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Unmixed ideal
Complete intersections
Reed—Muller-type codes

1. Introduction

Let K be any field, and let C be a linear code that is the image of some K-linear
map K° — K". Suppose G is the s X n matrix representing this map with respect to
some chosen bases and assume that G has no zero columns. By definition, the minimum
(Hamming) distance of C' is

§(C) == min{wt(v) | ve C\ {0}},

where for any vector w € K™, the weight of w, denoted wt(w), is the number of nonzero
entries in w. More generally, for 1 < r < dimg(C), the r-th generalized Hamming
distance, denoted 6,(C), is defined as follows. For any subcode, i.e., linear subspace,
D C (' define the support of D to be

X(D) := {i | there exists (x1,...,z,) € D with z; # 0}.
Then the r-th generalized Hamming distance of C is

0n(C) = [ min ) IX(D)]-
The weight hierarchy of C is the sequence (61(C), ..., 0x(C)), where k = dim(C'). Observe
that 61(C) equals the minimum distance §(C). The study of these weights is related
to trellis coding, t-resilient functions, and was motivated by some applications from
cryptography [35]. It is the study of the generalized Hamming weight of a linear code
that motivates our definition of a generalized minimum distance function for any graded
ideal in a polynomial ring [18,20].
If the rank of G is s, then it turns out (see [35]) that

6,(C) = n —hyp,(C), (1.1)

where hyp,.(C), is the maximum number of columns of G that span an (s—r)-dimensional
vector subspace of K*. Moreover, if G also has no proportional columns then the columns
of G determine the coordinates of n (projective) points in P*~1, not all contained in a
hyperplane. Denote this set X = {Py,...,P,} and let [ := I(X) C S := K[ty,...,ts] be
the defining ideal of X. We have:

o the (Krull) dimension of S/I is dim(S/I) = 1, and the degree is deg(S/I) = n;
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o the ideal [ is given by I = p; N ---Np,, where p; is the vanishing ideal of the point
P;, so I is unmixed, each associated prime ideal p; is generated by linear forms, and
I =T

e hyp,(C) = Irglea%{deg(S/(I, F))}, where F, is the set of r-tuples of linear forms of S

that are linearly independent. With this, we can conclude that
3(€) = deg(S/T) ~ ma {dea(S/ (1, F))}.

A similar approach can be taken for projective Reed—Muller-type codes. Let X =
{P1,...,P,} be a finite subset of P*~1. Let [ := I(X) C S = K[t1,...,ts], be the
defining ideal of X. Via a rescaling of the homogeneous coordinates of the points P;
we can assume that the first non-zero coordinate of each P; is 1. Fix a degree d > 1.
Because of the assumption on the coordinates of the P;, there is a well-defined K-linear
map given by the evaluation of the homogeneous polynomials of degree d at each point
in X. This map is given by

evd:Sd*}Kna fH(f(Pl)aaf(Pn))a

where Sy denotes the K-vector space of homogeneous polynomials of S of degree d. The
image of Sy under evy, denoted by Cx(d), is called a projective Reed-Muller-type code of
degree d on X [5,11,15]. The parameters of the linear code Cx(d) are:

o length: |X| = deg(S/I);
o dimension: dimg Cx(d) = Hx(d), the Hilbert function of S/I in degree d;
o r-th generalized Hamming weight: ox(d,r) := 6,(Cx(d)).

By [13, Theorem 4.5] the r-th generalized Hamming weight of a projective Reed—
Muller code is given by

d(d,7) = deg(S/1) — max {deg(S/(L, F)},

where Fy, the set of r-tuples of forms of degree d in S which are linearly independent
over K modulo the ideal I and the maximum is taken to be 0 if Fy, = 0.

As we can see above, the generalized Hamming weights for any linear code can be inter-
preted using the language of commutative algebra. Motivated by the notion of generalized
Hamming weight described above and following [13] we define generalized minimum dis-
tance (GMD) functions for any homogeneous ideal in a polynomial ring. This allows us
to extend the notion of generalized Hamming weights to codes arising from algebraic
schemes, rather than just from reduced sets of points. Another advantage to formulating
the notion of generalized minimum distance in the language of commutative algebra is
that it allows the use of various homological invariants of graded ideals to study the
possible values for these GMD functions.
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Let S = K[t1,...,ts] = ®3 ;54 be a polynomial ring over a field K with the standard
grading and let I # (0) be a graded ideal of S. Given d,r € N, let F4, be the set:

Far ={{f1,-..,fr} CSa | f1,---, f,are linearly independent over K,
(I: (.f17"'7f7“)) #I}a

where f = f + I is the class of f modulo I, and (I: (f1,...,f.) = {g € S| gf; €
I, for all i}. If necessary we denote Fy, by Fq,(I). We denote the degree of S/I by
deg(S/1).

Definition 1.1. Let I # (0) be a graded ideal of S. The function ¢;: Ny x Ny — Z given
by

deg(S/I) — max{deg(S/(I,F)) | F € Fa,} if Far #0,

6r(d,r) :=
1(dr) {deg(S/I) it Fup =0,

is called the generalized minimum distance function of I, or simply the GMD function
of I.

This notion recovers (Proposition 3.14) and refines the algebraic-geometric notion of
degree. If » = 1 one obtains the minimum distance function of I [23]. In this case we
denote d7(d, 1) simply by 07(d) and Fy, by Fya.

The aims of this paper are to study the behavior of d;, to introduce algebraic methods
to estimate this function, and to study the algebraic invariants (minimum distance func-
tion, v-number, regularity, socle degrees) of special ideals that we call Geramita ideals.
Recall that an ideal I C S is called unmized if all its associated primes have the same
height; this notion is sometimes called height unmixed in the literature. We call an ideal
I C S a Geramita ideal if I is an unmixed graded ideal of dimension 1 whose associ-
ated primes are generated by linear forms. Defining ideals of schemes of finite sets of
points in projective space and unmixed monomial ideals of codimension 1 are examples
of Geramita ideals.

The following function is closely related to d; as illustrated in Eq. (1.1).

Definition 1.2. Let I be a graded ideal of S. The function hyp;: Ny x Ny — N, given
by

hyp[(d71"> = {max{deg(S/(I’ F)) ‘ Fe ‘Fd-,T} if -’T'.d,r 7é @a

0 if Fgq, = 0,
is called the hyp function of I.

If r = 1, we denote hyp,;(d, 1) by hyp;(d). Finding upper bounds for hyp;(d,r) is
equivalent to finding lower bounds for é;(d,r). If I(X) is the vanishing ideal of a finite
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set X of reduced projective points, then hypI(X)(d, 1) is the maximum number of points
of X contained in a hypersurface of degree d (see [32, Remarks 2.7 and 3.4]). There is a
similar geometric interpretation for hyp;x(d,r) [13, Lemma 3.4].

To compute d;(d,r) is a difficult problem even when K is a finite field and r = 1.
However, we show that a generalized footprint function, which is more computationally
tractable, gives lower bounds for 07(d,r). Fix a monomial order < on S. Let inL(])
be the initial ideal of I and let A< (I) be the footprint of S/I, consisting of all the
standard monomials of S/I with respect to <. The footprint of S/I is also called the
Grobner éscalier of I. Given integers d,r > 1, let M_ 4, be the set of all subsets M of
A(D)g = A<(I) NSy with r distinct elements such that (in(I): (M)) # in<(1).

Definition 1.3. The generalized footprint function of I, denoted fp;, is the function
fp;: Ny x Ny — Z given by

o, (d.1) = {deg(S/I) — max{deg(S/(ins(I), M))|M € M 4,} if M g, #0,
deg(S/1I) if My ar=0.

If » = 1 one obtains the footprint function of I that was studied in [27] from a
theoretical point of view (see [23,24] for some applications). In this case we denote
fp;(d, 1) simply by fp;(d) and M« 4, by M~ 4. The importance of the footprint function
is that it gives a lower bound on the generalized minimum degree function (Theorem 3.9)
and it is computationally much easier to determine than the generalized minimum degree
function. See the Appendix for scripts that implement these computations.

The content of this paper is as follows. In Section 2 we present some of the results
and terminology that will be needed throughout the paper. In some of our results we
will assume that there exists a linear form h that is regular on S/I, that is, (I: h) =
I. There are wide families of ideals over finite fields that satisfy this hypothesis, e.g.,
vanishing ideals of parameterized codes [29]. Thus our results can be applied to a variety
of Reed-Muller type codes [15], to monomial ideals, and to ideals that satisfy |K| >
deg(S/VT).

In Section 3 we study GMD functions of unmixed graded ideals. The footprint matriz
(fp;(d,r)) and the weight matriz (5;(d,r)) of I are the matrices whose (d, r)-entries are
fp;(d,r) and d;(d, ), respectively. We show that the entries of each row of the weight
matrix form a non-decreasing sequence and that the entries of each column of the weight
matrix form a non-increasing sequence (Theorem 3.9). We also show that fp;(d,r) is a
lower bound for d;(d,r) (Theorem 3.9). This was known when [ is the vanishing ideal
of a finite set of projective points [13, Theorem 4.9].

Let I C S be an unmixed graded ideal whose associated primes are generated by
linear forms. In Section 4 we study the minimum distance functions of these ideals. For
0r(d) = d1(d, 1), the regularity index of §r, denoted reg(dr), is the smallest d > 1 such
that d;(d) = 1. If I is prime, we set reg(d;) = 1. The regularity index of d; is the index
where the value of this numerical function stabilizes (Remark 3.10), named by analogy
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with the regularity index for the Hilbert function of a fat point scheme Z which is the
index where the Hilbert function Hyz of Z stabilizes.

In order to study the behavior of §; we introduce a numerical invariant called the
v-number (Definition 4.1). We give a description for this invariant in Proposition 4.2
that will allow us to compute it using computer algebra systems, e.g. Macaulay2 [16]
(Example 4.3).

Proposition 4.6. Let I C m C S be an unmized graded ideal whose associated primes are
generated by linear forms. Then reg(dr) = v(I).

From the viewpoint of algebraic coding theory it is important to determine reg(dy).
Indeed let X be a set of projective points over a finite field K, let Cx(d) be its corre-
sponding Reed-Muller type code, and let dx(d) be the minimum distance of Cx(d) (see
Section 5), then dx(d) > 2 if and only if 1 < d < reg(d;(x)). Our results give an effective
method—that can be applied to any Reed-Muller type code—to compute the regularity
index of the minimum distance (Corollary 5.6, Example 4.5).

The minimum socle degree s(I) of S/I (Definition 2.7) was used in [32] to ob-
tain homological lower bounds for the minimum distance of a fat point scheme Z
in P*~!. We relate the minimum socle degree, the v-number and the Castelnuovo-
Mumford regularity for Geramita ideals in Theorem 4.10. For radical ideals it is an
open problem whether or not reg(d;) < reg(S/I) [27, Conjecture 4.2]. In dimension 1,
the conjecture is true because of Proposition 4.6 and Theorem 4.10. Moreover, via The-
orem 4.10, we can extend the notion of a Cayley—Bacharach scheme [10] by defining
the notion of a Cayley—Bacharach ideal (Definition 4.14). It turns out that Cayley-
Bacharach ideals are connected to Reed—Muller type codes and to minimum distance
functions.

Letting H; be the Hilbert function of I, we have d;(d) > deg(S/I) — H(d) + 1 for
some d > 1 when I is unmixed of dimension at least 2 (Proposition 4.21). One of our
main results is:

Theorem 4.19. If I C S is a Geramita ideal and there exists h € Sy regular on S/I, then
51(d) < deg(S/1) — Hy(d) +1
for d > 1 or equivalently Hr(d) — 1 < hyp;(d) for d > 1.

This inequality is well known when I is the vanishing ideal of a finite set of pro-
jective points [29, p. 82]. In this case the inequality is called the Singleton bound [33,
Corollary 1.1.65].

Projective Reed—Muller-type codes are studied in Section 5.

The main result of Section 5 shows that the entries of each column of the weight
matrix (dx(d,r)) form a decreasing sequence until they stabilize.
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In particular one recovers the case when X is a set, lying on a projective torus, param-
eterized by a finite set of monomials [12, Theorem 12]. Then we show that dx (d, Hx(d))
is equal to |X| for d > 1 (Corollary 5.7).

In Section 6 we examine minimum distance functions of complete intersection ideals
and show some special cases of the following two conjectures.

Conjecture 6.3. Let X be a finite in P*~1 and suppose that I = I(X) is a complete
intersection generated by fi,..., fe, ¢ = s — 1, with d; = deg(f;), and 2 < d; < diy1 for
all 3.

(a) (Tohaneanu-Van Tuyl [32, Conjecture 4.9]) d7(1) > (dy — 1)dz - - - d,.
(b) (Eisenbud-Green-Harris [8, Conjecture CB10]) If f1,. .., f. are quadratic forms, then
hyp;(d) < 2¢— 2¢=4 for 1 < d < ¢ or equivalently or(d) > 2¢=4 for 1 < d <ec.

We prove part (a) of this conjecture, in a more general setting, when I is equigener-
ated, that is, all minimal homogeneous generators have the same degree (Proposition 6.4,
Remark 6.6). The conjecture also holds for P2 [32, Theorem 4.10] (Corollary 6.5). Ac-
cording to [8], part (b) of this conjecture is true for the following values of d: 1,¢ — 1, ¢.

For all unexplained terminology and additional information we refer to [4,6,26] (for
the theory of Grobner bases, commutative algebra, and Hilbert functions), and [22,33]
(for the theory of error-correcting codes and linear codes).

2. Preliminaries

In this section we present some of the results that will be needed throughout the paper
and introduce some more notation. All results of this section are well-known. To avoid
repetitions, we continue to employ the notations and definitions used in Section 1.

Commutative algebra. Let I # (0) be a graded ideal of S of Krull dimension k. The
Hilbert function of S/I is: Hy(d) := dimg (Sg/I4) for d =0,1,2,..., where Iy = I N Sy.
By a theorem of Hilbert [31, p. 58], there is a unique polynomial P;(z) € Q[z] of degree
k—1 such that H;(d) = P;(d) for d > 0. By convention the degree of the zero polynomial
is —1.

The degree or multiplicity of S/T is the positive integer

(k — D! limg_yoo Hr(d)/d*=1 if k > 1,

deg(S/1) = {dimK(S/I) itk =0.

As usual ht(I) will denote the height of the ideal I. By the dimension of I (resp. S/I)
we mean the Krull dimension of S/I denoted by dim(S/I).
One of the most useful and well-known facts about the degree is its additivity:
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Proposition 2.1. (Additivity of the degree [28, Proposition 2.5]) If I is an ideal of S and
I=qiN0---N4qy is an irredundant primary decomposition, then

deg(S/T)= > deg(S/qy).

ht(q:)=ht(1)

If F C S, the ideal quotient of I with respect to (F) is given by (I: (F)) = {h €
S|hF C I}. An element f of S is called a zero-divisor of S/I—as an S-module—if there
is 0 #£ a € S/I such that fa =0, and f is called regular on S/I if f is not a zero-divisor.
Thus f is a zero-divisor if and only if (I: f) # I. An associated prime of [ is a prime
ideal p of S of the form p = (I: f) for some f in S.

Theorem 2.2. [3/, Lemma 2.1.19, Corollary 2.1.80] If T is an ideal of S and I = q; N
<+« N Gy, 15 an irredundant primary decomposition with rad(q;) = p;, then the set of
zero-divisors Z(S/I) of S/T is equal to | J;" | pi, and p1,. .., pm are the associated primes
of I.

Definition 2.3. If I is a graded ideal of S, the Hilbert series of S/I, denoted Fr(z), is
given by

e}
Fr(z) = ZHI(d)xd, where x is a variable.
d=0

Theorem 2.4. (Hilbert—Serre [31, p. 58]) Let I C S be a graded ideal of dimension k.
Then there is a unique polynomial h(x) € Z[z] such that
h
Fr(z) = _hl@) and h(1) > 0.
x
Remark 2.5. The leading coefficient of the Hilbert polynomial Pr(z) is equal to h(1)/(k—

1)I. Thus h(1) is equal to deg(S/I).

Definition 2.6. Let I C S be a graded ideal. The a-invariant of S/I, denoted a(S/I), is
the degree of Fr(x) as a rational function, that is, a(S/I) = deg(h(x)) — k. If h(z) =
Yo hix', h; € Z, h, # 0, the vector (ho,...,h,) is called the h-vector of S/I.

Definition 2.7. Let I C S be a graded ideal and let F be the minimal graded free
resolution of S/I as an S-module:

F: 0= EPS(—j) == @PS(—h)" =S —8/I-0.
J J

The Castelnuovo—Mumford regularity of S/I (regularity of S/I for short) and the mini-
mum socle degree (s-number for short) of S/I are defined as
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reg(S/I) =max{j —i | b;; # 0} and s(I) =min{j —g | by ; # 0}.
If S/I is Cohen-Macaulay (i.e. g = dim(S) —dim(S/I)) and there is a unique j such that
by.; # 0, then the ring S/I is called level. In particular, a level ring for which the unique
Jj such that by ; # 0 is by ; = 1 is called Gorenstein.

An excellent reference for the regularity of graded ideals is the book of Eisenbud [7].

Definition 2.8. The regularity index of the Hilbert function of S/1, or simply the regularity
index of S/I, denoted ri(S/I), is the least integer n > 0 such that H(d) = P;(d) for
d>n.

The next result is valid over any field; see for instance [34, Theorem 5.6.4].
Theorem 2.9. [10] Let I be a graded ideal with depth(S/I) > 0. The following hold.

(i) If dim(S/I) > 2, then Hy(i) < H(i+ 1) fori > 0.
(ii) If dim(S/I) = 1, then there is an integer r and a constant ¢ such that

1=H;0)<H/(1)<---<Hi(r—=1)< Hi(i)=c fori>r.
Lemma 2.10. Let I C J C S be graded ideals of the same height. The following hold.

(a) [9, Lemma 8] If I and J are unmized, then I = J if and only if deg(S/I) = deg(S/J).
(b) If I C J, then deg(S/I) > deg(S/J).

Proof. (b) Since any associated prime of J/I is an associated prime of S/I, dim(J/I) =
dim(S/I). From the short exact sequence

0—>J/I—=S/IT—S/J—=0

we obtain deg(S/I) = deg(J/I) + deg(S/J). As J/I is not zero, one has deg(S/I) >
deg(S/J). O

Lemma 2.11. [3/, p. 122] Let I C S a graded ideal of height r. If K is infinite and I is
minimally generated by forms of degree p > 1, then there are forms f1,..., fm of degree p
in I such that f1,..., fr is a reqular sequence and I is minimally generated by f1,..., fmn.

The footprint of an ideal. Let < be a monomial order on S and let (0) # I C S be
an ideal. If f is a non-zero polynomial in S, the leading monomial of f is denoted
by inL(f). The initial ideal of I, denoted by in<(I), is the monomial ideal given by

in.(I) = ({in<(f) [ f € I}).
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We will use the following multi-index notation: for a = (a1,...,as) € N¥, set t* :=
7' -+ -t%. A monomial ¢® is called a standard monomial of S/I, with respect to <, if t*
is not in the ideal in(I). A polynomial f is called standard if f # 0 and f is a K-linear
combination of standard monomials. The set of standard monomials, denoted A~([I), is
called the footprint of S/I. The image of the standard polynomials of degree d, under
the canonical map S — S/I, x — T, is equal to Sy/I4, and the image of AL(I) is a
basis of S/I as a K-vector space. This is a classical result of Macaulay (for a modern
approach see [4, Chapter 5]). In particular, if I is graded, then Hy(d) is the number of
standard monomials of degree d.

Lemma 2.12. /3, p. 3] Let I C S be an ideal generated by G = {g1,...,9r}, then

A<(I) € Ax(inz(g1), - - -, in<(gr))-

Lemma 2.13. [13, Lemma 4.7] Let < be a monomial order, let I C S be an ideal, let
F = {f1,...,f-} be a set of polynomial of S of positive degree, and let inL(F) =
{in<(f1),...,in<(fr)} be the set of initial terms of F. If (in<(I): (in<(F))) = in<(I),
then (I: (F))=1.

Let < be a monomial order and let F 4, be the set of all subsets F' = {f1,..., f-}
of Sg such that (I: (F)) # I, f; is a standard polynomial for all i, f,,..., f, are linearly
independent over the field K, and in<(f1),...,inL(f,) are distinct monomials.

The next result is useful for computations with Macaulay2 [16] (see Procedure A.2).

Proposition 2.14. [13, Proposition 4.8] The generalized minimum distance function of I
is given by the following formula

51(d,r) = deg(S/I) — max{deg(S/(I,F)) | F € Fxar} if F<ar#0,
BT degts/n) if Feaw = 0.

An ideal I C S is called radical if I is equal to its radical. The radical of I is denoted

by V1.

Lemma 2.15. [13, Lemma 3.3] Let I C S be a radical unmized graded ideal. If F =
{fi,.-., fr} is a set of homogeneous polynomials of S\ {0}, (I: (F)) # I, and A is the
set of all associated primes of S/I that contain F, then ht(I) = ht(I, F), A+# 0, and

deg(S/(I,F)) = > deg(S/p).

peA

3. Generalized minimum distance function of a graded ideal

In this section we study the generalized minimum distance function of a graded ideal.
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Part (c) of the next lemma was known for vanishing ideals and part (b) for unmixed
radical ideals [13, Proposition 3.5, Lemma 4.1].

Lemma 3.1. Let I C S be an unmized graded ideal, let < be a monomial order, and let
F be a finite set of homogeneous polynomials of S such that (I: (F)) # I. The following
hold.

(a) ht(I) =ht(I, F).

(b) deg(S/(I,F)) < deg(S/I) if I is an unmized ideal and (F) ¢ I.

(c) deg(S/I)=deg(S/(I: (F)))+ deg(S/(I,F)) if I is an unmized radical ideal.
(d) [13, Lemma 4.1] deg(S/(I, F)) < deg(S/(inx(1),inx(F))) < deg(S/I).

Proof. (a) As I C (I: (F)), there is g € S\ I such that g(F) C I. Hence the ideal
(F) is contained in the set of zero-divisors of S/I. Thus, by Theorem 2.2 and since I is
unmixed, (F) is contained in an associated prime ideal p of S/TI of height ht(7). Thus
I C (I,F) Cyp,and consequently ht(I) = ht(I, F'). Therefore the set of associated primes
of (I, F) of height equal to ht(I) is not empty and is equal to the set of associated primes
of S/I that contain (F).

(b) The inequality follows from part (a) and Lemma 2.10 (b).

(c) Let p1,. .., pm be the associated primes of S/I. As I is a radical ideal, one has the
decompositions

I=(p: and (I: (F) = (i (F)),

i=1 i=1
Note that (p;: (F)) = S if F C p; and (p;: (F)) = p; if F ¢ p;. Therefore, using the
additivity of the degree of Proposition 2.1 and Lemma 2.15, we get

deg(S/(I: Z deg(S/p;) and deg(S/(I,F)) Z deg(S/pi).

Fdp; FCp;
Thus deg(S/I) = 32;2, deg(S/p;) = deg(S/(I: (F))) + deg(S/(I,F)). O

Definition 3.2. Let I C S be a graded ideal. A sequence fi,..., f, of elements of S is
called a (d, r)-sequence of S/I if the set F = {f1,..., fr} isin Fy,.

Lemma 3.3. Let I C S be a graded ideal. A sequence fi,..., f, is a (d,r)-sequence of S/I
if and only if the following conditions hold

(a) f1,...,fr are homogeneous polynomials of S of degree d > 1,

(b) (I: (f1,.--,[fr)#1, and
(¢) fi¢ I, f1,...,fic1) fori=1,...,r, where we set fo = 0.
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Proof. The proof is straightforward. 0O

Definition 3.4. If I C S is a graded ideal, the Vasconcelos function of I is the function
¥7: Ny x Ny — N given by

Or(d,r) = min{deg(S/(I: (F)))| F € -Fd,r} if Far # 0,
PR deats/) if Fyp = 0.

The next result was shown in [13, Theorem 4.5] for vanishing ideals over finite fields.
Theorem 3.5. Let I C S be a graded unmized radical ideal. Then
dr(d,r) =67(d,r) ford>1 and1 <r < H(d).

Proof. If 7y, = 0, then §;(d,r) and ¥;(d,r) are equal to deg(S/I). Now assume that
Fa,r # 0. Using Lemma 3.1(c), we obtain

Yd1(d,r) = min{deg(S/(I: (F)))|F € Far,}
= min{deg(S/I) — deg(S/(I,F))| F € Far}
= deg(S/I) — max{deg(S/(I,F))|F € Fy,} =01(d,r). O

As the next result shows for r = 1 we do not need the assumption that I is a radical
ideal. For r > 2 this assumption is essential, as shown in the next Example 3.6.

Example 3.6. Let I be the ideal (¢, t1t2,t3) of the polynomial ring S = K[t1,t2] over a
field K and let F' = {t1,t2}. Then (I: (F)) = (I, F) = (t1,t2) and

3 = deg(S5/1) # deg(S/(I: (F))) + deg(S/(I, F)) = 2.

Theorem 3.7. [23, Theorem 4.4] Let I C S be an unmized graded ideal. If m = (t1,...,ts)
and d > 1 is an integer such that m® ¢ I, then

651(d) = min{deg(S/(I: )| f € Sa\ I}.

Recall from the introduction that the definition of d;(d, r) was motivated by the notion
of generalized Hamming weight of a linear code [18,35]. The following compilation of facts
reflects the monotonicity of the generalized minimum distance function with respect of
its two input values for the case of linear codes corresponding to reduced sets of points.

Theorem 3.8. Let C' be a linear code of length m and dimension k. The following hold.

(a) [35, Theorem 1, Corollary 1] 1 < 6;(C) < +-+ < 0,(C) < m.
(b) [33, Corollary 1.1.65] r < §,.(C) <m —k+r forr=1,... k.
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() If 61(Cy=m—k+1, then 6,(C) =m —k+r forr=1,... k.

Proof. (c): By (a), one has m —k+1 = 61(C) < 6§;(C) — (r—1). Thus m—k+r < §;(C)
and, by (b), equality holds. O

Below we consider more generally the behavior of the generalized minimum distance
function and the footprint function for arbitrary graded ideals. The next result shows
that the entries of any row (resp. column) of the weight matrix of I form a non-decreasing
(resp. non-increasing) sequence. Parts (a)-(c) of the next result are broad generalizations
of [13, Theorem 4.9] and [27, Theorem 3.6].

Theorem 3.9. Let I C S be an unmized graded ideal, let < be a monomial order on S,
and let d > 1, r > 1 be integers. The following hold.

Proof. (a) If F4, = 0, then 6;(d,r) = deg(S/I) > fp;(d,r). Now assume Fy, # 0.
Let F be any set in F< 4,. By Lemma 2.13, inL(F) is in M 4., and by Lemma 3.1,
deg(S/(I, F)) < deg(S/(in(I),in<(F))). Hence, by Proposition 2.14 and Lemma 3.1(b),
fp;(d,r) < 67(d,r).

(b) If g, = 0, then §;(d, r) = deg(S/I) > 1, and if Fy, # 0, then using Lemma 3.1(b)
it follows that 07(d,r) > 1.

(c) If M< 4, = 0, then fp;(d,r) = deg(S/I) > 1. Next assume that M~ 4, is not
empty and pick M in M_ 4, such that

fp;(d,r) = deg(S5/1) — deg(5/(in< (1), M)).

As in4(I) is unmixed, by Lemma 3.1(b), fp;(d,r) > 1.

(d) If Fyr41 is empty, then d;(d,r) < deg(S/I) = é;(d,r + 1). We may then assume
Far+1 is not empty and pick F = {f1,..., fr41} in Fgr41 such that hyp;(d,r + 1) =
deg(S/(I, F)). Setting F' = {f1,..., fr} and noticing that I C (I: (F)) C (I: (F")), we
get F' € Fy,. By the proof of Lemma 3.1, one has ht(I) = ht(I, F) = ht(I, F’). Taking
Hilbert functions in the exact sequence

0— (I,F)/(I,F') — S/(I,F') — S/(I,F) —0
it follows that deg(S/(I, F')) > deg(S/(I, F)). Therefore

hyp(d, r) = deg(S/(I, F)) = deg(S/(I, F)) = hyp;(d,r + 1) = 6:(d,r) < 6r(d,r +1).
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(e) By part (b), 6;(d,r) > 1 for d > 1. Assume Fy, = (. Then 0;(d,r) = deg(S/I). If
the set Fg41,, is empty, one has

dr(d,r) =6r(d+1,r) = deg(S/I).
If the set Fyy1,, is not empty, there is F' € Fg41,, such that
S7(d+1,7) = deg(S/I) — deg(S/(I, F)) < deg(S/I) = ;(d, ).
Thus we may now assume F, # (. Pick F' = {f1,..., fr} in Fg, such that
61(d,r) = deg(S/I) — deg(S/(I, F)).

By assumption there exists h € Sy such that (I: h) = I. Hence the set hF = {hf,}I_,
is linearly independent over K, hF' C Sg4+1, and

IC(I:F)yc(I:hF),

that is, hF is in Fgy1,. Note that there exists p € Ass(S/I) that contains (I, F)) (see
Lemma 3.1(a)). Hence the ideals (I, F) and (I,hF) have the same height because a
prime ideal p € Ass(S/I) contains (I, F) if and only if p contains (I, hF'). Therefore
taking Hilbert functions in the exact sequence

0— (I,F)/(I,hF) — S/(I,hF) — S/(I,F) — 0
it follows that deg(S/(I,hF)) > deg(S/(I, F)). As a consequence we get

61(d,r) = deg(5/I) — deg(S/(I, F)) = deg(5/1) — deg(S/(I, hF))
> deg(S/I) — max{deg(S/(I, F"))| F' € Fas1,} =0d1(d+1,r). DO

Remark 3.10. (a) Let I be a non-prime ideal and let p be an associated prime of I.
There is f € Sq, d > 1, such that (I: f) = p. Note that f € Fy. By Theorem 3.7 one
has 6;(d) = 1.

(b) If dim(S/I) > 1, then reg(dy) is the smallest n > 1 such that 6;(d) =1 for d > n.
This follows from Theorems 3.7 and 3.9.

Example 3.11. Let S = K[t1,. .., ts] be a polynomial ring over the finite field K = F3 and
let I be the ideal (t1tg — tst4, tatg — tsts). The regularity and the degree of S/I are 2 and
4, respectively, and H;(1) = 6, H;(2) = 19. Using Procedure A.2 and Theorem 3.9(a)
we obtain:

1 3 4 4 4 4
(fpr(d,r)) = L1101 2 3 ,d=1,2andr=1,...,7,

w 8

and (67(1,1),...,07(1,5)) = (3,3,4,4,4).



S.M. Cooper et al. / Advances in Applied Mathematics 112 (2020) 101940 15

Definition 3.12. If fp;(d) = 6;(d) for d > 1, we say that I is a Geil-Carvalho ideal. If
fp;(d,r) = 67(d,r) for d > 1 and r > 1, we say that I is a strongly Geil-Carvalho ideal.

The next result generalizes [24, Proposition 3.11].

Proposition 3.13. If I is an unmized monomial ideal and < is any monomial order, then
or(d,r) =1p;(d,r) ford>1 and r > 1, that is, I is a strongly Geil-Carvalho ideal.

Proof. The inequality 6;(d,r) > fp;(d,r) follows from Theorem 3.9(a). To show the re-
verse inequality notice that M~ 4, C F g, because one has I = in(I). Also notice that
M ar =0 if and only if F_ 4, = 0, this follows from the proof of [13, Proposition 4.8].
Therefore one has fp;(d,r) > 0r(d,r). O

Proposition 3.14. If I C S is an unmized graded ideal and dim(S/I) > 1, then
0r(d, Hy(d)) = deg(S/I) for d>1.

Proof. We set r = H;(d). It suffices to show that Fy , = (). We proceed by contradiction.
Assume that Fy, is not empty and let F = {f1,..., fr} be an element of Fy,. Let
P1,...,Pm be the associated primes of I. As I C (I: (F')), we can pick g € S such that
g(F) C I and g ¢ I. Then (F) is contained U™ ;p;, and consequently (F') C p; for some
i. Since r = Hy(d), one has

Si/li=Kfi® - @Kf, = Sa=Kfi+ -+ Kf +1a

Hence Sy C p;, that is, m? C p;, where m = (t,...,t,). Therefore p; = m, a contra-
diction because I is unmixed and dim(S/I) > 1. O

Example 3.15. Let S = K|[t1, t2, t3] be a polynomial ring over a field K and let (fp;(d,))
and (67(d,r)) be the footprint matrix and the weight matrix of the ideal I = (¢3,tat3).
The regularity and the degree of S/I are 3 and 6. Using Procedure A.1 we obtain:

3 5 6 00 o0 o
(fp;(d,r))=12 3 4 5 6 oo
1 2 3 4 5 6

If r > Hjy(d), then ML 4, = 0 and the (d,r)-entry of this matrix is equal
to 6, but in this case we write oo for computational reasons. Therefore, by Propo-
sition 3.13, (fp;(d,r)) is equal to (67(d,r)). Setting F = {t3ta, 113,113, t3t3} and
F' = {3y, t113, 113 + 3, 1313}, we get

61(3,4) = deg(S/I) — deg(S/(I,F) =4 and deg(S/I)— deg(S/(I,F’) = 5.

Thus 6;(3,4) is attained at F.
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4. Minimum distance function of a graded ideal

In this section we study minimum distance functions of unmixed graded ideals whose
associated primes are generated by linear forms and the algebraic invariants of Geramita
ideals.

4.1. Minimum distance function for unmized ideals

We begin by introducing the following numerical invariant which will be used to
express the regularity index of the minimum distance function (Proposition 4.6).

Definition 4.1. The v-number of a graded ideal I, denoted v([I), is given by

) min{d > 1| there exists f € Sq and p € Ass(I) with (I: f)=p} if I Cm,
v(I):=

0 if T=m,
where Ass([) is the set of associated primes of S/I and m = (1,...,ts) is the irrelevant
maximal ideal of S.

The v-number is finite for any graded ideal by the definition of associated primes. If
p is a prime ideal and p # m, then v(p) = 1.

Let I C m C S be a graded ideal and let py,...,p,, be its associated primes. One can
define the v-number of I locally at each p; by

Vp,([) :=min{d > 1|3f € Sg with (I: f) =p,}.

The v-number of I is equal to min{vy, (I),..., vy, (I)}. If I = I(X) is the vanishing
ideal of a finite set X = {Py,..., Py, } of reduced projective points and p; is the vanishing
ideal of P;, then vy, (1) is the degree of P; in X in the sense of [10, Definition 2.1].

We give an alternate description for the v-number using initial degrees of certain
modules. This will allow us to compute the v-number using Macaulay2 [16] (see Exam-
ple 4.3). For a graded module M # 0 we denote a(M) = min{deg(f) | f € M, f # 0}.
By convention, for M = 0 we set a(0) = 0.

Proposition 4.2. Let I C S be an unmized graded ideal. Then I C (I: p) forp € Ass(I),
v(I) = min{a ((1: p)/1)|p € Ass(I)},
and a((I:p)/I) =vy(I) forp € Ass(I).

Proof. The strict inclusion I C (I: p) follows from the equivalence of Eq. (4.1) below. As
a preliminary step of the proof of the equality we establish that for a prime p € Ass(I)
we have
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(I: fy=pifandonlyif f € (I:p)\ I (4.1)

If (I: f)=p, it is clear that we have f € (I: p) and since (I: f) # S it follows that
f ¢ I. Conversely, if f € (I:p)\ I, then p C (I: f). Let q € Ass(I: f), which is a
nonempty set since f ¢ I. Since Ass(I: f) C Ass(I) and I is height unmixed, we have
ht(q) = ht(p) and p C (I: f) C q. It follows that p = (I: f) = q.

The equivalence of Eq. (4.1) implies that o ((I: p)/I) = v, (1), and shows the equality

{f1U: f)y=pforsomepeAss()} = [J (I:p)\I.

pEAss(I)

The claim now follows by considering the minimum degree of a homogeneous element
in the above sets. O

Example 4.3. Let S = Q[t1, t2, t3,t4] be a polynomial ring over the rational numbers and
let I be the ideal of S given by

I= (t%07t27t3at2t3ti) N (t?7t§7tivt1t3ti) N (téll7tgﬂti) N (ti’,tg,téo).

The associated primes of I are p1 = (tg,tg,t4),p2 = (tl,tg,t4),p3 = (tl,tz,t4),p4 =
(t1,t2,t3). Using Proposition 4.2 together with Procedure A.3 we get s(I) = 10, v(I) =
12, reg(S/I) =19, vy, (I) = 12, vp,(I) = 15, vy, (I) = 18 for ¢ = 3,4. Thus the minimum
socle degree s(I) can be smaller than the v-number v(I).

Corollary 4.4. If I
socle degree s(I) :=

C m is a graded ideal of S and dim(S/I) = 0, then the minimum
a((I :m)/I) of S/I is equal to v(I).

Proof. The socle of S/I is given by Soc(S/I) = (I: m)/I. Thus, by Proposition 4.2, one
has the equality s(I) = v(I). O

This corollary does not hold in dimension 1. There are examples of Geramita mono-
mial ideals satisfying the strict inequality s(I) < v(I) (see Example 4.3). If S/T is a
Cohen—Macaulay ring, the socle is understood to be the socle of some Artinian reduc-
tion of S/I by linear forms.

Example 4.5. Let K be the finite field F3 and let X be the following set of points in P2

Using Propositions 4.2 and 4.6, together with Procedure A.4, we get v(I) = reg(dx) =
3, reg(S/I) =4, ox(1) = 6, 6x(2) = 3, and dx(d) = 1 for d > 3. The vanishing ideal of
X is generated by t1t3 — t3to, t1t3 — t3t3, and tot3 — t3ts.
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Proposition 4.6. Let I C m C S be an unmized graded ideal whose associated primes are
generated by linear forms. Then reg(dr) = v(I).

Proof. Let p1,...,p,, be the associated primes of I. We may assume that I not a prime
ideal, otherwise reg(d;) = v(I) = 1. If dy = v(I), there are f € Sy, and p; such that
(I: f) =p;. Then, by Theorem 3.7, one has d;(d;) = 1. Thus reg(dr) < v(I).

To show the reverse inequality set we set dy = reg(dy). Then d;(dp) = 1. Note that
mdo ¢ I otherwise Fy,(I) = () and by definition §;(dp) is equal to deg(S/I), a contra-
diction because I C m and by Lemma 2.10 deg(S/I) > 1. Then, by Theorem 3.7, there
is f € Sg, \ I such that §;(dp) = deg(S/(I: f)) = 1. Let I = N,q; be the minimal
primary decomposition of I, where ¢; is a p;-primary ideal. Note that (g;: f) is a primary
ideal if f ¢ q; because S/(q;: f) is embedded in S/q,;. Thus the primary decomposition
of (I: f)is Nggq,(qi: f). Therefore, by the additivity of the degree of Proposition 2.1,
we get that (I: f) = (qx: f) for some k such that f ¢ q; and deg(S/(qr: f)) = 1. Since
S/pr has also degree 1 and (qi: f) C pk, by Lemma 2.10, we get (I: f) = (qr: f) = p&,
and consequently v(I) <reg(d;). O

Corollary 4.7. Let I C S be an unmized radical graded ideal. If all the associated primes
of I are generated by linear forms and v = v(I) is its v-number, then

0r(1) >--->0r(v—1)>dr(v) =07(d) =1 for d>wv.
Proof. It follows from [27, Theorem 3.8] and Proposition 4.6. O
The minimum distance function behaves well asymptotically.

Corollary 4.8. Let I C m C S be an unmized graded ideal of dimension > 1 whose
associated primes are generated by linear forms. Then 0;(d) =1 for d > v(I).

Proof. This follows from Remark 3.10(b) and Proposition 4.6. O
The next result relates the minimum socle degree and the v-number.

Proposition 4.9. Let I C S be an unmized non-prime graded ideal whose associated
primes are generated by linear forms and let h € Sy be a regular element on S/I. The
following hold:

(a) If 61(d) = deg(S/(L: f)), f € Fan(I,h), then d > 2 and 6;(d) = 6;(d —1).
(b) If S/I is Cohen—Macaulay, then v(I,h) < v(I).
(¢) If K is infinite and S/I is Cohen—Macaulay, then s(I) < v(I).

Proof. (a) Writing f = g+ f1h, for some g € I; and f; € Sy—1, one has (I: f) = (I: fy).
Note that d > 2, otherwise if d = 1, then (I: f) = I, a contradiction because f € Fy.
Therefore noticing that f; € F4_1, by Theorems 3.7 and 3.9, we obtain
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or(d) = deg(S/(I: f)) = deg(S/(I: f1)) = ér(d = 1) > 6r(d) = 61(d) =dr(d —1).

(b) We set v = v(I). By Proposition 4.2 there is an associated prime p of I and
f e (I:p)\Isuchthat f € S,. Then (I: f) =p, f € Fg, and §;(d) = deg(S/(I: f)) = 1.
We claim that f is not in (I,h). If f € (I,h), then by part (a) one has v > 2 and
dr(v—1) = 1, a contradiction because v is the regularity index of d; (see Proposition 4.6).
Thus f ¢ (I,h). Next we show the equality (p,h) = ((I,h): f). The inclusion “C” is
clear because (I: f) = p. Take an associated prime p’ of ((I,h): f). The height of p’ is
ht(I) + 1 because (I,h) is Cohen—Macaulay. Then p’ = (p”, h) for some p” in Ass(I).
Taking into account that p and p” are generated by linear forms, we get the equality
(p,h) = (p”,h). Thus (p, h) is equal to ((I,h): f). Hence §(; py(v) = 1, and consequently
v(I,h) =reg(d(r,n)) < reg(dr) =v(I) =v.

(¢) There exists a system of parameters h = hy,...,h; of S/I consisting of linear
forms, where t = dim(S/I). As S/I is Cohen—Macaulay, h is a regular sequence on S/I.
Hence, by part (b), we obtain

v(I,h) =v(I,hy,...,h) < -+ <v(I,hy) < v(I).

Thus, by Corollary 4.4, we get s(I) = s(I,h) = a(((I,h): m)/(I,h)) = v(I,h) <
v(I). O

4.2. Minimum distance function for Geramita ideals and Cayley-Bacharach ideals

The minimum socle degree s(I), the local v-number v, (I), and the regularity reg(S/I),
are related below. For complete intersections of dimension 1 they are all equal. In par-
ticular in this case one has d;(d) > 2 for 1 < d < reg(S/I).

Theorem 4.10. Let I C S be a Geramita ideal and p € Ass(I). If I is not prime, then
s(I) < vp(I) < reg(5/1),
with equality everywhere if S/I is a level ring.

Proof. We set M = S/I, ro = reg(S/I), n = vy(I), and I' = (I: p). To show the
inequality n < rg we proceed by contradiction. Assume that n > rg. The S-modules in
the exact sequence

0—1I')T— S/T— S/I' —0

are nonzero Cohen—-Macaulay modules of dimension 1. Indeed, that I'/I # 0 (resp.
S/I'" # 0) follows from Proposition 4.2 (resp. I is not prime). That the modules are
Cohen—Macaulay follows observing that I and I’ are unmixed ideals of dimension 1.
Since n is vy (1) and ro < n, one has (I'/I),, = 0 (see the equivalence of Eq. (4.1) in the
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proof of Proposition 4.2). Hence taking Hilbert functions in the above exact sequence in
degree d = r¢ (resp. for d > 0), by Theorem 2.9, we get

deg(S/I) = H(ro) = Hy(ro) < deg(S/I") (resp. deg(S/I) = deg(I'/I)+ deg(S/I")).

As I'/T # 0, deg(I'/I) > 0. Hence deg(S/I) > deg(S/I’), a contradiction. Thus
n < rg.

To show the inequality s(I) < v,(I) we make a change of coefficients. Consider the
algebraic closure K of K. We set

S=8S®x K=K]|ty,...,ts] and I =1IS.

Note that K < K is a faithfully flat extension. Apply the functor S ®x (—). By base
change, it follows that S < S is a faithfully flat extension. Therefore H;(d) = Hz(d)
for d > 0 and deg(S/I) = deg(S/I). Furthermore the minimal graded free resolutions
and the Hilbert series of S/I and S/I are identical. Thus S/I and S/I have the same
regularity, s(I) = s(I), and I is Cohen-Macaulay of dimension 1. The ideal p = pS is
a prime ideal of S because p is generated by linear forms, and so is p. The ideal I is
Geramita. To show this, let I = Nj2;q; be the minimal primary decomposition of I,
where q; is a p;-primary ideal. Since p;S is prime, the ideal q;5 is a p;S-primary ideal of
S, and the minimal primary decomposition of T is

I= <ﬂ %)g = ﬂ (Qi§)7
i=1 i=1
see [25, Sections 3.H, 5.D and 9.C]. Thus [ is a Geramita ideal. Recall that n > 1 is
the smallest integer such that there is f € S, with (I: f) = p. Fix f with these two
properties. Then f € (I:p)\ I and since INS = I and (I: p)S = (IS: pS), one has
f € (IS: pS)\IS. Therefore, setting p = pS, we obtain v(I) < v, (I). Altogether using
Proposition 4.9(c), we obtain

s(I) =s(I) < v(I) < vg(I) < vp(I) < reg(S/I) = reg(S/1I).

If S/I is level then so is S/, because the Betti numbers (b; ; in Definition 2.7) for S/I
and S/T agree [6, 6.10]. Furthermore, since the ring S/T is level, we have s(I) = reg(S/I)
by [7, 4.13, 4.14] and which gives equality everywhere. O

Definition 4.11. [17,32] Let Z = a1 P, + -+ - + a;n Py C P*~! be a set of fat points, and
suppose that Z’ = a1 P+ -+ (a; — 1)P, + -+ - + a4y Py, for some ¢ = 1,...,m. We call
f € Saq a separator of P; of multiplicity a; if f € I(Z') \ I1(Z). The vanishing ideal 1(Z)
of Z is NI 1 p;*, where p; is the vanishing ideal of P;. If Z is a set of reduced points (i.e.,
a; = -+ = ay = 1), the degree of P;, denoted deg,(P;), is the least degree of a separator
of P; of multiplicity 1.
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Remark 4.12. If f is a separator of P; of multiplicity a; and p; is the vanishing ideal of
P;, then f € (I:p;)\ I. The converse hold if a; = 1.

Corollary 4.13. [32, Theorem 3.3] Let Z = a1 Py + -+ + am Py C P71 be a set of fat
points, and suppose that Z' = a1 Py +---+(a; —1)Pi+- -+ an Py, for somei=1,...,m.
If f is a separator of P; of multiplicity a;, then deg(f) > v(I) > s(I).

Proof. If f is a separator of P; of multiplicity a; and p; be the vanishing ideal of P;, then
f € (I:p;)\I. Hence, by Proposition 4.2 and Theorem 4.10, one has deg(f) > v(I) >
s(I). O

A finite set X = {Py, ..., P,,} of reduced points in P*~! is Cayley-Bacharach if every
hypersurface of degree less than reg(S/I(X)) which contains all but one point of X must
contain all the points of X or equivalently if degx (P;) = reg(S/I(X)) foralli =1,...,m
[10, Definition 2.7]. Since degx(P;) = vy, (), where p; is the vanishing ideal of P;, by
Theorem 4.10 one can extend this notion to Geramita ideals.

Definition 4.14. A Geramita ideal I C S is called Cayley-Bacharach if v,(I) is equal to
reg(S/I) for all p € Ass(I).

As the next result shows Cayley-Bacharach ideals are connected to Reed—Muller type
codes and to minimum distance functions.

Corollary 4.15. A Geramita ideal I C S is Cayley—Bacharach if and only if
veg(61) = v(I) = reg(S/1).
Proof. It follows from Proposition 4.6 and Theorem 4.10. 0O
There are some families of Reed—Muller type codes where the minimum distance and
its index of regularity are known [21,30]. In these cases one can determine whether or
not the corresponding sets of points are Cayley—Bacharach.

Corollary 4.16. If K = F, is a finite field and X = P51, then I(X) is Cayley-Bacharach.

Proof. It follows from Corollary 4.15 because according to [30] the regularity index of
dr¢x) is equal to reg(S/1(X)). O

Next we give a lemma that allows comparisons between the generalized minimum
distances of ideals related by containment.

Lemma 4.17. If I, I’ are unmized graded ideals of the same height and J is a graded ideal
such that I' = (I: J), then F4(I') C Fa(I) and
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deg(S/I') — dp(d) < deg(S/I) — d1(d).

Proof. Let f € F4(I'). Then f ¢ I' and (I': f) # I’, and since we have the following
relations

e f)=(T:0): f)=T: (1) =(U: f): J)

we deduce that (I: f) # I (otherwise the last ideal displayed above would be I’). Note
that I C I’, so f ¢ I. The second statement follows from the inequality

deg(S/I') — 61 (d) = max{deg(S/(I', f)) | f € Fa(I')}
< max{deg (S/(I,9)) | g € Fa(I)} = deg(S/I) — 6;(d).

This inequality is a consequence of the observation that if f € F4(I'), then ht(I’, f) =
ht(I"), and since f € Fy(I) one also has ht(I, f) = ht(I) by Lemma 3.1(a). Thus

deg(S/(I', f)) < deg(S/(L, f)). O

One of our main results shows that the function n: Ny — Z given by
n(d) = (deg(S/I) — Hi(d) + 1) — 6:(d)
non-negative for Geramita ideals (see Theorem 4.19).

Lemma 4.18. Let I C S be a Geramita ideal. If Fq, = 0 for some dy > 1, then n(dy) =0
and n(d) > 0 for all d > 1.

Proof. Let py,...,p,, be the associated primes of I. As py, is generated by linear forms,
the initial ideal of py, w.r.t. the lexicographical order <, is generated by s — 1 variables.
Hence, as pj, and in. (px) have the same Hilbert function, deg(S/px) = 1 and Hy, (d) =1
for d > 1. Assume that F4, = 0. Then d;(dy) = deg(S/I) and (I: f) = I for any
f € Sa, \ I. Hence, by Theorem 2.2, we get

(pl)do - (U pZ) N Sdo C Ido - (pl)do'
=1

Thus Igy, = (P1)ay, Hi(do) = Hp,(do) = 1, H7(0) = 1, and n(dp) = 0. Using Theo-
rem 2.9(ii), one has Hy(d) =1 for d > 1. Therefore n(d) >0 ford > 1. O

4.3. Singleton bound
We come to one of our main results. The inequality in the following theorem is well

known when [ is the vanishing ideal of a finite set of projective points [29, p. 82]. In this
case the inequality is called the Singleton bound [33, Corollary 1.1.65].
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Theorem 4.19. Let I C S be an unmized graded ideal whose associated primes are gener-
ated by linear forms and such that there exists h € Sy regular on S/I. If dim(S/I) =1,
then

0r(d) < deg(S/I)— Hy(d)+1 ford>1
or equivalently Hr(d) — 1 < hyp;(d) ford > 1.

Proof. The proof is by induction on deg(S/I). If deg(S/I) = 1, then I = p is a prime
generated by linear forms, H;(d) = 1 for all d > 0 and F4(I) = 0 for all d > 1. The
latter follows since for any prime p, (p: f) # p implies f € p. So the result is verified in
this case. Let v = v(I) be the v-number of I. By Proposition 4.2, v = «a((I: p)/I) for
some p € Ass(I). Set I' = (I: p). The short exact sequence

0—1I')/T— S/T — S/I" —0

together with the unmixed property of S/I show that dim (I'/I) = 1 and depth(I’/I) =
1. Therefore, Hyjp(d) = 0 for d < a((I: p)/I) = v and Hpyr(d) > 0 for d >
a((I:p)/I) = v, and consequently Hp (d) = Hy(d) for d < v and Hp (d) > Hy(d)
for d > v. The last statement yields that deg(S/I) > deg(S/I’). This also follows from
Lemma 2.10(b).

If d < v we deduce from Lemma 4.17, the inductive hypothesis and Hy (d) = Hy(d)
that

deg(S/I) — 61(d) > deg(S/I') — dp/(d) > Hp(d) — 1 = Hy(d) - 1,

which is the desired inequality. If d > v we know that there exists f € S, such that
(I: f) =p and thus (I: h%?f) = p. Therefore 6;(d) = 1 and since deg(S/I) > H;(d)
for any d the desired inequality follows. O

The next result is known for complete intersection vanishing ideals over finite fields
[14, Lemma 3]. As an application we extend this result to Geramita Gorenstein ideals.

Corollary 4.20. Let I C S be a Geramita ideal. If I is Gorenstein and ro = reg(S/I) > 2,
then dr(ro — 1) is equal to 2.

Proof. By Proposition 4.6 and Theorem 4.10, g is the regularity index of §;. Thus
or (7"0 — 1) > 2.

We show that deg(S/I) =1+ Hj(ro — 1). For this, we may assume that K is infinite.
Indeed, consider the algebraic closure K of K. We set S = S @ K and I = IS. From
[31, Lemma 1.1], we have I is Gorenstein, H;(d) = H7(d) for d > 0 and deg(S/I) =
deg(S/I). Since K is infinite, there is h € S that is regular on S/I. Then by [2, 3.1.19](b)
the quotient ring A = S/(I,h) is Gorenstein of dimension 0, by [7, 4.13, 4.14] it has
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ro = ro(S/T) = ro(4) and by [2, 47.10)] cea(S/T) = dost4) = ik a0 By [
proof of 4.1.10], Fa(z) = (1 — x)Fy(x) hence Hy(n) = Z H 4 (i) for any n > 0. From
here, using that H4(rg) = 1, since A is Gorenstein, we de duce that
7‘071
deg(S/I) = deg(5/T) = deg(A ZHA =1+ Ha(i) =1+ Hy(ro — 1)

:1+HI(T()71).

Finally, making d = ro — 1 in Theorem 4.19, we get d;(rg — 1) < 2. Thus equality
holds. O

Note that the situation is quite different from the conclusion of Theorem 4.19 if
dim(S/I) > 2.

Proposition 4.21. Let I C S be an unmized graded ideal. If dim(S/I) > 2, then
0r(d) > deg(S/I) — Hy(d)+1 for some d > 1.

Proof. Note that m = (¢1,...,ts) is not an associated prime of I, that is, depth(S/I) > 1.
Assume that Fy; = 0 for some d > 2. As H;(0) = 1 and ;(d) is equal to deg(S/I), by
Theorem 2.9(i), one has Hy(d) > 1 and the inequality holds. Now assume that Fy # ()
for d > 2. For each d > 2 pick f4 € F4 such that

61(d) = deg(5/1) — deg(S/(1, fa))-
As Hy is strictly increasing by Theorem 2.9(i), using Lemma 3.1(b), we get
deg(S/(1, fa)) < deg(S/1) < Hi(d) —
for d > 0. Thus the required inequality holds for d > 0. O
5. Reed-Muller type codes

In this section we give refined information on the minimum distance function for the
Reed-Muller codes defined in the Introduction. The key insight is that, in the case of
the projective Reed—Muller codes, this minimum distance function can be realized as a
generalized minimum distance function for a finite set of points in projective space, often
called evaluation points in the algebraic coding context.

Theorem 5.1. [13, Theorem 4.5] Let X be a finite set of points in a projective space P*~1
over a field K and let I(X) be its vanishing ideal. If d > 1 and 1 < r < Hx(d), then

5,-(Cx(d)) = b1x)(d, 7).
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By Theorem 3.8 (a) and [35, Theorem 1, Corollary 1], the entries of each row of the
weight matrix (dx(d,r)) form an increasing sequence until they stabilize. We show in
Theorem 5.3 below that the entries of each column of the weight matrix (dx(d,r)) form
a decreasing sequence.

Before we can prove this result we need an additional lemma. Recall that the support
x(B) of a vector § € K™ is x(K ), that is, x(8) is the set of non-zero entries of (3.

Lemma 5.2. Let D be a subcode of C' of dimension r > 1. If 51,...,B, is a K-basis for
D with B; = (Bin,--.,Bim) fori=1,...,r, then x(D) = U_;x(8;) and the number of
elements of x(D) is the number of non-zero columns of the matrix:

ﬂl,l Ce ﬂl,i - Bl,m

P21 Bei o Pam

Br,l e Br,i e ﬂr,m
Theorem 5.3. Let X be a finite set of points in P71, let I = I(X) be its vanishing ideal,
and let 1 < r <|X]| be a fized integer. Then there is an integer dy > 1 such that

dr(1,r) > 67(2,7) > -+ > 61(do, ) = 61(d,r) =7 for d>dp.

Proof. Let [Py],...,[Py] be the points of X. By Theorem 5.1 there exists a linear subcode
D of Cx(d) of dimension r such that 6;(d,r) = 0x(d,r) = |x(D)|. Pick a K-basis
B1,..., 8- of D. Each 8; can be written as

Bi= (Birs- s Biks- s Bim) = (fi(P1), -, fil Pr), -, fi( Pn))
for some f; € S4. Consider the matrix B whose rows are S, ..., Bm:

AP - AP fi(P)
fa(Pr) - fa(Pr) - fa(P)

B =
As B has rank r, by permuting columns and applying elementary row operations, the
matrix B can be brought to the form:

g1(Q1) 91(Qri1) -+ g1(Qm)
B - 92(Q2) 0 92(Qrs1) -+ 92(Qm)
0 - : ’
9r(Qr)  gr(Qr1) -+ gr(Qm)
where g1, . .., g, are linearly independent polynomials over the field K modulo I of degree

d, Q1,...,Q,, are a permutation of Py,..., P, the first r columns of B’ form a diagonal
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matrix such that ¢;(Q;) # 0 for i = 1,...,r, and the ideals (f1,..., f) and (g1,...,9r)
are equal. Let D’ be the linear space generated by the rows of B’. The operations applied
to B did not affect the size of the support of D (Lemma 5.2), that is, |x(D)| = |x(D’)|.

Note that d,(Cx(d)) depends only on X, that is, ,(Cx(d)) is independent of how
we order the points in X (cf. Theorem 5.1). Let ev): Sg — K™ be the evaluation
map, [ — (f(Q1),...,f(@m)), relative to the points [Q1],...,[Q:wm]. By Theorem 3.8,
ox(d,r) > r.

First we assume that dx(d,r) = r for some d > 1 and r > 1. Then the i-th column
of B’ is zero for i > r. For each 1 < i < r pick h; € Sy such that h;(Q;) # 0. The
polynomials hyg1,. .., kg, are linearly independent modulo I because (h;g;)(Q;) is not
0if i = j and is 0 if 4 # j. The image of Khig1 © --- @® Kh,g,, under the map ev),, is
a subcode D" of Cx(d 4 1) of dimension r and |x(D”)| = r. Thus dx(d + 1,r) < r, and
consequently ox(d+ 1,7) =r.

Next we assume that ox(d,r) > r. Then B’ has a nonzero column (¢1(Qx),- ..,
g-(Q1)) T for some k > r. It suffices to show that dx(d,r) > dx(d + 1,7). According
to [23, Lemma 2.14(ii)] for each 1 < ¢ < r there is h; in S; such that h;(Q;) # 0 and
h;(Qr) = 0. Let B” be the matrix:

h1g1(Q1) h191(Qry1) -+ h191(Qm)

B _ h2g2(Q2) 0 h2g2(Qri1) -+ h2ga(Qm)
0 ' :

hegr(Qr)  hrgr(Qryr) -+ hrgr(Qm)

The image of Kh1g1 @---® Khyg,, under the map evy, is a subcode V' of Cx(d+1)
of dimension 7 because the rank of B” is r, and since the k-column of B” is zero, we get

ox(d,r) = Ix(D)| = [x(D")| > Ix(V)| = éx(d + 1, 7).
Thus é6x(d,r) > dx(d+1,r). O

Corollary 5.4. Let X be a finite set of points in P5~1 and let I = I(X) be its vanishing
ideal. If I is a complete intersection, then d;(d) > reg(S/I)—d+1 for 1 < d < reg(S/I).

Proof. If ry denotes the regularity of S/I, by Theorem 4.10, one has v(I) = r¢. Thus
0r(ro — 1) > 2 and the result follows from Theorem 5.3 by setting r =1. O

Corollary 5.5. [12, Theorem 12] If X is a set parameterized by monomials lying on a
projective torus and 1 < r < |X| be a fized integer, then there is an integer dy > 1 such
that

0-(Cx(1)) > 6,(Cx(2)) > -+ > §,.(Cx(do)) = 0,.(Cx(d)) =71 for d > dp.

Proof. It follows at once from Theorems 5.1 and 5.3. O
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Corollary 5.6. Let X be a finite set of points of P*~% and let dx(d) be the minimum
distance of Cx(d). Then dx(d) =1 if and only if d > v(I).

Proof. It follows from Proposition 4.6, and Theorems 5.1 and 5.3. O

Corollary 5.7. If X is a finite set of P51 over a field K, then &x(d, Hx(d)) = |X]| for
d>1.

Proof. It follows at once from Proposition 3.14 and Theorem 5.1. O
6. Complete intersections

In this section we examine minimum distance functions of complete intersection ideals.

Definition 6.1. An ideal I C S is called a complete intersection if there exist ¢1,..., g,
in S such that I = (¢1,...,9r), where r = ht([I) is the height of I.

There are a number of interesting open problems regarding the minimum distance of
complete intersection functions. We discuss one such problem in Conjecture 6.2 below
and relate this problem to [8, Conjecture CB12]) in the second part of this section.

Conjecture 6.2. [2/] Let I C S := K[t1,...,ts] be a complete intersection graded ideal of
dimension 1 generated by forms f1,..., fe, c=s—1, with d; = deg(f;) and 2 < d; < d;11
for i > 1. If the associated primes of I are generated by linear forms, then

Or(d) > (dryr — Odpya--de if 1<d< (di—1) -1,
i=1
where 0 < k < ¢ —1 and { are integers such that d = Zle (di—1)+2Land 1 < (<

dpy1 — 1.

This conjecture holds if the initial ideal of I with respect to some monomial order is a
complete intersection [24, Theorem 3.14]. Our results show that for complete intersections
v(I) = reg(S/I) (Theorem 4.10) and d6;(d) > reg(S/I) —d + 1 for 1 < d < reg(S/I) if
I is a vanishing ideal (Corollary 5.4). Thus the conjecture is best possible for vanishing

ideals in the sense that it covers all cases where d;(d) > 1 because the regularity of S/I

is equal to > (d; — 1).
i=1
Two special cases of the conjecture that are still open are the following.

Conjecture 6.3. Let X be a finite set of reduced points in P~ and suppose that I = I(X)
is a complete intersection generated by fi,...,fe, ¢ = s — 1, with d; = deg(f;) for
i=1,...,¢, and 2 < d; < diq1 for all i. Then
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(a) [52, Congecture 4.9] 61(1) > (d1 — 1)da - - - d..
(b) If f1,..., fe are quadratic forms, then d7(d) > 2°=¢ for 1 < d < ¢ or equivalently
hyp;(d) <2¢—2°"7 for 1 <d <ec.

We prove part (a) of this conjecture, in a more general setting, when [ is equigenerated.

Proposition 6.4. Let I C S be an unmized graded ideal of height ¢, minimally generated
by forms of degree e > 2, whose associated primes are generated by linear forms. Then

hyp,(1) < et

and 67(1) > deg(S/I) — e~ L. Furthermore 61(1) > e — et if I is a complete intersec-
tion.

Proof. Since the associated primes of I are generated by linear forms and e > 2, one has
Fi(I) # 0. Take any linear form h =t — 3, A;t; in Fi(I), A; € K. For simplicity of
notation assume k = 1. It suffices to show that deg(S/(I,h)) < e~ L. Let {f1,..., fu} be
a minimal set of generators of I consisting of homogeneous polynomials with deg(f;) = e
for all i. Setting f/ = fi(zﬁél Ajti ta, ... ts) for i =1,...,n, 8" = K[ta,...,t], and
I'=(f{,...,f}), there is an isomorphism ¢ of graded K-algebras

S/(I,h) i)S//I/, ty = Aato + -+ Agt, ti—t;, i=2,...,8.

Note that o(f 4+ (I,h)) = f(Aata+ -+ Asts, to, ..., ts)+ I’ for f in S and that ¢ has
degree 0, that is, ¢ is degree preserving. Hence S/(I,h) and deg(S’/I") have the same
degree and the same dimension. Since ht(7,h) = ht(I), we get ht(I’) = ht(I) — 1, that
is, ht(I") = ¢ — 1. By definition f/ is either 0 or has degree e, that is, I’ is generated
by forms of degree e. As K is infinite, there exists a minimal set of generators of I’
{g91,.-.,9¢}, such that deg(g;) = e for all i and gy, ..., g.—1 form a regular sequence (see
Lemma 2.11). From the exact sequence

0 —)Il/(gl,...,gcfl) — S//(gh...,gcfl) — SI/II —)0,

we get e“~t = deg(S/(g1,--.,9c-1)) > deg(S’/I') = deg(S/(I,h)). This proves that
hyp; (1) is less than or equal to e~t. Hence 67(1) > deg(S/I) — e~t. Therefore, if I is a
complete intersection, deg(S/I) = e¢ and we obtain the inequality §;(1) > e —e‘~!. O

As a consequence, we recover the fact that Conjecture 6.3(a) holds for P2 [32, Theo-
rem 4.10].

Corollary 6.5. Let I C S be a graded ideal of height 2, minimally generated by two forms
f1, fo of degrees eq, eo, with 2 < e < eq, whose associated primes are generated by linear
forms. Then hyp;(1) < es and §;(1) > eres — ea.
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Proof. It follows adapting the proof of Proposition 6.4. O

Corollary 6.6. Let I C S be an unmized graded ideal minimally generated by forms of
degree e > 2 whose associated primes are generated by linear forms. If 1 < r < ht(I),
then

hyp,(1,7) < €M7,

§r(1,7) > deg(S/I) — " D=7 and §;(1,7) > €D — M= if T s a complete intersec-
tion.

Proof. This follows by adapting the proof of Proposition 6.4 and observing the following.
If f1,..., fr are linearly independent linear forms and ¢; > --- > ¢4 is the lexicograph-
ical order, we can find linear forms hy,...,h, such that inc(hy) > --- = ins(h,) and
(f1,..., fr) is equal to (h1,...,h,). O

Cayley-Bacharach conjectures. In the following we explore the connections between a
modified form of Conjecture 6.2 and a conjecture of Eisenbud-Green-Harris [8, Conjec-
ture CB12].

Conjecture 6.7 (Strong form of [8, Conjecture CB12] ). Let T' be any subscheme of a
zero-dimensional complete intersection of hypersurfaces of degrees di < --- < d. in
a projective space P°. If T' fails to impose independent conditions on hypersurfaces of
degree m, then

deg(T") > (e + 1)dyyodiy3 - - - de

where e and k are defined by the relations

c [

Z(di—l)§m+1< zc:(di—l) and e:m—i—l—Z(di—l).

i=k+2 i=k+1 i=k+2

Proposition 6.8. Conjectures 6.2 and 6.7 are equivalent for radical complete intersections.

Proof. We first prove that Conjecture 6.7 form =7, (d;i—1)—£—1and e = dp41 —
¢ — 1 implies Conjecture 6.2. Let I be a radical complete intersection ideal minimally
generated by forms of degrees dy < --- < d.. Let H be any hypersurface defined by a form
F of degree d. Let X be the scheme defined by I(X) = (I, F') and let " be the residual
scheme defined by I(T") = I : F. By the Cayley-Bacharach Theorem [8, CB7], I' must fail
to impose independent conditions on hypersurfaces of degree > ¢ (d; —1) —d—1=m.
Now Conjecture 6.7 implies deg(S/I : F) = deg(T") > edy12di+3 - - - de, which in view of
Theorem 3.5 gives

0r(d) > (e+ 1)dpyodits - - de = (diy1 — O)diyodpts - - - de.
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For the converse, we prove that Conjecture 6.2 with d = Y ;_ (d; — 1) —m — 1
and ¢ = dyi41 — e — 1 recovers Conjecture 6.7. Let I' be any subscheme of a complete
intersection, and suppose that I" fails to impose independent conditions on hypersurfaces
of degree m. Assuming that I' spans a projective space P¢, take a radical complete
intersection ideal I contained in I, and let X be the scheme defined by I(X) =TI : I(T").
By [8, CB7], X lies on a hypersurface of degree > :_ (d; —1) —m — 1 = d. Then
Conjecture 6.2 and Theorem 3.5 give

deg(F) = deg(S/I : F) > (dk+1 — g)dk+2dk+3 cede = (6 + l)dk+2dk+3 -oed.. O

Conjecture 6.7 has been recently proven in [19, Theorem 5.1] for k£ = 1 under addi-
tional assumptions on the Picard group of the complete intersection. We now consider the
case when d; = -+ = d. = 2. In this case Conjecture 6.2 specializes to Conjecture 6.3(b)
and Conjecture 6.7 is related to [8, Conjecture CB10].

Proposition 6.9. The following statements are equivalent:

(1) [Conjecture 6.3(b)] Let I be a complete intersection generated by ¢ quadratic forms.
Then 6;1(d) > 2¢79 for 1 < d < c or equivalently hyp;(d) < 2¢—2°"? for 1 <d < c.

(2) /8, Conjecture CB10] If X is an ideal-theoretic complete intersection of ¢ = s — 1
quadrics in P*~1 and f € S := K|t1,...,ts] is a homogeneous polynomial of degree
d such that deg(S/(I(X), f)) > 2¢ — 274 then f € Ix.

Proof. Let I = I(X) be a complete intersection ideal of ¢ quadratic homogeneous
polynomials. Then deg(S/I) = 2° and (2) is equivalent to the statement for any
[ € Fy, deg(S/(I(X), f)) < 2¢ —2¢79, Using Definition 1.1, this is in turn equivalent to
§7(d) >2¢74, for d =1,...,c, which is precisely the statement of (1). O

As an application of our earlier results we recover the following cases of Conjec-
ture 6.3(b) under the more general hypothesis that I(X) is a not necessarily a radical
complete intersection.

Corollary 6.10. /8] If I is a complete intersection ideal generated by ¢ quadratic forms,
then 87(d) > 2¢7¢, ford =1,c— 1, and c.

Proof. Case d = 1 follows by taking e = 2 in Proposition 6.4. Case d = ¢ — 1 follows
from Corollary 4.20 because complete intersections are Gorenstein and vanishing ideals
of finite sets of points are Geramita. For Case d = ¢ recall that By Proposition 4.6 and
Theorem 4.10, reg(S/I) is the regularity index of §;. Thus Case d = ¢ follows since
reg(S/I)=c. DO

If X C P¢ is a reduced set of points such that I(X) is a complete intersection ideal
and the points of X are in linearly general position, i.e., any ¢ 4+ 1 points of X span P¢,
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then [1, Theorem 1] adds more cases when [8, Conjecture CB10] holds. If we assume
that the quadrics that cut out X are generic, then the assumptions of that result are
satisfied, and we can conclude by Proposition 6.9 that if 1 < d < ¢ — 1, then 6;(d) >
c¢(c—1—d)+2. Suppose d := ¢—k, for some 1 < k < ¢—1. Then this inequality becomes
0r(c—k) > c(k—1)+ 2. We observe that this inequality is sufficiently strong to establish
[Conjecture 6.3(b)] asymptotically for ¢ sufficiently large:

o k=2.If c>2, then 67(c — 2) > c+2 > 2%

e k=3.Ifc>3, then 6;(c —3) > 2c+2 > 23.

e k=4.1f c>5, then 6;(c —4) > 3c+2 > 2%

o k>5.1fc> (28 —2)/(k — 1), then 0;(c — k) > 2k,
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Appendix A. Procedures for Macaulay?2

Procedure A.1. Computing the footprint matrix with Macaulay2 [16]. This procedure
corresponds to Example 3.15. It can be applied to any vanishing ideal I to obtain the
entries of the matrix (fp;(d,r)) and is reasonably fast.

S=QQ[t1,t2,t3], I=ideal(t173,t2*t3)

M=coker gens gb I

regularity M, degree M, init=ideal(leadTerm gens gb I)

er=(x)-> if not quotient(init,x)==init then degree ideal(init,x) else O
fpr=(d,r)->degree M - max apply(apply(apply(

subsets(flatten entries basis(d,M),r),toSequence),ideal),er)
hilbertFunction(1,M),fpr(1,1),fpr(1,2),fpr(1,3)

--gives the first row of the footprint matrix

Procedure A.2. Computing the GMD function with Macaulay2 [16] over a finite field and
computing an upper bound over any field using products of linear forms. This procedure
corresponds to Example 3.11.

q=3,8=2Z/3[t1,t2,t3,t4,t5,t6] ,I=ideal (t1*t6-t3*t4,t2*xt6-t3%t5)
G=gb I, M=coker gens gb I
regularity M, degree M, init=ideal(leadTerm gens gb I)
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genmd=(d,r)->degree M-max apply(apply(subsets(apply(apply (apply(
toList (set(0..q-1)) *+*(hilbertFunction(d,M))-

(set{0}) “**(hilbertFunction(d,M)),tolList) ,x—>basis(d,M)*vector x),
z->ideal(flatten entries z)),r),ideal),

x-> if #set flatten entries mingens ideal(leadTerm gens x)==r

and not quotient(I,x)==I then degree(I+x) else 0)
hilbertFunction(1,M),fpr(1,1),fpr(1,2),fpr(1,3),fpr(1,4),fpr(1,5),
fpr(1,6)

genmd(1,1), L={t1,t2,t3,t4,t5,t6}

linearforms=(d,r)->degree M - max

apply (apply (apply ((subsets (apply (apply(

(subsets(L,d)) ,product) ,x-> x % G),r)),toList),ideal),

x-> if #set flatten entries mingens ideal(leadTerm gens x)==r

and not quotient(I,x)==I then degree(I+x) else 0)
linearforms(1,2),linearforms(1,3),linearforms(1,4),linearforms(1,5)
--gives upper bound for genmd

Procedure A.3. Computing the minimum socle degree and the v-number of an ideal I
with Macaulay2 [16]. This procedure corresponds to Example 4.3.

S=QQ[t1,t2,t3,t4]

pl=ideal(t2,t3,t4),p2=ideal(t1,t3,t4) ,p3=ideal(t1,t2,t4),
p4=ideal(t1,t2,t3)
I=intersect(ideal(t2710,t379,t474,t2%t3*xt473),
ideal(t174,t374,t473,t1%t3*t472) ,ideal (t174,t275,t473),
ideal(t173,t275,t3710))

h=ideal (t1+t2+t3+t4)--regular element on S/I

J=quotient (I+h,m), regularity coker gens gb I
soc=J/(I+h), degrees mingens soc

Jl=quotient(I,pl), socl=J1/I, degrees mingens socl

Procedure A.4. Computing the v-number of a vanishing ideal I(X), the regularity in-
dex of 0x, and the minimum distance dx(d) of the Reed-Muller-type code Cx(d) with
Macaulay?2 [16]. This procedure corresponds to Example 4.5.

q=3, G=ZZ/q, S=G[t3,t2,t1,MonomialOrder=>Lex]

pl=ideal(t2,t1-t3) ,p2=ideal(t2,t3),p3=ideal (t2,2*t1-t3)

p4=ideal (t1-t2,t3) ,p5=ideal(t1-t3,t2-t3), pb6=ideal (2*¥t1-t3,2*t2-t3)
p7=ideal(t1,t2),p8=ideal(t1,t3),p9=ideal (t1,t2-t3),pl0=ideal (t1,2*t2-t3)
I=intersect(pl,p2,p3,p4,p5,p6,p7,p8,p9,p10)

M=coker gens gb I, regularity M, degree M

init=ideal(leadTerm gens gb I)

genmd=(d,r)->degree M-max apply(apply(subsets(apply(apply (apply(
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toList (set(0..q-1)) **(hilbertFunction(d,M))-

(set{0}) “**(hilbertFunction(d,M)),toList) ,x—>basis(d,M)*vector x),
z->ideal(flatten entries z)),r),ideal),

x-> if #set flatten entries mingens ideal(leadTerm gens x)==r

and not quotient(I,x)==I then degree(I+x) else 0)

genmd(1,1), genmd(2,1)

Ji=quotient(I,pl), socl=J1/I, degrees mingens socl--gives 4
J7=quotient(I,p7), soc7=J7/I, degrees mingens soc7--gives 3
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