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We introduce a new class of monomial ideals which we 
call symmetric shifted ideals. Symmetric shifted ideals are 
fixed by the natural action of the symmetric group and, 
within the class of monomial ideals fixed by this action, 
they can be considered as an analogue of stable monomial 
ideals within the class of monomial ideals. We show that 
a symmetric shifted ideal has linear quotients and compute 
its (equivariant) graded Betti numbers. As an application 
of this result, we obtain several consequences for graded 
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Equivariant resolution
Linear quotients
Shifted ideal
Star configuration
Symbolic power

Betti numbers of symbolic powers of defining ideals of star 
configurations.
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1. Introduction

The study of graded Betti numbers of graded ideals in a polynomial ring is one of 
the central topics in commutative algebra. It has always been of great interest to find 
combinatorial formulas for these numbers for various families of monomial ideals. In this 
paper, we introduce a new class of monomial ideals, which we call symmetric shifted 
ideals, and compute their graded Betti numbers.

For the definition of these ideals, we first provide some necessary notation. Let S =
k[x1, . . . , xn] be a standard graded polynomial ring over a field k. For a = (a1, . . . , an) ∈
Zn

�0, we write xa = xa1
1 · · ·xan

n and |a| = a1 + · · · + an. We consider an action of the 
symmetric group Sn on S defined by permutations of the variables and focus on Sn-
fixed monomial ideals I ⊂ S, that is to say, monomial ideals I ⊂ S with σ(I) = I for all 
σ ∈ Sn. Such ideals have recently attracted attention as elements of ascending chains 
of ideals that are invariant under actions of symmetric groups (see, e.g., [3,11,23–25,
29]).

We say that a sequence λ = (λ1, . . . , λn) of non-negative integers is a partition of d
of length n, if λ1 � · · · � λn and |λ| = d. Let

Pn = {(λ1, . . . , λn) ∈ Zn : 0 � λ1 � λ2 � · · · � λn}

be the set of partitions of length n. For a monomial u = xa1
1 · · ·xan

n of degree d, we write 
part(u) ∈ Zn

�0 for the partition obtained from (a1, . . . , an) by permuting its entries in 
a suitable way. For example, part(x2

1x
0
2x

1
3x

2
4) = (0, 1, 2, 2). If a monomial ideal I ⊂ S is 

Sn-fixed, then a monomial u is in I if and only if xpart(u) is in I. Thus, the set

P(I) = {λ ∈ Pn : xλ ∈ I}

determines the monomials in I and the ideal itself. The central object of study of this 
note are:

Definition 1.1. Let I ⊂ S be an Sn-fixed monomial ideal. We say that I is a symmetric 
shifted ideal if, for every λ = (λ1, . . . , λn) ∈ P(I) and 1 � k < n with λk < λn, one has 
xλ(xk/xn) ∈ I. Also, we say that I is a symmetric strongly shifted ideal if, for every 
λ = (λ1, . . . , λn) ∈ P(I) and 1 � k < l � n with λk < λl, one has xλ(xk/xl) ∈ I. We 
may also refer to these ideals simply as shifted and strongly shifted ideals.

In the following remarks, we note that the above properties can be defined purely in 
terms of partitions.
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Remark 1.2. Let I ⊂ S be an Sn-fixed monomial ideal. Denote by ei the i-th standard 
basis vector of Zn. If for every λ = (λ1, . . . , λn) ∈ P(I) with j = min{k : λk = λn} and 
for every λ − ej + ei with i < j that is also a partition (i.e., non-decreasing) we have 
λ − ej + ei ∈ P(I), then I is shifted.

Remark 1.3. For partitions λ = (λ1, . . . , λn), μ = (μ1, . . . , μn), we define

μ � λ if μk + · · · + μn � λk + · · · + λn for all k.

The partial order � is known in the literature as the dominance order (see, e.g., [34, 
§7.2]). An Sn-fixed monomial ideal I is strongly shifted if and only if, for every λ, μ ∈ Pn

with |λ| = |μ|, λ ∈ P (I) and μ � λ imply μ ∈ P(I).

The definition of shifted and strongly shifted ideals is inspired by the definition of 
stable and strongly stable ideals, which are important classes of monomial ideals since, 
e.g., in characteristic zero generic initial initials are strongly stable. Recall that Eliahou 
and Kervaire [12] constructed minimal graded free resolutions of stable ideals and gave 
a simple formula for their graded Betti numbers in terms of the data of their minimal 
systems of monomial generators. The main results of this paper are the following formulas 
for graded Betti numbers of symmetric shifted ideals.

(1) We prove that every symmetric shifted ideal I has linear quotients (Theorem 3.2). 
This allows us to give a formula for its graded Betti numbers in terms of its monomial 
generators G(I) (Corollary 3.4).

(2) We also give a formula for the graded Betti numbers of a symmetric shifted ideal I
in terms of its partition generators {λ ∈ Pn : xλ ∈ G(I)} (Corollary 5.7).

(3) We compute equivariant graded Betti numbers of a symmetric shifted ideal I. In 
other words, we determine the k[Sn]-module structure of Tori(I, k)j (Theorem 6.2).

Our initial motivation for defining symmetric shifted ideals comes from the study of 
minimal graded free resolutions of symbolic powers of star configurations. A codimen-
sion c star configuration is a union of linear subspaces of a projective space PN of the 
form

Vc =
⋃

1�i1<···<ic�n

Hi1 ∩ · · · ∩Hic ,

where H1, . . . , Hn are distinct hyperplanes in PN such that the intersection of any j
of them is either empty or has codimension j and where 1 � c � min{n, N}. The 
name is motivated by the special case of 10 points located at pairwise intersections 
of 5 lines in the projective plane, with the lines positioned in the shape of a star. 
Let L1, . . . , Ln be defining linear forms of H1, . . . , Hn. Then the defining ideal of Vc is 
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given by IVc
=
⋂

1�i1<···<ic�n(Li1 , . . . , Lic) and its m-th symbolic power can be written 
as

I
(m)
Vc

=
⋂

1�i1<···<ic�n

(Li1 , . . . , Lic)m

because each ideal (Li1 , . . . , Lic) is a minimal prime of IVc
and it is generated by a 

regular sequence; see, e.g., [37, Appendix 6, Lemma 5]. These ideals IVc
and I(m)

Vc
have 

been extensively studied from the point of view of algebra, geometry, and combinatorics 
in [1,2,4–7,9,13,14,19,28,30,32,35,36]. We recommend [17] as a great introduction to the 
subject. In particular, the Betti numbers of the defining ideal of a star configuration and 
its symbolic square have been determined in [17, Remark 2.11, Theorem 3.2]. Further 
motivation for studying these ideals can be found in [18], which considers generaliza-
tions where the linear forms are replaced by forms of arbitrary degree and also explores 
connections with Stanley-Reisner ideals of matroids.

Let In,c be the monomial ideal of S = k[x1, . . . , xn] defined by

In,c =
⋂

1�i1<···<ic�n

(xi1 , . . . , xic).

Then the minimal graded free resolution of I(m)
Vc

is completely determined by that of I(m)
n,c ; 

in particular, it was shown that these two ideals have the same graded Betti numbers 
(see [18, Example 3.4 and Theorem 3.6], where the more general case of hypersurface or 
matroid configurations is considered). The same reference also shows that both ideals are 
Cohen-Macaulay. Note that the ideal In,c can also be described as the ideal generated 
by all squarefree monomials of degree n − c +1 [18, Proposition 2.3]. Obviously the ideal 
I
(m)
n,c is Sn-fixed. As one of our main results we prove (in Theorem 4.3) that:

Theorem. The ideal I(m)
n,c is strongly shifted.

Since we find a formula for the graded Betti numbers of symmetric shifted ideals, 
this result gives various information on graded Betti numbers of symbolic powers of 
star configurations, including their Castelnuovo-Mumford regularity, a simple formula 
for the Betti numbers in the top and bottom rows of the Betti table, an explicit formula 
for the Betti numbers of the symbolic cube, and more (see the results in Section 4). 
Our results for star configurations also apply to the computation of Betti numbers of fat 
point schemes (see Remark 4.9).

This paper is organized as follows: In Section 2, we study some combinatorial prop-
erties of symmetric shifted ideals. In Section 3, we prove that symmetric shifted ideals 
have linear quotients, and in Section 4 we apply the results in Section 3 to symbolic 
powers of star configurations. In Sections 5 and 6, we compute the (equivariant) graded 
Betti numbers of symmetric shifted ideals.



316 J. Biermann et al. / Journal of Algebra 560 (2020) 312–342
Acknowledgments

This work was started at the workshop “Ordinary and Symbolic Powers of Ideals” at 
Casa Matemática Oaxaca (CMO) in May 2017. We thank the organizers of the workshop 
and CMO for their kind invitation and warm hospitality.

We also thank the anonymous referee who provided several useful suggestions to clarify 
our exposition and improve the quality of our manuscript.

Shortly after this paper was posted on arXiv, another preprint appeared by Paolo 
Mantero [27] which also computes the graded Betti numbers of symbolic powers of star 
configurations. The results in Mantero’s preprint were obtained independently from ours, 
and utilize new and interesting techniques. We are also grateful to Paolo for pointing 
out a mistake in an earlier version of Corollary 4.4. In December 2019, another preprint 
appeared on arXiv by Kuei-Nuan Lin and Yi-Huang Shen that uses and generalizes some 
of the results in our paper to a-fold product ideals [26].

The research of the fourth author is partially supported by KAKENHI 16K05102. 
The fifth author was partially supported by Simons Foundation grant #317096. The last 
author was supported by NSF grant DMS–1601024 and EPSCoR award OIA–1557417.

2. Symmetric shifted ideals

In this section, we discuss some basic properties of symmetric shifted ideals. For a 
monomial u ∈ S, we write Sn ·u for the Sn-orbit of u in S, i.e., Sn ·u = {σ(u) : σ ∈ Sn}. 
The set Pn can be regarded as a poset with the order defined by λ � μ if xμ divides xλ. 
Then the set P(I) is a filter in the poset Pn, that is to say, for μ ∈ P(I) and λ ∈ Pn, one 
has λ ∈ P(I) if λ � μ. The next lemma shows that the assignment I �→ P(I) defines a 
one-to-one correspondence between Sn-fixed monomial ideals in S and filters in Pn.

Lemma 2.1. Let λ, μ ∈ Pn. There exist monomials u ∈ Sn ·xμ and w ∈ Sn ·xλ such that 
u divides w if and only if xμ divides xλ.

Proof. The “if” part is obvious. We prove the “only if” part. Let λ = (λ1, . . . , λn) and 
μ = (μ1, . . . , μn). The assumption says that there exists σ ∈ Sn such that

μσ(1) � λ1, . . . , μσ(n) � λn.

Since λ1 � · · · � λn, for each k = 1, 2, . . . , n we have

μσ(1) � λk, μσ(2) � λk, . . . , μσ(k) � λk.

This implies that the partition μ contains at least k entries smaller than or equal to λk. 
Therefore μk � λk for all k, and xμ divides xλ. �
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Throughout the rest of the paper, we will say that μ ∈ Pn divides λ ∈ Pn if xμ divides 
xλ.

Next, we show that to check the conditions of symmetric (strongly) shifted ideals, it 
is enough to check them on generators. Let I be a monomial ideal. We write G(I) for 
the unique set of minimal monomial generators of I. When I is Sn-fixed, we define

Λ(I) = {λ ∈ P (I) : xλ ∈ G(I)}.

Note that G(I) =
⊎

λ∈Λ(I) Sn ·xλ, where 
⊎

denotes a disjoint union of sets. As the next 
statement shows, to check I is shifted it is enough to check the condition of Definition 1.1
for partitions in Λ(I).

Lemma 2.2. Let I ⊂ S be an Sn-fixed monomial ideal. Then I is shifted if and only if, 
for every λ = (λ1, . . . , λn) ∈ Λ(I) and 1 � k < n with λk < λn, one has xλ(xk/xn) ∈ I.

Proof. The “only if” part is obvious. We prove the “if” part. Let μ = (μ1, . . . , μn) ∈ P(I)
and 1 � k < n with μk < μn. We claim xμ(xk/xn) ∈ I.

Let λ = (λ1, . . . , λn) ∈ Λ(I) be a partition that divides μ. If λn = μn, then w =
xλ(xk/xn) ∈ I by assumption and w divides xμ(xk/xn). If λn < μn, then xλxk divides 
xμ(xk/xn). In both cases, xμ(xk/xn) ∈ I as desired. �

An analogous statement holds for symmetric strongly shifted ideals. We omit the proof 
since it is essentially the same as the one for symmetric shifted ideals.

Lemma 2.3. Let I ⊂ S be an Sn-fixed monomial ideal. Then I is strongly shifted if and 
only if, for every λ = (λ1, . . . , λn) ∈ Λ(I) and 1 � k < l � n with λk < λl, one has 
xλ(xk/xl) ∈ I.

Example 2.4. Let I ⊂ k[x1, x2, x3] be the S3-fixed monomial ideal with

Λ(I) = {(1, 1, 1), (0, 1, 2), (0, 0, 4)}.

The ideal I is strongly shifted and is minimally generated by the following ten monomials:

x1x2x3, x2x
2
3, x2

2x3, x1x
2
3, x2

1x3, x1x
2
2, x2

1x2, x4
1, x4

2, x4
3.

Example 2.5. Let I ⊂ k[x1, x2, x3, x4] be the S4-fixed monomial ideal with

Λ(I) = {(1, 1, 2, 2), (0, 2, 2, 2), (0, 1, 2, 3)}.

Then I is shifted but not strongly shifted since (0, 1, 2, 3) ∈ P(I) but (1, 1, 1, 3) /∈ P(I).
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For a partition λ = (λ1, . . . , λn), we define the quantities

p(λ) = #{k : λk < λn − 1},
r(λ) = #{k : λk = λn}.

We also introduce the truncation of the partition λ by setting

λ�k = (λ1, . . . , λk)

for k = 1, 2, . . . , n. Let <lex be the total order on Zn
�0 defined by

a = (a1, . . . , an) <lex (b1, . . . , bn) = b

if

(i) |a| < |b|, or
(ii) |a| = |b| and the leftmost non-zero entry of (a1 − b1, . . . , an − bn) is positive.

Remark 2.6. Our definition of the order <lex is the opposite of the more familiar lexico-
graphic order for monomials (cf. [10, Ch. 2 §2]). This is necessary to ensure compatibility 
with our definition of partitions as non-decreasing sequences.

We establish another result that will be used in later sections.

Lemma 2.7. Let I be a symmetric shifted ideal. For every μ ∈ P (I), there is a unique 
λ ∈ Λ(I) such that

(a) λ divides μ, and
(b) λ�p(λ) = μ�p(λ).

Proof. Let μ = (μ1, . . . , μn) ∈ P(I). Let

λ = (λ1, . . . , λn) = min
<lex

{ρ ∈ Λ(I) : ρ divides μ}

and p = p(λ). Clearly λ satisfies condition (a). We claim that λ fulfills also (b), that is 
to say, λk = μk for all k � p.

Suppose to the contrary that there is k � p such that λk < μk. Then w = xλ(xk/xn)
divides xμ and, by definition of symmetric shifted ideals, we have w ∈ I. Let λ′ = part(w). 
Observe that λ′ is constructed from λ by replacing the part λn with λn − 1, the part 
λk with λk + 1, and rearranging in non-decreasing order. By definition of r = r(λ), the 
partition λ has r parts equal to λn. Now suppose that λ′ = λ. Then λ′ also has r parts 
equal to λn, so we must have λk + 1 = λn or λk = λn − 1. However, the definition 
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of p = p(λ) implies that λk < λn − 1. We deduce that λ′ �= λ. Then λ′ divides μ by 
Lemma 2.1 and there is a ρ ∈ Λ(I) that divides λ′ ∈ P(I). However, such a ρ satisfies 
ρ �lex λ′ <lex λ, contradicting the minimality of λ.

Next, we prove uniqueness. Suppose that λ, λ′ ∈ Λ(I) satisfy conditions (a) and (b). 
We prove λ = λ′. Let p = p(λ) and p′ = p(λ′). We may assume p � p′. By condition (b), 
λ and λ′ are of the form

λ = (μ1, . . . , μp, λn − 1, . . . , λn − 1, λn, . . . , λn)

and

λ′ = (μ1, . . . , μp, μp+1 . . . , μp′ , λ′
n − 1, . . . , λ′

n − 1, λ′
n, . . . , λ

′
n).

Suppose p < p′. Since λ divides μ, we have

μk � λk � λn − 1 for p < k � p′,

and

λ′
n − 1 > μp′ � λn − 1.

But these inequalities say that λ properly divides λ′, contradicting λ, λ′ ∈ Λ(I). Hence 
p = p′. However, given the shape of λ and λ′, p = p′ implies that either λ divides λ′ or 
λ′ divides λ. Since λ, λ′ ∈ Λ(I), λ must be equal to λ′ as desired. �
3. Symmetric shifted ideals have linear quotients

A monomial ideal I ⊂ S is said to have linear quotients if there is an order u1, . . . , us

of monomials in G(I) such that the colon ideal

(u1, . . . , uk−1) : uk

is generated by variables for all k = 2, 3, . . . , s. A nice consequence of having linear 
quotients is that we can easily compute the graded Betti numbers from the above colon 
ideals. Recall that, for a graded ideal I ⊂ S, graded Betti numbers of I are the numbers 
βi,j(I) = dimk Tori(I, k)j . Herzog and Takayama produced a formula for the bigraded 
Poincaré series of a monomial ideal with linear quotients [22, Corollary 1.6]:

Theorem 3.1. With the same notation as above,

βi,i+j(I) =
∑

deg(uk)=j

(
|G((u1, . . . , uk−1) : uk)|

i

)
.

Next, we present our first main result about symmetric shifted ideals.



320 J. Biermann et al. / Journal of Algebra 560 (2020) 312–342
Theorem 3.2. Symmetric shifted ideals have linear quotients.

Using the same notation as in Section 2, we define a total order on the set of monomials 
in S. Let λ, μ ∈ Pn. For distinct monomials v = τ(xμ) and u = σ(xλ) in S, we define 
v ≺ u if

(i) μ <lex λ, or
(ii) μ = λ and v <lex u.

Note in particular that if v strictly divides u, then v ≺ u.

Proof of Theorem 3.2. Let I ⊂ S be a symmetric shifted ideal and fix a monomial 
u = σ(xλ) ∈ G(I) with λ = (λ1, . . . , λn) ∈ Λ(I). Let p = p(λ) and r = r(λ). Thus, we 
have

u = σ(xλ) = xλ1
σ(1) · · ·x

λp

σ(p)x
λn−1
σ(p+1) · · ·x

λn−1
σ(n−r)x

λn

σ(n−r+1) · · ·x
λn

σ(n).

We also define the quantity

max(u) = max{σ(k) : λk = λn} = max{σ(n− r + 1), . . . , σ(n)}.

Let

J = (v ∈ G(I) : v ≺ u).

We claim that

J : u = (xσ(1), . . . , xσ(p)) + (xσ(k) : p + 1 � k � n− r, σ(k) < max(u)). (3.1)

This proves that I has linear quotients.
We prove the containment “⊇” holds in (3.1). We first prove xσ(k)u ∈ J for 1 � k � p. 

In this case we have λk < λn − 1 < λn. Together with the fact that u ∈ I, this implies 
xλ(xk/xn) ∈ I because I is shifted. It follows that the monomial

w = u(xσ(k)/xσ(n)) = σ(xλ(xk/xn))

is also in I because I is Sn-fixed. Reasoning as in the existence part of Lemma 2.7, we 
have part(w) <lex λ, so w ≺ u. This implies w ∈ J . Therefore we have xσ(k)u = xσ(n)w ∈
J .

Next we prove xσ(k)u ∈ J whenever p + 1 � k � n − r and σ(k) < max(u). In this 
case, the monomial w = u(xσ(k)/xmax(u)) ∈ I is obtained from u by permuting variables 
so part(w) = λ. However, σ(k) < max(u) implies w <lex u. Again we have w ≺ u and 
w ∈ J , so xσ(k)u = xmax(u)w ∈ J as desired.
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We prove the containment “⊆” holds in (3.1). Let z ∈ S be a monomial not divisible 
by any variable in the set

{xσ(1), . . . , xσ(p)} ∪ {xσ(k) : p + 1 � k � n− r, σ(k) < max(u)}.

We can write zu as

zu = xλ1
σ(1) · · ·x

λp

σ(p)x
bp+1
σ(p+1) · · ·x

bn−r

σ(n−r)x
bn−r+1
σ(n−r+1) · · ·x

bn
σ(n), (3.2)

where bi � λi � λn − 1 for all i � p + 1 and bi = λn − 1 for all p + 1 � i � n − r with 
σ(i) < max(u). We must prove that zu /∈ J .

Assume, by contradiction, that zu ∈ J . By Equation (3.2), we have that:

(a) λ divides part(zu), and
(b) λ�p = part(zu)�p.

Since λ = part(u) ∈ Λ(I), Lemma 2.7 guarantees that λ is the unique partition in Λ(I)
satisfying properties (a) and (b). Now define the ideal

J ′ = (v ∈ G(I) : part(v) <lex λ).

Note that J ′ is Sn-fixed and shifted because I is. Moreover Λ(J ′) ⊂ Λ(I) and λ ∈
Λ(I) \ Λ(J ′). Hence, zu /∈ J ′ by Lemma 2.7.

Since zu ∈ J , there is a monomial w ∈ G(J) that divides zu. Because zu /∈ J ′, we 
deduce that w /∈ G(J ′) so part(w) �lex λ. At the same time, w ∈ G(J) gives w ≺ u, so 
part(w) �lex λ. This forces part(w) = λ, therefore w = τ(xλ) for some τ ∈ Sn. More 
explicitly, w is of the form

w = xλ1
τ(1) · · ·x

λp

τ(p)x
λn−1
τ(p+1) · · ·x

λn−1
τ(n−r)x

λn

τ(n−r+1) · · ·x
λn

τ(n).

Comparing with Equation (3.2), we get

{σ(1), . . . , σ(p)} = {τ(1), . . . , τ(p)}. (3.3)

Observe that λσ−1(k) and λτ−1(k) are the exponents of xk in u = σ(xλ) and w = τ(xλ), 
respectively. If λσ−1(k) = λτ−1(k) for all 1 � k � n, then u = w, which contradicts w ≺ u. 
Therefore it makes sense to define

� = min{k : λτ−1(k) �= λσ−1(k)},

and to write � = σ(q) for some 1 � q � n. By Equation (3.3), we have

{λσ−1(�), λτ−1(�)} = {λn − 1, λn}.
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Table 1
Linear quotients of a symmetric shifted ideal.

i ui Ii−1 : (ui) max(ui)

1 x2
1x

2
2x3x4 - 2

2 x2
1x2x

2
3x4 (x2) 3

3 x2
1x2x3x

2
4 (x2, x3) 4

4 x1x
2
2x

2
3x4 (x1) 3

5 x1x
2
2x3x

2
4 (x1, x3) 4

6 x1x2x
2
3x

2
4 (x1, x2) 4

7 x2
1x

2
2x

2
3 (x4) 3

8 x2
1x

2
2x

2
4 (x3) 4

9 x2
1x

2
3x

2
4 (x2) 4

10 x2
2x

2
3x

2
4 (x1) 4

11 x3
1x

2
2x3 (x3, x4) 1

12 x3
1x

2
2x4 (x3, x4) 1

13 x3
1x2x

2
3 (x2, x4) 1

14 x3
1x2x

2
4 (x2, x3) 1

15 x3
1x

2
3x4 (x2, x4) 1

16 x3
1x3x

2
4 (x2, x3) 1

17 x2
1x

3
2x3 (x1, x3, x4) 2

i ui Ii−1 : (ui) max(ui)

18 x2
1x

3
2x4 (x1, x3, x4) 2

19 x2
1x2x

3
3 (x1, x2, x4) 3

20 x2
1x2x

3
4 (x1, x2, x3) 4

21 x2
1x

3
3x4 (x1, x2, x4) 3

22 x2
1x3x

3
4 (x1, x2, x3) 4

23 x1x
3
2x

2
3 (x1, x4) 2

24 x1x
3
2x

2
4 (x1, x3) 2

25 x1x
2
2x

3
3 (x1, x2, x4) 3

26 x1x
2
2x

3
4 (x1, x2, x3) 4

27 x1x
3
3x

2
4 (x1, x2) 3

28 x1x
2
3x

3
4 (x1, x2, x3) 4

29 x3
2x

2
3x4 (x1, x4) 2

30 x3
2x3x

2
4 (x1, x3) 2

31 x2
2x

3
3x4 (x1, x2, x4) 3

32 x2
2x3x

3
4 (x1, x2, x3) 4

33 x2x
3
3x

2
4 (x1, x2) 3

34 x2x
2
3x

3
4 (x1, x2, x3) 4

Since w = τ(xλ) <lex σ(xλ) = u by the definition of ≺, we actually have λτ−1(�) = λn

and λq = λσ−1(�) = λn− 1. Also, since w �= u, there is m > � such that λτ−1(m) = λn− 1
and λσ−1(m) = λn. This shows that

σ(q) = � < m = σ(σ−1(m)) � max(u),

and therefore bq = λn− 1. However, this contradicts the fact that w divides zu since the 
exponent of x� in w is λn but the exponent of x� = xσ(q) in zu is bq = λn − 1. �
Example 3.3. Let I ⊂ k[x1, x2, x3, x4] be the symmetric shifted ideal with

Λ(I) = {(1, 1, 2, 2), (0, 2, 2, 2), (0, 1, 2, 3)}.

The ideal I has 34 generators. We arrange them in an increasing sequence using the order 
≺ described at the beginning of this section, and we denote them u1, . . . , u34. We also set 
Ii−1 = (u1, . . . , ui−1) for 2 � i � 34. Table 1 shows all the linear quotients Ii−1 : (ui) of 
the ideal I in the given order of the generators. All computations were performed using 
Macaulay2 [20].

Using these results together with Theorem 3.2, we can give a formula for graded 
Betti numbers of symmetric shifted ideals. For a monomial u = σ(xλ), recall our earlier 
notations:
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p = p(λ) = #{k : λk < λn − 1},
r = r(λ) = #{k : λk = λn},
max(u) = max{σ(k) : λk = λn},

and let

C(u) = {xσ(1), . . . , xσ(p)} ∪ {xσ(k) : p + 1 � k � n− r, σ(k) < max(u)}.

The next result follows from Theorem 3.1 and Equation (3.1).

Corollary 3.4. Let I be a symmetric shifted ideal. Then for all i, j one has

βi,i+j(I) =
∑

u∈G(I), degu=j

(
|C(u)|

i

)
.

Example 3.5. Consider the ideal I of Example 3.3. Using Corollary 3.4 and the informa-
tion in Table 1, we obtain the following Betti table for I.

0 1 2 3
total: 34 72 51 12

6: 34 72 51 12

4. Star configurations

In this section, we apply the results in the previous section to symbolic powers of star 
configurations. Recall that In,c is the monomial ideal of S = k[x1, . . . , xn] defined by

In,c =
⋂

1�i1<···<ic�n

(xi1 , . . . , xic)

and the m-th symbolic power of In,c is given by

I(m)
n,c =

⋂
1�i1<···<ic�n

(xi1 , . . . , xic)m. (4.1)

We will show that I(m)
n,c is actually a symmetric strongly shifted ideal.

Proposition 4.1. For every integer m � 1, the ideal I(m)
n,c is Sn-fixed. Moreover

P (I(m)
n,c ) = {λ ∈ Pn : |λ�c| � m},

Λ(I(m)
n,c ) = {λ ∈ Pn : |λ�c| = m,∀i > c λi = λc}.

Proof. Equation (4.1) immediately implies that I(m)
n,c is Sn-fixed because each element 

of Sn acts by permuting the primary components of the ideal.
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x1
1x
1
1 x2

2x
2
2x
2
2 x2

3x
2
3x
2
3 x2

4x
2
4x
2
4 x2

5x
2
5x
2
5 x2

6x
2
6x
2
6 x1

1x
1
1 x1

2x
1
2 x3

3x
3
3x
3
3x
3
3 x3

4x
3
4x
3
4x
3
4 x3

5x
3
5x
3
5x
3
5 x3

6x
3
6x
3
6x
3
6 x0

1 x2
2x
2
2x
2
2 x3

3x
3
3x
3
3x
3
3 x3

4x
3
4x
3
4x
3
4 x3

5x
3
5x
3
5x
3
5 x3

6x
3
6x
3
6x
3
6

x0
1 x1

2x
1
2 x4

3x
4
3x
4
3x
4
3x
4
3 x4

4x
4
4x
4
4x
4
4x
4
4 x4

5x
4
5x
4
5x
4
5x
4
5 x4

6x
4
6x
4
6x
4
6x
4
6 x0

1 x0
2 x5

3x
5
3x
5
3x
5
3x
5
3x
5
3 x5

4x
5
4x
5
4x
5
4x
5
4x
5
4 x5

5x
5
5x
5
5x
5
5x
5
5x
5
5 x5

6x
5
6x
5
6x
5
6x
5
6x
5
6

Fig. 1. Partitions and monomials generating I
(5)
6,3 .

If xλ ∈ I
(m)
n,c , then xλ ∈ (x1, . . . , xc)m, which gives |λ�c| � m. Conversely, if |λ�c| � m, 

then for all 1 � i1 < · · · < ic � n and all 1 � j � c, we have λj � λij because λ is a 
partition. This implies

c∑
j=1

λij �
c∑

j=1
λj = |λ�c| � m.

Hence, xλ ∈ (xi1 , . . . , xic)m. Thus, the statement about P (I(m)
n,c ) is proved.

Now the partition λ = (λ1, . . . , λn) is in Λ(I(m)
n,c ) if and only if λ ∈ P (I(m)

n,c ) and the 
partition obtained from λ by decreasing any λi is not in P (I(m)

n,c ). This forces |λ�c| = m

and ∀i > c λi = λc. �
Example 4.2. Fig. 1 illustrates generators of I(m)

n,c when n = 6, c = 3 and m = 5.

We now discuss the main result of this section.

Theorem 4.3. For every integer m � 1, the ideal I(m)
n,c is strongly shifted.

Proof. Let λ = (λ1, . . . , λn) ∈ P (I(m)
n,c ) and 1 � k < l � n with λk < λl. Define 

v = xλ(xk/xl) and μ = part(v). We have |μ�c| � |λ�c|. Thus, by Proposition 4.1, we 
get |μ�c| � m and v ∈ I

(m)
n,c . �

Using Corollary 3.4, we can derive several consequences for the Betti tables of the 
ideals I(m)

n,c .

Corollary 4.4.

(1) The degree j strand in the Betti table of I(m)
n,c is nonzero only when j belongs to 

{m + k(n − c) : k = 1, 2, . . . , m}, that is,
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βi,i+j(I(m)
n,c ) = 0 for all i � 0 and j /∈ {m + k(n− c) : k = 1, 2, . . . ,m}.

(2) For all i � 0 and k � m
2 + 1, one has

βi,i+m+k(n−c)(I(m)
n,c ) =

(
c− 1
i

)
β0,m+k(n−c)(I(m)

n,c ).

In particular, βi,i+m+k(n−c)(I
(m)
n,c ) only depends on the number of generators of I(m)

n,c

of degree m + k(n − c) when k � m
2 + 1.

(3) The Castelnuovo-Mumford regularity of I(m)
n,c is m(1 + n − c). Moreover, if m � 2, 

then the bottom row in the Betti table of I(m)
n,c is given by the following formula:

βi,i+m(1+n−c)(I(m)
n,c ) =

(
n

c− 1

)(
c− 1
i

)
for all i � 0.

(4) If m � c, then

βi,i+m+n−c(I(m)
n,c ) =

(
n

c−m− i

)(
m + n− c + i− 1

i

)
for all i � 0.

(5) All nonzero rows in the Betti table of I(m)
n,c have length c − 1, with the exception of 

the top one.

Proof. It follows from Proposition 4.1, that any element in G(I(m)
n,c ) has degree m +k(n −

c) with 1 � k � m. Then Corollary 3.4 proves (1).
Next we prove (2) and (3). Let u ∈ G(I(m)

n,c ) be a monomial of degree greater than or 
equal to m +(m/2 +1)(n − c). Corollary 3.4 says that, to prove (2), it is enough to show 
that |C(u)| = c − 1. By Proposition 4.1, u must be a monomial of the form

u = σ(xλ1
1 · · ·xλc−1

c−1 xλc
c xλc

c+1 · · ·xλc
n )

with λ1 + · · ·+λc = m, λc � (m/2 + 1) and σ ∈ Sn. This says λc−1 � m/2 − 1 � λc − 2
and therefore C(u) = {xσ(1), . . . , xσ(c−1)}, as desired. Then statement (3) follows from 

(2) together with the fact that the monomials of degree m(1 + m − c) in G(I(m)
n,c ) are 

precisely those in the set {σ(xm
c xm

c+1 · · ·xm
n ) : σ ∈ Sn}.

To prove (4), let m � c. It is easy to see that the minimum degree of monomials in 
G(I(m)

n,c ) is m + n − c. Also, the monomials of degree m + n − c in G(I(m)
n,c ) are precisely 

those in the set

X = {σ(xc−m+1xc−m+2 . . . xn) : σ ∈ Sn}.

The monomials in X are solely responsible for the top row in the Betti table of I(m)
n,c . 

Note that X is the set of all squarefree monomials of degree m +n −c. The Betti numbers 
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of the ideal generated by X can be found in [15, Thm. 2.1], leading to the formula in 
(4).

Finally, to see (5), let q be the quotient of m divided by c. Observe that for every 
q + 1 < k � m, there is a monomial uk ∈ G(I(m)

n,c ) with deg(uk) = m + k(n − c) of the 
form

uk = xλ1
1 · · ·xλc−1

c−1 xk
c · · ·xk

n

with λ1 � · · · � λc−1 � k − 1. Then C(uk) = {x1, . . . , xc−1} and, by Corollary 3.4, row 
m + k(n − c) in the Betti table of I(m)

n,c has length c − 1. �
The previous corollary immediately gives a closed formula for the Betti numbers of 

symbolic squares of star configurations. Note that this result was first established in [17, 
Theorem 3.2]. Our assumption about codimension eliminates degenerate cases where 
some minimal generators disappear along with corresponding rows of the Betti table.

Corollary 4.5. If c � 2, then

βi,i+j(I(2)
n,c) =

{(
n

c−2−i

)(
n−c+1+i

i

)
, j = n− c + 2,(

n
c−1
)(

c−1
i

)
, j = 2(n− c + 1).

Using Corollary 3.4, we can even give a closed formula for the Betti numbers of the 
symbolic cube of star configurations.

Corollary 4.6. If c � 3, then

βi,i+j(I(3)
n,c) =

⎧⎪⎪⎨
⎪⎪⎩
(

n
c−3−i

)(
n−c+2+i

i

)
, j = n− c + 3,(

n
c−2
) ((

c−2
i

)
+ (n− c + 1)

(
c−1
i

))
, j = 2(n− c + 1) + 1,(

n
c−1
)(

c−1
i

)
, j = 3(n− c + 1).

Proof. The top and bottom row of the Betti table are computed as in Corollary 4.4.
By Proposition 4.1, the minimal generators of I(3)

n,c with degree 2(n − c + 1) + 1 are 
the ones in the set

{σ(xc−1x
2
cx

2
c+1 · · ·x2

n) : σ ∈ Sn}.

In particular, these are monomials u = σ(xλ) with

λ = (0, . . . , 0︸ ︷︷ ︸
c−2

, 1, 2, . . . , 2︸ ︷︷ ︸
n−c+1

),

and p(λ) = c − 2, r(λ) = n − c + 1. We also have n − c + 1 � max(u) � n. It follows that 
|C(u)| = c − 2 if σ(c − 1) � max(u), and |C(u)| = c − 1 if σ(c − 1) < max(u). We count 
how many monomials we have in each case.
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To produce a monomial u with |C(u)| = c − 2, we can first choose which variables 
have degree zero. Among the remaining variables, the single one having degree one must 
appear last. This can be accomplished in 

(
n

c−2
)

ways.
To produce a monomial u with |C(u)| = c − 1, we can first choose which variables 

have degree zero. Next we can choose any one the remaining variables except the last 
one to appear with degree one. This can be accomplished in 

(
n

c−2
)
(n − c + 1) ways.

The statement now follows from Corollary 3.4. �
Example 4.7. The Betti table of I(3)

9,4 is

0 1 2 3
total: 345 980 936 300

8: 9 8 . .
9: . . . .
10: . . . .
11: . . . .
12: . . . .
13: 252 720 684 216
14: . . . .
15: . . . .
16: . . . .
17: . . . .
18: 84 252 252 84

Remark 4.8. It follows immediately from Corollary 4.6 that the third symbolic defect of 
In,c is 

(
n

c−2
)
(n − c + 2). We refer the reader to [16] for the definition of symbolic defect 

and [16, Corollary 3.17] for a previously known bound.

Remark 4.9. The ideal In,n−1 can be thought of as the defining ideal of the set of the n
points

e1 = [1 : 0 : 0 : . . . : 0], e2 = [0 : 1 : 0 : . . . : 0], . . . , en = [0 : 0 : 0 : . . . : 1] ∈ Pn−1
k

where Pn−1
k

denotes the (n − 1)-dimensional projective space over k. Similarly, I(m)
n,n−1

can be thought of as the ideal defining the fat point scheme me1 +me2 + · · ·+men. For 
an introduction to fat points, we invite the reader to consult [8]. If {p1, . . . , pn} ⊂ Pn−1

k

is a set of n points in general linear position, then there is a linear automorphism of 
Pn−1
k

taking ei to pi. Algebraically, this corresponds to an invertible linear change of 
coordinates that preserves Betti numbers. In particular, it follows that the results of 
Corollary 4.4 provide information about the Betti numbers of the fat point scheme 
mp1 + mp2 + · · · + mpn in Pn−1

k
. For more complete information, the Betti num-

bers of this fat point scheme can be computed by combining Proposition 4.1 and our 
later Corollary 5.7. We are grateful to Brian Harbourne for clarifying this connec-
tion.
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5. Decompositions of symmetric shifted ideals

For r � n, let J[n],r be the ideal of S = k[x1, . . . , xn] generated by all squarefree 
monomials of degree r. The ideal J[n],r is actually the same as the ideal In,n+1−r in the 
previous section, but we introduce a new notation to simplify the proofs in Sections 5 and 
6. Note that J[n],r is Sn-fixed and shifted. Its equivariant resolution has been described 
in [15, Theorem 4.11]. In the following two sections we extend this result to an arbitrary 
symmetric shifted ideal I (see Proposition 6.1). This will be done in two steps. In this 
section, we establish a coarse decomposition of Tori(I, k)i+d (see Theorem 5.5). This will 
be refined in the next section.

We need some further notation. Let Mon(S) be the set of all monomials in S. For 
monomial ideals I ⊃ J of S, we write

Mon(I/J) = {u ∈ Mon(S) : u ∈ I, u /∈ J}.

When both I and J are Sn-fixed, we write

P(I/J) = {λ ∈ Pn : λ ∈ P(I), λ /∈ P(J)}.

We note that Mon(I/J) is a k-basis of I/J .
Let λ = (λ1, . . . , λn) be a partition and p = p(λ). The following S-module Nλ plays 

an important role in our results:

Nλ = (σ(xλ) : σ ∈ Sn)/(σ(xix
λ) : 1 � i � p, σ ∈ Sn).

We start by discussing some basic properties of the module Nλ. For A = {i1, . . . , ik} ⊂ [n]
with i1 < · · · < ik, we write xA = xi1 · · ·xik , A = [n] \A, SA for the set of permutations 
on A, SA = k[xi1 , . . . , xik ], mA = (xi1 , . . . , xik) ⊂ SA the maximal ideal of SA, and 
JA,r ⊂ SA the ideal of SA generated by all squarefree monomials of degree r in SA. For 
a = (a1, . . . , ak), we write as above xa

A = xa1
i1

· · ·xak
ik

.
We set out to describe Mon(Nλ) starting with a preliminary example.

Example 5.1. Let λ = (0, 1, 1, 2, 2, 3, 3), so p = p(λ) = 3 and r = r(λ) = 2. In this case, 
Nλ = I/J where

I = (σ(x0
1x

1
2x

1
3x

2
4x

2
5x

3
6x

3
7) : σ ∈ Sn),

J = (σ(x1
1x

1
2x

1
3x

2
4x

2
5x

3
6x

3
7) : σ ∈ Sn) + (σ(x0

1x
1
2x

2
3x

2
4x

2
5x

3
6x

3
7) : σ ∈ Sn).

The monomial x2x3x
2
4x

2
5x

3
6x

3
7 is an example of a monomial in I but not in J . We can 

represent it as m(x4x5x6x7)2u where m = x2x3 and u = x6x7. This splits the indices of 
the variables into two sets: A = {1, 2, 3} and its complement A = {4, 5, 6, 7}. Note that 
m = x

λ�p

A is in the polynomial ring SA = k[x1, x2, x3], while u is one of the minimal 
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generators of JA,r in SA = k[x4, x5, x6, x7]. Also, the middle term (xA)2 = (x4x5x6x7)2

has exponent λ7 − 1. Now notice that we can replace m with any permutation σ(xλ�p

A )
where σ ∈ SA and still obtain a monomial in I and not in J ; for example,

x1x2x
2
4x

2
5x

3
6x

3
7 = (x1x2)(x4x5x6x7)2u.

Similarly, we can replace u by another generator (in fact, any monomial) of JA,r and 
still obtain a monomial in I and not in J ; for example,

x2x3x
2
4x

3
5x

2
6x

3
7 = m(x4x5x6x7)2(x5x7),

x2x3x
2
4x

3
5x

4
6x

5
7 = m(x4x5x6x7)2(x5x6x

2
7).

In addition, we could operate the same reasoning on any monomial obtained by per-
muting the variables in x2x3x

2
4x

2
5x

3
6x

3
7, leading to a similar split but with a different 

choice of index set A. As we illustrate next, all elements of Mon(Nλ) can be obtained 
by combining these observations.

Lemma 5.2. Let λ = (λ1, . . . , λn) be a partition, p = p(λ) and r = r(λ). Then

Mon(Nλ) =
⊎

A⊂[n], |A|=p

⎛
⎜⎝ ⊎

m∈SA·x
λ�p
A

{m(xA)λn−1u : u ∈ Mon(JA,r)}

⎞
⎟⎠ , (5.1)

and

P(Nλ) = {(λ1, . . . , λp, μp+1, . . . , μn) ∈ Pn : μp+1 � λn − 1, μn−r+1 � λn}. (5.2)

Proof. Equation (5.2) easily follows from (5.1). Hence, we only need to show (5.1). 
We first prove the inclusion “⊂”. Let u ∈ Mon(Nλ). Then there is σ ∈ Sn such that 
σ(xλ) = xλ1

σ(1) · · ·x
λn

σ(n) divides u. We write u = xa1
σ(1) · · ·x

an

σ(n). Since u is not contained 

in the ideal (σ(xix
λ) : 1 � i � p, σ ∈ Sn), we have a1 = λ1, . . . , ap = λp. Also, since 

σ(xλ) divides u, ak � λn − 1 for p < k � n − r, and ak � λn for k � n − r + 1. These 
inequalities imply that, by setting A = {σ(1), . . . , σ(p)},

u = σ(xλ1
1 · · ·xλp

p )(xA)λn−1(xσ(n−r+1) · · ·xσ(n))w

for some w ∈ Mon(SA), which shows that u is contained in the right hand side of (5.1).
Next, we prove the inclusion “⊃” in (5.1). Let u = m(xA)λn−1w with m ∈ SA · xλ�p

A

and w ∈ Mon(JA,r). By taking a permutation τ ∈ Sn appropriately,

τ(u) = xλ1
1 · · ·xλp

p xλn−1
p+1 · · ·xλn−1

n α (5.3)

with α ∈ Mon(J[p],r). Moreover, we may choose τ so that α is divisible by xn−r+1 · · ·xn. 
Then xλ divides τ(u) and u ∈ (σ(xλ) : σ ∈ Sn). We claim that u is not contained in 
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the ideal J = (σ(xix
λ) : 1 � i � p, σ ∈ Sn). We already see in (5.3) that if μ = type(u)

then μ is of the form

μ = (λ1, . . . , λp, μp+1, . . . , μn).

Observe that

Λ(J) = {λ + ei : 1 � i � p, λ + ei ∈ Pn},

where ei is the i-th standard basis vector of Zn. Since no element in Λ(J) divides μ, by 
Lemma 2.1 the monomial u ∈ Sn · xμ is not contained in J .

We finally show that the right-hand side of (5.1) is indeed a disjoint union. To show 
this, it is enough to prove that for each u = xa1

1 · · ·xan
n that is contained in the right-hand 

side of (5.1) there is a unique subset A ⊂ [n] with |A| = p and m ∈ SA · xλ�p

A such that 
u = mα with α ∈ SA. Indeed, since |{k : ak < λn − 1}| = p by the shape of monomials 
in the right-hand side of (5.1), such a set A must be equal to the set {k : ak < λn − 1}, 
and a monomial m must be 

∏
i∈A xai

i . �
Next, we decompose Nλ into smaller modules which have a simpler structure but are 

not fixed by the action of Sn. Let λ ∈ Pn be a partition, p = p(λ) and r = r(λ). For 
A ⊂ [n] with |A| = p and m ∈ SA · xλ�p

A , we define

Nλ
A,m =

(
mτ

(
x

(λp+1,...,λn)
A

)
: τ ∈ SA

)
/
(
ximτ

(
x

(λp+1,...,λn)
A

)
: τ ∈ SA, i ∈ A

)
.

Recall that, for X ⊂ [n], JX,r is the monomial ideal of SX generated by all squarefree 
monomials of degree r in SX and mX = (xi : i ∈ X) is the maximal ideal of SX . Since

(λp+1, . . . , λn) = (λn − 1, . . . , λn − 1, λn, . . . , λn)

where λn appears r times, Nλ
A,m is generated by monomials {m(xA)λn−1xT : T ⊂

A, |T | = r} and every monomial in Nλ
A,m is divisible by m(xA)λn−1. Thus, by the map 

f → f/(m(xA)λn−1), we have an isomorphism

Nλ
A,m

∼= (xT : T ⊂ A, |T | = r)/(xixT : T ⊂ A, |T | = r, i ∈ A)
∼=
(
S/(xi : i ∈ A)

)
⊗S (JA,rS) (5.4)

∼= SA/mA ⊗k JA,r

where we consider that the last module is a module over S = SA ⊗k SA.

Lemma 5.3. Let λ ∈ Pn be a partition, p = p(λ), r = r(λ), A ⊂ [n] with |A| = p, and 
m ∈ SA · xλ�p

A . Then
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(i) Mon(Nλ
A,m) = {m(xA)λn−1u : u ∈ Mon(JA,r)}.

(ii) Nλ
A,m is an S-submodule of Nλ.

(iii) Nλ =
⊕

A⊂[n],|A|=p

⊕
m∈SA·x

λ�p
A

Nλ
A,m (as S-modules).

Proof. Statement (i) follows from (5.4). To prove (ii), it is enough to show that for any 
{j1, . . . , jr} ⊂ A, one has

annNλ(m(xA)λn−1xj1 · · ·xjr) = (xi : i ∈ A),

where annM (h) = {f ∈ S : hf = 0} for an S-module M and h ∈ M . The inclusion “⊃” 
is clear from the definition of Nλ

A,m. To see the inclusion “⊂”, we must prove that for 
any monomial u in SA, m(xA)λn−1xj1 · · ·xjru is non-zero in Nλ, and this follows from 
Lemma 5.2.

Statement (iii) follows from (i) and Lemma 5.2. �
Corollary 5.4. The S-modules Nλ

A,m and Nλ have linear resolutions.

Proof. By the isomorphism in (5.4), the tensor product of a minimal graded free resolu-
tion of JA,r and one of SA/mA is isomorphic to a minimal graded free resolution of Nλ

A,m. 
Since JA,r and SA/mA have linear resolutions, the module Nλ

A,m has a linear resolution. 
Then Nλ also has a linear resolution by Lemma 5.3(iii). �

We now prove the main result of this section.

Theorem 5.5. If I ⊂ S is a symmetric shifted ideal, then as k[Sn]-modules we have

Tori(I,k)i+d
∼=

⊕
λ∈Λ(I), |λ|=d

Tori(Nλ, k).

To prove the above theorem, we first show the following statement.

Lemma 5.6. Let I be a symmetric shifted ideal and Λ(I) = {λ(1), . . . , λ(t)} with λ(1) <lex
· · · <lex λ(t). Let I�k ⊆ I be the Sn-fixed monomial ideal with Λ(I�k) = {λ(1), . . . , λ(k)}
for k = 1, 2, . . . , t. Then, for k = 1, 2, . . . , t,

I�k/I�k−1 ∼= Nλ(k)

as S-modules, where I�0 = (0).

Proof. Observe that I�k is shifted and

I�k/I�k−1 =
(
σ(xλ(k)

) : σ ∈ Sn

)
/
(
(σ(xλ(k)

) : σ ∈ Sn) ∩ I�k−1

)
.
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Since for monomial ideals I, J, J ′ with I ⊃ J and I ⊃ J ′, we have I/J = I/J ′ if and 
only if Mon(I/J) = Mon(I/J ′), it is enough to prove P(I�k/I�k−1) = P(Nλ(k)). Let 
λ(k) = (λ1, . . . , λn), p = p(λ(k)) and r = r(λ(k)). Then we have

P(I�k/I�k−1) = P(I�k) \ P(I�k−1)

= {μ = (μ1, . . . , μn) ∈ Pn : λ(k) divides μ, λ
(k)
�p = μ�p}

= {(λ1, . . . , λp, μp+1, . . . , μn) ∈ Pn : μp+1 � λn − 1, μn−r+1 � λn}

= P(Nλ(k)
),

where we use Lemma 2.7 for the third equality and Lemma 5.2 for the last one. �
Proof of Theorem 5.5. Let Λ(I) = {λ(1), . . . , λ(t)} with λ(1) <lex · · · <lex λ(t) and let 
I�k be as in Lemma 5.6. Then we have the short exact sequence

0 −→ I�k−1 −→ I�k −→ I�k/I�k−1 ∼= Nλ(k) −→ 0. (5.5)

We prove Tori(I�k, k) ∼=
⊕k

l=1 Tori(Nλ(l)
, k) using induction on k. Note that by Corol-

lary 5.4 this implies the desired statement.
By the definition of the shifted property, the partition λ(1) must be a partition of the 

form λ(1) = (a, a, . . . , a, a + 1, . . . , a + 1). Thus, p(λ(1)) = 0 and

I�1 = (σ(xλ(1)
) : σ ∈ Sn) = Nλ(1)

.

Hence, the assertion holds when k = 1.
Suppose k > 1. Since |λ(1)| � · · · � |λ(t)|, using the inductive hypothesis we get

reg(I�k−1) = max{|λ(1)|, . . . , |λ(k−1)|} � |λ(k)|,

because Nλ(l) is generated in degree |λ(l)| and has a linear resolution by Corollary 5.4. 
The short exact sequence in (5.5) induces the exact sequence

Tori+1(Nλ(k)
, k)i+1+(j−1) −→ Tori(I�k−1, k)i+j −→ Tori(I�k, k)i+j (5.6)

−→ Tori(Nλ(k)
, k)i+j −→ Tori−1(I�k−1, k)i−1+(j+1).

Let d = |λ(k)|. By Corollary 5.4,

Tori(Nλ(k)
, k)i+j = 0 for j �= d. (5.7)

Also, since reg(I�k−1) � d,

Tori−1(I�k−1, k)i−1+(j+1) = 0 for j � d. (5.8)
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Then (5.6), (5.7) and (5.8) imply

Tori(I�k, k)i+d
∼= Tori(I�k−1, k)i+d

⊕
Tori(Nλ(k)

, k)i+d

and

Tori(I�k, k)i+j
∼= Tori(I�k−1, k)i+j for j �= d.

These isomorphisms prove the desired statement. �
Using Theorem 5.5, it is possible to give a closed formula of graded Betti numbers 

of a symmetric shifted ideal I in terms of its partition generator Λ(I). Let λ ∈ Pn with 
|λ| = d, p = p(λ) and r = r(λ). Then by (5.4) we have

βi,i+d(Nλ
A,m) = βi(JA,r ⊗k (SA/mA))

=
∑

k+l=i

βk(JA,r)βl(SA/mA)

=
∑

k+l=i

(
n− p

r + k

)(
r + k − 1

k

)(
p

l

)
,

where we use the fact that

βk(JA,r) =
(
n− p

r + k

)(
r + k − 1

k

)

(see, e.g., [15, Theorem 2.1]). For c = (c1, c2, . . . , cn) ∈ Zn
�0, let c! = c1!c2! · · · cn!. For a 

partition λ = (λ1, . . . , λn) with |λ| = d � 0, its type type(c) = (t0, t1, . . . , td) is defined 
by ti = |{k : λk = i}|. It is well-known that

|Sn · xλ| = n!
type(λ)! .

Hence, by Lemma 5.3(iii)

βi(Nλ) =
(
n

p

)
p!

type(λ�p)!
βi(Nλ

A,m)

=
∑

k+l=i

p!
type(λ�p)!

(
n

p

)(
n− p

r + k

)(
r + k − 1

k

)(
p

l

)
.

Thus, using Theorem 5.5, we obtain the following formula, which may be viewed as a 
more explicit version of the formula given in Corollary 3.4.
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Corollary 5.7. If I ⊂ S is a symmetric shifted ideal, then

βi,i+d(I) =
∑

λ∈Λ(I),|λ|=d

( ∑
k+l=i

p(λ)!
type(λ�p(λ))!

(
n

p(λ)

)(
n− p(λ)
r(λ) + k

)(
r(λ) + k − 1

k

)(
p(λ)
l

))
.

Example 5.8. Let I = J
(2)
[n],r(= I

(2)
n,n+1−r). Then I is generated by two partitions λ =

(0n−r−1, 1r+1) and μ = (0n−r, 2r), where ai denotes (a, a, . . . , a) ∈ Zi. In this case, 
p(λ) = 0, r(λ) = r + 1, p(μ) = n − r and r(μ) = r. Corollary 5.7 says

βi,i+r+1(I) =
∑

k+l=i

0!
0!

(
n

0

)(
n

r + 1 + k

)(
r + k − 1

k

)(
0
l

)
=
(

n

r + 1 + i

)(
r + i− 1

i

)

and

βi,i+2r(I) =
∑

k+l=i

(r + 1)!
(r + 1)!

(
n

n− r

)(
n− n + r

r + k

)(
r + k − 1

k

)(
n− r

l

)
=
(

n

n− r

)(
n− r

i

)
.

This recovers Corollary 4.5.

6. Equivariant Betti numbers

While Corollary 5.7 gives a closed formula for the graded Betti numbers of symmetric 
shifted ideals, the formula is not simple. To understand these numbers better, we refine 
the decomposition of Tori(I, k) given in Theorem 5.5. In this section, we give an explicit 
description of the k[Sn]-module structure of Tori(I, k) for a symmetric shifted ideal I by 
using Theorem 5.5, and explain how it helps to determine Betti numbers of these ideals 
by examples. We refer the reader to [33] for some basics on representation theory, such 
as induced representations and Specht modules.

For a monomial m ∈ SA, let MA(m) = span
k
{σ(m) : σ ∈ SA}. We denote by 

IndSk+l

Sk×Sl
(K � K ′) the induced representation of the tensor product of a k[Sk]-module 

K and a k[Sl]-module K ′. Let I be a symmetric shifted ideal. By Theorem 5.5, we know 
Tori(I, k) ∼=

⊕
λ∈Λ(I) Tori(Nλ, k). Thus, to understand the k[Sn]-module structure of 

Tori(I, k) it is enough to consider the k[Sn]-module structure of Tori(Nλ, k).
Let λ ∈ Pn, p = p(λ) and r = r(λ). For each subset A ⊂ [n] with |A| = p, fix a 

permutation ρA ∈ Sn such that ρA([p]) = A. The set {ρA ∈ Sn : A ⊂ [n], |A| = p} is a 
set of representatives of Sn/(Sp ×Sn−p).

By Lemma 5.3(iii) and (5.4), we have an isomorphism (up to shift of degrees)

Nλ =
⊕

A⊂[n], |A|=p

⊕
m∈SA·x

λ�p
A

Nλ
A,m

∼=
⊕

A⊂[n], |A|=p

⎛
⎜⎝ ⊕

λ�p

(
m(SA/mA) ⊗k (xA)λn−1JA,r

)⎞⎟⎠

m∈SA·xA
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∼=
⊕

A⊂[n], |A|=p

[(
MA(xλ�p

A ) ⊗k (SA/mA)
)
⊗k (xA)λn−1JA,r

]

∼=
⊕

A⊂[n], |A|=p

ρA

[(
M[p](x

λ�p

[p] ) ⊗k (S[p]/m[p])
)
⊗k

(
(xp+1 · · ·xn)λn−1J[p],r

)]

∼= IndSn

Sp×Sn−p

[(
M[p](x

λ�p

[p] ) ⊗k S[p]/m[p]

)
� ((xp+1 · · ·xn)λn−1J[p],r)

]
∼= IndSn

Sp×Sn−p

[(
M[p](x

λ�p

[p] ) ⊗k S[p]/m[p]

)
� J[p],r

]
, (6.1)

where M[p](x
λ�p

[p] ) ⊗kS[p]/m[p] = k if p = 0. Hence, we conclude that Nλ is isomorphic to 

the module (6.1) as k[Sn]-modules. Note that as an S[p]-module, M[p](x
λ�p

[p] ) ⊗kS[p]/m[p]

is the direct sum of |Sp · xλ�p

[p] | copies of S[p]/m[p]. Recall that, for an SA-module N and 
an SA-module M , there is an isomorphism

TorSi (N ⊗k M, k) ∼=
⊕
k+l=i

TorSA

k (N, k) ⊗k TorSA

l (M, k).

Then the decomposition in (6.1) shows that we have an isomorphism of k[Sn]-modules

TorSi (Nλ, k) ∼=
⊕
k+l=i

[
IndSn

Sp×Sn−p

(
M[p](x

λ�p

[p] ) ⊗k TorS[p]
k (S[p]/m[p])

)

�
(
Tor

S[p]
l (I[p],r, k)

)]
.

Let Sλ be the Specht module associated to the partition λ = (λ1, . . . , λp) with λ1 > 0
(see, e.g., [33, §2.3] or [15, §3]). For an integer l � p, set

Uλ
l = IndSl

Sp×Sl−p
Sλ � S(l−p).

Galetto [15, Corollary 4.12] proved

TorS[n]
i (J[n],r, k) ∼= U (1i,r)

n (6.2)

as k[Sn]-modules. This says

TorS[p]
i (S[p]/m[p], k) � Tor

S[p]
l (J[p],r, k) ∼= U (1i)

p � U
(1i,r)
n−p

as k[Sp ×Sn−p]-modules. Combining all these facts, we get the following.

Proposition 6.1. Let λ ∈ Pn, p = p(λ) and r = r(λ). As k[Sn]-modules,

Tori(Nλ, k) ∼=
⊕ (

IndSn

Sp×Sn−p

(
M[p](x

λ�p

[p] ) ⊗k U
(1k)
p

)
� U

(1l,r)
n−p

)
.

k+l=i
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We note that M(xλ) is isomorphic to a k[Sn]-module known as a permutation module 
[33, §2.1].

Theorem 6.2. Let I be a symmetric shifted ideal. Then as k[Sn]-modules

Tori(I,k)i+d
∼=

⊕
λ∈Λ(I)
|λ|=d

⊕
k+l=i

(
IndSn

Sp(λ)×Sn−p(λ)

(
M[p(λ)](x

λ�p(λ)
[p(λ)] ) ⊗k U

(1k)
p(λ)

)
� U

(1l,r(λ))
n−p(λ)

)
.

In the rest of this section, we explain how Theorem 6.2 is useful to write down Betti 
numbers of symmetric shifted ideals. To do this, we identify Sλ with the Ferrers diagram 
corresponding to partition λ. Also, for simplicity, we write

IndSn

Sp×Sn−p
N � M = N � M and IndSn

Sp×Sn−p
N � S(n−p) = N↑n.

By Theorem 6.2, the k[Sn]-module structure of Tor(Nλ, k) only depends on p(λ), r(λ)
and λ�p(λ). We write

info(λ) = (p(λ), r(λ), λ�p(λ)).

Example 6.3. Let I = J[n],r ⊂ k[x1, . . . , xn] be the monomial ideal generated by all 
squarefree monomials of degree r. As we already mentioned in (6.2), we have

Tori(I,k) ∼= U (1i,r)
n

for all i. Here we check that our formula in Theorem 6.2 coincides with this. In this case, 
Λ(I) = {(0n−r, 1r)}. Let λ = (0n−r, 1r). Then since info(λ) = (0, r, ∅), we have

⊕
k+l=i

(
M[p(λ)](xλ�p(λ)) ⊗k U

(1k)
p(λ)

)
� U

(1l,r(λ))
n−p(λ) = U (1i,r)

n

and Theorem 6.2 yields

Tori(I,k) ∼= Tori(Nλ, k) ∼= U (1i,r)
n .

Graded Betti numbers of an S-module N are often presented by a Betti table, i.e., 
the table whose (i, j)-th entry is βi,i+j(N).

For a module Nλ and a symmetric shifted ideal, we present their graded Betti numbers 
by the table whose (i, j)-th entry is the k[Sn]-module given in Theorem 6.2. We call such 
table an equivariant Betti table.
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For example, the equivariant Betti table of I6,3 is

0 1 2 3

3 ↑6
↑6

↑6

Example 6.4. Let I = J
(2)
[n],r be the second symbolic power of the squarefree Veronese 

ideal with n � r + 1. Then Λ(I) = {λ, μ}, where λ = (0n−r−1, 1r+1) and μ = (0n−r, 2r). 
Using info(λ) = (0, r + 1, ∅) and info(μ) = (n − r, r, (0n−r)), we obtain

Tori(Nλ, k) ∼= U (1i,r+1)
n

and

Tori(Nμ, k) ∼=
⊕
k+l=i

((
M[n−r](x(0n−r)) ⊗ U

(1k)
n−r

)
� U (1l,r)

r

)
= U

(1i)
n−r � U (r)

r = (U (1i)
n−r)↑n.

The equivariant Betti table of Nλ and Nμ when n = 6 and r = 3 are:

Nλ 0 1 2

4 ↑6
↑6

Nμ 0 1 2 3

6 (∅↑3)↑6
(

↑3
)
↑6

(
↑3

)
↑6

↑6

The equivariant Betti table of I is given by the sum of the two tables above as follows:

I 0 1 2 3

4 ↑6
↑6

6 (∅↑3)↑6
(

↑3
)
↑6

(
↑3

)
↑6

↑6
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Example 6.5. Let I = I
(3)
n,r be the third symbolic power of the squarefree Veronese ideal 

with n � r + 2. Then Λ(I) = {λ, μ, ρ} with λ = (0n−r−2, 1r+2), μ = (0n−r−1, 1, 2r), ρ =
(0n−r, 3r). Using that info(λ) = (0, r+2, ∅), info(μ) = (n −r−1, r, (0n−r−1)) and info(ρ) =
(n − r, r, (0n−r)), we have

Tori(Nλ, k) ∼= U (1i,r+2)
n

Tori(Nμ, k) ∼=
⊕
k+l=i

(M[n−r−1](x(0n−r−1)) ⊗ U
(1k)
n−r−1) � U

(1l,r)
r+1

=
(
U

(1i)
n−r−1 � U

(r)
r+1

)⊕(
U

(1i−1)
n−r−1 � U

(1,r)
r+1

)
,

Tori(Nρ, k) ∼=
⊕
k+l=i

(M[n−r](x(0n−r)) ⊗ U
(1k)
n−r ) � U (1l,r)

r = U
(1i)
n−r � U (r)

r = (U (1i)
n−r)↑n.

The equivariant Betti table of I is the sum of the equivariant Betti table of Nλ, Nμ and 
Nρ. The following tables are the equivariant Betti tables of these three modules when 
n = 6 and r = 3.

Nλ 0 1

5 ↑6

Nμ 0 1 2 3

∅↑2 � ↑4 ↑2 � ↑4 � ↑4

7 ⊕ ⊕
∅↑2 � ↑2 � �

Nρ 0 1 2 3

9 (∅↑3)↑6
(

↑3
)
↑6

(
↑3

)
↑6

↑6

Example 6.6. Let I = (x1, . . . , xn)3 ⊂ k[x1, . . . , xn] with n � 3. Then Λ(I) = {λ, μ, ρ}
with λ = (0n−3, 13), μ = (0n−2, 1, 2), ρ = (0n−1, 3). A computation similar to Exam-
ple 6.6 shows that the equivariant Betti tables of Nλ, Nμ and Nρ are
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Nλ 0 1 2 · · · n− 2 n− 1

3 ↑n
↑n

↑n

· · · ...

↑n

...

Nμ 0 1 2 · · · n− 2 n− 1

∅↑n−2 � ↑2 ↑n−2 � ↑2
↑n−2

� ↑2 · · · ...
� ↑2

3 ⊕ ⊕ ⊕
∅↑n−2 � ↑n−2 � · · · ...

↑n−2

�
↑2

...
�

Nρ 0 1 2 · · · n− 1

3 (∅↑n−1)↑n ( ↑n−1)↑n
(

↑n−1

)
↑n

· · ·
...
↑n

Example 6.7. Let I = (In,2)2 with n � 4. Then Λ(I) = {λ, μ, ρ} with

λ = (0n−4, 14), μ = (0n−3, 12, 2), ρ = (0n−2, 22)

and

Tori(Nλ, k) ∼= U (1i,4)
n ,

Tori(Nμ, k) ∼=
⊕
k+l=i

(
M[n−3](x(0n−3)) ⊗ U

(1k)
n−3

)
� U

(1l+1)
3

∼=
(
U

(1i)
n−3 � U

(1)
3

)⊕(
U

(1i−1)
n−3 � U

(12)
3

)⊕(
U

(1i−2)
n−3 � U

(13)
3

)
,

Tori(Nρ, k) ∼= U
(1i)
n−2 � U

(2)
2 = (U (1i)

n−2)↑n.

7. Other considerations

7.1. Weakly polymatroidal ideals

Our definition of symmetric shifted ideals is inspired by stable monomial ideals, which 
also have linear quotients (see [21, §7]), but almost all stable monomial ideals are not 



340 J. Biermann et al. / Journal of Algebra 560 (2020) 312–342
fixed by an action of the symmetric group. Besides stable monomial ideals, another 
famous class of monomial ideals which have linear quotients are (weakly) polymatroidal 
ideals (see [21, §12] for more details). A monomial ideal I ⊂ S is said to be weakly 
polymatroidal if for any two monomials u = xa1

1 · · ·xan
n and v = xb1

1 · · ·xbn
n ∈ G(I)

such that a1 = b1, . . . , at−1 = bt−1 and at > bt for some t, there is j > t such that 
v(xt/xj) ∈ I.

One may wonder whether I(m)
n,c is a weakly polymatroidal ideal and the fact that it 

has linear quotients follows from the weakly polymatroidal property. The next example 
shows this is not the case.

Example 7.1. Consider the ideal I = I
(5)
6,3 which we also studied in Example 4.2. Recall 

that this ideal is generated by the S6-orbits of the following five monomials

x1x
2
2x

2
3x

2
4x

2
5x

2
6, x1x2x

3
3x

3
4x

3
5x

3
6, x2

2x
3
3x

3
4x

3
5x

3
6, x2x

4
3x

4
4x

4
5x

4
6, x5

3x
5
4x

5
5x

5
6. (7.1)

Then the two monomials

u = xa1
1 · · ·xa6

6 = x7
1x

4
2x

4
3x

4
4x

1
5x

0
6 and v = xb1

1 · · ·xb6
6 = x5

1x
5
2x

5
3x

5
4x

0
5x

0
6

are contained in I. Clearly a1 > b1, but for any j > 1 the monomial v(x1/xj) must 
belong to the S6-orbit of x4

3x
5
4x

5
5x

6
6. However, the monomial x4

3x
5
4x

5
5x

6
6 is not divisible 

by any monomial listed in (7.1), so I is not weakly polymatroidal.

7.2. Open questions

Finally, we give a few open problems relating to symmetric shifted ideals. We give a 
formula for (equivariant) Betti numbers of symmetric shifted ideals, but we could not 
construct their minimal graded free resolutions. On the other hand, an explicit Sn-
equivariant minimal graded free resolutions of In,c is constructed in [15].

Problem 7.2. Construct explicit Sn-equivariant minimal graded free resolutions of sym-
metric shifted ideals.

Symmetric shifted ideals give a class of Sn-fixed monomial ideals having linear res-
olutions. However, we do not know if there is an Sn-fixed monomial ideal which is not 
shifted but has a linear resolution. This prompts the following:

Problem 7.3. Find a combinatorial characterization of Sn-fixed monomial ideals having 
linear resolutions.

Remark 7.4. After this paper was posted on arXiv, Claudiu Raicu [31] gave an answer to 
Problem 7.3. He proves that if an Sn-fixed monomial ideal has a linear resolution then it 
must be a symmetric shifted ideal. In particular, Theorem 3.2 and his result imply that 
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an Sn-fixed monomial ideal has linear quotients if and only if it is a symmetric shifted 
ideal.
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