_detector.

TWe refer the reader to [19], [20] for more details.

8We optimized the turning speed so that no odometry drift is observed.
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(a) (b) () (d)
Fig. 3. In simulation, (a) random, (b) uniform, and (c) in-row environments. (d) Experimental environment.
TABLE II
RESULTS FOR PERCENTAGE OF COVERED AREA, RUNTIME AND EXPLORATION SPEED OVER 10 SIMULATION TRIALS
depart at random uniform in-row
center area (%) | runtime (s) | avg (m?/s) | area (%) | runtime (s) | avg (m?/s) | area (%) | runtime (s) | avg (m?/s)
HDCP 83.2+04 701.2+12.6 0.47 80.3+0.7 689.7+10.3 0.46 79.1+1.1 700.3+11.7 0.44
HDCP-E | 68.1+0.4  337.348.0 0.79 68.31+0.6 342.74+4.4 0.78 66.8+0.8 352.4+11.3 0.75
STC 52.7+14  561.7+12.1 0.37 58.6+0.1  627.64+2.6 0.37 13.540.1  144.24+04 0.37
M-HDE 704+1.3  450.04+10.6 0.62 71.8+1.7 485.1+154 0.58 68.3+2.4  463.6+12.2 0.58
BA* 75.7+1.1  629.4+18.5 0.46 73.6+0.5 579.54+4.5 0.48 75.1+1.7  635.14+7.3 0.45
depart at random uniform in-row
lower-left | area (%) | runtime (s) | avg (m?/s) | area (%) | runtime (s) | avg (m?*/s) | area (%) | runtime (s) [ avg (m?/s)
HDCP 83.2+04  727.646.2 0.45 85.7+1.3  740.4+11.3 0.46 81.3+1.4  699.2420.6 0.45
HDCP-E | 70.7+1.1  369.3+10.0 0.75 67.8+1.1 338.949.2 0.79 69.2+1.5 357.3+10.9 0.76
STC 65.8+3.7 622.84+19.1 0.42 59.8+1.9  536.5429.6 0.44 61.0+1.6 502.4426.3 0.48
M-HDE 74.0+1.6  496.9410.6 0.59 75.5+1.8  510.8422.6 0.58 69.8+1.9  468.31+204 0.59
BA* 80.7+0.7 661.1£21.2 0.46 79.0+1.3  522.8430.0 0.57 79.2+4.3  666.24+52.5 0.47
To eliminate the influence of starting position, the robot

is deployed from 2 different positions: center and lower-left
corner (red and blue squares in Fig. 3(a)-(c)). Note that in
both simulation and real experiment, robot-centric hex (for
HDCP, HDCP-E, and M-HDE) and square (for STC and BA™)
grids originate at robot’s departure position. In a robot-centric
grid, the number of occupied cells caused by obstacles and
environment boundaries is influenced by the relative position
between the object and the origin of the grid. For instance,
a small obstacle can either lie within one cell, or on an
edge/intersection of multiple cells after varying the grid origin.
In addition, the size of cells is determined according to the
robot footprint. The occupied cells near boundaries are marked
as obstacles by the robot at runtime via onboard perception.
We do not pre-determine near-boundary inaccessible cells for
the robot prior to departure.

2) Results and Discussion: Table Il contains means and
one-standard deviations for the percentage of coverage area
over total free space, total algorithm runtime, and averaged
exploration speed over ten trials. We consider the total free
space as subtracting the tree-occupied area from the total
environment area, which is consistent among all scenarios.

Results suggest that, regardless of departing position, HDCP
covers the most area in all evaluated, obstacle-cluttered
environments. While the uniform and in-row environments
bounded by square walls are more regular and structured,
HDCP still outperforms the other evaluated methods that use a
square grid discretization. Our findings demonstrate the advan-
tage of hexagon decomposition, where we mark obstacles as
more “round-like” hexagons instead of square cells in obstacle-
cluttered environments.

In terms of exploration speed, HDCP-E covers almost twice
as fast as STC and BA* in all environments from both

Fig. 4. Covered area (top panels, in white), detected obstacles (bottom panels,
red cells), and corresponding robot paths (blue curves) for (a) HDCP, (b)
HDCP-E, (c) M-HDE, (d) STC, and (e) BA* in the random map when the
robot departs at center position.

departure positions. The results suggest that the strategy of
HDCP and HDCP-E for selecting the next subregion is efficient
in terms of exploring more unknown space. However, in
HDCP, more area is covered when following the full-circle at
the expense of exploration speed. M-HDE from our previous
work [29] achieves the second fastest exploration, in which the
lack of inner-tangent straight-line transitioning causes longer
paths.’ Hence, in scenarios when the speed of exploring more
unknown space is the main concern, HDCP-E can be used to
achieve fast exploration.

It is worth noticing that STC is the approach most sensitive
to the environment and departure position. Especially in the
in-row environment, STC is unable to cover the entire space
when departing from center. This is because STC assumes all
visitable space has to have a width of at least four times of
the sensor footprint radius, to ensure repetition-free paths [19].

9Note that we modify M-HDE by replacing the original path finding strategy
in [29] with A* to achieve better performance.
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If the assumption is not satisfied, the area will be marked as
obstacle, even if the width of the area is wider than the robot’s
own width and can thus be visited. On the other hand, for
HDCP, changing departure position and environment can cause
at most 6% coverage percentage loss.

Evident in Fig. 4, our proposed method generates smooth
paths for robots with non-holonomic constraints. The robot
moves at constant speed throughout the process, which enables
better path following and sensor stability. In contrast, small
areas can remain uncovered in both BAx and STC when
the robot fails to follow planned paths exactly due to abrupt
deceleration before turning. The advantage of smooth paths is
more obvious in cluttered environments, in which case turning
maneuvers are required more frequently.

We also evaluate the algorithm in an square environment
without obstacles, which is believed to be most suitable for
lawnmower-like methods such as BA* and STC. In the empty
environment, BA* (0.75 m?/s) achieves comparable coverage
speed as HDCP-E (0.82 m?/s). This is because when applying
lawnmower-like methods in the empty environment, the robot
follows straight-line paths from one side to another, which
requires minimum number of turns. In addition, BA* (92.1%)
covers slightly more area than HDCP (91.4%). This is because
square cells describe the square space better when no obstacle
exists. However, in obstacle-cluttered environments, the exis-
tence of unexpected obstacles force the robots to take frequent,
possibly sharp turns. Taking sharp turns requires deceleration
and acceleration for lawnmower-like methods, whereas HDCP
and HDCP-E allow robots to operate at constant velocity.
Moreover, as discussed above, the advantage of describing
obstacles with hex cells is more obvious in obstacle-cluttered
environments than empty environments. Overall, the proposed
HDCP and HDCP-E work well in unknown and irregularly-
shaped obstacle-cluttered environments that are bounded.

B. Experiments

We also evaluate the performance of all algorithms in a
10m x 8m indoor space (Fig. 3(d)) with a real Turtlebot robot
configured as in the simulation. The environment contains a
truss, desks, and chairs as obstacles. For HDCP, HDCP-E, and
M-HDE, we have [, = 0.4 m and » = 0.8 m; the robot moves
at constant velocity of 0.3 m/s. For BA* and STC, we have
side length of 0.8 m, and the robot moves forward at 0.3 m/s,
and decelerates to 0.1 m/s in turning.

TABLE III
PERCENTAGE OF COVERED AREA, RUNTIME AND EXPLORATION SPEED IN
EXPERIMENTS

HDCP | HDCP-E | STC | M-HDE | BAF

area (%) 76.5 62.3 65.6 73.5 75.8
runtime (s) | 367.0 1875 268.5 259.0 | 3065
avg (m?/s) 0.10 0.16 0.12 0.14 0.12

We observe that HDCP and BA* cover similar area, which
is expected since the experimental environment is mostly
empty with obstacles lined up strictly in the middle. HDCP-
E has the highest average exploration speed, 0.16 m?/s,
which is consistent to simulation results. Further, our approach
generates smooth paths (Fig. 5) in real time for robots to

Fig. 5. Paths for (a) HDCP, (b) HDCP-E, (c) STC, (d) M-HDE, and (¢) BA*
in hardware experiments.

follow at constant speed, while BA* and STC both require
frequent acceleration and deceleration since the robot makes
turns frequently in the small, cluttered space.

VI. CONCLUSIONS

The paper contributes to online resolution-complete cov-
erage planning in unknown obstacle-cluttered environments.
Research on this vein is limited when it comes to considering
some form of dynamic feasibility (in this case Dubins vehi-
cles), while ensuring resolution-complete coverage.

Results suggest that our proposed algorithm HDCP can
cover more area compared to existing methods such as M-
HDE, STC and BA* in unstructured and obstacle-cluttered
environments, due to the advantage of decomposing the
workspace in hex cells. Its variant HDCP-E achieves the fastest
exploration (covered area per unit time) in both structured
and unstructured environments. Further, we show that Dubins
vehicles may fail to follow frequently required sharp turns
using STC and BA*, leading to uncovered areas along the
search path. Our method guarantees resolution-complete cov-
erage while considering non-holonomic constraints in the form
of Dubins curves. Derived geometric closed-form solutions to
determine how to move between subregions enable real-time
planning. Current weaknesses of HDCP are a slight underper-
formance compared to BA* in square, empty environments,
and the presence of repeated arc segments on circular paths
when moving to the tangent points. However, we believe that
ensuring path smoothness and continuity due to this repetition
outweighs the limitation.

Future work will focus on performing a complexity analysis
to investigate how to speed up the methodology, and applica-
tion to real world agricultural/forest environments.

APPENDIX

Suppose the center position of Sy, Sy in the Cartesian plane
are (ax,bg), (ak, by ), respectively. w = (ag — ag)? + (bpr —
br)?. Inner tangent points are

2r2(ag — ag) £ 7¢(byr — by)y/w — (2r)?
W (z) = i (ay — ax) Tt(ulj k) Vw— (2re) tap
W 272 (bgr — by) £ re(ar — apr)y/w — (2r4)2
er(y) = " + b,
2r2(ap — agr) £ e (b — b )J/w — (2r¢)?
W (o) = 208 ) ) SO ERE
W 212 (b — by) £ ri(ag — ag)v/w — (2r¢)2
par (y) = w + by

Outer tangent points are

Y on(x) :aki’f’t% , ka(y):bkinw .
Wuk/(a:):ak/ irt(bk;\/qukl) N Wﬂk’(y):bk’ :‘:Ttw .
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