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Effective potential at three loops

Stephen P. Martin

Department of Physics, Northern Illinois University, DeKalb IL 60115

I present the effective potential at three-loop order for a general renormal-
izable theory, using the MS renormalization scheme and Landau gauge fixing.

As applications and illustrative points of reference, the results are specialized
to the supersymmetric Wess-Zumino model and to the Standard Model. In

each case, renormalization group scale invariance provides a consistency check.
In the Wess-Zumino model, the required vanishing of the minimum vacuum

energy yields an additional check. For the Standard Model, I carry out the
resummation of Goldstone boson contributions, which provides yet more op-

portunities for non-trivial checks, and obtain the minimization condition for
the Higgs vacuum expectation value at full three-loop order. An infrared diver-

gence due to doubled photon propagators appears in the three-loop Standard
Model effective potential, but it does not affect the minimization condition or

physical observables and can be eliminated by resummation.
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I. INTRODUCTION

The effective potential [1–3] is a useful tool for understanding spontaneous symmetry

breaking in quantum field theories. It can be defined in perturbation theory, and calculated,

by expanding the scalar fields appearing in the Lagrangian about constant background

values φ, and then summing the one-particle-irreducible vacuum (no external legs) Feynman

diagrams, using propagator masses and interaction vertices that depend on the background

scalar fields. The full two-loop effective potential has been obtained for the Standard Model

in the MS scheme and Landau gauge by Ford, Jack, and Jones in ref. [4], and in general

theories (including softly broken supersymmetric ones, which use a different regulator based

on dimensional reduction) in ref. [5]. The three-loop effective potential for the Standard

Model has been found in the approximation that the the QCD and top Yukawa couplings

are larger than all other couplings, in ref. [6], and the four-loop contribution only at leading

order in QCD [7].

One application of the effective potential is to study the stability properties of our vacuum

state in the Standard Model [3], [8]-[31] and extensions of it. This has attracted great interest

recently due to the apparent proximity of the Higgs boson self-coupling to the critical value

associated with metastability.

Another important use of the effective potential is to relate the vacuum expectation value

(VEV) of the symmetry breaking scalar field(s) to the Lagrangian parameters, including the

negative Higgs squared mass parameter. Note that the VEV can be defined as the value

of the constant scalar background fields that minimizes either the tree-level potential or

the full effective potential. Choosing the first definition, with the VEV as the minimum

of the tree-level potential, has the advantages of providing gauge-invariant running masses,

and allowing for checks in subsequent calculations of other quantities by varying the gauge-

fixing parameter. However, it requires the inclusion of tadpole diagrams in those calculations

(see for example [32]-[37]), which causes inverse powers of the Higgs coupling to appear in

perturbation theory.

By defining the VEV as the minimum of the full effective potential, the sum of all tadpole

graphs automatically vanishes, and inverse powers of the Higgs self-coupling do not occur,

so that in calculations of other quantities, perturbation theory converges faster. The price

to be paid for using this “tadpole-free” scheme is that the resulting VEV is dependent on

the gauge-fixing choice, and therefore so are the running MS masses of the particles. This

is of course not a real problem, because the VEV and the running masses are not physical

observables. Calculations in this approach are simplest in Landau gauge, where there is no

mixing between Goldstone bosons and vector gauge bosons and the gauge-fixing parameter

is not renormalized. (Ref. [38] is a good example of using a tadpole-free scheme but in

Feynman gauge.) Although fixing to Landau gauge precludes obtaining checks from varying

the gauge-fixing parameter, there are checks of similar power from cancellations in observable

quantities between Goldstone bosons and the unphysical components of vector degrees of

freedom. The tadpole-free pure MS scheme has been used to calculate the complex pole

masses of the Higgs [39], W [40], and Z [41] bosons, and the top quark [42], to full two-
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loop order, in terms of the MS Lagrangian parameters, using notation and computational

methods consistent with the present paper.

In this paper, I will obtain the three-loop effective potential for a general renormalizable

quantum field theory in four dimensions, using Landau gauge fixing and the MS scheme

[43, 44] based on dimensional regularization [45–49]. In the following, 1/16π2 is used as a

loop expansion parameter, so that the effective potential is written as:

Veff(φ) = V (0) +
1

16π2
V (1) +

1

(16π2)2
V (2) +

1

(16π2)3
V (3) + . . . (1.1)

As is well-known, the contribution V (ℓ) is obtained as the sum of one-particle-irreducible ℓ-

loop vacuum Feynman diagrams, using propagator masses and vertices that depend on the

constant background scalar field(s) φ. First derivatives of the effective potential correspond

to tadpole diagrams involving the scalar fields, and so working at the minimum of V (φ)

guarantees that the sum of tree-level and loop-corrected tadpoles vanishes, and therefore

tadpoles need not be included in other calculations. The new results for the contributions

to V (3) will be presented in section III. As illustrative applications of the general results, I will

specialize them to the cases of the supersymmetric Wess-Zumino model and the Standard

Model, in sections IV and V respectively. Many of the results obtained below are too lengthy

to show in print, and so are presented instead in ancillary electronic files in forms suitable

for use with computers.

An important way of checking a calculation of the effective potential is by requiring

renormalization group invariance, provided that the pertinent beta functions have already

been calculated to the corresponding order by other means. The requirement that Veff does

not depend on the choice of the MS renormalization scale Q can be written as

Q
dVeff
dQ

=

(
Q
∂

∂Q
+
∑

X

βX
∂

∂X

)
Veff = 0. (1.2)

where X runs over all of the independent Lagrangian parameters, including the background

scalar field(s). The beta function for a background scalar field φ is related to its anomalous

dimension γ by βφ = −φγ. The loop expansions for the beta functions of X can be written:

βX =
1

16π2
β
(1)
X +

1

(16π2)2
β
(2)
X +

1

(16π2)3
β
(3)
X + . . . . (1.3)

Then it follows that at each loop order ℓ = 1, 2, 3, . . ., one must have:

Q
∂

∂Q
V (ℓ) +

ℓ−1∑

n=0

(∑

X

β
(ℓ−n)
X

∂

∂X
V (n)

)
= 0. (1.4)
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This will be applied below as a check in both the Wess-Zumino model and Standard Model.

II. CONVENTIONS AND SETUP

The conventions and notations for this paper related to the effective potential and to two-

component fermions generally follow refs. [5] and [50] respectively, with some minor cosmetic

variations. After expansion about the constant background scalar field(s), the Lagrangian

can be written without loss of generality in terms of real scalars Rj , real vectors A
µa, and

left-handed two-component fermion fields ψI , with background-field-dependent masses and

interaction couplings. (In many cases, complex bosonic fields with well-defined charges could

be used, but in order to present results in a general way, I take advantage of the fact that

they can always be decomposed into real and imaginary parts.) For fermion fields that carry

conserved charges, it is most convenient to use pairs of 2-component left-handed fields ψI
and ψI′ with opposite charges and therefore a purely off-diagonal Dirac mass M II′ , so that

the common squared mass for both fields is M2
I = M2

I′ ≡ |M II′ |2. This means that the

two-component fermion fields are always squared mass eigenstates but sometimes not mass

eigenstates.

The squared-mass eigenstate fields are therefore labeled by indices j, k, l,m, n, p for real

scalars, a, b, c, d, e, f for real vectors, and I, J,K, L for two-component fermions, with the

understanding that I ′, J ′, K ′, L′ are used to denote the corresponding mass partners when

they form a Dirac pair, and with I ′ = I for a fermion with a Majorana-type mass. As a

convention, repeated indices are always taken to be summed over.

The most general interaction Lagrangian for a renormalizable theory can be written in

terms of background-field-dependent couplings as (using a metric of signature −,+,+,+):

L = −1

6
λjklRjRkRl −

1

24
λjklmRjRkRlRm − 1

2

(
Y jIJRjψIψJ + c.c.

)

+gaJI A
µaψ†IσµψJ − gajkAµaRj∂µRk −

1

4
gabjkAaµA

µbRjRk −
1

2
gabjAaµA

µbRj

−gabcAµaAνb∂µAcν −
1

4
gabegcdeAµaAνbAcµA

d
ν − gabcAµaωb∂µω

c. (2.1)

Here λjkl and λjklm are real scalar interactions that are totally symmetric under interchange

of all indices, Y jIJ are Yukawa couplings that are symmetric under interchange of I, J , and

gaJI are vector interactions with fermions, and gajk, gabjk, and gabj are vector interactions

with scalars, and gabc are vector self-interactions. Note that the sign of gabc has been flipped

compared to the notation of ref. [5]; this has no impact on the results of that reference,

because at two-loop order gabc only appears in pairs. Because the scalars and vectors are

real, the heights of their indices have no significance, and are chosen for typographical

convenience. As a convention, flipping the heights of all fermion indices corresponds to
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complex conjugation, so that

YjIJ ≡
(
Y jIJ

)∗
, (2.2)

MII′ ≡
(
M II′

)∗
, (2.3)

and

gaIJ =
(
gaJI

)∗
. (2.4)

All of the couplings with names involving g have their origin as gauge couplings. In Lan-

dau gauge, the ghost fields ωa and ωa are massless. Note that the vector cubic, vector

quartic, and vector-ghost-antighost interactions are all written in terms of a common, to-

tally anti-symmetric, φ-dependent, coupling gabc. The vector-vector-scalar couplings gabj

are symmetric under interchange of the vector indices a, b, and the vector-scalar-scalar cou-

plings gajk are anti-symmetric under interchange of the scalar indices j, k. Note also that

the vector-vector-scalar-scalar couplings are not independent; they can always be written in

terms of the vector-scalar-scalar couplings, according to

gabjk = gajlgbkl + gaklgbjl. (2.5)

Ref. [5] did not mention or exploit this fact, as it leads to only a slight simplification at

two-loop order, but it is used extensively below.

In the following, the names of fields or the corresponding indices will be used as synonyms

for the corresponding squared mass arguments used in loop integral functions. For example,

we can write the well-known 1-loop effective potential in the MS scheme and Landau gauge

as simply

V (1) =
∑

j

f(j)− 2
∑

I

f(I) + 3
∑

a

fV (a), (2.6)

where

f(x) = xA(x)/4 − x2/8 =
x2

4
(ln(x)− 3/2), (2.7)

fV (x) = xA(x)/4 + x2/24 =
x2

4
(ln(x)− 5/6). (2.8)

Here,

ln(x) ≡ ln(x/Q2) (2.9)
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where Q is the MS renormalization scale, x is the squared mass argument, and

A(x) = xln(x)− x (2.10)

is a one-loop integral basis function (which was denoted by J(x) in ref. [5]). The two-loop

contribution to the effective potential is

V (2) =
1

12
(λjkl)2fSSS(j, k, l) +

1

8
λjjkkfSS(j, k)

+
1

2
Y jIJYjIJfFFS(I, J, j) +

1

4

(
Y jIJY jI′J ′

MII′MJJ ′ + c.c.
)
fFFS(I, J, j)

+
1

4
(gajk)2fV SS(a, j, k) +

1

4
(gabj)2fV V S(a, b, j)

+
1

2
gaJI g

aI
J fFFV (I, J, a) +

1

2
gaJI g

aJ ′

I′ M
II′MJJ ′fFFV (I, J, a)

+
1

12
(gabc)2fgauge(a, b, c), (2.11)

in terms of two-loop integral functions fSSS, fSS, fFFS, fFFS, fV SS, fV V S, fFFV , fFFV , and

fgauge that were originally computed (in a different notation) by Ford, Jack, and Jones in

ref. [4] in the context of the Standard Model. They were given in ref. [5] in the context of

a general renormalizable theory, in the notation of the present paper, with one exception;

in eq. (2.11) above, I have used eq. (2.5) to combine the terms that involved the functions

fSSV and fV S in ref. [5], by defining a new function

fV SS(x, y, z) ≡ fSSV (y, z, x) + fV S(x, y) + fV S(x, z). (2.12)

Explicitly,

fV SS(x, y, z) =
[
−λ(x, y, z)I(x, y, z) + (y − z)2I(0, y, z) + (2x− y + z)A(x)A(y)

+(2x+ y − z)A(x)A(z)
]
/x+ A(y)A(z) + 2(y + z − x/3)A(x)

+2x[A(y) + A(z)] (2.13)

for x 6= 0, and

fV SS(0, y, z) = 3(y + z)I(0, y, z) + 3A(y)A(z)− 2yA(y)− 2zA(z) + (y + z)2, (2.14)

where I(x, y, z) is a two-loop basis integral used in refs. [4, 5], and defined in the latter

reference in the notation appropriate for the present paper, and

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz (2.15)
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I(x, y, z)

z

y

x

H(u, v, w, x, y, z)

z y

xu v

w

G(w, u, z, v, y)

z y

u v

w

F (u, z, y, v)

u z y v

E(u, z, y, v)

u z y v

FIG. 2.1: The topologies for the 2-loop and 3-loop basis vacuum integral functions used in this

paper. The large dot in F (u, z, y, v) corresponds to a derivative with respect to the u squared

mass argument. The function F (u, z, y, v) is the same as F (u, z, y, v) but with a subtraction

to render it infrared finite in the limit u → 0. In each case, counterterms have been included

to make the integrals finite as the ultraviolet regulator ǫ → 0. See ref. [51] for the precise

definitions and more information.

is the usual triangle function.

In the following, I will present the three-loop contribution to the effective potential in

terms of three-loop vacuum integral functions using the notation of ref. [51], which also

provides a computer code 3VIL for their numerical evaluation† using the differential equations

method. The basis integral functions consist of a 1-loop integral A(x) already given above in

eq. (2.10), the two-loop integral I(x, y, z) mentioned in the previous paragraph, and three-

loop integral functions H(u, v, w, x, y, z), G(w, u, z, v, y), and F (u, z, y, v), corresponding to

topologies shown in Figure 2.1. For convenience, it is also useful to define a related function

F (u, z, y, v) = F (u, z, y, v) + ln(u)I(v, y, z) (2.16)

which is finite in the limit u→ 0, and an integral E(u, z, y, v) given by eq. (2.40) in ref. [51],

which corresponds to the same topology as F (u, z, y, v) but without a derivative with respect

to u. In the following, I will employ F (u, z, y, v) instead of F (u, z, y, v) when the first

argument does not vanish, and otherwise use F (0, z, y, v). Technically, E(u, z, y, v) is not a

basis integral because it can be written as a linear combination of F (or F ) integrals with the

same arguments in different orders, but it is convenient to use E to express some quantities

in simplest form. Each of the basis integral functions is defined to include counterterms that

make them finite and independent of the ultraviolet dimensional regularization parameter

ǫ, but dependent on the MS renormalization scale Q. This simplifies the presentation of

results in the MS scheme, as ǫ never appears. Consult ref. [51] for the precise definitions of

the basis integrals, and more information.

It is also convenient, when dealing with Feynman diagrams with “doubled propagators”

† See also refs. [52, 53] for a different approach to numerical computation of the 3-loop vacuum basis

integrals, based on dispersion relations. Also, refs. [54]-[73] found a variety of important special analytical

cases that have been incorporated into 3VIL.
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(i.e., two propagators that carry the same momentum) to define functions by:

A(w, x) = [A(w)− A(x)] /(x− w) (x 6= w), (2.17)

I(w, x, y, z) = [I(w, y, z)− I(x, y, z)] /(x− w) (x 6= w), (2.18)

K(w, x, u, z, y, v) = [G(w, u, z, y, v)−G(x, u, z, y, v)] /(x− w) (x 6= w). (2.19)

In each case, the first two arguments w, x are the squared masses of the doubled propagators.

When the squared masses for double propagators coincide, these functions become:

A(x, x) = − ∂

∂x
A(x), (2.20)

I(x, x, y, z) = − ∂

∂x
I(x, y, z), (2.21)

K(x, x, u, z, y, v) = − ∂

∂x
G(x, u, z, y, v), (2.22)

The necessary derivatives in eqs. (2.20)-(2.22) can be expressed in terms of the basis functions

as:

∂

∂x
A(x) = 1 + A(x)/x, (2.23)

∂

∂x
I(x, y, z) =

{
(x− y − z) [I(x, y, z)−A(x)− A(y)− A(z) + x+ y + z]− 2A(y)A(z)

+(x− y + z)A(x)A(y)/x+ (x+ y − z)A(x)A(z)/x
}
/λ(x, y, z), (2.24)

∂

∂x
G(x, u, z, y, v) = [(x− u− z)/λ(x, u, z) + (x− v − y)/λ(x, v, y)− 1/x]G(x, u, z, y, v)

+
{
[(x+ u− z)A(z) + (x+ z − u)A(u) + x(u+ z − x)]I(x, v, y)

+u(u− z − x)A(u)/4 + z(z − u− x)A(z)/4 + x(u+ z − x)[A(v) + A(y)]

+2x[x2 + x(2v + 2y − u− z)− 2uv − 2uy − 2vz − 2yz − 8uz]/3

+u(x+ z − u)F (u, v, y, z) + z(x+ u− z)F (z, u, v, y)
}
/xλ(x, u, z)

+
{
[(x+ v − y)A(y) + (x+ y − v)A(v) + x(v + y − x)]I(x, u, z)

+v(v − y − x)A(v)/4 + y(y − v − x)A(y)/4 + x(v + y − x)[A(u) + A(z)]

+2x[x2 + x(2u+ 2z − v − y)− 2uv − 2uy − 2vz − 2yz − 8vy]/3

+v(x+ y − v)F (v, u, y, z) + y(x+ v − y)F (y, u, v, z)
}
/xλ(x, v, y)

−(7x+ 2u+ 2v + 2y + 2z)/3x. (2.25)

Special cases that arise when the λ(x, y, z) denominators vanish can be obtained as smooth



9

limits of the above. Of particular importance are the following:

∂

∂x
I(x, 0, x) = 2

[
∂

∂x
I(x, 0, z)

]∣∣∣∣
z=x

= −A(x)2/x2, (2.26)

∂

∂x
G(x, 0, z, v, y)

∣∣∣
z=x

= [F (x, 0, v, y)− F (0, x, v, y)]/2x+
{
[(v − y)2 − x2]A(x)I(x, v, y)/2x

+[3x2 − 4x(v + y) + (v − y)2]I(x, v, y)/2 + [(v − y − x)A(v) + (y − v − x)A(y)

+x(x− v − y)]A(x)2/x+ [2A(v)A(y) + 2(x− y)A(y) + 2(x− v)A(v)

+(7v2 + 7y2 + 18vy + 10xv + 10xy − 17x2)/8]A(x) + x(v + y − x)[A(v) + A(y)]

−2xA(v)A(y) + x[5x2 − 4x(v + y)− v2 − y2 − 10vy]/3
}
/xλ(x, v, y), (2.27)

and

∂

∂x
G(x, 0, y, 0, y)

∣∣∣
y=x

= 1− F (0, 0, x, x)/x− A(x)/x. (2.28)

It is often important to have expansions of the integral functions when one or more of

the squared mass arguments is small. In the following I will regulate infrared divergences

in massless vector bosons by giving the propagator a small squared mass (rather than using

dimensional regularization for the infrared divergences, which can cause confusion with the

ultraviolet divergences). Goldstone bosons also have squared masses that can be consistently

treated as small compared to those of other particles. The expansions of the basis integrals

in a small squared mass δ (taking δ ≪ x, y, z . . ., where x, y, z . . . are other pertinent non-

zero squared masses in the diagram) can be accomplished using the differential equations

that the basis integrals satisfy, which were given in [51]. As an example, for the 2-loop basis

integral function, one can find through order δ2 that, for x 6= y:

I(δ, x, y) = I(0, x, y) + δ[−(x+ y)I(0, x, y)− 2A(x)A(y) + (3x− y)A(x)

+(3y − x)A(y)− (x+ y)2]/(x− y)2 + δln(δ)A(x, y)

+δ2[−2xyI(0, x, y)− (x+ y)A(x)A(y) + (7xy − x2 − 2y2)A(x)/2

+(7xy − 2x2 − y2)A(y)/2 + (x+ y)(2xy − 5x2 − 5y2)/4]/(x− y)4

+δ2ln(δ)[(x2 − y2)/2 + xA(y)− yA(x)]/(x− y)3 +O(δ3) (2.29)

and

I(δ, x, x) = I(0, x, x) + (δ/x)[4x+ 3A(x) + A(x)2/2x− (x+ A(x))ln(δ)]

+(δ/x)2[−11x/18− A(x)/6 + xln(δ)/6] +O(δ3), (2.30)

I(δ, 0, x) = I(0, 0, x) + (δ/x)[ζ2x+ 2A(x) + A(x)2/2x− A(x)ln(δ)]

+(δ/x)2[−5x/4 − A(x)/2 + xln(δ)/2] +O(δ3), (2.31)

I(δ, δ, x) = I(0, 0, x) + (δ/x)[2ζ2x+ 4A(x) + A(x)2/x− 2A(x)ln(δ)]
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+(δ/x)2[(2ζ2 − 5/2)x+ A(x) + A(x)2/x− (x+ 2A(x))ln(δ) + xln
2
(δ)]

+O(δ3), (2.32)

I(δ, δ, δ) = δ
[
3
√
3Ls2 − 15/2 + 6ln(δ)− 3ln

2
(δ)/2

]
, (2.33)

I(0, δ, δ) = δ
[
−5 + 4ln(δ)− ln

2
(δ)

]
, (2.34)

I(0, 0, δ) = δ
[
−5/2− ζ2 + 2ln(δ)− ln

2
(δ)/2

]
, (2.35)

I(0, 0, 0) = 0, (2.36)

where Ls2 = −
∫ 2π/3

0
dx ln[2 sin(x/2)] ≈ 0.6766277376064358. A large number of similar

expansion formulas for the 3-loop basis integrals, including all of the ones necessary for results

below, are given in an ancillary electronic file provided with this paper, called expzero.anc.

In general, the functions I, F , G, and H have smooth limits as δ → 0, with expansion terms

that are powers of δ that may be multiplied by polynomials (of up to cubic order) in ln(δ).

The expansion of the function F contains a ln(δ) as the leading behavior for δ → 0 if (and

only if) the first argument is δ, as can be seen from eq. (2.16). The limits for small δ of

A(δ, δ) and I(δ, δ, x, y) and K(δ, δ, u, v, x, y) have logarithmic infrared singularities, because

they also involve doubled propagators with the same momentum and the same small squared

mass δ. Assuming that either x or y and either u or v are large compared to δ, one has:

A(δ, δ) = −ln(δ), (2.37)

I(δ, δ, x, y) = −ln(δ)A(x, y) + . . . , (2.38)

K(δ, δ, u, v, x, y) = −ln(δ)A(u, v)A(x, y) + . . . , (2.39)

where the ellipses refer to terms that are finite as δ → 0. The expansions needed for the

cases that occur in the Standard Model, through order δ5 for I, F and F functions, through

order δ4 for I and G functions, and through order δ3 for K and H functions, are given in

expzero.anc. Further expansion cases as may be needed for more general theories can be

obtained by using the differential equations given in ref. [51].

Finally, it is important to note that the loop integral basis functions satisfy certain

identities when the squared mass arguments are not generic, either because some of them

are equal to each other, or vanish. (These identities can be discovered by requiring smooth

limits of derivatives of the integral functions as the arguments approach the non-generic

configurations.) Some identities of this type were given in eqs. (5.79)-(5.80) and (5.82)-

(5.86) of ref. [51]. Other identities that are used in the following are:

F (x, x, y, y) = (x/y − 1)[F (x, 0, 0, y) + I(0, x, y) + A(y)− 2yζ3]

+[A(y)/y −A(x)/x]I(0, x, y) + A(x)[A(y)2/y + A(x)− 2A(y)

+3x2/4y − 9x/2 + 2y]/x− 2x2/3y + 10x/3 + 2y, (2.40)

G(0, 0, 0, x, y) = −F (0, 0, x, y) + 2I(0, x, y) + A(x) + A(y)− 4x/3− 4y/3, (2.41)
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G(y, 0, 0, 0, x) = G(x, 0, 0, 0, y) + (x− y)[F (x, 0, 0, y) + I(0, x, y) + A(x)A(y)/x

+2yζ3 − 2(x+ 5y)/3]/y + A(x)A(y)[A(y)−A(x)]/(2xy)

+[1/4 + 3x/4y + (1 + ζ2)y/x]A(x)− [2 + xζ2/y]A(y), (2.42)

G(x, 0, y, 0, y) = (y − x)[F (x, 0, 0, y)/y + F (0, 0, x, y)/x] + 2A(x)A(y)/x

+[3− x/y − (1/x+ 1/y)A(y)]I(0, x, y) + [y − A(x)− A(y)/3]A(y)2/xy

+[(3xy/4− y2 − 3x2/4)A(x)− (x− y)2A(y)]/xy

+2(x2 + 2xy − 7y2)/3y + 2(y2 + 6xy − 3x2)ζ3/3x. (2.43)

In addition, one can express the following 1-scale integrals in terms of ζ2 and ζ3 and

powers of A(x), with rational coefficients, using the analytical formulas collected in sec-

tion V of ref. [51]: I(0, 0, x), I(0, x, x), F (x, 0, 0, 0), F (x, 0, 0, x), F (x, x, x, x), F (0, 0, 0, x),

F (0, 0, x, x), G(0, 0, 0, 0, x), G(0, 0, 0, x, x), G(0, 0, x, 0, x), G(x, 0, 0, 0, 0), G(x, 0, 0, 0, x),

G(x, 0, x, 0, x), and G(0, x, x, x, x). The existence of these identities means that the pre-

sentation of results for any specific theory (for example, the Standard Model) in terms of

the basis functions is far from unique; the basis is over-complete when the arguments are

not generic.

III. THREE-LOOP CONTRIBUTIONS TO THE EFFECTIVE POTENTIAL

A. Feynman diagrams

In this section I present the results for the three-loop contribution to the effective poten-

tial for a general renormalizable quantum field theory. The 1-particle-irreducible Feynman

diagrams for the three-loop effective potential have the topologies shown in Figure 3.1. To

distinguish the different diagrams, each topology is associated with a letter E, G, H , J ,

K, or L, and then subscripts S, V , F , F , or g are applied, corresponding respectively to

real scalar, real vector, helicity-preserving fermion, helicity-violating fermion, or ghost prop-

agators, in the order designated by the numbering in Figure (3.1). The helicity-violating

fermion propagators each contain a mass insertion of the type MII′ or M
II′ , as described in

ref. [50]. To illustrate this labeling scheme, Figure 3.2 shows the Feynman diagrams corre-

sponding to diagrams HFFSV FF and KV V SSFF . For each diagram, there is a corresponding

loop integral function, which one can compute in terms of the basis functions discussed in

the previous section after including the MS counterterms. The squared mass arguments are

given in the same ordering as the corresponding subscripts.

However, the correspondence between Feynman diagrams and loop integral functions is

not one-to-one, because in some cases involving vector bosons it is convenient to define

loop integral functions that combine the effects of more than one Feynman diagram, by ex-

ploiting the constraints implied by the underlying gauge invariance that is associated with

vector fields in renormalizable theories. For example, because of the relation between the
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E1234

1 2 3 4

G12345

3 4

2 5

1

H123456

6 5

41 2

3

J12345

2

1

3 4 5

K123456

2

1

3 4 65

L1234

2

1

3 4

FIG. 3.1: The Feynman diagram topologies contributing to the 3-loop effective potential, with

numerals indicating the ordering of subscripts denoting propagator types (S, F , F , V , or g) as

well as the ordering of the corresponding squared mass arguments.

H
FFSV FF

(u, v, w, x, y, z)

z y

xu v

w

KV V SSFF (x, w, u, z, y, v)

w

x

u z vy

FIG. 3.2: Examples of the Feynman diagram labeling scheme used in this paper,

for the diagrams with loop integral functions denoted HFFSV FF (u, v, w, x, y, z) and

KV V SSFF (x,w, u, z, y, v). Solid lines with arrows represent helicity-preserving fermion propa-

gators. Solid lines with a dot and clashing arrows represent a helicity-violating fermion prop-

agator. Dashed lines indicate a real scalar propagator, and wavy lines stand for real vector

propagators. The squared masses are denoted by u, v, w, x, y, z as labeled.

vector-scalar-scalar couplings gajk and the vector-vector-scalar-scalar couplings gabjk given

in eq. (2.5), it is convenient to define a single function KSSSSSV (u, v, w, x, y, z) that com-

bines the effect of the Feynman diagram labeled KSSSSSV with the one labeled JSSSSV . (For

this reason, there is no function JSSSSV below.) There are numerous similar cases where the

contribution of a diagram with a vector-vector-scalar-scalar interaction is combined with the

contribution from a related diagram with a pair of vector-scalar-scalar interactions to give a

single loop integral function. Furthermore, because of the fact that the vector quartic inter-

action and the vector-ghost-antighost interaction are determined by the triple vector cou-

pling, as seen in eq. (2.1), the effects of the diagrams labeled HV V V V V V , HV gggV g, HgggV V V ,

and parts of GV V V V V and EV V V V can always be combined into a single function that I call

Hgauge. The other parts of diagrams GV V V V V and EV V V V , together with the contributions

of diagrams KV V V V V V , KV V gggg, KV V V V gg, KgggV V g, JV V V V V , JV V ggV , and LV V V V can al-

ways be combined into a single function to be denoted Kgauge. Similarly, I define a function

Hgauge,S that combines the effects from the diagrams HV V V V V S and GSV V V V ; a function

Kgauge,S that combines the effects of diagrams KV V SV V V , KV V SV gg, and JV V V SV ; a func-

tion Kgauge,SS that combines the contributions from KV V SSV V , KV V SSgg, JV V SSV , JV V V V S,

JV V ggS, and LV V V S; a function Kgauge,FF that combines diagrams KV V V V FF , KV V FFgg,

and JV V FFV ; and a function Kgauge,FF that combines diagrams KV V V V FF , KV V FFgg, and

JV V FFV .

Finally, note that there are two diagrams, GV SSSS and GV SSV V , which one can draw
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and for which the couplings exist, but for which the corresponding loop integrals vanish

identically.

Taking into account the above considerations, I find that the three-loop contributions to

the MS renormalized Landau gauge effective potential for a general renormalizable theory

can be expressed in terms of only 89 distinct loop integral functions:

HSSSSSS, KSSSSSS, JSSSSS, GSSSSS, LSSSS, ESSSS, HFFFSSS, HFFFSSS, HFFSSFF ,

HFFSSFF , HFFSSFF , HFFSSFF , KSSSSFF , KSSSSFF , KFFFSSF , KFFFSSF ,

KFFFSSF , KFFFSSF , KFFFSSF , KSSFFFF , KSSFFFF , KSSFFFF , JSSFFS, JSSFFS,

HSSSSSV , HV V SSSS, HSSV V SS , HV V V SSS, HSSSV V V , HV V SSV S , HSSV V V V ,

HSV V V SV , KSSSSSV , KSSSSV V , KSSSV V S, KV V SSSS, KSSSV V V , KV V SSV S ,

KSSV V V V , KV V SV V S , JSSV SS, JSSV V S, GV SV V S , Hgauge, S, Kgauge, S, Kgauge, SS,

HFFV V FF , HFFV V FF , HFFV V FF , HFFV V FF , HFFFV V V , HFFFV V V , KFFFV V F ,

KFFFV V F , KFFFV V F , KFFFV V F , KFFFV V F , KV V FFFF , KV V FFFF , KV V FFFF ,

Kgauge, FF , Kgauge, FF , HFFSV FF , HFFSV FF , HFFSV FF , HFFSV FF , HFFSV FF ,

HFFFV SS, HFFFV SS, HFFFV SS, HFFFSV V , HFFFSV V , HFFFSV V , KFFFSV F ,

KFFFSV F , KFFFSV F , KFFFSV F , KFFFSV F , KFFFSV F , KSSSV FF , KSSSV FF ,

KSSV V FF , KSSV V FF , KV V SSFF , KV V SSFF , KV V SV FF , KV V SV FF , Hgauge, Kgauge. (3.1)

It remains to give V (3) by providing expressions for these 89 functions in terms of the basis

functions described in the previous section, with arguments that are MS squared masses

(and, implicitly, the renormalization scale Q), and also to provide the coefficients of these

89 functions in V (3) in terms of the MS couplings appearing in eq. (2.1). Regarding the first

task, many of the expressions for the 89 loop integral functions in terms of basis integrals

are extremely complicated and not of much use to the human eye. All of these results are

therefore presented in an ancillary electronic file called functions.anc distributed with this

paper, suitable for inclusion in symbolic manipulation code or numerical computer programs.

Only the first 24, relatively simple, functions in eq. (3.1), corresponding to the diagrams that

do not involve vector propagators will be given in the text below.

The formula for V (3) in terms of the 89 functions listed in eq. (3.1) is split up below as:

V (3) = V
(3)
S + V

(3)
SF + V

(3)
SV + V

(3)
FV + V

(3)
SFV + V

(3)
V , (3.2)

where V
(3)
S contains only scalar interactions, V

(3)
SF contains scalars and fermions only, V

(3)
SV

contains only scalars and vectors (and ghosts), V
(3)
FV contains only fermions and vectors (and

ghosts), V
(3)
SFV contains scalars, fermions, and vectors (and ghosts), and V

(3)
V contains only

vectors and ghosts.
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B. Pure scalar contributions

The pure scalar contributions to the three-loop effective potential can be written as:

V
(3)
S =

1

24
λjkmλklnλjlpλmnpHSSSSSS(j, k, l,m, n, p)

+
1

16
λjlmλklmλjnpλknpKSSSSSS(j, k, l,m, n, p)

+
1

8
λjknnλjlmλklmJSSSSS(j, k, l,m, n) +

1

8
λjklλjmnλklmnGSSSSS(j, k, l,m, n)

+
1

16
λjkllλjkmmLSSSS(j, k, l,m) +

1

48
λjklmλjklmESSSS(j, k, l,m), (3.3)

where the scalar field indices j, k, l,m, n, p are also used to represent the MS background-

field-dependent squared masses. The loop integral functions appearing in eq. (3.3) are easy

to write in terms of the basis integrals:

HSSSSSS(u, v, w, x, y, z) = −H(u, v, w, x, y, z), (3.4)

KSSSSSS(u, v, w, x, y, z) = −K(u, v, w, x, y, z), (3.5)

JSSSSS(w, x, v, y, u) = A(u)I(w, x, v, y), (3.6)

GSSSSS(w, u, z, y, v) = G(w, u, z, y, v), (3.7)

LSSSS(w, x, u, v) = −A(u)A(v)A(w, x), (3.8)

ESSSS(u, z, y, v) = −E(u, z, y, v). (3.9)

C. Scalar and fermion contributions

The contributions involving scalars and fermions (but not vectors or ghosts) can be

written as:

V
(3)
SF =

1

2

(
λjklY jIJYkJKYlIK ′MKK ′

+ c.c.
)
HFFFSSS(I, J,K, j, k, l)

+
1

6

(
λjklY jIJY kJ ′KY lI′K ′

MII′MJJ ′MKK ′ + c.c.
)
HFFFSSS(I, J,K, j, k, l)

+
1

4
Y kIJY kKLYjILYjJKHFFSSFF (I, J, j, k,K, L)

+
1

2

(
Y kIJYkKLYjIL′YjJK ′MKK ′

MLL′

+ c.c.
)
HFFSSFF (I, J, j, k,K, L)

+
1

2
Y kIJYkKLYjIL′Y jJ ′KMJJ ′MLL′

HFFSSFF (I, J, j, k,K, L)

+
1

8

(
Y kIJY kKLY jI′L′

Y jJ ′K ′

MII′MJJ ′MKK ′MLL′ + c.c.
)
HFFSSFF (I, J, j, k,K, L)

+
1

4
λjlmλklmY jIJYkIJKSSSSFF (j, k, l,m, I, J)
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+
1

8

(
λjlmλklmY jIJY kI′J ′

MII′MJJ ′ + c.c.
)
KSSSSFF (j, k, l,m, I, J)

+
1

2
Y jIKYjJKYkILY

kJLKFFFSSF (I, J,K, j, k, L)

+
1

2
Y jIKY jJK ′

YkILYkJL′MKK ′MLL′

KFFFSSF (I, J,K, j, k, L)

+
1

2
Y jIKYjJKY

kI′LYkJ ′LMII′M
JJ ′

KFFFSSF (I, J,K, j, k, L)

+
(
Y jIKY jJK ′

Y kI′LYkJLMII′MKK ′ + c.c.
)
KFFFSSF (I, J,K, j, k, L)

+
1

4

(
Y jIKY jJK ′

Y kI′LY kJ ′L′

MII′MJJ ′MKK ′MLL′ + c.c.
)
KFFFSSF (I, J,K, j, k, L)

+
1

8
Y jIJYkIJ

(
Y jKLYkKL + c.c.

)
KSSFFFF (j, k, I, J,K, L)

+
1

4
Y jIJYkIJ

(
Y jKLY kK ′L′

MKK ′MLL′ + c.c.
)
KSSFFFF (j, k, I, J,K, L)

+
1

16

(
Y jIJY kI′J ′

MII′MJJ ′ + c.c.
)(

Y jKLY kK ′L′

MKK ′MLL′ + c.c.
)
KSSFFFF (j, k, I, J,K, L)

+
1

4
λjkllY jIJYkIJJSSFFS(j, k, I, J, l)

+
1

8

(
λjkllY jIJY kI′J ′

MII′MJJ ′ + c.c.
)
JSSFFS(j, k, I, J, l). (3.10)

I find that the loop integral functions appearing in eq. (3.10) are, in terms of the basis

integrals:

HFFFSSS(u, v, w, x, y, z) = (u+ v − x)H(u, v, w, x, y, z) +G(w, u, z, v, y)

−G(y, v, w, x, z)−G(z, u, w, x, y), (3.11)

HFFFSSS(u, v, w, x, y, z) = 2H(u, v, w, x, y, z), (3.12)

HFFSSFF (u, v, w, x, y, z) = (uy + vz − wx)H(u, v, w, x, y, z)− uG(u, v, x, w, z)

−vG(v, u, x, w, y) + wG(w, u, z, v, y) + xG(x, u, v, y, z)

−yG(y, v, w, x, z)− zG(z, u, w, x, y)− E(u, v, y, z)

+E(v, w, x, z) + E(u, w, x, y), (3.13)

HFFSSFF (u, v, w, x, y, z) = (u+ v − x)H(u, v, w, x, y, z) +G(w, u, z, v, y)

−G(y, v, w, x, z)−G(z, u, w, x, y), (3.14)

HFFSSFF (u, v, w, x, y, z) = (v − w − x+ z)H(u, v, w, x, y, z)−G(v, u, x, w, y)

+G(w, u, z, v, y) +G(x, u, v, y, z)−G(z, u, w, x, y), (3.15)

HFFSSFF (u, v, w, x, y, z) = 2H(u, v, w, x, y, z), (3.16)

KSSSSFF (x, w, u, z, y, v) = [v + y − (w + x)/2]K(x, w, u, z, y, v) +G(w, u, z, y, v)/2

+G(x, u, z, y, v)/2− [A(v) + A(y)]I(x, w, u, z), (3.17)

KSSSSFF (x, w, u, z, y, v) = 2K(x, w, u, z, y, v), (3.18)

KFFFSSF (x, w, u, z, y, v) = (x2 + w2 + 2uv − 2uy − 2vz + 2yz + uw + vw
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+ux+ vx− wy − xy − wz − xz)K(x, w, u, z, y, v)/4

+(y + z − u− v − w − x)[G(w, u, z, y, v) + G(x, u, z, y, v)]/4

+(u+ w − z)[A(v)− A(y)]I(x, w, u, z)/2

+(v + w − y)[A(u)−A(z)]I(x, w, v, y)/2 + E(u, v, y, z)/2

+[A(y)− A(v)]I(u, x, z)/2 + [A(z)− A(u)]I(v, x, y)/2

+A(x, w)[A(z)−A(u)][A(y)− A(v)]/2, (3.19)

KFFFSSF (x, w, u, z, y, v) = (w + x)K(x, w, u, z, y, v)−G(w, u, z, y, v)−G(x, u, z, y, v),(3.20)

KFFFSSF (x, w, u, z, y, v) =
{
(w2x+ wx2 + 2uwx+ 2vwx− 2wxy + uvw + uvx− uwy

−uxy − vwz − vxz − 2wxz + wyz + xyz)K(x, w, u, z, y, v)

+(uv − wx− uy − vz + yz)[G(x, u, z, y, v) +G(w, u, z, y, v)]

+2(v − y)[uF (u, v, y, z)− zF (z, u, v, y) + [A(u)− A(z)]I(v, x, y)]

+2(u− z)[vF (v, u, y, z)− yF (y, u, v, z) + [A(v)− A(y)]I(u, x, z)]

+2x(u+ w − z)[A(v)−A(y)]I(w, x, u, z)

+2x(v + w − y)[A(u)− A(z)]I(w, x, v, y)

+2[xA(w, x) + A(x)][A(v)−A(y)][A(u)− A(z)]

+(u− z)[yA(y)− vA(v)]/2 + (v − y)[zA(z)− uA(u)]/2

+4(v − y)(u− z)(u+ v + y + z)/3
}
/4wx, (3.21)

KFFFSSF (x, w, u, z, y, v) = [v − y + (w + x)/2]K(x, w, u, z, y, v)−G(w, u, z, v, y)/2

−G(x, u, z, v, y)/2 + [A(v)− A(y)]I(x, w, u, z), (3.22)

KFFFSSF (x, w, u, z, y, v) = 2K(x, w, u, z, y, v), (3.23)

KSSFFFF (x, w, u, z, y, v) = [(w + x)(u+ v + y + z)− 2(u+ z)(v + y)

−w2 − x2]K(x, w, u, z, y, v)/2− E(u, v, y, z)

+(w + x− u− v − y − z)[G(w, u, z, y, v) + G(x, u, z, y, v)]/2

+(u− w + z)[A(v) + A(y)]I(w, x, u, z)

+(v − w + y)[A(u) + A(z)]I(w, x, v, y)

+[A(v) + A(y)]I(u, x, z) + [A(u)] + A(z)]I(v, x, y)

−A(w, x)[A(u) + A(z)][A(v) + A(y)], (3.24)

KSSFFFF (x, w, u, z, y, v) = (w + x− 2u− 2z)K(x, w, u, z, y, v)−G(w, u, z, v, y)

−G(x, u, z, v, y) + 2[A(u) + A(z)]I(x, w, y, v), (3.25)

KSSFFFF (x, w, u, z, y, v) = −4K(x, w, u, z, y, v), (3.26)

JSSFFS(x, w, y, v, u) = A(u)
{
(w − v − y)I(x, w, y, v)− I(v, x, y)

+A(x, w)[A(v) + A(y)]
}
, (3.27)

JSSFFS(x, w, y, v, u) = −2A(u)I(x, w, y, v). (3.28)

These can also be found in the ancillary electronic file functions.anc.
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D. Scalar and vector (and ghost) contributions

The contributions that involve both scalars and vectors, but not fermions, are written as:

V
(3)
SV =

1

4
λjkmλklngaljgamnHSSSSSV (j, k, l,m, n, a)

+
1

2
λklmgabkgajmgbljHV V SSSS(a, b, j, k, l,m)

+
1

8
gajmgbjkgaklgblmHSSV V SS(j, k, a, b, l,m)

+
1

6
λjklgabjgbckgaclHV V V SSS(a, b, c, j, k, l)

+
1

6
gabcgajkgbklgcljHSSSV V V (j, k, l, a, b, c)

+
1

2
gabkgbcjgajlgclkHV V SSV S(a, b, j, k, c, l)

+
1

2
gackgadjgbcdgbjkHSSV V V V (j, k, a, b, c, d)

+
1

8
gacjgabkgbdjgcdkHSV V V SV (j, a, b, c, k, d)

+
1

4
λjlmλklmgajngankKSSSSSV (j, k, l,m, n, a)

+
1

8
λjlmλklmgabjgabkKSSSSV V (j, k, l,m, a, b)

+
1

4
gajlgalkgbjmgbmkKSSSV V S(j, k, l, a, b,m)

+
1

16
gajkgbkjgamlgblmKV V SSSS(a, b, j, k, l,m)

+
1

4
gajlgalkgbcjgbckKSSSV V V (j, k, l, a, b, c)

+
1

4
gajkgbkjgaclgbclKV V SSV S(a, b, j, k, c, l)

+
1

16
gabjgabkgcdjgcdkKSSV V V V (j, k, a, b, c, d)

+
1

4
gacjgbcjgadkgbdkKV V SV V S(a, b, j, c, d, k)

+
1

4
λjkmmgajlgalkJSSV SS(j, k, a, l,m)

+
1

8
gabjgabkλjkllJSSV V S(j, k, a, b, l)

+
1

2
gabjgackgbjlgcklGV SV V S(a, j, b, c, k)

+
1

4
gabdgbcegacjgdejHgauge, S(a, b, c, d, e, j)

+
1

4
gacdgbcdgaejgbejKgauge, S(a, b, c, d, e, j)
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+
1

8
gacdgbcdgajkgbkjKgauge, SS(a, b, c, d, j, k). (3.29)

The loop integral functions appearing here are presented explicitly in the ancillary electronic

file functions.anc, in computer-readable form. Many of them are quite lengthy.

E. Fermion and vector (and ghost) contributions

The contributions involving fermions and vectors (but not scalars) are written as:

V
(3)
FV =

1

4
gaLI gbKL gaJK g

bI
J HFFV V FF (I, J, a, b,K, L)

+gaLI gbL
′

K gaJK ′gbIJ M
KK ′

MLL′HFFV V FF (I, J, a, b,K, L)

+
1

2
gaLI gbL

′

K gaKJ gbIJ ′MJJ ′

MLL′HFFV V FF (I, J, a, b,K, L)

+
1

4
gaIL g

bK
L′ gaK

′

J gbI
′

J ′ MII′M
JJ ′

MKK ′MLL′

HFFV V FF (I, J, a, b,K, L)

+
i

3
gabcgaIJ g

cK
I gbJKHFFFV V V (I, J,K, a, b, c)

+igabcgaIJ g
cK
I gbK

′

J ′ MJJ ′

MKK ′HFFFV V V (I, J,K, a, b, c)

+
1

2
gaKI gaJK g

bL
J g

bI
L KFFFV V F (I, J,K, a, b, L)

+
1

2
gaKI gaK

′

J gbJL g
bI
L′MKK ′MLL′

KFFFV V F (I, J,K, a, b, L)

+
1

2
gaKI gaJK g

bJ ′

L gbLI′ M
II′MJJ ′KFFFV V F (I, J,K, a, b, L)

+
(
gaKI gaK

′

J gbJL g
bL
I′ M

II′MKK ′ + c.c.
)
KFFFV V F (I, J,K, a, b, L)

+
1

4

(
gaKI gaK

′

J gbLJ ′ gbL
′

I′ M
II′MJJ ′

MKK ′MLL′ + c.c.
)
KFFFV V F (I, J,K, a, b, L)

+
1

4
gaIJ g

bJ
I g

aK
L gbLK KV V FFFF (a, b, I, J,K, L)

+
1

2
gaIJ g

bJ
I g

aK
L gbK

′

L′ MKK ′MLL′

KV V FFFF (a, b, I, J,K, L)

+
1

4
gaIJ g

bI′

J ′ gaKL gbK
′

L′ MII′M
JJ ′

MKK ′MLL′

KV V FFFF (a, b, I, J,K, L)

+
1

4
gacdgbcdgaIJ g

bJ
I Kgauge, FF (a, b, c, d, I, J)

+
1

4
gacdgbcdgaIJ g

bI′

J ′ MII′M
JJ ′

Kgauge, FF (a, b, c, d, I, J). (3.30)

Again the loop integral functions appearing here are presented explicitly in the ancillary

electronic file functions.anc.
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F. Scalar, fermion, and vector contributions

The contributions that involve all three of scalars, fermions, and vectors are:

V
(3)
SFV =

1

2
gaIJ g

aL
K YjILY

jJKHFFSV FF (I, J, j, a,K, L)

+gaIJ g
aK
L YjIL′Y jJK ′

MKK ′MLL′

HFFSV FF (I, J, j, a,K, L)

+
1

2

(
gaIJ g

aL
K YjILYjJ ′K ′MJJ ′

MKK ′

+ c.c.
)
HFFSV FF (I, J, j, a,K, L)

+
1

2

(
gaIJ g

aK
L YjIL′YjJ ′KM

JJ ′

MLL′

+ c.c.
)
HFFSV FF (I, J, j, a,K, L)

+
1

2
gaIJ g

aL
K Y jI′L′

YjJ ′K ′MII′M
JJ ′

MKK ′

MLL′HFFSV FF (I, J, j, a,K, L)

+igajkgaIJ YkIKY
jJKHFFFV SS(I, J,K, a, j, k)

+
(
igajkgaIJ YkIKYjJ ′K ′MJJ ′

MKK ′

+ c.c.
)
HFFFV SS(I, J,K, a, j, k)

+igajkgaIJ Y
kI′KYjJ ′KMII′M

JJ ′

HFFFV SS(I, J,K, a, j, k)

+
(
gabjgaJK g

bK
I Y jIJ ′

MJJ ′ + c.c.
)
HFFFSV V (I, J,K, j, a, b)

+
1

2

(
gabjgaKJ gbK

′

I Y jIJMKK ′ + c.c.
)
HFFFSV V (I, J,K, j, a, b)

+
1

2

(
gabjgaJK g

bI
K ′Y jI′J ′

MII′MJJ ′MKK ′

+ c.c.
)
HFFFSV V (I, J,K, j, a, b)

+gaLI gaJL Y
jIKYjJKKFFFSV F (I, J,K, j, a, L)

+
1

2

(
gaLI gaL

′

J Y jIKY jJK ′

MKK ′MLL′ + c.c.
)
KFFFSV F (I, J,K, j, a, L)

+gaIL g
aL
J Y jI′KYjJ ′KMII′M

JJ ′

KFFFSV F (I, J,K, j, a, L)

+
(
gaIL g

aL
J Y jI′KY jJK ′

MII′MKK ′ + c.c.
)
KFFFSV F (I, J,K, j, a, L)

+
(
gaIL g

aJ
L′ Y jI′KYjJKMII′M

LL′

+ c.c.
)
KFFFSV F (I, J,K, j, a, L)

+
1

2

(
gaIL g

aJ
L′ Y jI′KY jJ ′K ′

MII′MJJ ′MKK ′MLL′

+ c.c.
)
KFFFSV F (I, J,K, j, a, L)

+
1

2
gajlgalkY jIJYkIJKSSSV FF (j, k, l, a, I, J)

+
1

4

(
gajlgalkY jIJY kI′J ′

MII′MJJ ′ + c.c.
)
KSSSV FF (j, k, l, a, I, J)

+
1

4
gabjgabkY jIJYkIJKSSV V FF (j, k, a, b, I, J)

+
1

8

(
gabjgabkY jIJY kI′J ′

MII′MJJ ′ + c.c.
)
KSSV V FF (j, k, a, b, I, J)

+
1

4
gajkgbkjgaIJ g

bJ
I KV V SSFF (a, b, j, k, I, J)

+
1

4
gajkgbkjgaIJ g

bI′

J ′ MII′M
JJ ′

KV V SSFF (a, b, j, k, I, J)
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+
1

2
gacjgbcjgaIJ g

bJ
I KV V SV FF (a, b, j, c, I, J)

+
1

2
gacjgbcjgaIJ g

bI′

J ′ MII′M
JJ ′

KV V SV FF (a, b, j, c, I, J). (3.31)

As before, the loop integral functions appearing here are presented explicitly in the ancillary

electronic file functions.anc.

G. Pure vector and ghost contributions

Finally, the contributions that involve only vector bosons and ghost fields can be written

in terms of a couple of loop integral functions:

V
(3)
V =

1

24
gabdgbcegacfgdefHgauge(a, b, c, d, e, f)

+
1

16
gacdgbcdgaefgbefKgauge(a, b, c, d, e, f). (3.32)

These contributions vanish except when the gauge symmetry associated with the vectors

is non-Abelian and (at least partly) spontaneously broken by the scalar background fields.

The loop integral functions appearing here are again presented explicitly in the ancillary

electronic file functions.anc.

H. Comments on the general results

Equations (3.3)-(3.32) constitute the complete MS three-loop effective potential contribu-

tions for a generic renormalizable quantum field theory with Landau gauge fixing. However,

for the specialization to any particular theory with massless gauge bosons, there is still a

little processing to do in order to obtain the effective potential in practice. This is because

each loop integral function involving a vector field with squared mass x will contain a factor

of 1/x, which naively might appear to be have a pole singularity in the massless limit. This

is due to the structure of the Landau gauge vector propagator proportional to

ηµν

p2 + x
− pµpν

p2(p2 + x)
, (3.33)

(using a metric of signature −,+,+,+) where the second term has a partial fraction decom-

position proportional to

1

x

(
1

p2 + x
− 1

p2

)
. (3.34)
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Massless gauge bosons, with their potential infrared problems, are treated here by putting

x = δ and taking the limit δ → 0. The factors of 1/δ actually always cancel in the limit, leav-

ing behind either a finite result or singularities in each diagram that are at most logarithmic

in δ. However, demonstrating this starting from the general loop integral functions appear-

ing in the ancillary file functions.anc, and finding the limits, requires using the expansions

of the basis integrals in small squared masses, as given in the ancillary file expzero.anc.

This can be performed systematically on a case-by-case basis, as will be done below for

the example of the Standard Model. While the pole singularities in δ always cancel at the

level of the loop integral functions, logarithmic singularities as δ → 0 can occur, but only

when there is a doubled propagator, which means the diagram topology is K, J , or L (see

Figure 3.1) with the first two squared mass arguments both equal to δ. The ln(δ) singular-

ities can then be obtained with the help of expansion formulas of the type in the ancillary

file expzero.anc. Cancellations of the infrared singularities associated with massless vec-

tor bosons in the full effective potential occurs after summing the contributions of distinct

diagrams, as will be illustrated below for the Standard Model.

Note also that the function KFFFSSF (x, w, u, z, y, v) in eq. (3.21) contains a factor 1/wx,

which naively might appear to be singular when either w or x approaches 0. However, this

is illusory; KFFFSSF (δ, w, u, z, y, v) and KFFFSSF (x, δ, u, z, y, v) and KFFFSSF (δ, δ, u, z, y, v)

are each finite as δ → 0, as one can check by using the expansions given in the ancillary file

expzero.anc. Furthermore, this function appears in V (3) multiplied by
√
wx [because of the

fermion mass insertions multiplying it in eq. (3.10)]. Therefore, it does not contribute at all

when w and/or x is zero. More generally, the contribution from every integral function with

an F subscript listed in eq. (3.1) vanishes when the corresponding fermion squared mass

is taken to 0. Also, KFFFSSF (δ, δ, u, z, y, v) and KFFFSSF (δ, δ, u, z, y, v), etc., have no ln(δ)

singularities. There are no infrared problems associated with massless fermions.

For checking purposes, it is useful to be able to take derivatives of the loop integral

functions with respect to the MS renormalization scale Q. First, for the basis functions and

related functions, one has from ref. [51]:

Q
∂

∂Q
A(x) = −2x, (3.35)

Q
∂

∂Q
A(x, y) = 2, (3.36)

Q
∂

∂Q
I(x, y, z) = 2[A(x) + A(y) + A(z)− x− y − z], (3.37)

Q
∂

∂Q
I(w, x, y, z) = 2 + 2A(w, x), (3.38)

Q
∂

∂Q
E(w, x, y, z) = 2[A(w)A(x) + A(w)A(y) + A(w)A(z) + A(x)A(y)

+A(x)A(z) + A(y)A(z) + wx+ wy + wz + xy + xz + yz]

+(w − 2x− 2y − 2z)A(w) + (x− 2w − 2y − 2z)A(x)
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+(y − 2w − 2x− 2z)A(y) + (z − 2w − 2x− 2y)A(z)

−9(w2 + x2 + y2 + z2)/4, (3.39)

Q
∂

∂Q
F (w, x, y, z) = 2[−A(x)− A(y)−A(z) + x+ y + z − w]A(w)/w

+7w/2, (3.40)

Q
∂

∂Q
F (w, x, y, z) = 2[A(x) + A(y) + A(z)−A(w)− x− y − z − I(x, y, z)]

+7w/2, (3.41)

Q
∂

∂Q
G(v, w, x, y, z) = 2[I(v, w, x) + I(v, y, z) + A(w) + A(x) + A(y) + A(z) + v]

−4(w + x+ y + z), (3.42)

Q
∂

∂Q
H(u, v, w, x, y, z) = 12ζ3, (3.43)

Q
∂

∂Q
K(u, v, w, x, y, z) = 2[I(u, v, w, x) + I(u, v, y, z)− 1], (3.44)

These results can now be applied to obtain the Q derivatives of the 89 integral functions of

eq. (3.1). Again the results are rather lengthy, and so are consigned to an ancillary electronic

file QdQ.anc provided with this paper.

IV. THE WESS-ZUMINO MODEL

In this section, we consider as an example (and a confidence-building consistency check)

the supersymmetric Wess-Zumino model [74, 75], with superpotential (for a review, see [76]):

W =
m

2
Φ2 +

y

6
Φ3, (4.1)

with real mass and coupling parameters m and y. The chiral superfield Φ contains a 2-

component fermion ψ and a complex scalar field that one can write as

φ+ (R + iI)/
√
2, (4.2)

where φ is a constant background field and R, I are canonically normalized real scalar fields.

In the following, depending on context, the names of the component quantum fields will also

be used as synonyms for their field-dependent squared masses:

R = m2 + 3ymφ+ 3y2φ2/2, (4.3)

I = m2 + ymφ+ y2φ2/2, (4.4)

ψ = (m+ yφ)2. (4.5)
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The non-vanishing interaction couplings of the fields R, I, ψ are given by

λRRRR = λIIII = 3λRRII = 3y2/2, (4.6)

λRRR = 3λRII = 3y(m+ yφ)/
√
2, (4.7)

Y Rψψ = y/
√
2, (4.8)

Y Iψψ = iy/
√
2, (4.9)

and permutations λRIRI = λRIIR = λIRRI = λIRIR = λIIRR = λRRII , and λIRI = λIIR =

λRII . There are no vector fields in the Wess-Zumino model.

The tree-level potential for the background field φ is

V (0) = φ2(m+ yφ/2)2. (4.10)

Plugging into the results of eqs. (2.6), (2.11), (3.3), and (3.10) above gives the effective

potential contributions at one, two, and three-loop orders for the Wess-Zumino model:

V (1) = f(R) + f(I)− 2f(ψ), (4.11)

V (2) = y2
[
3fSS(R,R)/16 + 3fSS(I, I)/16 + fSS(I, R)/8 + 3ψfSSS(R,R,R)/8

+ψfSSS(I, I, R)/8 + fFFS(ψ, ψ,R)/4 + fFFS(ψ, ψ, I)/4

+ψfFFS(ψ, ψ,R)/4− ψfFFS(ψ, ψ, I)/4
]
, (4.12)

V (3) = y4ψ2
[
27HRRRRRR/32 +HIIRRII/32 +HIIIRRR/8 + 81KRRRRRR/64

+9KRRIIRR/32 +KRRIIII/64 +KIIIRIR/16 +HψψRRψψ/16

−HψψIRψψ/8 +HψψIIψψ/16 +HψψψRRR/4−HψψψIIR/4

+9KRRRRψψ/16 +KRRIIψψ/16−KIIIRψψ/8 +KRRψψψψ/16

+KIIψψψψ/16 +KψψψRRψ/8−KψψψIRψ/4 +KψψψIIψ/8
]

+y4ψ
[
27GRRRRR/32 + 3GRIIRR/16 +GIIRIR/8 + 3GRIIII/32

+27JRRRRR/32 + 9JRRRRI/32 + 3JRRIIR/32 + JRRIII/32 + 3JIIIRI/16

+JIIIRR/16 +HψψRRψψ/4 +HψψRIψψ/4−HψψIRψψ/4−HψψIIψψ/4

+HψψRRψψ/8 +HψψIRψψ/4 +HψψIIψψ/8 + 3HψψψRRR/4−HψψψRII/4

+HψψψIIR/2 + 9KRRRRψψ/16 +KRRIIψψ/16 +KIIIRψψ/8

+KRRψψψψ/8−KIIψψψψ/8 +KψψψRRψ/8−KψψψIRψ/4

+KψψψIIψ/8 +KψψψRRψ/8 +KψψψIRψ/4 +KψψψIIψ/8

+KψψψRRψ/2 +KψψψRIψ/2−KψψψIRψ/2−KψψψIIψ/2

+3JRRψψR/16 + JRRψψI/16− JIIψψR/16− 3JIIψψI/16
]
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+y4
[
HψψRRψψ/16−HψψIRψψ/8 +HψψIIψψ/16 +KRRψψψψ/16

+KIIψψψψ/16 +KψψψRRψ/8 +KψψψIRψ/4 +KψψψIIψ/8

+9LRRRR/64 + 9LIIII/64 + 3LIIIR/32 + LIIRR/64 + LRRII/64

+3LRRIR/32 + 3ERRRR/64 + 3EIIII/64 + EIIRR/32

+3JRRψψR/16 + JRRψψI/16 + JIIψψR/16 + 3JIIψψI/16
]
. (4.13)

In the latter equation, I have used a short-hand notation, such that, for example, HIIRRII ≡
HSSSSSS(I, I, R,R, I, I) and KψψψRIψ ≡ KFFFSSF (ψ, ψ, ψ,R, I, ψ).

As a non-trivial consistency check, consider the renormalization group scale invariance

condition for the effective potential, as expressed by eq. (1.4), with X = y,m, φ. From†

refs. [77, 78],

β(1)
y /3y = β(1)

m /2m = −β(1)
φ /φ = y2/2, (4.14)

β(2)
y /3y = β(2)

m /2m = −β(2)
φ /φ = −y4/2, (4.15)

β(3)
y /3y = β(3)

m /2m = −β(3)
φ /φ = (3ζ3/2 + 5/8)y6. (4.16)

Using eqs. (4.14)-(4.16), one finds from eq. (4.10):

∑

X

β
(1)
X

∂

∂X
V (0) = y2φ2(m+ yφ/2)2, (4.17)

∑

X

β
(2)
X

∂

∂X
V (0) = −y4φ2(m+ yφ/2)2, (4.18)

∑

X

β
(3)
X

∂

∂X
V (0) = (3ζ3 + 5/4)y6φ2(m+ yφ/2)2, (4.19)

and from eq. (4.11), also using eqs. (2.23):

∑

X

β
(1)
X

∂

∂X
V (1) = y2(m2 + 3ymφ+ 3y2φ2/2)A(R) + y2(m2 + ymφ+ y2φ2/2)A(I)

−2y2(m+ yφ)2A(ψ), (4.20)
∑

X

β
(2)
X

∂

∂X
V (1) = −y4(m2 + 3ymφ+ 3y2φ2/2)A(R)− y4(m2 + ymφ+ y2φ2/2)A(I)

+2y4(m+ yφ)2A(ψ), (4.21)

† Some other references had given incorrect results for the 3-loop beta functions of the Wess-Zumino model.
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and from eq. (4.12), also using eqs. (2.23) and (2.24):

∑

X

β
(1)
X

∂

∂X
V (2) =

7y4

8

[
−3(m+ yφ)2I(R,R,R) + (6m2 + 10ymφ+ 5y2φ2)I(ψ, ψ,R)

−(m+ yφ)2I(R, I, I)− (2m2 + 2ymφ+ y2φ2)I(ψ, ψ, I) + 3A(R)2/2

+3A(I)2/2 + A(R)A(I)− 4A(R)A(ψ)− 4A(I)A(ψ) + 4A(ψ)2
]

+y4(m2 + 3ymφ+ 3y2φ2/2)A(R) + y4(m2 + ymφ+ y2φ2/2)A(I)

−2y4(m+ yφ)2A(ψ)− y6φ2(m+ yφ/2)2. (4.22)

Meanwhile, from eqs. (4.11), (4.12), and (4.13), using eqs. (3.35)-(3.44), one obtains:

Q
∂

∂Q
V (1) = −y2φ2(m+ yφ/2)2, (4.23)

Q
∂

∂Q
V (2) = −y2(m2 + ymφ+ y2φ2/2)A(I)− y2(m2 + 3ymφ+ 3y2φ2/2)A(R)

+2y2(m+ yφ)2A(ψ) + y4φ2(m+ yφ/2)2, (4.24)

Q
∂

∂Q
V (3) =

7y4

8

[
(2m2 + 2ymφ+ y2φ2)I(ψ, ψ, I)− (6m2 + 10ymφ+ 5y2φ2)I(ψ, ψ,R)

+3(m+ yφ)2I(R,R,R) + (m+ yφ)2I(R, I, I)− 3A(R)2/2− 3A(I)2/2

−A(R)A(I)− 4A(ψ)2 + 4A(ψ)A(R) + 4A(ψ)A(I)
]

−y6φ2(m+ yφ/2)2(3ζ3 + 1/4). (4.25)

Now eqs. (4.17)-(4.25) can be plugged in to verify that eq. (1.4) indeed holds for each of

ℓ = 1, 2, 3.

As another check, recall that at a supersymmetric minimum of the tree-level potential,

the full effective potential must vanish at each order in perturbation theory [79]. There are

two supersymmetric minima of V (0), namely φ = 0 and φ = −2m/y. At each of these,

one has equality of the field-dependent squared masses: x ≡ R = I = ψ = m2. It is now

straightforward to plug this into equations (4.11), (4.12), and (4.13), to verify that each of

V (1), V (2), and V (3) also vanishes at the supersymmetric minima. This relies on non-trivial

cancellations between the different loop integral functions defined in eqs. (3.4)-(3.9) and

(3.11)-(3.28), which become apparent upon putting everything in terms of the basis inte-

gral functions H(x, x, x, x, x, x), K(x, x, x, x, x, x), G(x, x, x, x, x), F (x, x, x, x), I(x, x, x),

I(x, x, x, x), A(x), and A(x, x).
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V. THE STANDARD MODEL

A. Standard Model effective potential at three-loop order

In this section, I will consider the complete three-loop effective potential for the Standard

Model as another application of the general results. The full two-loop effective potential for

the Standard Model was found in ref. [4]. The leading three-loop parts, in the limit that the

QCD coupling and the top-quark Yukawa coupling are large compared to all other couplings,

were found in ref. [6]. The four-loop contribution at leading order in QCD is also known [7].

The tree-level potential for the Standard Model is given by

V = Λ +m2Φ†Φ+ λ(Φ†Φ)2, (5.1)

where Λ is a field-independent constant energy density necessary for renormalization scale

invariance, m2 is a negative Higgs squared mass parameter, and λ is the Higgs self-coupling.

The Higgs complex doublet scalar field is

Φ =


[φ+H + iG0]/

√
2

G+


 , (5.2)

where φ is the constant background field, H is the Higgs boson field, and G0 and G± are

Goldstone bosons. The φ-dependent squared masses of the Higgs boson and the Goldstone

bosons (both neutral and charged) are

H = m2 + 3λφ2, (5.3)

G = m2 + λφ2, (5.4)

and the other non-zero squared masses are

t = y2t φ
2/2, (5.5)

W = g2φ2/4, (5.6)

Z = (g2 + g′2)φ2/4. (5.7)

where yt is the top-quark Yukawa coupling and g, g′ are the electroweak gauge couplings.

The Yukawa couplings of the bottom quark and other fermions are quite negligible, and are

therefore taken to vanish.

The field content of the electroweak Standard Model with nG generations, compatible
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with the conventions of section II, is:

Real scalars: H,G0, GR, GI (5.8)

2-component fermions: t, t̄, b, b̄, τ, τ̄ , ντ + (nG − 1)×
(
u, ū, d, d̄, e, ē, νe

)
, (5.9)

Real vectors: γ, Z,WR,WI (5.10)

Here we have written the complex Goldstone scalar bosons and W vector bosons in terms

of real components as G± = (GR ± iGI)/
√
2 and W± = (WR ± iWI)/

√
2. The unbarred

fermion fields are SU(2)L doublets, and the barred fermion fields are SU(2)L singlets. (Not

shown explicitly are the color multiplicity for quarks, or the massless gluon vector fields.)

To facilitate an automated calculation of the 3-loop effective potential, it is useful to have

at hand a list of the non-vanishing field-dependent couplings of these mass eigenstate fields.

There are scalar cubic interactions of the type λjkl:

λHHH = 6λφ, (5.11)

λHG
0G0

= λHGRGR = λHGIGI = 2λφ, (5.12)

and scalar quartic couplings of the type λjklm:

λHHHH = λG
0G0G0G0

= λGRGRGRGR = λGIGIGIGI = 6λ, (5.13)

λHHG
0G0

= λHHGRGR = λHHGIGI = λG
0G0GRGR = λG

0G0GIGI = λGRGRGIGI = 2λ, (5.14)

as well as permutations determined by the symmetry under interchange of any two scalars.

The non-vanishing Yukawa couplings of the type Y jIJ are given by

Y Htt̄ = −Y GRbt̄ = −iY G0tt̄ = iY GIbt̄ = yt/
√
2, (5.15)

which are symmetric under interchange of the last two (fermionic) indices. (All Yukawa

couplings other than for the top-quark are neglected.) The interactions of the electroweak

vector bosons with the quarks and leptons are given by couplings of the type gaJI :

gZff = (−Ifg2 + Yfg
′2)/

√
g2 + g′2, (5.16)

gZf̄
f̄

= −Qfg
′2/

√
g2 + g′2, (5.17)

gγff = −gγf̄
f̄

= −Qfe, (5.18)

where

e = gg′/
√
g2 + g′2, (5.19)
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and Qu = 2/3 and Qd = −1/3 and Qν = 0 and Qe = −1, and Iu = Iν = 1/2 and

Id = Ie = −1/2, and Yf = Qf − If for each f , and

gWRu
d = gWRd

u = gWRν
e = gWRe

ν = −g/2, (5.20)

gWId
u = −gWIu

d = gWIe
ν = −gWIν

e = −ig/2. (5.21)

There are also vector-vector-scalar couplings of the type gabj,

gγWRGR = gγWIGI = geφ/2, (5.22)

gZWRGR = gZWIGI = −g′eφ/2, (5.23)

gWRWRH = gWIWIH = g2φ/2, (5.24)

gZZH = (g2 + g′2)φ/2, (5.25)

with symmetry under interchange of the first two (vector) indices. The vector-scalar-scalar

couplings of the type gajk are

gγGRGI = e, (5.26)

gZG
0H =

√
g2 + g′2/2, (5.27)

gZGRGI = (g2 − g′2)/(2
√
g2 + g′2), (5.28)

gWRGRG
0

= gWRHGI = gWIGIG
0

= gWIGRH = g/2, (5.29)

with others determined by the anti-symmetry with respect to interchange of the last two

(scalar) indices. There are also vector-vector-scalar-scalar couplings of the type gabjk, de-

termined in terms of these by eq. (2.5). Finally there are the totally anti-symmetric vector-

vector-vector couplings defined by:

gγWRWI = e, (5.30)

gZWRWI = g2/
√
g2 + g′2. (5.31)

The tree-level and one-loop contributions to the effective potential are:

V (0) = Λ +m2φ2/2 + λφ4/4, (5.32)

V (1) = 3f(G) + f(H)− 12f(t) + 6fV (W ) + 3fV (Z), (5.33)

with functions f(x) and fV (x) defined in eqs. (2.7) and (2.8). The two-loop contribution is

given by [4]:

V (2) =
3

4
λ [fSS(H,H) + 2fSS(G,H) + 5fSS(G,G)]
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+3λ2φ2[fSSS(H,H,H) + fSSS(G,G,H)] +
3y2t
2

[
fFFS(t, t, H) + tfFFS(t, t, H)

+fFFS(t, t, G)− tfFFS(t, t, G) + 2fFFS(0, t, G)
]
+
g2 + g′2

8
fV SS(Z,G,H)

+
(g2 − g′2)2

8(g2 + g′2)
fV SS(Z,G,G) +

g2

4
[fV SS(W,G,H) + fV SS(W,G,G)]

+
e2

2
fV SS(0, G,G) +

g4φ2

8
fV V S(W,W,H) +

(g2 + g′2)2φ2

16
fV V S(Z,Z,H)

+
e2φ2

4

[
g′2fV V S(W,Z,G) + g2fV V S(0,W,G)

]

−
[
4g23 + 4e2/3

]
tfFFV (t, t, 0) + g2 [3fFFV (0, t,W ) + (4nG − 3)fFFV (0, 0,W )] /2

+
[
(9g4 − 6g2g′2 + 17g′4)fFFV (t, t, Z) + 8g′2(3g2 − g′2)tfFFV (t, t, Z)

+((24nG − 9)g4 + 6g2g′2 + (40nG − 17)g′4)fFFV (0, 0, Z)
]
/24(g2 + g′2)

+
e2

2
fgauge(W,W, 0) +

g4

2(g2 + g′2)
fgauge(W,W,Z), (5.34)

where nG = 3 is the number of quark and lepton generations. This result for V (2) for the

Standard Model is an example of the application of the general result in eq. (2.11), using the

couplings listed above. It is written here in terms of the functions fSS(x, y), fSSS(x, y, z),

fFFS(x, y, z), fFFS(x, y, z), fV V S(x, y, z), fFFV (x, y, z), fFFV (x, y, z), and fgauge(x, y, z) de-

fined in ref. [5], and the function fV SS(x, y, z) defined in eqs. (2.12)-(2.13) of the present

paper, replacing the functions fSSV and fV S of ref. [5].

The three-loop effective potential contribution in the Standard Model can now be ob-

tained by applying the couplings given above in eqs. (5.11)-(5.29) to the general forms of

eqs. (3.4)-(3.32). The resulting expression contains 536 integral functions of the 89 types

in eq. (3.1) with specific assignments of squared mass arguments H , G, t, W , Z, and δ

(used as an infrared regulator for the squared masses of gluons, photons, and quarks and

leptons other than the top quark). The 536 functions are given, expanded in δ to retain

the ln(δ) terms, but dropping all terms of order δ, in an ancillary electronic file distributed

with this paper, called SMV3functions.anc. Of these 536 functions, the following 23 vanish

identically in the limit δ → 0:

HFFV V FF (0, 0, 0, 0, 0, 0), KFFFV V F (0, 0, 0, 0, 0, 0), KV V FFFF (0, 0, 0, 0, 0, 0),

KFFFSV F (t, t, t, G, 0, t), KFFFSV F (t, t, t, H, 0, t), KFFFSV F (t, t, 0, G, 0, t),

KFFFSV F (t, t, t, G, 0, t), KFFFSV F (t, t, t, H, 0, t), KFFFSV F (t, t, t, G, 0, t),

KFFFSV F (t, t, t, H, 0, t), KFFFSV F (t, t, 0, G, 0, t), KFFFSV F (0, 0, t, G, 0, 0),

KFFFV V F (t, t, t, Z, 0, t), KFFFV V F (t, t, t, 0,W, 0), KFFFV V F (t, t, t, 0, 0, t),

KFFFV V F (t, t, t, Z, 0, t), KFFFV V F (t, t, t, 0, 0, t), KFFFV V F (t, t, t, Z, 0, t),

KFFFV V F (t, t, t, 0,W, 0), KFFFV V F (t, t, t, 0, 0, t), KFFFV V F (0, 0, t,W, 0, 0),

KFFFV V F (0, 0, 0,W, 0, 0), KFFFV V F (0, 0, 0, Z, 0, 0). (5.35)
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The coefficients of the non-vanishing 513 functions that remain, and thus the expression

for V (3), are given in another ancillary electronic file called SMV3.anc. These coefficients

are built out of couplings g3, g, g
′, yt, λ, and the background Higgs field φ. In the text

below, I will discuss explicitly the parts of V (3) that are leading order in QCD, and also the

parts involving infrared logarithms ln(δ), where δ is used for the gluon and photon squared

masses. (There are no ln(δ) infrared divergences due to massless fermions, as discussed in

subsection IIIH.)

Consider the contribution proportional to g43. It is:

V
(3)

g4
3

= g43NcCF

{
(CF − CG/2)

[1
2
HFFV V FF (t, t, 0, 0, t, t)− 2tHFFV V FF (t, t, 0, 0, t, t)

+tHFFV V FF (t, t, 0, 0, t, t) +
t2

2
HFFV V FF (t, t, 0, 0, t, t)

]

+CF
[
tKFFFV V F (t, t, t, 0, 0, t) + t2KFFFV V F (t, t, t, 0, 0, t)

]

+CG

[1
3
HFFFV V V (t, t, t, 0, 0, 0)− tHFFFV V V (t, t, t, 0, 0, 0)

+
1

2
Kgauge,FF (0, 0, 0, 0, t, t)−

1

2
tKgauge,FF (0, 0, 0, 0, t, t)

]

+TF
[
KV V FFFF (δ, δ, t, t, t, t)− 2tKV V FFFF (δ, δ, t, t, t, t) + t2KV V FFFF (δ, δ, t, t, t, t)

]

+2(2nG − 1)TF [KV V FFFF (0, 0, 0, 0, t, t)− tKV V FFFF (0, 0, 0, 0, t, t)]
}
, (5.36)

where CG = Nc = 3 and CF = 4/3 and TF = 1/2 for QCD, and nG = 3 for the Standard

Model. In the following, I will leave nG arbitrary, to allow for more informative compar-

isons. In writing eq. (5.36), I have taken advantage of the fact that KFFFV V F (t, t, t, 0, 0, t)

and KFFFV V F (t, t, t, 0, 0, t) and KFFFV V F (t, t, t, 0, 0, t) happen to vanish, even though those

functions do not vanish for general squared-mass arguments. The remaining loop integral

functions for the special squared mass arguments appearing in eq. (5.36) are also quite

simple. The ones without infrared gluon divergences (therefore setting δ = 0) are:

HFFV V FF (t, t, 0, 0, t, t) = (225/2− 208ζ3)t
2 − 85tA(t) + 6A(t)2 − 10t2H(0, t, t, t, 0, t), (5.37)

HFFV V FF (t, t, 0, 0, t, t) = (140/3− 80ζ3)t− 40A(t) + 12A(t)2/t− 6tH(0, t, t, t, 0, t), (5.38)

HFFV V FF (t, t, 0, 0, t, t) = (32ζ3 − 16)t+ 10A(t) + 6A(t)2/t + 6tH(0, t, t, t, 0, t), (5.39)

HFFV V FF (t, t, 0, 0, t, t) = 16/3 + 16ζ3 − 8A(t)/t− 10H(0, t, t, t, 0, t), (5.40)

KFFFV V F (t, t, t, 0, 0, t) = 146t/3− 60A(t) + 18A(t)2/t− 18A(t)3/t2, (5.41)

KFFFV V F (t, t, t, 0, 0, t) = −38/3 + 48ζ3 + 10A(t)/t− 12A(t)2/t2 − 6A(t)3/t3, (5.42)

HFFFV V V (t, t, t, 0, 0, 0) = (24ζ3 − 233/8)t2 + 117tA(t)/4− 27A(t)2/2, (5.43)

HFFFV V V (t, t, t, 0, 0, 0) = (48ζ3 − 136/3)t+ 45A(t)− 27A(t)2/t+ 3A(t)3/t2, (5.44)

Kgauge,FF (0, 0, 0, 0, t, t) = −283t2/6 + 40tA(t)− 13A(t)2, (5.45)

Kgauge,FF (0, 0, 0, 0, t, t) =
[
(−296− 208ζ3)t + 281A(t)− 97A(t)2/t+ 26A(t)3/t2

]
/3, (5.46)

KV V FFFF (0, 0, 0, 0, t, t) = 49t2/6− 7tA(t) + 2A(t)2, (5.47)



31

KV V FFFF (0, 0, 0, 0, t, t) =
[
(56 + 32ζ3)t− 52A(t) + 20A(t)2/t− 4A(t)3/t2

]
/3, (5.48)

while the ones that do individually have gluon infrared divergences are:

KV V FFFF (δ, δ, t, t, t, t) = −(5 + 56ζ3)t
2 − 62tA(t)− 8A(t)2 − 8A(t)3/t

+12t2(1 + A(t)/t)2ln(δ), (5.49)

KV V FFFF (δ, δ, t, t, t, t) =
[
−(8 + 280ζ3)t− 340A(t)− 52A(t)2/t− 28A(t)3/t2

]
/3

+12t(1 + A(t)/t)2ln(δ), (5.50)

KV V FFFF (δ, δ, t, t, t, t) = −152/3− 56ζ3 − 96A(t)/t− 36A(t)2/t2 − 8A(t)3/t3

+12(1 + A(t)/t)2ln(δ). (5.51)

It is now clear that the ln(δ) contributions successfully cancel when these results are put

into eq. (5.36). The result is:

V
(3)

g4
3

= g43t
2
[
8131/9− 84nG + (320− 256nG/3)ζ3 + (248nG/3− 2834/3)A(t)/t

+(428− 112nG/3)A(t)
2/t2 + (32nG/3− 216)A(t)3/t3 − 16H(0, t, t, t, 0, t)/3

]
(5.52)

= g43t
2
[
22429/9− 644nG/3− 512Li4(1/2)/3 + 64 ln2(2)[π2 − ln2(2)]/9

+176π4/135 + (288− 256nG/3)ζ3 + (32ζ3 + 568nG/3− 7346/3)ln(t)

+(1076− 208nG/3)ln
2
(t) + (32nG/3− 216)ln

3
(t)

]
, (5.53)

where the analytical results for A(t) and H(0, t, t, t, 0, t) have been used to obtain the last

expression. This agrees with the result found (using different methods, and in particular

with dimensional regularization of infrared divergences) in ref. [6].

Having demonstrated that the infrared divergences associated with doubled massless

gluon propagators cancel, let us now consider those coming from the massless photon. First,

from the results given in the ancillary electronic file SMV3.anc and SMV3functions.anc, one

finds that V (3) contains QED contributions exactly analogous to the QCD ones mentioned

above:

16e4

9
[KV V FFFF (δ, δ, t, t, t, t)− 2tKV V FFFF (δ, δ, t, t, t, t) + t2KV V FFFF (δ, δ, t, t, t, t)], (5.54)

where δ is now the infrared regulator squared mass of the photon. The ln(δ) parts of this

cancel in the same way as in QCD.

There are also contributions (given in SMV3.anc) to V (3) from diagrams involving the top

quark, theW boson, the charged Goldstone bosons, and doubled photon propagators, which
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individually behave like ln(δ) as δ → 0. They can be grouped as:

4e4

3
[Kgauge,FF (δ, δ,W,W, t, t)− tKgauge,FF (δ, δ,W,W, t, t)], (5.55)

and

2e4g2φ2

3
[KV V SV FF (δ, δ, G,W, t, t)− tKV V SV FF (δ, δ, G,W, t, t)]. (5.56)

The ln(δ) infrared divergent parts of these contributions can be extracted from the results

given in the ancillary electronic file SMV3functions.anc:

Kgauge,FF (δ, δ,W,W, t, t) ∼ 3

2
[W + 6A(W )][t+ A(t)] ln(δ), (5.57)

Kgauge,FF (δ, δ,W,W, t, t) ∼ 3

2t
[W + 6A(W )][t+ A(t)] ln(δ), (5.58)

KV V SV FF (δ, δ, G,W, t, t) ∼ −3

4
[1− 6A(G,W )][t+ A(t)] ln(δ), (5.59)

KV V SV FF (δ, δ, G,W, t, t) ∼ − 3

4t
[1− 6A(G,W )][t+ A(t)] ln(δ). (5.60)

The ln(δ) contributions in each of eqs. (5.55) and (5.56) again are seen to cancel.

All other possible ln(δ) contributions are found to vanish at the level of the functions given

in SMV3functions.anc, except for the following contributions involving doubled photon

propagators, W bosons, and charged Goldstone bosons:

e4

4

[
Kgauge(δ, δ,W,W,W,W ) + 4WKgauge,S(δ, δ,W,W,W,G)

+4W 2KV V SV V S(δ, δ, G,W,W,G)
]
. (5.61)

The relevant infrared behaviors can again be extracted from SMV3functions.anc:

Kgauge(δ, δ,W,W,W,W ) ∼ 3

16
[W + 6A(W )]2 ln(δ) (5.62)

Kgauge,S(δ, δ,W,W,W,G) ∼ − 3

32
[W + 6A(W )][1− 6A(W,G)] ln(δ) (5.63)

KV V SV V S(δ, δ, G,W,W,G) ∼ 3

64
[1− 6A(W,G)]2 ln(δ) (5.64)

It follows that the infrared divergences from doubled photon propagators do not cancel.

The final result for the infrared divergence, which comes entirely from eq. (5.61), can be
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simplified to:

V (3) ∼ 27e4

16

(
WG ln(W/G)

W −G

)2

ln(δ). (5.65)

While it might at first seem surprising that there is an uncanceled QED infrared divergence

in the three-loop effective potential, it is important to remember that the effective potential

itself is not a physical observable. (Recall that it is not even gauge invariant.) What is

important is that this infrared divergence does not infect physical observables and closely

related quantities. The key property that guarantees this is that eq. (5.65) is of second

order in G. As we will see in the next section, after the necessary resummation of Goldstone

boson contributions, terms of higher-than-linear order in G do not affect the minimization

condition of the effective potential, nor contribute to the value of the effective potential at

its minimum, and so can simply be dropped.

As an aside, one could also eliminate the infrared divergence in eq. (5.65) by resumming

photon self-energies. Note that eq. (5.65) comes from the 3-loop representatives of the family

of ℓ-loop Feynman diagrams that involve a ring of ℓ− 1 photon propagators that carry the

same momentum and connect ℓ− 1 one-loop subdiagrams with either W+,W− or W±, G∓

internal lines. These diagrams scale like 1/δℓ−3 for ℓ > 3. Resumming these diagrams to all

orders in ℓ would yield a contribution to Veff that cancels the three-loop infrared divergence

in eq. (5.65) in the limit δ → 0:

∆Veff ∼ 3

16π2
fV (∆γ/16π

2)− 1

(16π2)3
3

4
∆2
γ [ln(δ) + 2/3] + . . . (5.66)

where the ellipses represent contributions from four loops and beyond, and

∆γ = 3e2WG ln(W/G)/2(W −G). (5.67)

However, this resummation of photon self-energies is actually an unnecessary complication.

The key fact is that with or without the photon ring resummation the contribution is second

order in G, and so has no effect on physical quantities and can be dropped after Goldstone

boson resummation. Therefore, I prefer not to resum the photon self-energies, for simplicity.

In the next subsection, I will discuss the expansion and resummation of the Goldstone boson

contributions, and explicitly derive the resulting Higgs VEV minimization condition and find

that it has no infrared divergences [or spurious imaginary parts associated with ln(G) when

G is negative] of any kind.

As a check of the Standard Model result, consider the renormalization group scale invari-

ance conditions, which take the form of eq. (1.4) at each loop order ℓ = 1, 2, 3, where X is

summed over Λ, m2, λ, g3, g, g
′, yt, φ, with β

(ℓ)
φ = −γ(ℓ)φ where γ is the scalar field anomalous

dimension. The necessary Q derivatives of the three-loop integral functions are given in the
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ancillary electronic file QdQ.anc. The necessary three-loop beta functions and anomalous

dimension have been found in refs. [80]-[86],† except for the field-independent vacuum energy

Λ. From the φ-independent parts of eq. (1.4), I find that:

β
(1)
Λ = 2(m2)2, (5.68)

β
(2)
Λ = [12g2 + 4g′2 − 12y2t ](m

2)2, (5.69)

β
(3)
Λ =

[
(192ζ3 − 204)y2t g

2
3 + 153y4t /4 + (189/8− 108ζ3)y

2
t g

2 − (73/8 + 20ζ3)y
2
t g

′2

+(4215/32− 51nG/2− 18ζ3)g
4 + (36ζ3 − 441/16)g2g′2

+(6ζ3 − 233/32− 85nG/6)g
′4 + 18λ2

]
(m2)2. (5.70)

With this included, I have checked, using the Q derivatives found in QdQ.anc, that eq. (1.4)

is indeed satisfied by the result for V (3) given in SMV3.anc and SMV3functions.anc. [Note

that the coefficient of ln(δ) in eq. (5.65) is independent of Q, so that while eq. (5.65) does

contribute non-trivially to Q∂V (3)/∂Q, it does so without producing a ln(δ) part.] This

constitutes an important consistency check.

B. Goldstone boson resummation of the Standard Model effective potential

The three-loop Standard Model effective potential given in the previous subsection suffers

from two related problems associated with the Goldstone boson contributions. First, the

squared mass G can easily be negative at the minimum of the (real part of the) effective

potential, depending on the choice of renormalization scale Q at which it is evaluated. Due

to the presence of ln(G), the usual effective potential then has an imaginary part even at

one-loop order. This imaginary part is spurious because it does not correspond to a genuine

physical instability. Second, if one chooses a reasonable renormalization scale such that

G → 0, then there are ln(G) singularities in the three-loop effective potential and in the

derivative of the two-loop effective potential, and 1/GL−3 singularities in the L-loop effective

potential and the derivatives of the (L−1)-loop effective potential for L > 3. This was noted

in the context of the Standard Model at leading order in the top-quark Yukawa coupling

in ref. [6] (see also [10, 15]), where it was somewhat melodramatically referred to as the

“Goldstone boson catastrophe”. In practice, one can usually simply ignore the problem

while maintaining good numerical accuracy, by choosing a renormalization scale such that

|G| is not too tiny, and dropping the imaginary part if G is negative. However, this is clearly

sub-optimal, and a principled solution was given in refs. [94, 95], where the problem was

shown to be resolved by resumming the leading Goldstone boson contributions to all orders,

treating G as small compared to the other squared mass parameters of the theory.

† Extensions to QCD 4-loop and 5-loop order will not be needed here, but can be found in refs. [87]-[93]

and [7].
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The basic idea is very simple: the effects of Goldstone bosons with propagators with

squared masses G are re-expanded about a different squared mass G+∆, which vanishes at

the minimum of the full effective potential; this is the pole squared mass of the Goldstone

boson in Landau gauge, and therefore a good expansion point. This resolution by resum-

mation has the added benefit that it actually makes it simpler in practice to implement

the minimization condition that relates the Higgs VEV to the Lagrangian parameters. It

can, and should, also be applied to other calculations such as the pole squared masses of

the physical particles. For important further developments and related perspectives, see

refs. [96]-[102].

To apply the Goldstone boson resummation procedure to the full three-loop‡ Standard

Model effective potential, consider the ordinary effective potential in the form:

Veff = V (0) +
1

16π2
V (1)(G) +

1

(16π2)2
V (2)(G) +

1

(16π2)3
V (3)(G). (5.71)

Here the dependence of each term on the Goldstone boson squared mass G has now

been indicated explicitly, with the dependences on the other independent parameters

(g3, g, g
′, yt, λ, φ

2, Q) left implicit.§ Now one can resum the contributions to all loop or-

ders from diagrams that consist of single rings of Goldstone boson propagators punctuated

by one-particle-irreducible subdiagrams that feature larger masses, by writing

V (1)(G) → V (1)(G+∆)−∆
∂

∂G
V (1)(G)− 1

2
∆2 ∂2

∂G2
V (1)(G) (5.72)

where the quantity

∆ =
1

16π2
∆1 +

1

(16π2)2
∆2 +

1

(16π2)3
∆3 + . . . (5.73)

will be given below, and is defined¶ by the properties that G+∆ vanishes at the minimum of

the full effective potential, and each ∆ℓ does not depend on G. Now we can write, through

‡ The extension of this whole procedure to any given higher loop order should be clear from the following.
§ Note that H = 2λφ2 +G, so that it is not an independent parameter, and in the following ∂H/∂G = 1.

The other squared mass parameters t,W,Z are independent of G.
¶ A warning about a notational switch: the ∆ℓ in the present paper are equal to what I called ∆̂ℓ in ref. [94].

The following discussion could be equally well reformulated in terms of the quantities called ∆ℓ in ref. [94],

with results that are consistent up to four-loop order contributions. However, that alternative formulation

is complicated slightly by the fact that the ∆ℓ in the notation of ref. [94] depend on G, through their

dependences on H , so I omit it for simplicity.
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three-loop order:

Veff → V (0) +
1

16π2
V (1)(G+∆) +

1

(16π2)2
V̂ (2)(G)

+
1

(16π2)3

[
V (3)(G)−∆2

∂

∂G
V (1)(G)− 1

2
(∆1)

2 ∂2

∂G2
V (1)(G)

]
, (5.74)

where we have defined

V̂ (2)(G) ≡ V (2)(G)−∆1
∂

∂G
V (1)(G), (5.75)

Now one can continue the resummation procedure by making the replacement:

V̂ (2)(G) → V̂ (2)(G+∆)−∆1
∂

∂G
V̂ (2)(G)

= V̂ (2)(G+∆)−∆1
∂

∂G
V (2)(G) + (∆1)

2 ∂2

∂G2
V (1)(G), (5.76)

with the result

Veff → V (0) +
1

16π2
V (1)(G+∆) +

1

(16π2)2
V̂ (2)(G+∆) +

1

(16π2)3
V̂ (3)(G), (5.77)

where

V̂ (3)(G) ≡ V (3)(G)−∆1
∂

∂G
V (2)(G)−∆2

∂

∂G
V (1)(G) +

1

2
(∆1)

2 ∂2

∂G2
V (1)(G). (5.78)

Finally, we can replace G by G+∆ in the three-loop term, since the difference is of four-loop

order. Thus, the resummed effective potential at three-loop order is:

V resummed
eff = V (0) +

1

16π2
V (1)(G+∆) +

1

(16π2)2
V̂ (2)(G+∆) +

1

(16π2)3
V̂ (3)(G+∆), (5.79)

where the functions V̂ (2) and V̂ (3) are defined in terms of the usual perturbatively calculated

(non-resummed) quantities by eqs. (5.75) and (5.78), respectively.

In order to construct the functions V̂ (2)(G) and V̂ (3)(G) from the results given in the

previous subsection, one needs ∆1, ∆2,
∂
∂G
V (1)(G), ∂2

∂G2V
(1)(G), and ∂

∂G
V (2)(G), which are

all straightforward to obtain from the one-loop and two-loop order effective potentials. The

results for ∆1 and ∆2 have already been given in eqs. (4.19) and (4.20) of ref. [94], and are

also provided in an ancillary electronic file of the present paper called SMDeltas.anc. For
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example,

∆1 = 3λA(h)− 6y2tA(t) +
3g2

2
A(W ) +

3(g2 + g′2)

4
A(Z)

+(3g4 + 2g2g′2 + g′4)φ2/8, (5.80)

where

h ≡ H −G = 2λφ2. (5.81)

Also, one has the simple one-loop results:

∂

∂G
V (1)(G) =

3

2
A(G) +

1

2
A(H), (5.82)

∂2

∂G2
V (1)(G) =

3

2
[1 + A(G)/G] +

1

2
[1 + A(H)/H ]. (5.83)

The expression for ∂V (2)/∂G is more complicated, and is given in an ancillary electronic file

SMdV2dG.anc.

A crucial feature of V resummed
eff is that in the expansions of V (1)(G+∆), V̂ (2)(G+∆), and

V̂ (3)(G+∆) for small G+∆, terms with ln(G+∆) do not appear until quadratic order in

G+∆. This can be seen by performing the expansions for small G for basis integral functions

that have G as an argument, using the tools in the ancillary electronic file expzero.anc.

The results can be written in the form

V (1)(G) = V (1)(0) +GV (1)′(0) +O(G2), (5.84)

V̂ (2)(G) = V̂ (2)(0) +GV̂ (2)′(0) +O(G2), (5.85)

V̂ (3)(G) = V̂ (3)(0) +GV̂ (3)′(0) +O(G2), (5.86)

where V (1)(0), V (1)′(0), V̂ (2)(0), V̂ (2)′(0), V̂ (3)(0), and V̂ (3)′(0) do not depend on G. In

particular, the cancellations of the Gln(G) terms in V̂ (2)(G), and the ln(G), Gln(G), and

Gln
2
(G) terms in V̂ (3)(G), provide an important check. Because of the absence of these terms

in eqs. (5.85) and (5.86), the resummed effective potential V resummed
eff defined by eq. (5.79), and

its first derivatives with respect to arbitrary parameters, are finite and real at its minimum.

Note also that the expansions to linear order given in eqs. (5.84)-(5.86), applied to

eq. (5.79), are sufficient to produce the minimization condition for the Higgs VEV valid

through full three-loop order, because first derivatives of terms of order (G+∆)2 or higher

will vanish there. Since the quadratic terms have been dropped, the QED infrared divergence

of eq. (5.65) does not appear.
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The explicit one-loop and two-loop order results are

V (1)(0) = f(h)− 12f(t) + 6fV (W ) + 3fV (Z), (5.87)

V (1)′(0) = A(h)/2, (5.88)

and

V̂ (2)(0) =
3

4
λfSS(h, h) + 3λ2φ2[fSSS(h, h, h) + fSSS(0, 0, h)] +

3y2t
2

[
fFFS(t, t, h)

+tfFFS(t, t, h) + fFFS(t, t, 0)− tfFFS(t, t, 0) + 2fFFS(0, t, 0)
]

+
g2 + g′2

8
fV SS(Z, 0, h) +

(g2 − g′2)2

8(g2 + g′2)
fV SS(Z, 0, 0)

+
g2

4
[fV SS(W, 0, h) + fV SS(W, 0, 0)] +

g4φ2

8
fV V S(W,W, h)

+
(g2 + g′2)2φ2

16
fV V S(Z,Z, h) +

e2φ2

4

[
g′2fV V S(W,Z, 0) + g2fV V S(0,W, 0)

]

−
[
4g23 + 4e2/3

]
tfFFV (t, t, 0) + g2 [3fFFV (0, t,W ) + (4nG − 3)fFFV (0, 0,W )] /2

+
[
(9g4 − 6g2g′2 + 17g′4)fFFV (t, t, Z) + 8g′2(3g2 − g′2)tfFFV (t, t, Z)

+((24nG − 9)g4 + 6g2g′2 + (40nG − 17)g′4)fFFV (0, 0, Z)
]
/24(g2 + g′2)

+
e2

2
fgauge(W,W, 0) +

g4

2(g2 + g′2)
fgauge(W,W,Z)−∆1A(h)/2, (5.89)

V̂ (2)′(0) = 3y2t (y
2
t /4λ− 1)I(h, t, t) + 3[g2/4− λ− g4/32λ+ g4/16(g2 − 2λ)]I(h,W,W )

+3[(g2 + g′2)/8− λ/2− (g2 + g′2)2/64λ+ (g2 + g′2)2/32(g2 + g′2 − 2λ)]I(h, Z, Z)

−3λI(h, h, h)/2 + (6λ+ 3g2/4)I(0, h,W ) + [3λ+ 3(g2 + g′2)/8]I(0, h, Z)

+[3(2g2 + g′2)3/4(g2 + g′2)2]I(0,W, Z) +
{
3
[
−(g2 + g′2)/16λ

−(g2 + g′2)/8(g2 + g′2 − 2λ) + (g′4 − g4 + 6g2g′2)/4(g2 + g′2)2
]
A(Z)2

−3
[
g2/8λ+ g2/4(g2 − 2λ) + (g4 + 6g2g′2 + 4g′4)/2(g2 + g′2)2

]
A(W )2

+[3(8g4 + 8g2g′2 + g′4)/(g2 + g′2)2]A(W )A(Z)− (3y2t /2λ)A(h)A(t)

+[3(g2 + g′2)2/16λ(g2 + g′2 − 2λ)]A(h)A(Z) + [3g4/8λ(g2 − 2λ)]A(h)A(W )

+(9 + 3y2t /2λ)A(t)
2 + 3A(h)2/4

}
/φ2 − (3y4t /2λ)A(t)

+3[(g2 + g′2)2(g2 + g′2 − 4λ)/32λ(g2 + g′2 − 2λ)

−g2(7g2 + 10g′2)/4(g2 + g′2)]A(Z)

+3g2[g2/16λ− g2/8(g2 − 2λ)− (6g4 + 6g2g′2 + g′4)/4(g2 + g′2)2]A(W )

+[−3y4t /4λ+ 3y2t /2− 3λ− 3g2/8− g′2/8 + (21g4 + 14g2g′2 + 7g′4)/64λ

−3(g2 + g′2)2/32(g2 + g′2 − 2λ)− 3g4/16(g2 − 2λ)]A(h)

+[3y4t + 6λ2 − 9g4/8 + 3g2g′2/8 + 3g6/8(g2 + g′2) + 3g8/16(g2 + g′2)2]φ2ζ2

+3[y6t /4λ+ y4t − λy2t + λ(3g2 + g′2)/6− (3g6 + 3g4g′2 + 3g2g′4 + g′6)/128λ
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+3g6/32(g2 − 2λ) + 3(g2 + g′2)3/64(g2 + g′2 − 2λ) + (81g8 + 158g6g′2

+110g4g′4 + 28g2g′6 + g′8)/96(g2 + g′2)2]φ2 (5.90)

These are included, along with the much more complicated results for V̂ (3)(0) and V̂ (3)′(0),

in an ancillary electronic file SMVresummedGexp.anc. The results are given in terms of basis

loop integral functions, with squared mass arguments h, t,W, Z, 0 and with coefficients built

out of g3, g, g
′, yt, λ, and φ

2.

C. The Standard Model Higgs VEV at three-loop order

In this subsection, I discuss the application of the Standard Model three-loop effective

potential to obtain the minimization condition for the Higgs VEV v = φmin, given the Higgs

squared mass parameter m2, or vice versa. This condition is

1

φ

∂

∂φ
V resummed
eff

∣∣∣∣
φ=v

= 0, (5.91)

which can be written as

G = m2 + λv2 = −
∞∑

ℓ=1

1

(16π2)ℓ
∆ℓ. (5.92)

This result can also be expressed as the relation between the MS tree-level VEV

vtree ≡
√

−m2/λ (5.93)

and the VEV v defined as the minimum of the full effective potential. One has:

v2tree = v2 +
1

λ

∞∑

ℓ=1

1

(16π2)ℓ
∆ℓ. (5.94)

Using the expansions of eq. (5.84)-(5.86) in eq. (5.79) and the fact that, by definition, G+∆

vanishes at the minimum, we have through three-loop order:

∆1 =
1

φ

∂

∂φ
V (1)(0) + V (1)′(0)

1

φ

∂G

∂φ
, (5.95)

∆2 =
1

φ

∂

∂φ
V̂ (2)(0) + V̂ (2)′(0)

1

φ

∂G

∂φ
+ V (1)′(0)

1

φ

∂∆1

∂φ
, (5.96)

∆3 =
1

φ

∂

∂φ
V̂ (3)(0) + V̂ (3)′(0)

1

φ

∂G

∂φ
+ V̂ (2)′(0)

1

φ

∂∆1

∂φ
+ V (1)′(0)

1

φ

∂∆2

∂φ
, (5.97)
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with φ = v. Now one can use:

1

φ

∂G

∂φ
= 2λ, (5.98)

1

φ

∂∆1

∂φ
= [6λA(h)− 12y2tA(t) + 3g2A(W ) + 3(g2 + g′2)A(Z)/2]/φ2

+12λ2 − 6y4t + 15g4/8 + 5g2g′2/4 + 5g′4/8 (5.99)

together with the derivatives of the two-loop and three-loop basis functions as given in

ref. [51], to iteratively evaluate ∆1, ∆2, and ∆3. As mentioned above, the first two were

already given above in eqs. (4.19) and (4.20) of ref. [94], and all three are given in the

ancillary electronic file SMDeltas.anc distributed with the present paper. These results are

given in terms of basis functions with arguments h, t,W, Z, 0 and MS renormalization scale

Q. The complete lists of the specific one-loop, two-loop, and three-loop basis functions

needed are:

I(1) = {A(h), A(t), A(W ), A(Z)}, (5.100)

I(2) = {ζ2, I(0, h,W ), I(0, h, Z), I(0, t,W ), I(0,W, Z), I(h, h, h),

I(h, t, t), I(h,W,W ), I(h, Z, Z), I(t, t, Z), I(W,W,Z)}, (5.101)

I(3) = {ζ3, F (h, 0, 0, t), F (h, 0, 0,W ), F (h, 0, 0, Z), F (h, 0, h,W ), F (h, 0, h, Z), F (h, 0, t, t),

F (h, 0, t,W ), F (h, 0,W,W ), F (h, 0,W, Z), F (h, 0, Z, Z), F (h, h, t, t), F (h, h,W,W ),

F (h, h, Z, Z), F (h, t, t, Z), F (h,W,W,Z), F (t, 0, 0,W ), F (t, 0, 0, Z), F (t, 0, h,W ),

F (t, 0, t,W ), F (t, 0,W, Z), F (t, h, t, Z), F (t, t,W,W ), F (t, t, Z, Z), F (W, 0, 0, Z),

F (W, 0, h, h), F (W, 0, h, t), F (W, 0, h, Z), F (W, 0, t, t), F (W, 0, t, Z), F (W, 0,W,W ),

F (W, 0, Z, Z), F (W,h,W,Z), F (Z, 0, h, h), F (Z, 0, h,W ), F (Z, 0, t, t), F (Z, 0, t,W ),

F (Z, 0,W,W ), F (Z, 0,W, Z), F (Z, 0, Z, Z), F (Z, h, t, t), F (Z, h,W,W ), F(0, 0, h, t),

F (0, 0, h,W ), F (0, 0, h, Z), F (0, 0, t,W ), F (0, 0, t, Z), F (0, 0,W, Z), F (0, h, t, t),

F (0, h,W,W ), F (0, t, t, Z), F (0,W,W,Z), G(0, 0, 0, h, t), G(0, 0, 0, t, Z),

G(0, t, t,W,W ), G(h, 0, 0, 0,W ), G(h, 0, 0, 0, Z), G(h, 0, 0, h, h), G(h, 0, 0, t, t),

G(h, 0, 0,W,W ), G(h, 0, 0, Z, Z), G(h, 0,W, 0, Z), G(h, 0,W, h, h), G(h, 0,W, t, t),

G(h, 0,W,W,W ), G(h, 0,W, Z, Z), G(h, 0, Z, h, h), G(h, 0, Z, t, t), G(h, 0, Z,W,W ),

G(h, 0, Z, Z, Z), G(h, h, h, h, h), G(h, h, h, t, t), G(h, h, h,W,W ), G(h, h, h, Z, Z),

G(h, t, t,W,W ), G(h, t, t, Z, Z), G(h,W,W,Z, Z), G(t, 0, 0, 0,W ), G(t, 0, 0, h, t),

G(t, 0, 0, t, Z), G(t, 0,W, h, t), G(t, 0,W, t, Z), G(t, h, t, t, Z), G(W, 0, 0, 0, Z),

G(W, 0, 0, h,W ), G(W, 0, 0,W, Z), G(W, 0, h, 0, t), G(W, 0, h, 0, Z), G(W, 0, h, h,W ),

G(W, 0, h,W, Z), G(W, 0, t, 0, Z), G(W, 0, t, h,W ), G(W, 0, t,W, Z), G(W, 0, Z, h,W ),

G(W, 0, Z,W, Z), G(W,h,W,W,Z), G(Z, 0, 0, h, Z), G(Z, 0, 0, t, t), G(Z, 0, 0,W,W ),
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G(Z, 0, h, 0,W ), G(Z, 0, h, h, Z), G(Z, 0, h, t, t), G(Z, 0, h,W,W ), G(Z, 0,W, h, Z),

G(Z, 0,W, t, t), G(Z, 0,W,W,W ), G(Z, h, Z, t, t), G(Z, h, Z,W,W ), G(Z, t, t,W,W ),

H(0, 0, 0, 0, 0, h), H(0, 0, 0, 0, 0, t), H(0, 0, 0, 0, 0,W ), H(0, 0, 0, 0, 0, Z),

H(0, 0, 0, 0, h,W ), H(0, 0, 0, 0, t, t), H(0, 0, 0, 0, t,W ), H(0, 0, 0, 0,W,W ),

H(0, 0, 0, 0,W, Z), H(0, 0, 0, h, t, t), H(0, 0, 0, h,W,W ), H(0, 0, 0, h, Z, Z),

H(0, 0, 0, t, t, Z), H(0, 0, 0,W,W,Z), H(0, 0, h, 0,W,W ),H(0, 0, h, h,W,W ),

H(0, 0, h, h, Z, Z), H(0, 0, h,W, 0, 0), H(0, 0, h,W, 0, Z), H(0, 0, h,W,W,Z),

H(0, 0, h, Z, 0, 0), H(0, 0, h, Z, 0,W ), H(0, 0, h, Z,W,W ), H(0, 0, t, 0, t,W ),

H(0, 0, t, 0,W,W ), H(0, 0, t, h, t, t), H(0, 0, t,W, 0, t), H(0, 0, t, Z, 0, 0),

H(0, 0, t, Z, 0,W ), H(0, 0, t, Z,W,W ), H(0, 0,W, 0,W, Z), H(0, 0,W, h, h, h),

H(0, 0,W, h, Z, Z), H(0, 0,W, t, h, t), H(0, 0,W, t, t, Z), H(0, 0,W,W, 0, 0),

H(0, 0,W,W, 0, h), H(0, 0,W,W, 0,W ), H(0, 0,W,W, 0, Z), H(0, 0,W,W, h,W ),

H(0, 0,W,W,W,Z), H(0, 0,W, Z, 0, 0), H(0, 0,W, Z, 0, h), H(0, 0,W, Z, h, Z),

H(0, 0,W, Z, t, t), H(0, 0, Z, h, h, h), H(0, 0, Z, h,W,W ), H(0, 0, Z,W, h,W ),

H(0, 0, Z, Z, 0, 0), H(0, 0, Z, Z, 0,W ), H(0, 0, Z, Z,W,W ), H(0, h, h,W, h,W ),

H(0, h, h, Z, h, Z), H(0, h, t, Z, t, t), H(0, h,W,W,W, h), H(0, h,W,W,W,Z),

H(0, h, Z,W, Z,W ), H(0, h, Z, Z, Z, h), H(0, t, t, t, 0, t), H(0, t, t, t, h, t),

H(0, t, t, t, Z, t), H(0, t, t,W, 0,W ), H(0, t, t,W, h,W ), H(0, t, t,W, Z,W ),

H(0,W,W,W, 0,W ), H(0,W,W,W, h,W ), H(0,W,W,W,Z,W ), H(0,W,W,Z, h, Z),

H(0,W, Z, Z,W,W ), H(h, h, h, h, h, h), H(h, h, t, h, t, t), H(h, h,W, h,W,W ),

H(h, h, Z, h, Z, Z), H(h, t, t, t, h, t), H(h, t, t, t, Z, t), H(h, t, Z, t, t, Z),

H(h,W,W,W, h,W ), H(h,W,W,W,Z,W ), H(h,W,Z,W,W,Z),

H(h, Z, Z, Z, h, Z), H(t, t, Z, Z, t, t), H(W,W,Z, Z,W,W )}. (5.102)

(Recall that this choice of basis functions is not unique, because of the identities mentioned

at the end of section II.) The form of the result is then

∆3 =
∑

i

c
(3)
i I(3)

i +
∑

i,j

c
(2,1)
i,j I(2)

i I(1)
j +

∑

i

c
(2)
i I(2)

i +
∑

i,j,k

c
(1,1,1)
i,j,k I(1)

i I(1)
j I(1)

k

+
∑

i,j

c
(1,1)
i,j I(1)

i I(1)
j +

∑

i

c
(1)
i I(1)

i + c(0), (5.103)

with coefficients that are built out of g3, g, g
′, yt, λ, and φ

2, and are given in SMDeltas.anc.

The result for ∆3 extends the partial result (in the approximation that g23, y
2
t ≫ g2, g′2, λ)

given in eq. (4.21) of ref. [94]. The expression for ∆4 is known at leading order in QCD only,

and was given in eq. (5.5) [see also eqs. (4.39) and (4.40)] of ref. [7].

As a check, one can demand that eq. (5.92) satisfies renormalization group scale invari-
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ance. This condition takes the form, for each loop order ℓ:

Q
∂

∂Q
∆ℓ = −φ2β

(ℓ)
λ − 2λφβ

(ℓ)
φ + λφ2(β

(ℓ)
m2/m

2) +

ℓ−1∑

n=1

[
(β

(n)
m2/m

2)−
∑

X

β
(n)
X

∂

∂X

]
∆ℓ−n

(5.104)

where φ = v at the minimum of the potential, and X is summed over g3, g, g
′, yt, λ, and φ.

I have verified eq. (5.104) for each of ℓ = 1, 2, 3, using the results above.

VI. OUTLOOK

In this paper I have provided the results for the effective potential at full three-loop order

for a general renormalizable theory, in the MS scheme and using Landau gauge fixing. The

results for the Standard Model provided in section V allow the most accurate theoretical

determination possible at this time for the relationship between the Higgs VEV and the

Lagrangian parameters, including the negative Higgs squared mass parameter m2. In prac-

tice, this can be used to eliminate m2 and G in favor of v (and H = 3λv2 +m2 in favor of

h = 2λv2), from other calculations in which they appear. A study of the numerical impact

of the three-loop contributions is not given here, but will appear in future work. This is

also part of a larger program, as begun in refs. [39–42], to obtain high-precision results for

the pole masses of the Standard Model particles, and other observables, in the tadpole-free

pure MS scheme.

In general, three-loop order contributions to the effective potential can suffer from vari-

ous kinds of infrared divergences that arise due to doubled propagators carrying the same

momentum and small squared masses. The problematic contributions associated with Gold-

stone bosons are eliminated by resummation. The infrared divergences associated with

doubled gluon propagators cancel completely after including all diagrams at three-loop or-

der. I also found an uncanceled infrared divergence from doubled photon propagators in

the three-loop Standard Model effective potential; this can be eliminated by resummation

of photon self-energies, but it is actually benign even without doing so, provided that one

resums the Goldstone boson contributions.

One might also worry about the case of doubled massless or light fermion propagators,

for example in models of supersymmetry breaking such as the O’Raifeartaigh model [103]

that feature massless goldstino fermions. However, the results above show explicitly that,

as suggested by power counting arguments, there are no such infrared divergences from

massless fermions (no “goldstino catastrophe”) at three-loop order.

The MS renormalization scheme based on dimensional regularization does not respect

supersymmetry when there are gauge fields present. Therefore, the results given here are

not of direct applicability to softly broken supersymmetric gauge theories, such as realistic

supersymmetric extensions of the Standard Model. Further work will be needed in order to
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obtain the three-loop effective potential in the DR
′
renormalization scheme [104] based on

regularization by dimensional reduction [105–107], which is appropriate for such theories.
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