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1. Introduction

The study of graded Betti numbers of graded ideals in a polynomial ring is one of
the central topics in commutative algebra. It has always been of great interest to find
combinatorial formulas for these numbers for various families of monomial ideals. In this
paper, we introduce a new class of monomial ideals, which we call symmetric shifted
ideals, and compute their graded Betti numbers.

For the definition of these ideals, we first provide some necessary notation. Let S =
k[z1,...,2,] be a standard graded polynomial ring over a field k. For a = (aq,...,a,) €
7%, we write x® = z7" ...y and |a| = a1 + -+ + a,. We consider an action of the
symmetric group &, on S defined by permutations of the variables and focus on &,,-
fixed monomial ideals I C S, that is to say, monomial ideals I C S with o(I) = I for all
o € G,,. Such ideals have recently attracted attention as elements of ascending chains
of ideals that are invariant under actions of symmetric groups (see, e.g., [3,11,23-25,
29]).

We say that a sequence A = (Aq,...,A,) of non-negative integers is a partition of d
of length n, if A\; < --- < A\, and |A| = d. Let

Po={(A1,-. ;M) €EZ":0< Ay < Ag < - <\ )

be the set of partitions of length n. For a monomial v = x{* - - - 2% of degree d, we write
part(u) € Z%, for the partition obtained from (ai,...,a,) by permuting its entries in
a suitable way. For example, part(z?29z3i22) = (0,1,2,2). If a monomial ideal I C S is

&,,-fixed, then a monomial w is in I if and only if zP**(*) is in I. Thus, the set
P(I)={\€P,:2*cI}

determines the monomials in I and the ideal itself. The central object of study of this
note are:

Definition 1.1. Let I C S be an &,,-fixed monomial ideal. We say that I is a symmetric
shifted ideal if, for every A = (A1,...,A,) € P(I) and 1 < k < n with A\ < A, one has
2wy /x,) € I. Also, we say that I is a symmetric strongly shifted ideal if, for every
A=(1,...,\,) €P(I)and 1 < k <1 < n with A\, < \;, one has o™z /z;) € I. We
may also refer to these ideals simply as shifted and strongly shifted ideals.

In the following remarks, we note that the above properties can be defined purely in
terms of partitions.
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Remark 1.2. Let I C S be an &,,-fixed monomial ideal. Denote by e; the i-th standard
basis vector of Z". If for every A = (A1,...,A,) € P(I) with j = min{k : \y = \,} and
for every A —e; + ¢; with ¢ < j that is also a partition (i.e., non-decreasing) we have
X —ej+e; € P(I), then I is shifted.

Remark 1.3. For partitions A = (A1,...,A\n), = (g1, .., tbn), we define

WX g 4 ey <K A+ -+ Ay, for all k.

The partial order < is known in the literature as the dominance order (see, e.g., [34,
§7.2]). An &,,-fixed monomial ideal I is strongly shifted if and only if, for every A, u € P,
with [A| = |u|, A € P(I) and p < X imply p € P(I).

The definition of shifted and strongly shifted ideals is inspired by the definition of
stable and strongly stable ideals, which are important classes of monomial ideals since,
e.g., in characteristic zero generic initial initials are strongly stable. Recall that Eliahou
and Kervaire [12] constructed minimal graded free resolutions of stable ideals and gave
a simple formula for their graded Betti numbers in terms of the data of their minimal
systems of monomial generators. The main results of this paper are the following formulas
for graded Betti numbers of symmetric shifted ideals.

(1) We prove that every symmetric shifted ideal I has linear quotients (Theorem 3.2).
This allows us to give a formula for its graded Betti numbers in terms of its monomial
generators G(I) (Corollary 3.4).

(2) We also give a formula for the graded Betti numbers of a symmetric shifted ideal T
in terms of its partition generators {\ € P, : z* € G(I)} (Corollary 5.7).

(3) We compute equivariant graded Betti numbers of a symmetric shifted ideal I. In
other words, we determine the k[&,]-module structure of Tor;(I,k); (Theorem 6.2).

Our initial motivation for defining symmetric shifted ideals comes from the study of
minimal graded free resolutions of symbolic powers of star configurations. A codimen-
sion ¢ star configuration is a union of linear subspaces of a projective space P of the

form
V.= U Hy,n---nH,
1<in < <ie<n
where Hy, ..., H, are distinct hyperplanes in PV such that the intersection of any j

of them is either empty or has codimension j and where 1 < ¢ < min{n, N}. The
name is motivated by the special case of 10 points located at pairwise intersections
of 5 lines in the projective plane, with the lines positioned in the shape of a star.
Let Lq,..., L, be defining linear forms of Hy,..., H,. Then the defining ideal of V, is
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given by Iv, = (1<, <..<i,<n(Lirs - -+ Li,) and its m-th symbolic power can be written
as
Iy = N (L., Li)™

1<i1 < <ie<n

because each ideal (L;,,...,L; ) is a minimal prime of Iy, and it is generated by a
regular sequence; see, e.g., [37, Appendix 6, Lemma 5]. These ideals Iy, and I‘(;c”) have
been extensively studied from the point of view of algebra, geometry, and combinatorics
in [1,2,4-7,9,13,14,19,28,30,32,35,36]. We recommend [17] as a great introduction to the
subject. In particular, the Betti numbers of the defining ideal of a star configuration and
its symbolic square have been determined in [17, Remark 2.11, Theorem 3.2]. Further
motivation for studying these ideals can be found in [18], which considers generaliza-
tions where the linear forms are replaced by forms of arbitrary degree and also explores
connections with Stanley-Reisner ideals of matroids.
Let I, . be the monomial ideal of S = k[z1,...,z,] defined by

In,c: ﬂ (372‘17...,.’17ic>.

1< < <ie<n

) is completely determined by that of I,(LT,Z);

Then the minimal graded free resolution of I ‘(/:n
in particular, it was shown that these two ideals have the same graded Betti numbers
(see [18, Example 3.4 and Theorem 3.6], where the more general case of hypersurface or
matroid configurations is considered). The same reference also shows that both ideals are
Cohen-Macaulay. Note that the ideal I,, . can also be described as the ideal generated
by all squarefree monomials of degree n — c+ 1 [18, Proposition 2.3]. Obviously the ideal

IT(ZVCL) is &,,-fixed. As one of our main results we prove (in Theorem 4.3) that:

Theorem. The ideal Ir(:é) is strongly shifted.

Since we find a formula for the graded Betti numbers of symmetric shifted ideals,
this result gives various information on graded Betti numbers of symbolic powers of
star configurations, including their Castelnuovo-Mumford regularity, a simple formula
for the Betti numbers in the top and bottom rows of the Betti table, an explicit formula
for the Betti numbers of the symbolic cube, and more (see the results in Section 4).
Our results for star configurations also apply to the computation of Betti numbers of fat
point schemes (see Remark 4.9).

This paper is organized as follows: In Section 2, we study some combinatorial prop-
erties of symmetric shifted ideals. In Section 3, we prove that symmetric shifted ideals
have linear quotients, and in Section 4 we apply the results in Section 3 to symbolic
powers of star configurations. In Sections 5 and 6, we compute the (equivariant) graded
Betti numbers of symmetric shifted ideals.
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2. Symmetric shifted ideals

In this section, we discuss some basic properties of symmetric shifted ideals. For a
monomial u € S, we write &,,-u for the &,-orbit of win S, i.e., &,-u = {o(u) : 0 € G, }.
The set P,, can be regarded as a poset with the order defined by A > p if 2# divides 2.
Then the set P(I) is a filter in the poset P,,, that is to say, for u € P(I) and A € P, one
has A € P(I) if A > p. The next lemma shows that the assignment I — P(I) defines a
one-to-one correspondence between &,,-fixed monomial ideals in S and filters in P,,.

Lemma 2.1. Let A\, € P,,. There exist monomials u € &, -2* and w € &,, -z such that
w divides w if and only if o divides x™.

Proof. The “if” part is obvious. We prove the “only if” part. Let A = (A1,..., A,) and
= ({1, ). The assumption says that there exists o € &,, such that

Ho(1) <A, y Mo (n) < A
Since \; < --- < A\, for each £ =1,2,...,n we have
Ho(1) < Ay Ho(2) < Ak ooy fo(k) < Ak

This implies that the partition p contains at least k entries smaller than or equal to \g.
Therefore py, < A for all k, and z# divides z*. O
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Throughout the rest of the paper, we will say that p € P,, divides A € P,, if z* divides
.

Next, we show that to check the conditions of symmetric (strongly) shifted ideals, it
is enough to check them on generators. Let I be a monomial ideal. We write G(I) for

the unique set of minimal monomial generators of I. When [ is &,,-fixed, we define
AI)={)eP(I):2* cG()}.

Note that G(I) = Wyep(r) Sn - 2%, where b denotes a disjoint union of sets. As the next

statement shows, to check I is shifted it is enough to check the condition of Definition 1.1

for partitions in A([I).

Lemma 2.2. Let I C S be an &,,-fired monomial ideal. Then I is shifted if and only if,
for every A= (A1,..., ) € A(I) and 1 < k < n with A\, < A, one has z*(z/x,) € 1.

Proof. The “only if” part is obvious. We prove the “if” part. Let u = (u1,...,un) € P(I)
and 1 < k <n with pg < py,. We claim z#(zy/z,) € I.

Let A = (A1,...,An) € A(I) be a partition that divides p. If A, = p, then w =
2M(xy/x,) € I by assumption and w divides z#(xy,/2,). If Ay < fin, then )z, divides

2t (xg/xy). In both cases, x#(xy/xy,) € I as desired. O

An analogous statement holds for symmetric strongly shifted ideals. We omit the proof
since it is essentially the same as the one for symmetric shifted ideals.

Lemma 2.3. Let I C S be an &,,-fixred monomial ideal. Then I is strongly shifted if and
only if, for every A = (A1,..., ) € A(I) and 1 < k <1 < n with \y < X\, one has
2 Mzg /7)) € 1.
Example 2.4. Let I C k[z1, z2, 23] be the G3-fixed monomial ideal with

A(I) ={(1,1,1),(0,1,2),(0,0,4)}.
The ideal [ is strongly shifted and is minimally generated by the following ten monomials:

2 2 2 2 2 2 4 4 4
123, ZL’Q.’Eg, 152(173, .’Eleg, .’Ell'g, II?1£E2, 1’1.’E2, $1, 5172, .’Eg.

Example 2.5. Let I C k[x1, z9, 23, 24] be the G4-fixed monomial ideal with
A(I) = {(1, 1,2, 2), (07 2,2,2),(0,1,2, 3)}

Then T is shifted but not strongly shifted since (0,1,2,3) € P(I) but (1,1, 1,3) ¢ P(I).
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For a partition A = (A1,...,\,), we define the quantities
p(A) = #{k: Apg < Ay — 1},
r(A) = #{k: A = A}

We also introduce the truncation of the partition A by setting
A<k = (A1, .0, Ag)
for k=1,2,...,n. Let <iex be the total order on Z%; defined by
a=(a1,...,0n) <iex (b1,...,bn) =b
if

(i) |a] < b, or
(ii) |a| = |b| and the leftmost non-zero entry of (a3 — by, ..., a, — by) is positive.

Remark 2.6. Our definition of the order <y is the opposite of the more familiar lexico-
graphic order for monomials (cf. [10, Ch. 2 §2]). This is necessary to ensure compatibility
with our definition of partitions as non-decreasing sequences.

‘We establish another result that will be used in later sections.

Lemma 2.7. Let I be a symmetric shifted ideal. For every u € P(I), there is a unique
A € A(I) such that

(a) X divides u, and
(b) A<pn) = Hgp(n)-

Proof. Let p = (pu1,...,1n) € P(I). Let

A=A, 0) = Igl;l{p € A(I) : p divides u}
and p = p(A). Clearly A satisfies condition (a). We claim that A fulfills also (b), that is
to say, A\p = py for all k < p.

Suppose to the contrary that there is k < p such that Ay < pz. Then w = 2 (zr/x,)
divides z* and, by definition of symmetric shifted ideals, we have w € I. Let X = part(w).
Observe that )\ is constructed from A by replacing the part A, with A\, — 1, the part
Ar with Ag 4+ 1, and rearranging in non-decreasing order. By definition of » = r(X), the
partition A has r parts equal to A,,. Now suppose that X’ = X\. Then )\ also has r parts
equal to A, so we must have \p, + 1 = A, or A\ = A, — 1. However, the definition
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of p = p()\) implies that Ay < A, — 1. We deduce that X # A. Then )\ divides u by
Lemma 2.1 and there is a p € A(I) that divides A’ € P(I). However, such a p satisfies
p <lex A <lex A, contradicting the minimality of A.

Next, we prove uniqueness. Suppose that A\, \' € A(I) satisfy conditions (a) and (b).
We prove A = . Let p = p(\) and p’ = p(\'). We may assume p < p’. By condition (b),
A and N are of the form

A= 1y gy An = 1y A — 1 A A)
and
N = (s ey Py Popd oy Bty Ay — Loy N — 1N L AD).
Suppose p < p’. Since A divides u, we have
pe = e =M — 1 forp <k <p/,
and
A= 1>y =\, — 1

But these inequalities say that A properly divides X', contradicting A, \' € A(I). Hence
p = p’. However, given the shape of A and X, p = p’ implies that either A divides X’ or
A divides A. Since A, X' € A(I), A must be equal to X' as desired. O

3. Symmetric shifted ideals have linear quotients

A monomial ideal I C S is said to have linear quotients if there is an order uq, ..., us
of monomials in G(I) such that the colon ideal

(u17"'7uk—1) FUE

is generated by variables for all k = 2,3,...,s. A nice consequence of having linear
quotients is that we can easily compute the graded Betti numbers from the above colon
ideals. Recall that, for a graded ideal I C S, graded Betti numbers of I are the numbers
B;,;(I) = dimy Tor;(I,k);. Herzog and Takayama produced a formula for the bigraded
Poincaré series of a monomial ideal with linear quotients [22, Corollary 1.6]:

Theorem 3.1. With the same notation as above,
|G(<U1, e ,ukfl) : uk)|
Biiri(D) = > ; :
deg(ur)=j

Next, we present our first main result about symmetric shifted ideals.
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Theorem 3.2. Symmetric shifted ideals have linear quotients.

Using the same notation as in Section 2, we define a total order on the set of monomials
in S. Let \,u € P,,. For distinct monomials v = 7(2*) and v = o(2) in S, we define
v < uif

(i) p <iex A, O
(ii) p= A and v <jex u.

Note in particular that if v strictly divides u, then v < w.

Proof of Theorem 3.2. Let I C S be a symmetric shifted ideal and fix a monomial
u=o(x*) € G(I) with A = (A1,...,\,) € A(I). Let p = p(\) and r = r(\). Thus, we
have

_ AN A An=1  An—1 An R v
u=0(@%) =Tl T () Talpr1) T Talner) Toln—r+1) " Taln):

We also define the quantity
max(u) = max{o(k) : \y = A\p} = max{o(n —r+1),...,0(n)}.
Let
J=@weGI):v=<u).
We claim that
Jiu=(To1),  Top) + (o) : P+ 1<k <n—r, o(k) <max(u)). (3.1)

This proves that I has linear quotients.

We prove the containment “27” holds in (3.1). We first prove To(k)U € Jforl <k<p.
In this case we have A\ < A, — 1 < \,. Together with the fact that w € I, this implies
a2y /) € I because I is shifted. It follows that the monomial

W = u(To(k) /To(n) = 0(2(Xk/20))

is also in I because I is &,-fixed. Reasoning as in the existence part of Lemma 2.7, we
have part(w) <ex A, 50 w < u. This implies w € J. Therefore we have v, (xyu = T5m)w €
J.

Next we prove z,(yu € J whenever p+1 < k <n —r and o(k) < max(u). In this
case, the monomial w = u(2s(x)/Tmax(u)) € I is obtained from u by permuting variables
so part(w) = A. However, o(k) < max(u) implies w <jex u. Again we have w < u and
W € J, S0 Ty(k)U = Tax(u)W € J as desired.
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We prove the containment “C” holds in (3.1). Let z € S be a monomial not divisible
by any variable in the set

{1y, 2o} U{Tomy i p+1 < E<n—r, o(k) < max(u)}.

We can write zu as

Ap bp+1 br—r br—rt1 b (32)

o) Tolpt1) T z Ty

A
U= ‘rotl) T o(n—r)Yo(n—r+1)

where b; > \; > A\, —1lforalli >p+1land b, =X, —1forall p+1<i<n—r with
o (i) < max(u). We must prove that zu ¢ J.
Assume, by contradiction, that zu € J. By Equation (3.2), we have that:

(a) A divides part(zu), and
(b) A<p = part(zu)<p

Since A = part(u) € A(I), Lemma 2.7 guarantees that A is the unique partition in A([7)
satisfying properties (a) and (b). Now define the ideal

J' = (v e G): part(v) <jex A).

Note that J' is &,-fixed and shifted because I is. Moreover A(J') C A(I) and X €
A(I)\ A(J'). Hence, zu ¢ J' by Lemma 2.7.

Since zu € J, there is a monomial w € G(J) that divides zu. Because zu ¢ J', we
deduce that w ¢ G(J') so part(w) Zjex A. At the same time, w € G(J) gives w < u, so
part(w) <jex A. This forces part(w) = ), therefore w = 7(z*) for some 7 € &,,. More
explicitly, w is of the form

D PO VR VA D VIt T W oA
W= Ty T Tty T Trlnert1) T Tr(n)-

Comparing with Equation (3.2), we get
{e(1),...,o(p)} ={r1),...,7(p)} (3.3)

Observe that A\,-1(;) and A-1(;) are the exponents of z, in u = o(z?) and w = 7(2),
respectively. If Aj—1(x) = Ar-1(y) for all 1 < k < n, then u = w, which contradicts w < u.
Therefore it makes sense to define

! = min{k . )\T—l(k.) 7& /\(.,71(16)}7

and to write £ = o(q) for some 1 < ¢ < n. By Equation (3.3), we have

{/\o l(f)v T—1( }_{A }
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Table 1
Linear quotients of a symmetric shifted ideal.
i u; Ii—q1: (ug) max(u;) i u; Ii—q1: (uy) max(u;)
1 xfxgacg:u; - 2 18 :vfxg:u; (1,23, 4) 2
2 xfxgx%:u (x2) 3 19 ;foQacg (1,22, 4) 3
3 zfmgmgzi (2, x3) 4 20 rfzzzi (1,22, 3) 4
4 z1m§m§z4 (z1) 3 21 mf,rgzél (1,22, 4) 3
5 zlmSZ3zi (1, x3) 4 22 mfz;;zi (z1,x2,3) 4
6 zlmgmgzi (1, z2) 4 23 rlzgzg (1, 24) 2
7 ziwiad (x4) 3 24 mazdzl  (z1,x3) 2
8 ziwia] (x3) 4 25  mizizh  (z1,x2,74) 3
9 z3wia] (x2) 4 26 mizizs  (z1,x0,3) 4
10 zizia? (z1) 4 27wzl (z1,x2) 3
11 28z3as (x3,x4) 1 28  wmizizs  (z1,x0,m3) 4
12 :1:?1:%1‘4 (z3,x4) 1 29 zgzgml (z1,x4) 2
13 2¥zoal (22, x4) 1 30  axdzszzi  (z1,x3) 2
14 :r?a:g;ri (2, x3) 1 31 z%:vg;ml (z1, 2, T4a) 3
15 m?zgfm (2, 24) 1 32 IgIgZi (z1,22,23) 4
16 2dzza? (z2, z3) 1 33 wmozdzl  (z1,x2) 3
17 22adzs (z1,23,24) 2 34 Igzgzi (z1,22,23) 4

Since w = 7(2*) <jex o(2) = u by the definition of <, we actually have Ar=1(e) = A
and Ay = Ag-1(p) = Ay — 1. Also, since w # u, there is m > ¢ such that A;-1¢,) = Ay — 1
and A\,-1(;) = An. This shows that

o(q) =t <m=o(c"(m)) < max(u),

and therefore b, = A,, — 1. However, this contradicts the fact that w divides zu since the
exponent of zy in w is A, but the exponent of z, = To(q) In 2zu is by =X, —1. O

Example 3.3. Let I C k[x1,zo, 23, 24] be the symmetric shifted ideal with
A(I) = {(17 17 27 2)7 (O’ 27 27 2)7 (0’ 17 27 3)}'

The ideal I has 34 generators. We arrange them in an increasing sequence using the order
< described at the beginning of this section, and we denote them uq, ..., u34. We also set
Ii1 = (u1,...,u;—1) for 2 < i < 34. Table 1 shows all the linear quotients I;_1 : (u;) of
the ideal I in the given order of the generators. All computations were performed using
Macaulay?2 [20].

Using these results together with Theorem 3.2, we can give a formula for graded
Betti numbers of symmetric shifted ideals. For a monomial u = o(z*), recall our earlier
notations:
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p(A) =4k : A < A — 1},
r(A) = #{k: A = A},
max(u) = max{o(k) : \p = A\n},

p

r

and let
Clu) = {o)s- o)} U{Zom) : p+1 <k <n—r, o(k) < max(u)}.
The next result follows from Theorem 3.1 and Equation (3.1).

Corollary 3.4. Let I be a symmetric shifted ideal. Then for all i,j one has
|C(u)]
o= > (M),
uweG(I), degu=j

Example 3.5. Consider the ideal I of Example 3.3. Using Corollary 3.4 and the informa-
tion in Table 1, we obtain the following Betti table for I.

o 1 2 3
total: 34 72 51 12
6: 34 72 51 12

4. Star configurations

In this section, we apply the results in the previous section to symbolic powers of star
configurations. Recall that I, . is the monomial ideal of S =k|x1, ..., z,] defined by

In,c = m (xh?"'?xic)

101 < <ie<n

and the m-th symbolic power of I, . is given by

17(1?2) = m (xilv"~7xic)m- (41)

101 <<
We will show that L(fz) is actually a symmetric strongly shifted ideal.
Proposition 4.1. For every integer m > 1, the ideal L(:Z) is &, -fized. Moreover

P(IS™M)y = {X € Py |Age| = m},
AI™) = {XNE€ Pyt [Age| =m, Vi > ¢ N = A}

Proof. Equation (4.1) immediately implies that IT(LWZ is &,-fixed because each element
of &,, acts by permuting the primary components of the ideal.
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1,2,.2,2 2 2 1,1,.3 .3 3 3 0,2,.3 .3 3 3
Ty Ty Tz Ty Ty Tg Ty Ty Tz Ty Ty T Ty Ty Tz Ty Ty Tg

0.1 .4 4 _4 _4 0,0,5,.5,5_5
Ty Ty Tz Ty Ty Tg Ty Ty Tz Ty Ty Tg

(5)
6,3

Fig. 1. Partitions and monomials generating Ig 3.

If 2t € IT(LT:), then 2* € (z1,...,2.)™, which gives |[A<.| = m. Conversely, if [A\¢.| > m,
then for all 1 <43 < -+ <i. <nandall 1 <j<e¢ wehave \j < A;; because A is a
partition. This implies

o

c

Aiy 2 ) N =] = m.

Jj=1 Jj=1

Hence, 2* € (x;,,...,2;,)™. Thus, the statement about P(L(f,ré)) is proved.

Now the partition A = (A1,...,\n) is in A(ZY%) if and only if A € P(IS%)) and the
partition obtained from A by decreasing any A; is not in P(I,(fz)). This forces |A\¢.| =m
andVi>c )\, =A.. O

Example 4.2. Fig. 1 illustrates generators of IT(L?Z) when n =6, c =3 and m = 5.

We now discuss the main result of this section.

Theorem 4.3. For every integer m > 1, the ideal I,(ffz) is strongly shifted.

Proof. Let A = (A1,..., ) € P(L(]fé)) and 1 < k < I < n with Ay < X Define
v = 2M(ay/7;) and p = part(v). We have |u<.| > |A<c|. Thus, by Proposition 4.1, we

get |u<e| >mand v e L({fé). O

Using Corollary 3.4, we can derive several consequences for the Betti tables of the
ideals 1.

Corollary 4.4.

(1) The degree j strand in the Betti table of Ir(:fé) is monzero only when j belongs to
{m+kn—c):k=1,2,...,m}, that s,
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ﬂ”ﬂ(l(m)) 0 foralli>0andj¢{m+kin—c):k=1,2,...,m}.

(2) Foralli>0 and k > g + 1, one has

m c—1
Bi,i+m+k(n—c) (Ir(z,c)) - ( i )ﬂo m+k(n— C)(Ir(L c))

In particular, Bi,i+m+k(n_c)(l,%)) only depends on the number of generators of L(ffz)

of degree m + k(n — ¢) when k > 3 + 1.
(8) The Castelnuovo-Mumford regularity of Ir(bfré) is m(1+mn — ¢). Moreover, if m > 2,
then the bottom row in the Betti table of I,(ffcl) s given by the following formula:

-1
/Bi,i+m(1+n—c) (I,(:Z)) = (Cﬁ 1) <C ; ) for alli > 0.

(4) If m < ¢, then

i1
5i,i+m+n—c(f7(ﬁz))=(cn -><m—|—n ,C—H > for alli >0

m—1 1

5) All nonzero rows in the Betti table o L(l C) have length ¢ — 1, with the exception o
, g
the top one.

Proof. It follows from Proposition 4.1, that any element in G (L(fz)) has degree m+k(n—
¢) with 1 < k < m. Then Corollary 3.4 proves (1).

Next we prove (2) and (3). Let u € G(L(LT,Z)) be a monomial of degree greater than or
equal to m+ (m/2+1)(n—c). Corollary 3.4 says that, to prove (2), it is enough to show
that |C(u)| = ¢ — 1. By Proposition 4.1, u must be a monomial of the form

A
u=o(x 1\1"'3301133A$c+1 mi\tc)

with Ay +---+A.=m, A\c 2 (m/2+1) and 0 € &,,. This says A1 <m/2—-1< A —2

and therefore C(u) = {Z(1), .-+, To(c—1)}, as desired. Then statement (3) follows from
(2) together with the fact that the monomials of degree m(1 4+ m — ¢) in G(Iy(f,’é)) are
precisely those in the set {o(z'x - x]') 1 0 € &, }.

To prove (4), let m < c. It is easy to see that the minimum degree of monomials in
G(I,(;'Z)) is m + n — c. Also, the monomials of degree m +n —c in G( ) are precisely
those in the set

X ={0(Teemt1Te—mi2---Tn) : 0 € Sy}

The monomials in X are solely responsible for the top row in the Betti table of Ir(fﬁ).

Note that X is the set of all squarefree monomials of degree m+n—c. The Betti numbers
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of the ideal generated by X can be found in [15, Thm. 2.1], leading to the formula in
(4).

Finally, to see (5), let ¢ be the quotient of m divided by c¢. Observe that for every
g+ 1 < k < m, there is a monomial u; € G(I,(me)) with deg(ug) = m + k(n — ¢) of the
form

uk — xi\l .. mi\:fllxlz..mk
with A\; < -+ < Ae—1 < k— 1. Then C(ug) = {z1,...,z.—1} and, by Corollary 3.4, row
m + k(n — ¢) in the Betti table of IT(LT,Z) has length c—1. O

The previous corollary immediately gives a closed formula for the Betti numbers of
symbolic squares of star configurations. Note that this result was first established in [17,
Theorem 3.2]. Our assumption about codimension eliminates degenerate cases where
some minimal generators disappear along with corresponding rows of the Betti table.

Corollary 4.5. If ¢ > 2, then

(cn z)(n C+1+1)’ j:n_c+2’

3

"), j=2(n—c+1).

Using Corollary 3.4, we can even give a closed formula for the Betti numbers of the

Biiri (1) = {

symbolic cube of star configurations.

Corollary 4.6. If ¢ > 3, then

(e5—a) (" CT“’)» j=n—c+3,
B?,H-](I'f(ig) = (cfQ) (( ) n —c+ 1)(021)) ’ ] = 2(” —c+ 1) + 1,
()3, j=3(n—c+1).

Proof. The top and bottom row of the Betti table are computed as in Corollary 4.4.

By Proposition 4.1, the minimal generators of IT(LSE with degree 2(n —c+ 1) 4+ 1 are

the ones in the set
{o(zerala?, - 2l) 0 € By}
In particular, these are monomials u = o(z*) with
A=(0,...,0,1,2,...,2),
——
c—2 n—c+1

and p(A) = c—2,r(A\) =n—c+1. We also have n — ¢+ 1 < max(u) < n. It follows that
|C(u)] =c—2if o(c—1) > max(u), and |C(u)] = c—1if o(c — 1) < max(u). We count

how many monomials we have in each case.



J. Biermann et al. / Journal of Algebra 560 (2020) 312-342 327

To produce a monomial u with |C'(u)| = ¢ — 2, we can first choose which variables
have degree zero. Among the remaining variables, the single one having degree one must
appear last. This can be accomplished in (cfZ) ways.

To produce a monomial v with |C(u)] = ¢ — 1, we can first choose which variables
have degree zero. Next we can choose any one the remaining variables except the last

one to appear with degree one. This can be accomplished in (CL) (n—c+1) ways.

The statement now follows from Corollary 3.4. O
Example 4.7. The Betti table of Iéif is

0 1 2 3

total: 345 980 936 300

8: 9 8

9:

10:

11:

12: . . . .

13: 252 720 684 216

14: . .
15:
16:
17: . . . .
18: 84 252 252 &4

Remark 4.8. It follows immediately from Corollary 4.6 that the third symbolic defect of
Incis (") (n— c+2). We refer the reader to [16] for the definition of symbolic defect
and [16, Corollary 3.17] for a previously known bound.

Remark 4.9. The ideal I, ,,_1 can be thought of as the defining ideal of the set of the n
points

e1=101:0:0:...:0,e2=100:1:0:...:0],...,e, =[0:0:0:...:1] € P "
where Pﬂ?_l denotes the (n — 1)-dimensional projective space over k. Similarly, I,(:';)_l

can be thought of as the ideal defining the fat point scheme me; +mes + - - - + me,. For
an introduction to fat points, we invite the reader to consult [8]. If {py,...,p,} C P!
is a set of n points in general linear position, then there is a linear automorphism of
]P)E?f1 taking e; to p;. Algebraically, this corresponds to an invertible linear change of
coordinates that preserves Betti numbers. In particular, it follows that the results of
Corollary 4.4 provide information about the Betti numbers of the fat point scheme
mp1 + mps + -+ + mp, in }P’ﬂg_l. For more complete information, the Betti num-
bers of this fat point scheme can be computed by combining Proposition 4.1 and our
later Corollary 5.7. We are grateful to Brian Harbourne for clarifying this connec-

tion.
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5. Decompositions of symmetric shifted ideals

For r < n, let Jj,), be the ideal of S = k[xy,...,2,] generated by all squarefree
monomials of degree r. The ideal J,), is actually the same as the ideal I, 41—, in the
previous section, but we introduce a new notation to simplify the proofs in Sections 5 and
6. Note that Jp,), is &,-fixed and shifted. Its equivariant resolution has been described
in [15, Theorem 4.11]. In the following two sections we extend this result to an arbitrary
symmetric shifted ideal I (see Proposition 6.1). This will be done in two steps. In this
section, we establish a coarse decomposition of Tor;(I,k);1+4 (see Theorem 5.5). This will
be refined in the next section.

We need some further notation. Let Mon(S) be the set of all monomials in S. For
monomial ideals I D J of S, we write

Mon(I/J) ={u e Mon(S):uecl, u¢J}.
When both I and J are &,,-fixed, we write
PI/J)={ eP,: AeP), \¢ P(J)}.
We note that Mon(I/J) is a k-basis of I/J.
Let A = (A1,...,\,) be a partition and p = p()). The following S-module N* plays
an important role in our results:

N* = (o(2):0€6,)/(o(ziz?) : 1 <i<p,o€B,).

We start by discussing some basic properties of the module N*. For A = {i1,...,ix} C [n]
with i; < -+ < i, we write x4 = x;, -+ -1, , A = [n]\ A, &4 for the set of permutations

on A, Sa = Kk[xiy,...,25], ma = (24,...,24,) C Sa the maximal ideal of Sy, and
Ja,r C Sa the ideal of Sy generated by all squarefree monomials of degree  in S4. For
a = (a1,...,ax), we write as above z% =z --- 7",

We set out to describe Mon(N?) starting with a preliminary example.

Example 5.1. Let A = (0,1,1,2,2,3,3), so p = p(A) = 3 and r = r(\) = 2. In this case,
N* = I/J where

(U(x?x%xéxixgmgx‘;’) 1o €6,),

I

J = (o(virsriziziadal) 0 € G,) + (o(aViaiaiaiadal) 0 € G,).

The monomial zezzrizizdzr3 is an example of a monomial in I but not in J. We can
represent it as m(z4257627)%u where m = zox3 and u = xgwy. This splits the indices of
the variables into two sets: A = {1,2,3} and its complement A = {4,5,6,7}. Note that

m = xifp is in the polynomial ring Sa = k[z1, 22, 23], while u is one of the minimal
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generators of Jz . in Sz = k[z4, x5, 6, 27]. Also, the middle term (2)? = (z4752677)>

has exponent A7 — 1. Now notice that we can replace m with any permutation o(:rfp)

where 0 € G 4 and still obtain a monomial in I and not in J; for example,
2.2 3 3 2
X102 5 xexs = (T122) (Taxsx627) U,

Similarly, we can replace u by another generator (in fact, any monomial) of Jz, and
still obtain a monomial in I and not in J; for example,
2.3.2 3 2
ToxaxiTrrgxs = m(TaTsTex7)” (T527),
2.3 4.5 2 2
ToX3T TrTexs = M(X4T5Tex7)” (X5TeT7).
In addition, we could operate the same reasoning on any monomial obtained by per-
muting the variables in xozzzir2zixd, leading to a similar split but with a different

choice of index set A. As we illustrate next, all elements of Mon(N*) can be obtained
by combining these observations.

Lemma 5.2. Let A = (A1,...,\,) be a partition, p = p(A) and r = r(\). Then

Mon(NY) = |4 B i) e e Mon(Jy,)} | (5.1)
ACn], |Al=p

~ AL
meS a-z 5P

and
P(N)\) = {(/\17 o w)‘pvuzﬂrlv s ,,U,n) EPy: Hp+1 = Ay — ]-7 Hn—r41 = )‘n} (52)

Proof. Equation (5.2) easily follows from (5.1). Hence, we only need to show (5.1).
We first prove the inclusion “C” Let u € Mon(N*). Then there is 0 € &,, such that

o(x?) = xizl) . xﬁ?n) divides u. We write u = m‘;l(l) - xg(n) Since w is not contained
in the ideal (o(7;2*) : 1 < i < p,0 € &,), we have a; = Ay,...,a, = . Also, since

o(x*) divides u, ap = A\, — 1 for p <k <n—r,and a, = \, for k > n —r+ 1. These
inequalities imply that, by setting A = {o(1),...,0(p)},

A1 n—
U= J(xl T f;))\p)(xZ)/\ 1(xa(n—r+1) T xa(ﬂ))“’

for some w € Mon(S%), which shows that u is contained in the right hand side of (5.1).
Next, we prove the inclusion “2” in (5.1). Let u = m(25)* 1w with m € &4 - ngp
and w € MOH(JZ,T)~ By taking a permutation 7 € &,, appropriately,

Ap An—1 Ap—1

T(U) — xi\l V. xppxpzf-l oo ‘rn o (53)

with a € Mon(Jm’T). Moreover, we may choose 7 so that « is divisible by z,,— 41 - - - 2.

Then z* divides 7(u) and u € (o(2*) : 0 € &,,). We claim that u is not contained in
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the ideal J = (o(7;2*) : 1 <i < p,0 € &,,). We already see in (5.3) that if u = type(u)
then p is of the form

H= ()‘17~-~7>\p7,up+17---7,un)'

Observe that
A()={A+e:1<i<pAt+e €Pyl,

where e; is the i-th standard basis vector of Z™. Since no element in A(J) divides u, by
Lemma 2.1 the monomial u € &,, - " is not contained in J.

We finally show that the right-hand side of (5.1) is indeed a disjoint union. To show
this, it is enough to prove that for each u = z{* - - - % that is contained in the right-hand
side of (5.1) there is a unique subset A C [n] with |[A] =p and m € G4 -xf” such that
u = ma with o € S7. Indeed, since [{k : ar, < A\, — 1}| = p by the shape of monomials
in the right-hand side of (5.1), such a set A must be equal to the set {k : ar < A\, — 1},
and a monomial m must be [[,. 4 z{*. O

Next, we decompose N* into smaller modules which have a simpler structure but are

not fixed by the action of &,,. Let A € P,, be a partition, p = p(\) and » = r()\). For
A C [n] with |[A| =pand m € &4 -xf”, we define

A

hN

Nim = <m7’ (1:9”“’“‘”\")) 1T E GZ) / (zimT (z(’\”“"“’/\")) T EGy, i € A) .

Recall that, for X C [n], Jx , is the monomial ideal of Sx generated by all squarefree
monomials of degree r in Sx and my = (x; : i € X) is the maximal ideal of Sx. Since

Otts e ) = O = 1o A — 1 A3 An)
where X, appears r times, Ny, is generated by monomials {m(zz)** ey : T C

A,|T| = r} and every monomial in N;\x,m is divisible by m(z)*»~!. Thus, by the map
f— f/(m(z)*~1), we have an isomorphism

Nﬁ,m > (270 :T CA|T|=7)/(xsxr : T CA|T|=r,i€ A)
= (8/(wi:i € A)) ®s (J5,.5) (5.4)
= Sa/ma @k Jg,

where we consider that the last module is a module over S = 54 ® S3.

Lemma 5.3. Let A € P, be a partition, p = p(A\), r = r(\), A C [n] with |A| = p, and
A<p
me &y-2,°". Then
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(i) Mon(N3 ,,) = {m(z5)* 'u: u € Mon(Jy,)}.
(it) N;\\,m is an S-submodule of N™.
(iii) N* = @ @ Nﬁym (as S-modules).

ACILIAI=D e , 0 <P

Proof. Statement (i) follows from (5.4). To prove (ii), it is enough to show that for any
{j1,---,jr} C A, one has

annyx (m(vg)™ tay, wy,) = (20 € A),
where annps(h) = {f € S: hf = 0} for an S-module M and h € M. The inclusion “>”

is clear from the definition of N ;\Lm‘ To see the inclusion “C”, we must prove that for

))\,,L—l

any monomial v in Sy, m(zx T, -+ xj,u is non-zero in N*, and this follows from

Lemma 5.2.
Statement (iii) follows from (i) and Lemma 5.2. O

Corollary 5.4. The S-modules N,:\x,m and N* have linear resolutions.

Proof. By the isomorphism in (5.4), the tensor product of a minimal graded free resolu-
tion of .Jz ,. and one of S4/my is isomorphic to a minimal graded free resolution of N 2,m~
Since JZ,T and S4/m4 have linear resolutions, the module N gm has a linear resolution.
Then N* also has a linear resolution by Lemma 5.3(iii). O

We now prove the main result of this section.

Theorem 5.5. If I C S is a symmetric shifted ideal, then as k[&,]-modules we have

Tory(Ik)iya™ @)  Tory(N*k).
AEA(D), |A|=d

To prove the above theorem, we first show the following statement.
Lemma 5.6. Let I be a symmetric shifted ideal and A(T) = {\M), ... XD} with A\ <o,
o <lex A Let I¢i, C I be the &, -fized monomial ideal with A(I¢y) = {)\(1), A /\(k)}
fork=1,2,... t. Then, fork=1,2,...,t,
Ip/Ich—1 = N

as S-modules, where I<y = (0).

Proof. Observe that Iy is shifted and

I¢p/Igp—1 = (O’(.I)\(k>) o= Gn) / ((U(x)‘m) o eG,)N ng_1> .
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Since for monomial ideals I, J,J" with I D J and I D J’, we have I/J = I/J’ if and
only if Mon(I/J) = Mon(I/J"), it is enough to prove P(I<y/I<k—1) = P(N’\(k)). Let
AE = (XA, p=p(AF) and r = 7(A®). Then we have

P(I<k/I<k—1) = P(I<k) \ P(I<k-1)
= {1 = (p1,...,1n) € Py : A divides p, \E) = pic,}

= {(Ala-naApa/’ép-i-lv'-'an) €Py: Mp+1 P An -1, Hp—r+1 P An}
:P(N/\(k))

where we use Lemma 2.7 for the third equality and Lemma 5.2 for the last one. O

Proof of Theorem 5.5. Let A(I) = {A\M), ... A®} with A <o -+ <jex A® and let
I<j be as in Lemma 5.6. Then we have the short exact sequence

0 — Tcp1 — Icpy — Icp/Icpr = NM — 0. (5.5)

We prove Tor; (I<k, k) = @le Tori(N’\(l) ,k) using induction on k. Note that by Corol-
lary 5.4 this implies the desired statement.

By the definition of the shifted property, the partition A(") must be a partition of the
form AV = (a,a,...,a,a+1,...,a+ 1). Thus, p(A()) = 0 and

I<1 — (O’(Z‘Ml)) - Gn) _ N)‘(l).

Hence, the assertion holds when k = 1.
Suppose k > 1. Since [A(M| < - -+ < |A?)|, using the inductive hypothesis we get

reg(<p-1) = max{|AD],..., APV} < AB

because N2 is generated in degree |A()| and has a linear resolution by Corollary 5.4.
The short exact sequence in (5.5) induces the exact sequence

(k)

TOI‘i+1(N>\ 7k)i+1+(j71) — TOI‘i(ngfl, ]k)i+j — TOI‘i (ng, k)z+] (56)

— Tor; (N)\(k)

k)i — Tori 1 (I<k—1,K)im14(j+1)-
Let d = |A®)|. By Corollary 5.4,

Tori(N)‘(k)

a]k)i-i-j = 0 fOI‘ j 7& d (57)
Also, since reg(I<k—1) < d,

Tori_l(ng_l,]k)i,lJr(jJrl) =0 fOI‘j = d. (58)
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Then (5.6), (5.7) and (5.8) imply

AR

Tor;(I<k,k)iya = Tori(I<r—1,k)itq @ Tor;(N* ", k)ita

and
Tor;(I<k, k)it+; = Tor;(I<k—1,k)i+; for j #d.
These isomorphisms prove the desired statement. O
Using Theorem 5.5, it is possible to give a closed formula of graded Betti numbers

of a symmetric shifted ideal I in terms of its partition generator A(I). Let A € P, with
Al =d, p=p(A\) and r = r(A). Then by (5.4) we have

Bii+d(NA ) = Bi(Jx, @k (Sa/ma))

> Bi(Jx,)Bi(Sa/ma)

k+l=1

:;_f’:;@(’“*’;‘l)(f;)

where we use the fact that

o= ()0

(see, e.g., [15, Theorem 2.1]). For ¢ = (c1,¢2,...,¢n) € Z, let ¢! = cilep! - ¢, For a
partition A = (Aq,...,A,) with |[A| = d > 0, its type type(c) = (to,t1,-..,tq) is defined
by t; = [{k : Ay = i}|. It is well-known that

n!

(6 -a”| = type(A)!

Hence, by Lemma 5.3(iii)
n !
50 = (1) e V)

= 2 e ) G (7))

Thus, using Theorem 5.5, we obtain the following formula, which may be viewed as a
more explicit version of the formula given in Corollary 3.4.
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Corollary 5.7. If I C S is a symmetric shifted ideal, then
p(A)! n n—p\)\ [T\ +k—1\ (p(\)
Bi,ita(l) = _ P .
' /\EA(I%/\I—d k+zl:i type(A<cpn)! \p(A)) \r(A) + & i z

Example 5.8. Let I = J[(j])r(: ISZLJFPT). Then [ is generated by two partitions A =

(on=r=1 171 and p = (0"7",27), where a’ denotes (a,a,...,a) € Z'. In this case,
p(A) =0,7(\) =r+1, p(u) =n—r and r(u) = r. Corollary 5.7 says

Bisitr+1(1) = k%;%:(:;) <r+Tll+ k:) <T+:_ 1) (?) - (r+rll+i) <T+§_ 1)

and

etn= 2 0 )TN 00T

This recovers Corollary 4.5.

6. Equivariant Betti numbers

While Corollary 5.7 gives a closed formula for the graded Betti numbers of symmetric
shifted ideals, the formula is not simple. To understand these numbers better, we refine
the decomposition of Tor;(7,k) given in Theorem 5.5. In this section, we give an explicit
description of the k[&,,]-module structure of Tor;(I,k) for a symmetric shifted ideal I by
using Theorem 5.5, and explain how it helps to determine Betti numbers of these ideals
by examples. We refer the reader to [33] for some basics on representation theory, such
as induced representations and Specht modules.

For a monomial m € Su, let M4(m) = spany{o(m) : 0 € G4}. We denote by
Indg:;’&(K X K') the induced representation of the tensor product of a k[S]-module
K and a k[&;]-module K'. Let I be a symmetric shifted ideal. By Theorem 5.5, we know
Tor;(1,k) = @rencn Tor;(N*, k). Thus, to understand the k[&,,]-module structure of
Tor,(I,k) it is enough to consider the k[&,,]-module structure of Tor;(N?*, k).

Let A € P,,, p = p(A) and r = r(\). For each subset A C [n] with |A] = p, fix a
permutation p4 € &,, such that p4([p]) = A. The set {ps € &, : A C [n],|A] =p} isa
set of representatives of &,,/(&, x &,_p).

By Lemma 5.3(iii) and (5.4), we have an isomorphism (up to shift of degrees)

N = @ @ le\,m

AC[), [A=P e, 0P

Il

P P (m(Sa/ma) @ (23) " 5,)

AC[nl 1AI=p \ e 2P
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D

[(Ma)™) @ (Sa/mn)) @5 ()™, |

AcC[n], |Al=p

o PA [(./\/l[p]( ") ®k (S[p /m )) ®K ((xp+1 o ‘xn))\n_l‘]m,r”
AC[n], [Al=p

= Indgzxenw [(M[p ( ) ®x Spp) /M) ) (pg1 - x"))\”_l‘]mﬂ’)}

= Indg e, [(M[p] (:c[p] ) @k Spp) /m[p) X Jo T} : (6.1)

where /\/l[p]( )®k Sip)/myy =k if p = 0. Hence, we conclude that N* is isomorphic to
the module (6. ) as k[&,,]-modules. Note that as an Sj,-module, M ( )®]k Sip)/Mp)

is the direct sum of |&,, - x[p]q’| copies of Sp,) /mp,). Recall that, for an SA—module N and
an Sy-module M, there is an isomorphism

Tor} (N @ M, k) = @ Torg*(N,k) @ Tor{ ™ (M, k).
k+l=i

Then the decomposition in (6.1) shows that we have an isomorphism of k[&,]-modules

Tor] (N*, k) = (D [Indg:x(Sn_p (M[p( ") @ Tor,” (S [pJ/mm))

fotl=i
X (Tor, ™ (I k)
! [p],r :

Let S* be the Specht module associated to the partition A = (Aq, ... ,Ap) with Ay >0
(see, e.g., [33, §2.3] or [15, §3]). For an integer [ > p, set

U =Indg! s,  SPRSEP.
Galetto [15, Corollary 4.12] proved
o™ (i ) 22 UHT) (6.2)
as k[&,,]-modules. This says

S
or,; (v) (S[p] /m[p], ) X TOI‘ (J[

T

as k[6, x &,,_,]-modules. Combining all these facts, we get the following.

Proposition 6.1. Let A € P,,, p = p(A) and r =r(N). As k[&,,]-modules,

Tor; (N, k) = @ (Ind? SIS (M[p]( T ) Ok OAS )) &Uh r))
k+l=1
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We note that M(z?) is isomorphic to a k[&,,]-module known as a permutation module
[33, §2.1].

Theorem 6.2. Let I be a symmetric shifted ideal. Then as kK[S,]-modules

Tori(l, k)i+a = EB EB ( dgnu)xgn POV (M[p(’\)]( [P(A)] ) ®x U ) X Uv(zl pr((/\)\))> '

NEA(T) kHl=i
|A|=d

In the rest of this section, we explain how Theorem 6.2 is useful to write down Betti
numbers of symmetric shifted ideals. To do this, we identify S* with the Ferrers diagram
corresponding to partition A. Also, for simplicity, we write

Inngxs NXM=NKXM and Indg”XG VK §(n—p) — Nip.

By Theorem 6.2, the k[&,,]-module structure of Tor(N*, k) only depends on p()),r(A)
and Agp(n). We write

info(A) = (p(A), 7(A), Acp(n))-

Example 6.3. Let I = Jp,), C k[z1,...,7,] be the monomial ideal generated by all
squarefree monomials of degree r. As we already mentioned in (6.2), we have

Tor, (I,k) = U

for all <. Here we check that our formula in Theorem 6.2 coincides with this. In this case,
A(I) = {(0"",1")}. Let A = (0™ ",1"). Then since info(\) = (0, r,0), we have

r(\ i
@ (M[p()\)}(x)\gp(x)) U((l)\))) U(l ( )) Uﬁl ,T)
k+1=1i

and Theorem 6.2 yields

Tor;(I,k) = Tor;(N*, k) = U ™).
Graded Betti numbers of an S-module N are often presented by a Betti table, i.e.,
the table whose (4, j)-th entry is £ i1; (V).
For a module N* and a symmetric shifted ideal, we present their graded Betti numbers
by the table whose (i, j)-th entry is the k[&,,]-module given in Theorem 6.2. We call such
table an equivariant Betti table.
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For example, the equivariant Betti table of Ig 3 is

| o 1 2 3

3| [T he HTTTG []

[

Example 6.4. Let [ = J[(j])r be the second symbolic power of the squarefree Veronese
ideal with n > r + 1. Then A(I) = {\, u}, where A = (0"~"~1, 17"1) and p = (0"~",27).
Using info(\) = (0,7 + 1,0) and info(u) = (n — 7,7, (0"~")), we obtain

Tor; (NA, ]k) o~ UT(LIi,’r‘+1)
and

Tor (V8 2 @ (Mg ™) 0 U2 mO0) = U0 U0 = U1E),,
k+l=1

The equivariant Betti table of N* and N# when n = 6 and r = 3 are:

N \ 0 1 2
4 6 []
T he
[ 1]
NH \ 0 1 2 3
6 | (© O ( )
(T3)T6 ( T3)T6 HTS 6 @
6

The equivariant Betti table of I is given by the sum of the two tables above as follows:

N — Hﬁ“ : 1]
o o0 G (3,) ]

6
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Example 6.5. Let [ = L({Q’Z be the third symbolic power of the squarefree Veronese ideal
with n > r +2. Then A(I) = {\, i, p} with A = (0"="=21"+2) 1 = (0"~"=11,2"),p =
(0", 3"). Using that info(\) = (0,7+2,0),info(u) = (n—r—1,r,(0"~"~1)) and info(p) =
(n—r,r, (0" 7)), we have

Tori (N)\, k) o~ U7(7(11,T+2)

~ n—r—1 ]_k 11)7
Tor; (N*, k) = @ (Mpp—p—1] (0 ) ® Ur(L—'r)-—l) X U’f(‘-‘rl )
ktl=i

1t r 11t 1,r
= (Ur(kiq X Ur(+)1) EB (Ur(hrl X Ur(+1)) )
Tory(N?,%) 2 @D Mpu-n(@@ ) e UE)RUS =) 1 U0 = U ).

k+l=i

The equivariant Betti table of I is the sum of the equivariant Betti table of N*, N# and
NP?. The following tables are the equivariant Betti tables of these three modules when
n==6and r=3.

Do XL h, [he XTIy H XL hy

D1a ;éjj Che &@Bjj m

NP0 1 2 3
0 | O o)y (gg)w ]
16

Example 6.6. Let [ = (z1,...,2,)% C k[z1,...,2,] with n > 3. Then A(I) = {\, u, p}
with A = (0"73,1%),u = (0"72,1,2),p = (0"~} 3). A computation similar to Exam-
ple 6.6 shows that the equivariant Betti tables of N*, N* and N” are
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N> 0 1 2 e n—2 n—1

3 |00k Gy o O u

NH 0 1 2 n—2 n—1
D2 o [hy_o Ko H Xl - Rk
tn—2 :
3 (S5) (&5) )
Drp_go X LhhoX A I [IX
=2 H =2 H HTz H
tn—2
NP 0 1 2 n—1
3 0) n— n D n— n ( ) e
@rn—1)tn Cha-1)r HTTH . H
DTn

Example 6.7. Let I = (I, 2)? with n > 4. Then A(I) = {\, u, p} with
)\ — (01’1,—47 14)7/1/ — (OTL—.?)7 127 2)’ p — (0n—27 22)
and

Tor;(N*, k) = U,

Tory(N*,k) = @0 (M=) @U,ga’“;) = Ut
k=i

= (Ué{% X U§1>) ED (Ug:) X U§12)> @ (U,(ff;) - U§13)> |

1i

O ) -

Tor;(N*, k) = U) ® U
7. Other considerations

7.1. Weakly polymatroidal ideals

Our definition of symmetric shifted ideals is inspired by stable monomial ideals, which
also have linear quotients (see [21, §7]), but almost all stable monomial ideals are not
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fixed by an action of the symmetric group. Besides stable monomial ideals, another
famous class of monomial ideals which have linear quotients are (weakly) polymatroidal
ideals (see [21, §12] for more details). A monomial ideal I C S is said to be weakly
polymatroidal if for any two monomials u = 2z ---z% and v = 2% --.zb» € G(I)
such that a; = by,...,a;—1 = b;_1 and a; > b; for some ¢, there is j > ¢ such that
v(ay/xj) € 1.

One may wonder whether L%) is a weakly polymatroidal ideal and the fact that it
has linear quotients follows from the weakly polymatroidal property. The next example

shows this is not the case.

Example 7.1. Consider the ideal I = Ié
that this ideal is generated by the Gg-orbits of the following five monomials

532 which we also studied in Example 4.2. Recall

2.2.92 2 2 3.3.3.3 2.3.3.3 3 4.4 4. 4 5555
TITHLZTITELG, T1T2XZTITETG, THTRTITELG, XT3 Tilg, TalyTodg. (7.1)
Then the two monomials

_ a1 as __ . 7.4.4. 410 _ b b¢ _ ,,5,5.5..5..0,..0
u=u1x]" 25’ = x1Tox3x,w525 and v = x7' - 2P = TITHX3TTE T

are contained in I. Clearly a; > by, but for any j > 1 the monomial v(z1/z;) must
belong to the Gg-orbit of xizrjz2z8. However, the monomial z3xz2z is not divisible

by any monomial listed in (7.1), so I is not weakly polymatroidal.
7.2. Open questions

Finally, we give a few open problems relating to symmetric shifted ideals. We give a
formula for (equivariant) Betti numbers of symmetric shifted ideals, but we could not
construct their minimal graded free resolutions. On the other hand, an explicit &,,-
equivariant minimal graded free resolutions of I, . is constructed in [15].

Problem 7.2. Construct explicit G,,-equivariant minimal graded free resolutions of sym-
metric shifted ideals.

Symmetric shifted ideals give a class of &,-fixed monomial ideals having linear res-
olutions. However, we do not know if there is an &,,-fixed monomial ideal which is not
shifted but has a linear resolution. This prompts the following:

Problem 7.3. Find a combinatorial characterization of &,,-fixed monomial ideals having
linear resolutions.

Remark 7.4. After this paper was posted on arXiv, Claudiu Raicu [31] gave an answer to
Problem 7.3. He proves that if an &,,-fixed monomial ideal has a linear resolution then it
must be a symmetric shifted ideal. In particular, Theorem 3.2 and his result imply that
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an 6,,-fixed monomial ideal has linear quotients if and only if it is a symmetric shifted
ideal.
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