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Unmixed ideal
Complete intersections
Reed–Muller-type codes

1. Introduction

Let K be any field, and let C be a linear code that is the image of some K-linear 
map Ks −→ Kn. Suppose G is the s × n matrix representing this map with respect to 
some chosen bases and assume that G has no zero columns. By definition, the minimum 
(Hamming) distance of C is

δ(C) := min{wt(v) | v ∈ C \ {0}},

where for any vector w ∈ Kn, the weight of w, denoted wt(w), is the number of nonzero 
entries in w. More generally, for 1 ≤ r ≤ dimK(C), the r-th generalized Hamming 
distance, denoted δr(C), is defined as follows. For any subcode, i.e., linear subspace, 
D ⊆ C define the support of D to be

χ(D) := {i | there exists (x1, . . . , xn) ∈ D with xi �= 0}.

Then the r-th generalized Hamming distance of C is

δr(C) := min
D⊆C, dim D=r

|χ(D)|.

The weight hierarchy of C is the sequence (δ1(C), . . . , δk(C)), where k = dim(C). Observe 
that δ1(C) equals the minimum distance δ(C). The study of these weights is related 
to trellis coding, t–resilient functions, and was motivated by some applications from 
cryptography [35]. It is the study of the generalized Hamming weight of a linear code 
that motivates our definition of a generalized minimum distance function for any graded 
ideal in a polynomial ring [18,20].

If the rank of G is s, then it turns out (see [35]) that

δr(C) = n− hypr(C), (1.1)

where hypr(C), is the maximum number of columns of G that span an (s −r)-dimensional 
vector subspace of Ks. Moreover, if G also has no proportional columns then the columns 
of G determine the coordinates of n (projective) points in P s−1, not all contained in a 
hyperplane. Denote this set X = {P1, . . . , Pn} and let I := I(X) ⊂ S := K[t1, . . . , ts] be 
the defining ideal of X. We have:

• the (Krull) dimension of S/I is dim(S/I) = 1, and the degree is deg(S/I) = n;
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• the ideal I is given by I = p1 ∩ · · · ∩ pn, where pi is the vanishing ideal of the point 
Pi, so I is unmixed, each associated prime ideal pi is generated by linear forms, and 
I =

√
I;

• hypr(C) = max
F∈Fr

{deg(S/(I, F ))}, where Fr is the set of r-tuples of linear forms of S
that are linearly independent. With this, we can conclude that

δr(C) = deg(S/I) − max
F∈Fr

{deg(S/(I, F ))}.

A similar approach can be taken for projective Reed–Muller-type codes. Let X =
{P1, . . . , Pn} be a finite subset of P s−1. Let I := I(X) ⊂ S = K[t1, . . . , ts], be the 
defining ideal of X. Via a rescaling of the homogeneous coordinates of the points Pi, 
we can assume that the first non-zero coordinate of each Pi is 1. Fix a degree d ≥ 1. 
Because of the assumption on the coordinates of the Pi, there is a well-defined K-linear 
map given by the evaluation of the homogeneous polynomials of degree d at each point 
in X. This map is given by

evd : Sd → Kn, f �→ (f(P1), . . . , f(Pn)) ,

where Sd denotes the K-vector space of homogeneous polynomials of S of degree d. The 
image of Sd under evd, denoted by CX(d), is called a projective Reed-Muller-type code of 
degree d on X [5,11,15]. The parameters of the linear code CX(d) are:

• length: |X| = deg(S/I);
• dimension: dimK CX(d) = HX(d), the Hilbert function of S/I in degree d;
• r-th generalized Hamming weight: δX(d, r) := δr(CX(d)).

By [13, Theorem 4.5] the r-th generalized Hamming weight of a projective Reed–
Muller code is given by

δX(d, r) = deg(S/I) − max
F∈Fd,r

{deg(S/(I, F )},

where Fd,r the set of r-tuples of forms of degree d in S which are linearly independent 
over K modulo the ideal I and the maximum is taken to be 0 if Fd,r = ∅.

As we can see above, the generalized Hamming weights for any linear code can be inter-
preted using the language of commutative algebra. Motivated by the notion of generalized 
Hamming weight described above and following [13] we define generalized minimum dis-
tance (GMD) functions for any homogeneous ideal in a polynomial ring. This allows us 
to extend the notion of generalized Hamming weights to codes arising from algebraic 
schemes, rather than just from reduced sets of points. Another advantage to formulating 
the notion of generalized minimum distance in the language of commutative algebra is 
that it allows the use of various homological invariants of graded ideals to study the 
possible values for these GMD functions.
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Let S = K[t1, . . . , ts] = ⊕∞
d=0Sd be a polynomial ring over a field K with the standard 

grading and let I �= (0) be a graded ideal of S. Given d, r ∈ N+, let Fd,r be the set:

Fd,r :={ {f1, . . . , fr} ⊂ Sd | f1, . . . , fr are linearly independent over K,

(I : (f1, . . . , fr)) �= I},

where f = f + I is the class of f modulo I, and (I : (f1, . . . , fr)) = {g ∈ S | gfi ∈
I, for all i}. If necessary we denote Fd,r by Fd,r(I). We denote the degree of S/I by 
deg(S/I).

Definition 1.1. Let I �= (0) be a graded ideal of S. The function δI : N+ ×N+ → Z given 
by

δI(d, r) :=
{

deg(S/I) − max{deg(S/(I, F )) | F ∈ Fd,r} if Fd,r �= ∅,
deg(S/I) if Fd,r = ∅,

is called the generalized minimum distance function of I, or simply the GMD function 
of I.

This notion recovers (Proposition 3.14) and refines the algebraic-geometric notion of 
degree. If r = 1 one obtains the minimum distance function of I [23]. In this case we 
denote δI(d, 1) simply by δI(d) and Fd,r by Fd.

The aims of this paper are to study the behavior of δI , to introduce algebraic methods 
to estimate this function, and to study the algebraic invariants (minimum distance func-
tion, v-number, regularity, socle degrees) of special ideals that we call Geramita ideals. 
Recall that an ideal I ⊂ S is called unmixed if all its associated primes have the same 
height; this notion is sometimes called height unmixed in the literature. We call an ideal 
I ⊂ S a Geramita ideal if I is an unmixed graded ideal of dimension 1 whose associ-
ated primes are generated by linear forms. Defining ideals of schemes of finite sets of 
points in projective space and unmixed monomial ideals of codimension 1 are examples 
of Geramita ideals.

The following function is closely related to δI as illustrated in Eq. (1.1).

Definition 1.2. Let I be a graded ideal of S. The function hypI : N+ × N+ → N, given 
by

hypI(d, r) :=
{

max{deg(S/(I, F )) | F ∈ Fd,r} if Fd,r �= ∅,
0 if Fd,r = ∅,

is called the hyp function of I.

If r = 1, we denote hypI(d, 1) by hypI(d). Finding upper bounds for hypI(d, r) is 
equivalent to finding lower bounds for δI(d, r). If I(X) is the vanishing ideal of a finite 



S.M. Cooper et al. / Advances in Applied Mathematics 112 (2020) 101940 5
set X of reduced projective points, then hypI(X)(d, 1) is the maximum number of points 
of X contained in a hypersurface of degree d (see [32, Remarks 2.7 and 3.4]). There is a 
similar geometric interpretation for hypI(X)(d, r) [13, Lemma 3.4].

To compute δI(d, r) is a difficult problem even when K is a finite field and r = 1. 
However, we show that a generalized footprint function, which is more computationally 
tractable, gives lower bounds for δI(d, r). Fix a monomial order ≺ on S. Let in≺(I)
be the initial ideal of I and let Δ≺(I) be the footprint of S/I, consisting of all the 
standard monomials of S/I with respect to ≺. The footprint of S/I is also called the 
Gröbner éscalier of I. Given integers d, r ≥ 1, let M≺,d,r be the set of all subsets M of 
Δ≺(I)d := Δ≺(I) ∩ Sd with r distinct elements such that (in≺(I) : (M)) �= in≺(I).

Definition 1.3. The generalized footprint function of I, denoted fpI , is the function 
fpI : N+ ×N+ → Z given by

fpI(d, r) :=
{

deg(S/I) − max{deg(S/(in≺(I),M)) |M ∈ M≺,d,r} if M≺,d,r �= ∅,
deg(S/I) if M≺,d,r = ∅.

If r = 1 one obtains the footprint function of I that was studied in [27] from a 
theoretical point of view (see [23,24] for some applications). In this case we denote 
fpI(d, 1) simply by fpI(d) and M≺,d,r by M≺,d. The importance of the footprint function 
is that it gives a lower bound on the generalized minimum degree function (Theorem 3.9) 
and it is computationally much easier to determine than the generalized minimum degree 
function. See the Appendix for scripts that implement these computations.

The content of this paper is as follows. In Section 2 we present some of the results 
and terminology that will be needed throughout the paper. In some of our results we 
will assume that there exists a linear form h that is regular on S/I, that is, (I : h) =
I. There are wide families of ideals over finite fields that satisfy this hypothesis, e.g., 
vanishing ideals of parameterized codes [29]. Thus our results can be applied to a variety 
of Reed–Muller type codes [15], to monomial ideals, and to ideals that satisfy |K| >
deg(S/

√
I).

In Section 3 we study GMD functions of unmixed graded ideals. The footprint matrix
(fpI(d, r)) and the weight matrix (δI(d, r)) of I are the matrices whose (d, r)-entries are 
fpI(d, r) and δI(d, r), respectively. We show that the entries of each row of the weight 
matrix form a non-decreasing sequence and that the entries of each column of the weight 
matrix form a non-increasing sequence (Theorem 3.9). We also show that fpI(d, r) is a 
lower bound for δI(d, r) (Theorem 3.9). This was known when I is the vanishing ideal 
of a finite set of projective points [13, Theorem 4.9].

Let I ⊂ S be an unmixed graded ideal whose associated primes are generated by 
linear forms. In Section 4 we study the minimum distance functions of these ideals. For 
δI(d) = δI(d, 1), the regularity index of δI , denoted reg(δI), is the smallest d ≥ 1 such 
that δI(d) = 1. If I is prime, we set reg(δI) = 1. The regularity index of δI is the index 
where the value of this numerical function stabilizes (Remark 3.10), named by analogy 
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with the regularity index for the Hilbert function of a fat point scheme Z which is the 
index where the Hilbert function HZ of Z stabilizes.

In order to study the behavior of δI we introduce a numerical invariant called the 
v-number (Definition 4.1). We give a description for this invariant in Proposition 4.2
that will allow us to compute it using computer algebra systems, e.g. Macaulay2 [16]
(Example 4.3).

Proposition 4.6. Let I � m ⊂ S be an unmixed graded ideal whose associated primes are 
generated by linear forms. Then reg(δI) = v(I).

From the viewpoint of algebraic coding theory it is important to determine reg(δI). 
Indeed let X be a set of projective points over a finite field K, let CX(d) be its corre-
sponding Reed-Muller type code, and let δX(d) be the minimum distance of CX(d) (see 
Section 5), then δX(d) ≥ 2 if and only if 1 ≤ d < reg(δI(X)). Our results give an effective 
method—that can be applied to any Reed-Muller type code—to compute the regularity 
index of the minimum distance (Corollary 5.6, Example 4.5).

The minimum socle degree s(I) of S/I (Definition 2.7) was used in [32] to ob-
tain homological lower bounds for the minimum distance of a fat point scheme Z
in P s−1. We relate the minimum socle degree, the v-number and the Castelnuovo-
Mumford regularity for Geramita ideals in Theorem 4.10. For radical ideals it is an 
open problem whether or not reg(δI) ≤ reg(S/I) [27, Conjecture 4.2]. In dimension 1, 
the conjecture is true because of Proposition 4.6 and Theorem 4.10. Moreover, via The-
orem 4.10, we can extend the notion of a Cayley–Bacharach scheme [10] by defining 
the notion of a Cayley–Bacharach ideal (Definition 4.14). It turns out that Cayley-
Bacharach ideals are connected to Reed–Muller type codes and to minimum distance 
functions.

Letting HI be the Hilbert function of I, we have δI(d) > deg(S/I) − HI(d) + 1 for 
some d ≥ 1 when I is unmixed of dimension at least 2 (Proposition 4.21). One of our 
main results is:

Theorem 4.19. If I ⊂ S is a Geramita ideal and there exists h ∈ S1 regular on S/I, then

δI(d) ≤ deg(S/I) −HI(d) + 1

for d ≥ 1 or equivalently HI(d) − 1 ≤ hypI(d) for d ≥ 1.

This inequality is well known when I is the vanishing ideal of a finite set of pro-
jective points [29, p. 82]. In this case the inequality is called the Singleton bound [33, 
Corollary 1.1.65].

Projective Reed–Muller-type codes are studied in Section 5.
The main result of Section 5 shows that the entries of each column of the weight 

matrix (δX(d, r)) form a decreasing sequence until they stabilize.
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In particular one recovers the case when X is a set, lying on a projective torus, param-
eterized by a finite set of monomials [12, Theorem 12]. Then we show that δX(d, HX(d))
is equal to |X| for d ≥ 1 (Corollary 5.7).

In Section 6 we examine minimum distance functions of complete intersection ideals 
and show some special cases of the following two conjectures.

Conjecture 6.3. Let X be a finite in P s−1 and suppose that I = I(X) is a complete 
intersection generated by f1, . . . , fc, c = s − 1, with di = deg(fi), and 2 ≤ di ≤ di+1 for 
all i.

(a) (Tohăneanu–Van Tuyl [32, Conjecture 4.9]) δI(1) ≥ (d1 − 1)d2 · · · dc.
(b) (Eisenbud-Green-Harris [8, Conjecture CB10]) If f1, . . . , fc are quadratic forms, then 

hypI(d) ≤ 2c − 2c−d for 1 ≤ d ≤ c or equivalently δI(d) ≥ 2c−d for 1 ≤ d ≤ c.

We prove part (a) of this conjecture, in a more general setting, when I is equigener-
ated, that is, all minimal homogeneous generators have the same degree (Proposition 6.4, 
Remark 6.6). The conjecture also holds for P 2 [32, Theorem 4.10] (Corollary 6.5). Ac-
cording to [8], part (b) of this conjecture is true for the following values of d: 1, c − 1, c.

For all unexplained terminology and additional information we refer to [4,6,26] (for 
the theory of Gröbner bases, commutative algebra, and Hilbert functions), and [22,33]
(for the theory of error-correcting codes and linear codes).

2. Preliminaries

In this section we present some of the results that will be needed throughout the paper 
and introduce some more notation. All results of this section are well-known. To avoid 
repetitions, we continue to employ the notations and definitions used in Section 1.

Commutative algebra. Let I �= (0) be a graded ideal of S of Krull dimension k. The 
Hilbert function of S/I is: HI(d) := dimK(Sd/Id) for d = 0, 1, 2, . . ., where Id = I ∩ Sd. 
By a theorem of Hilbert [31, p. 58], there is a unique polynomial PI(x) ∈ Q[x] of degree 
k−1 such that HI(d) = PI(d) for d � 0. By convention the degree of the zero polynomial 
is −1.

The degree or multiplicity of S/I is the positive integer

deg(S/I) :=
{

(k − 1)! limd→∞ HI(d)/dk−1 if k ≥ 1,
dimK(S/I) if k = 0.

As usual ht(I) will denote the height of the ideal I. By the dimension of I (resp. S/I) 
we mean the Krull dimension of S/I denoted by dim(S/I).

One of the most useful and well-known facts about the degree is its additivity:
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Proposition 2.1. (Additivity of the degree [28, Proposition 2.5]) If I is an ideal of S and 
I = q1 ∩ · · · ∩ qm is an irredundant primary decomposition, then

deg(S/I) =
∑

ht(qi)=ht(I)

deg(S/qi).

If F ⊂ S, the ideal quotient of I with respect to (F ) is given by (I : (F )) = {h ∈
S| hF ⊂ I}. An element f of S is called a zero-divisor of S/I—as an S-module—if there 
is 0 �= a ∈ S/I such that fa = 0, and f is called regular on S/I if f is not a zero-divisor. 
Thus f is a zero-divisor if and only if (I : f) �= I. An associated prime of I is a prime 
ideal p of S of the form p = (I : f) for some f in S.

Theorem 2.2. [34, Lemma 2.1.19, Corollary 2.1.30] If I is an ideal of S and I = q1 ∩
· · · ∩ qm is an irredundant primary decomposition with rad(qi) = pi, then the set of 
zero-divisors Z(S/I) of S/I is equal to 

⋃m
i=1 pi, and p1, . . . , pm are the associated primes 

of I.

Definition 2.3. If I is a graded ideal of S, the Hilbert series of S/I, denoted FI(x), is 
given by

FI(x) =
∞∑
d=0

HI(d)xd, where x is a variable.

Theorem 2.4. (Hilbert–Serre [31, p. 58]) Let I ⊂ S be a graded ideal of dimension k. 
Then there is a unique polynomial h(x) ∈ Z[x] such that

FI(x) = h(x)
(1 − x)k and h(1) > 0.

Remark 2.5. The leading coefficient of the Hilbert polynomial PI(x) is equal to h(1)/(k−
1)!. Thus h(1) is equal to deg(S/I).

Definition 2.6. Let I ⊂ S be a graded ideal. The a-invariant of S/I, denoted a(S/I), is 
the degree of FI(x) as a rational function, that is, a(S/I) = deg(h(x)) − k. If h(x) =∑r

i=0 hix
i, hi ∈ Z, hr �= 0, the vector (h0, . . . , hr) is called the h-vector of S/I.

Definition 2.7. Let I ⊂ S be a graded ideal and let F be the minimal graded free 
resolution of S/I as an S-module:

F : 0 →
⊕
j

S(−j)bg,j → · · · →
⊕
j

S(−j)b1,j → S → S/I → 0.

The Castelnuovo–Mumford regularity of S/I (regularity of S/I for short) and the mini-
mum socle degree (s-number for short) of S/I are defined as
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reg(S/I) = max{j − i | bi,j �= 0} and s(I) = min{j − g | bg,j �= 0}.

If S/I is Cohen-Macaulay (i.e. g = dim(S) −dim(S/I)) and there is a unique j such that 
bg,j �= 0, then the ring S/I is called level. In particular, a level ring for which the unique 
j such that bg,j �= 0 is bg,j = 1 is called Gorenstein.

An excellent reference for the regularity of graded ideals is the book of Eisenbud [7].

Definition 2.8. The regularity index of the Hilbert function of S/I, or simply the regularity 
index of S/I, denoted ri(S/I), is the least integer n ≥ 0 such that HI(d) = PI(d) for 
d ≥ n.

The next result is valid over any field; see for instance [34, Theorem 5.6.4].

Theorem 2.9. [10] Let I be a graded ideal with depth(S/I) > 0. The following hold.

(i) If dim(S/I) ≥ 2, then HI(i) < HI(i + 1) for i ≥ 0.
(ii) If dim(S/I) = 1, then there is an integer r and a constant c such that

1 = HI(0) < HI(1) < · · · < HI(r − 1) < HI(i) = c for i ≥ r.

Lemma 2.10. Let I ⊂ J ⊂ S be graded ideals of the same height. The following hold.

(a) [9, Lemma 8] If I and J are unmixed, then I = J if and only if deg(S/I) = deg(S/J).
(b) If I � J , then deg(S/I) > deg(S/J).

Proof. (b) Since any associated prime of J/I is an associated prime of S/I, dim(J/I) =
dim(S/I). From the short exact sequence

0 → J/I → S/I → S/J → 0

we obtain deg(S/I) = deg(J/I) + deg(S/J). As J/I is not zero, one has deg(S/I) >
deg(S/J). �
Lemma 2.11. [34, p. 122] Let I ⊂ S a graded ideal of height r. If K is infinite and I is 
minimally generated by forms of degree p ≥ 1, then there are forms f1, . . . , fm of degree p
in I such that f1, . . . , fr is a regular sequence and I is minimally generated by f1, . . . , fm.

The footprint of an ideal. Let ≺ be a monomial order on S and let (0) �= I ⊂ S be 
an ideal. If f is a non-zero polynomial in S, the leading monomial of f is denoted 
by in≺(f). The initial ideal of I, denoted by in≺(I), is the monomial ideal given by 
in≺(I) = ({in≺(f) | f ∈ I}).
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We will use the following multi-index notation: for a = (a1, . . . , as) ∈ Ns, set ta :=
ta1
1 · · · tas

s . A monomial ta is called a standard monomial of S/I, with respect to ≺, if ta
is not in the ideal in≺(I). A polynomial f is called standard if f �= 0 and f is a K-linear 
combination of standard monomials. The set of standard monomials, denoted Δ≺(I), is 
called the footprint of S/I. The image of the standard polynomials of degree d, under 
the canonical map S �→ S/I, x �→ x, is equal to Sd/Id, and the image of Δ≺(I) is a 
basis of S/I as a K-vector space. This is a classical result of Macaulay (for a modern 
approach see [4, Chapter 5]). In particular, if I is graded, then HI(d) is the number of 
standard monomials of degree d.

Lemma 2.12. [3, p. 3] Let I ⊂ S be an ideal generated by G = {g1, . . . , gr}, then

Δ≺(I) ⊂ Δ≺(in≺(g1), . . . , in≺(gr)).

Lemma 2.13. [13, Lemma 4.7] Let ≺ be a monomial order, let I ⊂ S be an ideal, let 
F = {f1, . . . , fr} be a set of polynomial of S of positive degree, and let in≺(F ) =
{in≺(f1), . . . , in≺(fr)} be the set of initial terms of F . If (in≺(I) : (in≺(F ))) = in≺(I), 
then (I : (F )) = I.

Let ≺ be a monomial order and let F≺,d,r be the set of all subsets F = {f1, . . . , fr}
of Sd such that (I : (F )) �= I, fi is a standard polynomial for all i, f1, . . . , fr are linearly 
independent over the field K, and in≺(f1), . . . , in≺(fr) are distinct monomials.

The next result is useful for computations with Macaulay2 [16] (see Procedure A.2).

Proposition 2.14. [13, Proposition 4.8] The generalized minimum distance function of I
is given by the following formula

δI(d, r) =
{

deg(S/I) − max{deg(S/(I, F )) | F ∈ F≺,d,r} if F≺,d,r �= ∅,
deg(S/I) if F≺,d,r = ∅.

An ideal I ⊂ S is called radical if I is equal to its radical. The radical of I is denoted 
by 

√
I.

Lemma 2.15. [13, Lemma 3.3] Let I ⊂ S be a radical unmixed graded ideal. If F =
{f1, . . . , fr} is a set of homogeneous polynomials of S \ {0}, (I : (F )) �= I, and A is the 
set of all associated primes of S/I that contain F , then ht(I) = ht(I, F ), A �= ∅, and

deg(S/(I, F )) =
∑
p∈A

deg(S/p).

3. Generalized minimum distance function of a graded ideal

In this section we study the generalized minimum distance function of a graded ideal.
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Part (c) of the next lemma was known for vanishing ideals and part (b) for unmixed 
radical ideals [13, Proposition 3.5, Lemma 4.1].

Lemma 3.1. Let I ⊂ S be an unmixed graded ideal, let ≺ be a monomial order, and let 
F be a finite set of homogeneous polynomials of S such that (I : (F )) �= I. The following 
hold.

(a) ht(I) = ht(I, F ).
(b) deg(S/(I, F )) < deg(S/I) if I is an unmixed ideal and (F ) �⊂ I.
(c) deg(S/I) = deg(S/(I : (F ))) + deg(S/(I, F )) if I is an unmixed radical ideal.
(d) [13, Lemma 4.1] deg(S/(I, F )) ≤ deg(S/(in≺(I), in≺(F ))) ≤ deg(S/I).

Proof. (a) As I � (I : (F )), there is g ∈ S \ I such that g(F ) ⊂ I. Hence the ideal 
(F ) is contained in the set of zero-divisors of S/I. Thus, by Theorem 2.2 and since I is 
unmixed, (F ) is contained in an associated prime ideal p of S/I of height ht(I). Thus 
I ⊂ (I, F ) ⊂ p, and consequently ht(I) = ht(I, F ). Therefore the set of associated primes 
of (I, F ) of height equal to ht(I) is not empty and is equal to the set of associated primes 
of S/I that contain (F ).

(b) The inequality follows from part (a) and Lemma 2.10 (b).
(c) Let p1, . . . , pm be the associated primes of S/I. As I is a radical ideal, one has the 

decompositions

I =
m⋂
i=1

pi and (I : (F )) =
m⋂
i=1

(pi : (F )).

Note that (pi : (F )) = S if F ⊂ pi and (pi : (F )) = pi if F �⊂ pi. Therefore, using the 
additivity of the degree of Proposition 2.1 and Lemma 2.15, we get

deg(S/(I : (F ))) =
∑
F �⊂pi

deg(S/pi) and deg(S/(I, F )) =
∑
F⊂pi

deg(S/pi).

Thus deg(S/I) =
∑m

i=1 deg(S/pi) = deg(S/(I : (F ))) + deg(S/(I, F )). �
Definition 3.2. Let I ⊂ S be a graded ideal. A sequence f1, . . . , fr of elements of S is 
called a (d, r)-sequence of S/I if the set F = {f1, . . . , fr} is in Fd,r.

Lemma 3.3. Let I ⊂ S be a graded ideal. A sequence f1, . . . , fr is a (d, r)-sequence of S/I
if and only if the following conditions hold

(a) f1, . . . , fr are homogeneous polynomials of S of degree d ≥ 1,
(b) (I : (f1, . . . , fr)) �= I, and
(c) fi /∈ (I, f1, . . . , fi−1) for i = 1, . . . , r, where we set f0 = 0.



12 S.M. Cooper et al. / Advances in Applied Mathematics 112 (2020) 101940
Proof. The proof is straightforward. �
Definition 3.4. If I ⊂ S is a graded ideal, the Vasconcelos function of I is the function 
ϑI : N+ ×N+ → N given by

ϑI(d, r) :=
{

min{deg(S/(I : (F )))|F ∈ Fd,r} if Fd,r �= ∅,
deg(S/I) if Fd,r = ∅.

The next result was shown in [13, Theorem 4.5] for vanishing ideals over finite fields.

Theorem 3.5. Let I ⊂ S be a graded unmixed radical ideal. Then

ϑI(d, r) = δI(d, r) for d ≥ 1 and 1 ≤ r ≤ HI(d).

Proof. If Fd,r = ∅, then δI(d, r) and ϑI(d, r) are equal to deg(S/I). Now assume that 
Fd,r �= ∅. Using Lemma 3.1(c), we obtain

ϑI(d, r) = min{deg(S/(I : (F )))|F ∈ Fd,r}
= min{deg(S/I) − deg(S/(I, F ))|F ∈ Fd,r}
= deg(S/I) − max{deg(S/(I, F ))|F ∈ Fd,r} = δI(d, r). �

As the next result shows for r = 1 we do not need the assumption that I is a radical 
ideal. For r ≥ 2 this assumption is essential, as shown in the next Example 3.6.

Example 3.6. Let I be the ideal (t21, t1t2, t22) of the polynomial ring S = K[t1, t2] over a 
field K and let F = {t1, t2}. Then (I : (F )) = (I, F ) = (t1, t2) and

3 = deg(S/I) �= deg(S/(I : (F ))) + deg(S/(I, F )) = 2.

Theorem 3.7. [23, Theorem 4.4] Let I ⊂ S be an unmixed graded ideal. If m = (t1, . . . , ts)
and d ≥ 1 is an integer such that md �⊂ I, then

δI(d) = min{deg(S/(I : f)) | f ∈ Sd \ I}.

Recall from the introduction that the definition of δI(d, r) was motivated by the notion 
of generalized Hamming weight of a linear code [18,35]. The following compilation of facts 
reflects the monotonicity of the generalized minimum distance function with respect of 
its two input values for the case of linear codes corresponding to reduced sets of points.

Theorem 3.8. Let C be a linear code of length m and dimension k. The following hold.

(a) [35, Theorem 1, Corollary 1] 1 ≤ δ1(C) < · · · < δk(C) ≤ m.
(b) [33, Corollary 1.1.65] r ≤ δr(C) ≤ m − k + r for r = 1, . . . , k.
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(c) If δ1(C) = m − k + 1, then δr(C) = m − k + r for r = 1, . . . , k.

Proof. (c): By (a), one has m −k+1 = δ1(C) ≤ δi(C) − (r− 1). Thus m −k+ r ≤ δi(C)
and, by (b), equality holds. �

Below we consider more generally the behavior of the generalized minimum distance 
function and the footprint function for arbitrary graded ideals. The next result shows 
that the entries of any row (resp. column) of the weight matrix of I form a non-decreasing 
(resp. non-increasing) sequence. Parts (a)-(c) of the next result are broad generalizations 
of [13, Theorem 4.9] and [27, Theorem 3.6].

Theorem 3.9. Let I ⊂ S be an unmixed graded ideal, let ≺ be a monomial order on S, 
and let d ≥ 1, r ≥ 1 be integers. The following hold.

(a) fpI(d, r) ≤ δI(d, r) for 1 ≤ r ≤ HI(d).
(b) δI(d, r) ≥ 1.
(c) fpI(d, r) ≥ 1 if in≺(I) is unmixed.
(d) δI(d, r) ≤ δI(d, r + 1).
(e) If there is h ∈ S1 regular on S/I, then δI(d, r) ≥ δI(d + 1, r) ≥ 1.

Proof. (a) If Fd,r = ∅, then δI(d, r) = deg(S/I) ≥ fpI(d, r). Now assume Fd,r �= ∅. 
Let F be any set in F≺,d,r. By Lemma 2.13, in≺(F ) is in M≺,d,r, and by Lemma 3.1, 
deg(S/(I, F )) ≤ deg(S/(in≺(I), in≺(F ))). Hence, by Proposition 2.14 and Lemma 3.1(b), 
fpI(d, r) ≤ δI(d, r).

(b) If Fd,r = ∅, then δI(d, r) = deg(S/I) ≥ 1, and if Fd,r �= ∅, then using Lemma 3.1(b) 
it follows that δI(d, r) ≥ 1.

(c) If M≺,d,r = ∅, then fpI(d, r) = deg(S/I) ≥ 1. Next assume that M≺,d,r is not 
empty and pick M in M≺,d,r such that

fpI(d, r) = deg(S/I) − deg(S/(in≺(I),M)).

As in≺(I) is unmixed, by Lemma 3.1(b), fpI(d, r) ≥ 1.
(d) If Fd,r+1 is empty, then δI(d, r) ≤ deg(S/I) = δI(d, r + 1). We may then assume 

Fd,r+1 is not empty and pick F = {f1, . . . , fr+1} in Fd,r+1 such that hypI(d, r + 1) =
deg(S/(I, F )). Setting F ′ = {f1, . . . , fr} and noticing that I � (I : (F )) ⊂ (I : (F ′)), we 
get F ′ ∈ Fd,r. By the proof of Lemma 3.1, one has ht(I) = ht(I, F ) = ht(I, F ′). Taking 
Hilbert functions in the exact sequence

0 −→ (I, F )/(I, F ′) −→ S/(I, F ′) −→ S/(I, F ) −→ 0

it follows that deg(S/(I, F ′)) ≥ deg(S/(I, F )). Therefore

hypI(d, r) ≥ deg(S/(I, F ′)) ≥ deg(S/(I, F )) = hypI(d, r + 1) ⇒ δI(d, r) ≤ δI(d, r + 1).
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(e) By part (b), δI(d, r) ≥ 1 for d ≥ 1. Assume Fd,r = ∅. Then δI(d, r) = deg(S/I). If 
the set Fd+1,r is empty, one has

δI(d, r) = δI(d + 1, r) = deg(S/I).

If the set Fd+1,r is not empty, there is F ∈ Fd+1,r such that

δI(d + 1, r) = deg(S/I) − deg(S/(I, F )) ≤ deg(S/I) = δI(d, r).

Thus we may now assume Fd,r �= ∅. Pick F = {f1, . . . , fr} in Fd,r such that

δI(d, r) = deg(S/I) − deg(S/(I, F )).

By assumption there exists h ∈ S1 such that (I : h) = I. Hence the set hF = {hf i}ri=1
is linearly independent over K, hF ⊂ Sd+1, and

I � (I : F ) ⊂ (I : hF ),

that is, hF is in Fd+1,r. Note that there exists p ∈ Ass(S/I) that contains (I, F ) (see 
Lemma 3.1(a)). Hence the ideals (I, F ) and (I, hF ) have the same height because a 
prime ideal p ∈ Ass(S/I) contains (I, F ) if and only if p contains (I, hF ). Therefore 
taking Hilbert functions in the exact sequence

0 −→ (I, F )/(I, hF ) −→ S/(I, hF ) −→ S/(I, F ) −→ 0

it follows that deg(S/(I, hF )) ≥ deg(S/(I, F )). As a consequence we get

δI(d, r) = deg(S/I) − deg(S/(I, F )) ≥ deg(S/I) − deg(S/(I, hF ))

≥ deg(S/I) − max{deg(S/(I, F ′))|F ′ ∈ Fd+1,r} = δI(d + 1, r). �
Remark 3.10. (a) Let I be a non-prime ideal and let p be an associated prime of I. 
There is f ∈ Sd, d ≥ 1, such that (I : f) = p. Note that f ∈ Fd. By Theorem 3.7 one 
has δI(d) = 1.

(b) If dim(S/I) ≥ 1, then reg(δI) is the smallest n ≥ 1 such that δI(d) = 1 for d ≥ n. 
This follows from Theorems 3.7 and 3.9.

Example 3.11. Let S = K[t1, . . . , t6] be a polynomial ring over the finite field K = F3 and 
let I be the ideal (t1t6 − t3t4, t2t6 − t3t5). The regularity and the degree of S/I are 2 and 
4, respectively, and HI(1) = 6, HI(2) = 19. Using Procedure A.2 and Theorem 3.9(a) 
we obtain:

(fpI(d, r)) =
[

1 3 4 4 4 4 ∞
1 1 1 1 2 3 3

]
, d = 1, 2 and r = 1, . . . , 7,

and (δI(1, 1), . . . , δI(1, 5)) = (3, 3, 4, 4, 4).
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Definition 3.12. If fpI(d) = δI(d) for d ≥ 1, we say that I is a Geil–Carvalho ideal. If 
fpI(d, r) = δI(d, r) for d ≥ 1 and r ≥ 1, we say that I is a strongly Geil–Carvalho ideal.

The next result generalizes [24, Proposition 3.11].

Proposition 3.13. If I is an unmixed monomial ideal and ≺ is any monomial order, then 
δI(d, r) = fpI(d, r) for d ≥ 1 and r ≥ 1, that is, I is a strongly Geil–Carvalho ideal.

Proof. The inequality δI(d, r) ≥ fpI(d, r) follows from Theorem 3.9(a). To show the re-
verse inequality notice that M≺,d,r ⊂ F≺,d,r because one has I = in≺(I). Also notice that 
M≺,d,r = ∅ if and only if F≺,d,r = ∅, this follows from the proof of [13, Proposition 4.8]. 
Therefore one has fpI(d, r) ≥ δI(d, r). �
Proposition 3.14. If I ⊂ S is an unmixed graded ideal and dim(S/I) ≥ 1, then

δI(d,HI(d)) = deg(S/I) for d ≥ 1.

Proof. We set r = HI(d). It suffices to show that Fd,r = ∅. We proceed by contradiction. 
Assume that Fd,r is not empty and let F = {f1, . . . , fr} be an element of Fd,r. Let 
p1, . . . , pm be the associated primes of I. As I � (I : (F )), we can pick g ∈ S such that 
g(F ) ⊂ I and g /∈ I. Then (F ) is contained ∪m

i=1pi, and consequently (F ) ⊂ pi for some 
i. Since r = HI(d), one has

Sd/Id = Kf1 ⊕ · · · ⊕Kfr ⇒ Sd = Kf1 + · · · + Kfr + Id.

Hence Sd ⊂ pi, that is, md ⊂ pi, where m = (t1, . . . , ts). Therefore pi = m, a contra-
diction because I is unmixed and dim(S/I) ≥ 1. �
Example 3.15. Let S = K[t1, t2, t3] be a polynomial ring over a field K and let (fpI(d, r))
and (δI(d, r)) be the footprint matrix and the weight matrix of the ideal I = (t31, t2t3). 
The regularity and the degree of S/I are 3 and 6. Using Procedure A.1 we obtain:

(fpI(d, r)) =

⎡
⎢⎣ 3 5 6 ∞ ∞ ∞

2 3 4 5 6 ∞
1 2 3 4 5 6

⎤
⎥⎦ .

If r > HI(d), then M≺,d,r = ∅ and the (d, r)-entry of this matrix is equal 
to 6, but in this case we write ∞ for computational reasons. Therefore, by Propo-
sition 3.13, (fpI(d, r)) is equal to (δI(d, r)). Setting F = {t21t2, t1t22, t1t23, t21t3} and 
F ′ = {t21t2, t1t22, t1t23 + t32, t

2
1t3}, we get

δI(3, 4) = deg(S/I) − deg(S/(I, F ) = 4 and deg(S/I) − deg(S/(I, F ′) = 5.

Thus δI(3, 4) is attained at F .
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4. Minimum distance function of a graded ideal

In this section we study minimum distance functions of unmixed graded ideals whose 
associated primes are generated by linear forms and the algebraic invariants of Geramita 
ideals.

4.1. Minimum distance function for unmixed ideals

We begin by introducing the following numerical invariant which will be used to 
express the regularity index of the minimum distance function (Proposition 4.6).

Definition 4.1. The v-number of a graded ideal I, denoted v(I), is given by

v(I) :=
{

min{d ≥ 1 | there exists f ∈ Sd and p ∈ Ass(I) with (I : f) = p} if I � m,

0 if I = m,

where Ass(I) is the set of associated primes of S/I and m = (t1, . . . , ts) is the irrelevant 
maximal ideal of S.

The v-number is finite for any graded ideal by the definition of associated primes. If 
p is a prime ideal and p �= m, then v(p) = 1.

Let I � m ⊂ S be a graded ideal and let p1, . . . , pm be its associated primes. One can 
define the v-number of I locally at each pi by

vpi
(I) := min{d ≥ 1 | ∃f ∈ Sd with (I : f) = pi}.

The v-number of I is equal to min{vp1(I), . . . , vpm
(I)}. If I = I(X) is the vanishing 

ideal of a finite set X = {P1, . . . , Pm} of reduced projective points and pi is the vanishing 
ideal of Pi, then vpi

(I) is the degree of Pi in X in the sense of [10, Definition 2.1].
We give an alternate description for the v-number using initial degrees of certain 

modules. This will allow us to compute the v-number using Macaulay2 [16] (see Exam-
ple 4.3). For a graded module M �= 0 we denote α(M) = min{deg(f) | f ∈ M, f �= 0}. 
By convention, for M = 0 we set α(0) = 0.

Proposition 4.2. Let I ⊂ S be an unmixed graded ideal. Then I � (I : p) for p ∈ Ass(I),

v(I) = min{α ((I : p)/I) | p ∈ Ass(I)},

and α ((I : p)/I) = vp(I) for p ∈ Ass(I).

Proof. The strict inclusion I � (I : p) follows from the equivalence of Eq. (4.1) below. As 
a preliminary step of the proof of the equality we establish that for a prime p ∈ Ass(I)
we have
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(I : f) = p if and only if f ∈ (I : p) \ I. (4.1)

If (I : f) = p, it is clear that we have f ∈ (I : p) and since (I : f) �= S it follows that 
f /∈ I. Conversely, if f ∈ (I : p) \ I, then p ⊂ (I : f). Let q ∈ Ass(I : f), which is a 
nonempty set since f /∈ I. Since Ass(I : f) ⊂ Ass(I) and I is height unmixed, we have 
ht(q) = ht(p) and p ⊂ (I : f) ⊂ q. It follows that p = (I : f) = q.

The equivalence of Eq. (4.1) implies that α ((I : p)/I) = vp(I), and shows the equality

{f | (I : f) = p for some p ∈ Ass(I)} =
⋃

p∈Ass(I)

(I : p) \ I.

The claim now follows by considering the minimum degree of a homogeneous element 
in the above sets. �
Example 4.3. Let S = Q[t1, t2, t3, t4] be a polynomial ring over the rational numbers and 
let I be the ideal of S given by

I = (t102 , t93, t
4
4, t2t3t

3
4) ∩ (t41, t43, t34, t1t3t24) ∩ (t41, t52, t34) ∩ (t31, t52, t103 ).

The associated primes of I are p1 = (t2, t3, t4), p2 = (t1, t3, t4), p3 = (t1, t2, t4), p4 =
(t1, t2, t3). Using Proposition 4.2 together with Procedure A.3 we get s(I) = 10, v(I) =
12, reg(S/I) = 19, vp1(I) = 12, vp2(I) = 15, vpi

(I) = 18 for i = 3, 4. Thus the minimum 
socle degree s(I) can be smaller than the v-number v(I).

Corollary 4.4. If I � m is a graded ideal of S and dim(S/I) = 0, then the minimum 
socle degree s(I) := α((I : m)/I) of S/I is equal to v(I).

Proof. The socle of S/I is given by Soc(S/I) = (I : m)/I. Thus, by Proposition 4.2, one 
has the equality s(I) = v(I). �

This corollary does not hold in dimension 1. There are examples of Geramita mono-
mial ideals satisfying the strict inequality s(I) < v(I) (see Example 4.3). If S/I is a 
Cohen–Macaulay ring, the socle is understood to be the socle of some Artinian reduc-
tion of S/I by linear forms.

Example 4.5. Let K be the finite field F3 and let X be the following set of points in P 2:

[(1, 0, 1)], [(1, 0, 0)], [(1, 0, 2)], [(1, 1, 0)], [(1, 1, 1)],
[(1, 1, 2)], [(0, 0, 1)], [(0, 1, 0)], [(0, 1, 1)], [(0, 1, 2)].

Using Propositions 4.2 and 4.6, together with Procedure A.4, we get v(I) = reg(δX) =
3, reg(S/I) = 4, δX(1) = 6, δX(2) = 3, and δX(d) = 1 for d ≥ 3. The vanishing ideal of 
X is generated by t1t22 − t21t2, t1t33 − t31t3, and t2t33 − t32t3.
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Proposition 4.6. Let I � m ⊂ S be an unmixed graded ideal whose associated primes are 
generated by linear forms. Then reg(δI) = v(I).

Proof. Let p1, . . . , pm be the associated primes of I. We may assume that I not a prime 
ideal, otherwise reg(δI) = v(I) = 1. If d1 = v(I), there are f ∈ Sd1 and pi such that 
(I : f) = pi. Then, by Theorem 3.7, one has δI(d1) = 1. Thus reg(δI) ≤ v(I).

To show the reverse inequality set we set d0 = reg(δI). Then δI(d0) = 1. Note that 
md0 �⊂ I; otherwise Fd0(I) = ∅ and by definition δI(d0) is equal to deg(S/I), a contra-
diction because I � m and by Lemma 2.10 deg(S/I) > 1. Then, by Theorem 3.7, there 
is f ∈ Sd0 \ I such that δI(d0) = deg(S/(I : f)) = 1. Let I = ∩m

i=1qi be the minimal 
primary decomposition of I, where qi is a pi-primary ideal. Note that (qi : f) is a primary 
ideal if f /∈ qi because S/(qi : f) is embedded in S/qi. Thus the primary decomposition 
of (I : f) is ∩f /∈qi

(qi : f). Therefore, by the additivity of the degree of Proposition 2.1, 
we get that (I : f) = (qk : f) for some k such that f /∈ qk and deg(S/(qk : f)) = 1. Since 
S/pk has also degree 1 and (qk : f) ⊂ pk, by Lemma 2.10, we get (I : f) = (qk : f) = pk, 
and consequently v(I) ≤ reg(δI). �
Corollary 4.7. Let I ⊂ S be an unmixed radical graded ideal. If all the associated primes 
of I are generated by linear forms and v = v(I) is its v-number, then

δI(1) > · · · > δI(v − 1) > δI(v) = δI(d) = 1 for d ≥ v.

Proof. It follows from [27, Theorem 3.8] and Proposition 4.6. �
The minimum distance function behaves well asymptotically.

Corollary 4.8. Let I � m ⊂ S be an unmixed graded ideal of dimension ≥ 1 whose 
associated primes are generated by linear forms. Then δI(d) = 1 for d ≥ v(I).

Proof. This follows from Remark 3.10(b) and Proposition 4.6. �
The next result relates the minimum socle degree and the v-number.

Proposition 4.9. Let I ⊂ S be an unmixed non-prime graded ideal whose associated 
primes are generated by linear forms and let h ∈ S1 be a regular element on S/I. The 
following hold:

(a) If δI(d) = deg(S/(I : f)), f ∈ Fd ∩ (I, h), then d ≥ 2 and δI(d) = δI(d − 1).
(b) If S/I is Cohen–Macaulay, then v(I, h) ≤ v(I).
(c) If K is infinite and S/I is Cohen–Macaulay, then s(I) ≤ v(I).

Proof. (a) Writing f = g+f1h, for some g ∈ Id and f1 ∈ Sd−1, one has (I : f) = (I : f1). 
Note that d ≥ 2, otherwise if d = 1, then (I : f) = I, a contradiction because f ∈ Fd. 
Therefore noticing that f1 ∈ Fd−1, by Theorems 3.7 and 3.9, we obtain
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δI(d) = deg(S/(I : f)) = deg(S/(I : f1)) ≥ δI(d− 1) ≥ δI(d) ⇒ δI(d) = δI(d− 1).

(b) We set v = v(I). By Proposition 4.2 there is an associated prime p of I and 
f ∈ (I : p) \I such that f ∈ Sv. Then (I : f) = p, f ∈ Fd, and δI(d) = deg(S/(I : f)) = 1. 
We claim that f is not in (I, h). If f ∈ (I, h), then by part (a) one has v ≥ 2 and 
δI(v−1) = 1, a contradiction because v is the regularity index of δI (see Proposition 4.6). 
Thus f /∈ (I, h). Next we show the equality (p, h) = ((I, h) : f). The inclusion “⊂” is 
clear because (I : f) = p. Take an associated prime p′ of ((I, h) : f). The height of p′ is 
ht(I) + 1 because (I, h) is Cohen–Macaulay. Then p′ = (p′′, h) for some p′′ in Ass(I). 
Taking into account that p and p′′ are generated by linear forms, we get the equality 
(p, h) = (p′′, h). Thus (p, h) is equal to ((I, h) : f). Hence δ(I,h)(v) = 1, and consequently 
v(I, h) = reg(δ(I,h)) ≤ reg(δI) = v(I) = v.

(c) There exists a system of parameters h = h1, . . . , ht of S/I consisting of linear 
forms, where t = dim(S/I). As S/I is Cohen–Macaulay, h is a regular sequence on S/I. 
Hence, by part (b), we obtain

v(I, h) = v(I, h1, . . . , ht) ≤ · · · ≤ v(I, h1) ≤ v(I).

Thus, by Corollary 4.4, we get s(I) = s(I, h) = α(((I, h) : m)/(I, h)) = v(I, h) ≤
v(I). �
4.2. Minimum distance function for Geramita ideals and Cayley-Bacharach ideals

The minimum socle degree s(I), the local v-number vp(I), and the regularity reg(S/I), 
are related below. For complete intersections of dimension 1 they are all equal. In par-
ticular in this case one has δI(d) ≥ 2 for 1 ≤ d < reg(S/I).

Theorem 4.10. Let I ⊂ S be a Geramita ideal and p ∈ Ass(I). If I is not prime, then

s(I) ≤ vp(I) ≤ reg(S/I),

with equality everywhere if S/I is a level ring.

Proof. We set M = S/I, r0 = reg(S/I), n = vp(I), and I ′ = (I : p). To show the 
inequality n ≤ r0 we proceed by contradiction. Assume that n > r0. The S-modules in 
the exact sequence

0 −→ I ′/I −→ S/I −→ S/I ′ −→ 0

are nonzero Cohen–Macaulay modules of dimension 1. Indeed, that I ′/I �= 0 (resp. 
S/I ′ �= 0) follows from Proposition 4.2 (resp. I is not prime). That the modules are 
Cohen–Macaulay follows observing that I and I ′ are unmixed ideals of dimension 1. 
Since n is vp(I) and r0 < n, one has (I ′/I)r0 = 0 (see the equivalence of Eq. (4.1) in the 
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proof of Proposition 4.2). Hence taking Hilbert functions in the above exact sequence in 
degree d = r0 (resp. for d � 0), by Theorem 2.9, we get

deg(S/I) = HI(r0) = HI′(r0) ≤ deg(S/I ′) (resp. deg(S/I) = deg(I ′/I) + deg(S/I ′)).

As I ′/I �= 0, deg(I ′/I) > 0. Hence deg(S/I) > deg(S/I ′), a contradiction. Thus 
n ≤ r0.

To show the inequality s(I) ≤ vp(I) we make a change of coefficients. Consider the 
algebraic closure K of K. We set

S = S ⊗K K = K[t1, . . . , ts] and I = IS.

Note that K ↪→ K is a faithfully flat extension. Apply the functor S⊗K (−). By base 
change, it follows that S ↪→ S is a faithfully flat extension. Therefore HI(d) = HI(d)
for d ≥ 0 and deg(S/I) = deg(S/I). Furthermore the minimal graded free resolutions 
and the Hilbert series of S/I and S/I are identical. Thus S/I and S/I have the same 
regularity, s(I) = s(I), and I is Cohen–Macaulay of dimension 1. The ideal p = pS is 
a prime ideal of S because p is generated by linear forms, and so is p. The ideal I is 
Geramita. To show this, let I = ∩m

i=1qi be the minimal primary decomposition of I, 
where qi is a pi-primary ideal. Since piS is prime, the ideal qiS is a piS-primary ideal of 
S, and the minimal primary decomposition of I is

I =
(

m⋂
i=1

qi

)
S =

m⋂
i=1

(
qiS

)
,

see [25, Sections 3.H, 5.D and 9.C]. Thus I is a Geramita ideal. Recall that n ≥ 1 is 
the smallest integer such that there is f ∈ Sn with (I : f) = p. Fix f with these two 
properties. Then f ∈ (I : p) \ I and since I ∩ S = I and (I : p)S = (IS : pS), one has 
f ∈ (IS : pS) \ IS. Therefore, setting p = pS, we obtain vp(I) ≤ vp(I). Altogether using 
Proposition 4.9(c), we obtain

s(I) = s(I) ≤ v(I) ≤ vp(I) ≤ vp(I) ≤ reg(S/I) = reg(S/I).

If S/I is level then so is S/I, because the Betti numbers (bi,j in Definition 2.7) for S/I
and S/I agree [6, 6.10]. Furthermore, since the ring S/I is level, we have s(I) = reg(S/I)
by [7, 4.13, 4.14] and which gives equality everywhere. �
Definition 4.11. [17,32] Let Z = a1P1 + · · · + amPm ⊂ P s−1 be a set of fat points, and 
suppose that Z ′ = a1P1 + · · · + (ai − 1)Pi + · · · + amPm for some i = 1, . . . , m. We call 
f ∈ Sd a separator of Pi of multiplicity ai if f ∈ I(Z ′) \ I(Z). The vanishing ideal I(Z)
of Z is ∩m

i=1p
ai
i , where pi is the vanishing ideal of Pi. If Z is a set of reduced points (i.e., 

a1 = · · · = am = 1), the degree of Pi, denoted degZ(Pi), is the least degree of a separator 
of Pi of multiplicity 1.
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Remark 4.12. If f is a separator of Pi of multiplicity ai and pi is the vanishing ideal of 
Pi, then f ∈ (I : pi) \ I. The converse hold if ai = 1.

Corollary 4.13. [32, Theorem 3.3] Let Z = a1P1 + · · · + amPm ⊂ P s−1 be a set of fat 
points, and suppose that Z ′ = a1P1 + · · ·+(ai−1)Pi+ · · ·+amPm for some i = 1, . . . , m. 
If f is a separator of Pi of multiplicity ai, then deg(f) ≥ v(I) ≥ s(I).

Proof. If f is a separator of Pi of multiplicity ai and pi be the vanishing ideal of Pi, then 
f ∈ (I : pi) \ I. Hence, by Proposition 4.2 and Theorem 4.10, one has deg(f) ≥ v(I) ≥
s(I). �

A finite set X = {P1, . . . , Pm} of reduced points in P s−1 is Cayley-Bacharach if every 
hypersurface of degree less than reg(S/I(X)) which contains all but one point of X must 
contain all the points of X or equivalently if degX(Pi) = reg(S/I(X)) for all i = 1, . . . , m
[10, Definition 2.7]. Since degX(Pi) = vpi

(I), where pi is the vanishing ideal of Pi, by 
Theorem 4.10 one can extend this notion to Geramita ideals.

Definition 4.14. A Geramita ideal I ⊂ S is called Cayley–Bacharach if vp(I) is equal to 
reg(S/I) for all p ∈ Ass(I).

As the next result shows Cayley-Bacharach ideals are connected to Reed–Muller type 
codes and to minimum distance functions.

Corollary 4.15. A Geramita ideal I ⊂ S is Cayley–Bacharach if and only if

reg(δI) = v(I) = reg(S/I).

Proof. It follows from Proposition 4.6 and Theorem 4.10. �
There are some families of Reed–Muller type codes where the minimum distance and 

its index of regularity are known [21,30]. In these cases one can determine whether or 
not the corresponding sets of points are Cayley–Bacharach.

Corollary 4.16. If K = Fq is a finite field and X = P s−1, then I(X) is Cayley–Bacharach.

Proof. It follows from Corollary 4.15 because according to [30] the regularity index of 
δI(X) is equal to reg(S/I(X)). �

Next we give a lemma that allows comparisons between the generalized minimum 
distances of ideals related by containment.

Lemma 4.17. If I, I ′ are unmixed graded ideals of the same height and J is a graded ideal 
such that I ′ = (I : J), then Fd(I ′) ⊂ Fd(I) and
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deg(S/I ′) − δI′(d) ≤ deg(S/I) − δI(d).

Proof. Let f ∈ Fd(I ′). Then f /∈ I ′ and (I ′ : f) �= I ′, and since we have the following 
relations

I ′ � (I ′ : f) = ((I : J) : f) = (I : (fJ)) = ((I : f) : J)

we deduce that (I : f) �= I (otherwise the last ideal displayed above would be I ′). Note 
that I ⊂ I ′, so f /∈ I. The second statement follows from the inequality

deg(S/I ′) − δI′(d) = max{deg(S/(I ′, f)) | f ∈ Fd(I ′)}
≤ max{deg (S/(I, g)) | g ∈ Fd(I)} = deg(S/I) − δI(d).

This inequality is a consequence of the observation that if f ∈ Fd(I ′), then ht(I ′, f) =
ht(I ′), and since f ∈ Fd(I) one also has ht(I, f) = ht(I) by Lemma 3.1(a). Thus 
deg(S/(I ′, f)) ≤ deg(S/(I, f)). �

One of our main results shows that the function η : N+ → Z given by

η(d) := (deg(S/I) −HI(d) + 1) − δI(d)

non-negative for Geramita ideals (see Theorem 4.19).

Lemma 4.18. Let I ⊂ S be a Geramita ideal. If Fd0 = ∅ for some d0 ≥ 1, then η(d0) = 0
and η(d) ≥ 0 for all d ≥ 1.

Proof. Let p1, . . . , pm be the associated primes of I. As pk is generated by linear forms, 
the initial ideal of pk, w.r.t. the lexicographical order ≺, is generated by s − 1 variables. 
Hence, as pk and in≺(pk) have the same Hilbert function, deg(S/pk) = 1 and Hpk

(d) = 1
for d ≥ 1. Assume that Fd0 = ∅. Then δI(d0) = deg(S/I) and (I : f) = I for any 
f ∈ Sd0 \ I. Hence, by Theorem 2.2, we get

(p1)d0 ⊂
(

m⋃
i=1

pi

)
∩ Sd0 ⊂ Id0 ⊂ (p1)d0 .

Thus Id0 = (p1)d0 , HI(d0) = Hp1(d0) = 1, HI(0) = 1, and η(d0) = 0. Using Theo-
rem 2.9(ii), one has HI(d) = 1 for d ≥ 1. Therefore η(d) ≥ 0 for d ≥ 1. �
4.3. Singleton bound

We come to one of our main results. The inequality in the following theorem is well 
known when I is the vanishing ideal of a finite set of projective points [29, p. 82]. In this 
case the inequality is called the Singleton bound [33, Corollary 1.1.65].
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Theorem 4.19. Let I ⊂ S be an unmixed graded ideal whose associated primes are gener-
ated by linear forms and such that there exists h ∈ S1 regular on S/I. If dim(S/I) = 1, 
then

δI(d) ≤ deg(S/I) −HI(d) + 1 for d ≥ 1

or equivalently HI(d) − 1 ≤ hypI(d) for d ≥ 1.

Proof. The proof is by induction on deg(S/I). If deg(S/I) = 1, then I = p is a prime 
generated by linear forms, HI(d) = 1 for all d ≥ 0 and Fd(I) = ∅ for all d ≥ 1. The 
latter follows since for any prime p, (p : f) �= p implies f ∈ p. So the result is verified in 
this case. Let v = v(I) be the v-number of I. By Proposition 4.2, v = α((I : p)/I) for 
some p ∈ Ass(I). Set I ′ = (I : p). The short exact sequence

0 −→ I ′/I −→ S/I −→ S/I ′ −→ 0

together with the unmixed property of S/I show that dim (I ′/I) = 1 and depth(I ′/I) =
1. Therefore, HI′/I(d) = 0 for d < α((I : p)/I) = v and HI′/I(d) > 0 for d ≥
α((I : p)/I) = v, and consequently HI′(d) = HI(d) for d < v and HI′(d) > HI(d)
for d ≥ v. The last statement yields that deg(S/I) > deg(S/I ′). This also follows from 
Lemma 2.10(b).

If d < v we deduce from Lemma 4.17, the inductive hypothesis and HI′(d) = HI(d)
that

deg(S/I) − δI(d) ≥ deg(S/I ′) − δI′(d) ≥ HI′(d) − 1 = HI(d) − 1,

which is the desired inequality. If d ≥ v we know that there exists f ∈ Sv such that 
(I : f) = p and thus (I : hd−vf) = p. Therefore δI(d) = 1 and since deg(S/I) ≥ HI(d)
for any d the desired inequality follows. �

The next result is known for complete intersection vanishing ideals over finite fields 
[14, Lemma 3]. As an application we extend this result to Geramita Gorenstein ideals.

Corollary 4.20. Let I ⊂ S be a Geramita ideal. If I is Gorenstein and r0 = reg(S/I) ≥ 2, 
then δI(r0 − 1) is equal to 2.

Proof. By Proposition 4.6 and Theorem 4.10, r0 is the regularity index of δI . Thus 
δI(r0 − 1) ≥ 2.

We show that deg(S/I) = 1 +HI(r0 − 1). For this, we may assume that K is infinite. 
Indeed, consider the algebraic closure K of K. We set S = S ⊗K K and I = IS. From 
[31, Lemma 1.1], we have I is Gorenstein, HI(d) = HI(d) for d ≥ 0 and deg(S/I) =
deg(S/I). Since K is infinite, there is h ∈ S that is regular on S/I. Then by [2, 3.1.19](b) 
the quotient ring A = S/(I, h) is Gorenstein of dimension 0, by [7, 4.13, 4.14] it has 
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r0 = reg(S/I) = reg(A), and by [2, 4.7.11(b)] deg(S/I) = deg(A) =
∑r0

i=0 HA(i). By [2, 
proof of 4.1.10], FA(x) = (1 − x)FI(x) hence HI(n) =

∑n
i=0 HA(i) for any n ≥ 0. From 

here, using that HA(r0) = 1, since A is Gorenstein, we deduce that

deg(S/I) = deg(S/I) = deg(A) =
r0∑
i=0

HA(i) = 1 +
r0−1∑
i=0

HA(i) = 1 + HI(r0 − 1)

= 1 + HI(r0 − 1).

Finally, making d = r0 − 1 in Theorem 4.19, we get δI(r0 − 1) ≤ 2. Thus equality 
holds. �

Note that the situation is quite different from the conclusion of Theorem 4.19 if 
dim(S/I) ≥ 2.

Proposition 4.21. Let I ⊂ S be an unmixed graded ideal. If dim(S/I) ≥ 2, then

δI(d) > deg(S/I) −HI(d) + 1 for some d ≥ 1.

Proof. Note that m = (t1, . . . , ts) is not an associated prime of I, that is, depth(S/I) ≥ 1. 
Assume that Fd = ∅ for some d ≥ 2. As HI(0) = 1 and δI(d) is equal to deg(S/I), by 
Theorem 2.9(i), one has HI(d) > 1 and the inequality holds. Now assume that Fd �= ∅
for d ≥ 2. For each d ≥ 2 pick fd ∈ Fd such that

δI(d) = deg(S/I) − deg(S/(I, fd)).

As HI is strictly increasing by Theorem 2.9(i), using Lemma 3.1(b), we get

deg(S/(I, fd)) < deg(S/I) < HI(d) − 1

for d � 0. Thus the required inequality holds for d � 0. �
5. Reed-Muller type codes

In this section we give refined information on the minimum distance function for the 
Reed–Muller codes defined in the Introduction. The key insight is that, in the case of 
the projective Reed–Muller codes, this minimum distance function can be realized as a 
generalized minimum distance function for a finite set of points in projective space, often 
called evaluation points in the algebraic coding context.

Theorem 5.1. [13, Theorem 4.5] Let X be a finite set of points in a projective space P s−1

over a field K and let I(X) be its vanishing ideal. If d ≥ 1 and 1 ≤ r ≤ HX(d), then

δr(CX(d)) = δI(X)(d, r).
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By Theorem 3.8 (a) and [35, Theorem 1, Corollary 1], the entries of each row of the 
weight matrix (δX(d, r)) form an increasing sequence until they stabilize. We show in 
Theorem 5.3 below that the entries of each column of the weight matrix (δX(d, r)) form 
a decreasing sequence.

Before we can prove this result we need an additional lemma. Recall that the support
χ(β) of a vector β ∈ Km is χ(Kβ), that is, χ(β) is the set of non-zero entries of β.

Lemma 5.2. Let D be a subcode of C of dimension r ≥ 1. If β1, . . . , βr is a K-basis for 
D with βi = (βi,1, . . . , βi,m) for i = 1, . . . , r, then χ(D) = ∪r

i=1χ(βi) and the number of 
elements of χ(D) is the number of non-zero columns of the matrix:

⎡
⎢⎢⎣
β1,1 · · · β1,i · · · β1,m
β2,1 · · · β2,i · · · β2,m
... · · ·

... · · ·
...

βr,1 · · · βr,i · · · βr,m

⎤
⎥⎥⎦ .

Theorem 5.3. Let X be a finite set of points in P s−1, let I = I(X) be its vanishing ideal, 
and let 1 ≤ r ≤ |X| be a fixed integer. Then there is an integer d0 ≥ 1 such that

δI(1, r) > δI(2, r) > · · · > δI(d0, r) = δI(d, r) = r for d ≥ d0.

Proof. Let [P1], . . . , [Pm] be the points of X. By Theorem 5.1 there exists a linear subcode 
D of CX(d) of dimension r such that δI(d, r) = δX(d, r) = |χ(D)|. Pick a K-basis 
β1, . . . , βr of D. Each βi can be written as

βi = (βi,1, . . . , βi,k, . . . , βi,m) = (fi(P1), . . . , fi(Pk), . . . , fi(Pm))

for some fi ∈ Sd. Consider the matrix B whose rows are β1, . . . , βm:

B =

⎡
⎢⎢⎣
f1(P1) · · · f1(Pk) · · · f1(Pm)
f2(P1) · · · f2(Pk) · · · f2(Pm)

... · · ·
... · · ·

...
fr(P1) · · · fr(Pk) · · · fr(Pm)

⎤
⎥⎥⎦ .

As B has rank r, by permuting columns and applying elementary row operations, the 
matrix B can be brought to the form:

B′ =

⎡
⎢⎢⎣
g1(Q1) g1(Qr+1) · · · g1(Qm)

g2(Q2) 0 g2(Qr+1) · · · g2(Qm)

0
. . .

...
gr(Qr) gr(Qr+1) · · · gr(Qm)

⎤
⎥⎥⎦ ,

where g1, . . . , gr are linearly independent polynomials over the field K modulo I of degree 
d, Q1, . . . , Qm are a permutation of P1, . . . , Pm, the first r columns of B′ form a diagonal 
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matrix such that gi(Qi) �= 0 for i = 1, . . . , r, and the ideals (f1, . . . , fr) and (g1, . . . , gr)
are equal. Let D′ be the linear space generated by the rows of B′. The operations applied 
to B did not affect the size of the support of D (Lemma 5.2), that is, |χ(D)| = |χ(D′)|.

Note that δr(CX(d)) depends only on X, that is, δr(CX(d)) is independent of how 
we order the points in X (cf. Theorem 5.1). Let ev′

d : Sd → Km be the evaluation 
map, f �→ (f(Q1), . . . , f(Qm)), relative to the points [Q1], . . . , [Qm]. By Theorem 3.8, 
δX(d, r) ≥ r.

First we assume that δX(d, r) = r for some d ≥ 1 and r ≥ 1. Then the i-th column 
of B′ is zero for i > r. For each 1 ≤ i ≤ r pick hi ∈ S1 such that hi(Qi) �= 0. The 
polynomials h1g1, . . . , hrgr are linearly independent modulo I because (higi)(Qj) is not 
0 if i = j and is 0 if i �= j. The image of Kh1g1 ⊕ · · · ⊕Khrgr, under the map ev′

d+1, is 
a subcode D′′ of CX(d + 1) of dimension r and |χ(D′′)| = r. Thus δX(d + 1, r) ≤ r, and 
consequently δX(d + 1, r) = r.

Next we assume that δX(d, r) > r. Then B′ has a nonzero column (g1(Qk), . . . ,
gr(Qk))
 for some k > r. It suffices to show that δX(d, r) > δX(d + 1, r). According 
to [23, Lemma 2.14(ii)] for each 1 ≤ i ≤ r there is hi in S1 such that hi(Qi) �= 0 and 
hi(Qk) = 0. Let B′′ be the matrix:

B′′ =

⎡
⎢⎢⎣
h1g1(Q1) h1g1(Qr+1) · · · h1g1(Qm)

h2g2(Q2) 0 h2g2(Qr+1) · · · h2g2(Qm)

0
. . .

...
hrgr(Qr) hrgr(Qr+1) · · · hrgr(Qm)

⎤
⎥⎥⎦ .

The image of Kh1g1⊕· · ·⊕Khrgr, under the map ev′
d+1, is a subcode V of CX(d +1)

of dimension r because the rank of B′′ is r, and since the k-column of B′′ is zero, we get

δX(d, r) = |χ(D)| = |χ(D′)| > |χ(V )| ≥ δX(d + 1, r).

Thus δX(d, r) > δX(d + 1, r). �
Corollary 5.4. Let X be a finite set of points in P s−1 and let I = I(X) be its vanishing 
ideal. If I is a complete intersection, then δI(d) ≥ reg(S/I) −d +1 for 1 ≤ d < reg(S/I).

Proof. If r0 denotes the regularity of S/I, by Theorem 4.10, one has v(I) = r0. Thus 
δI(r0 − 1) ≥ 2 and the result follows from Theorem 5.3 by setting r = 1. �
Corollary 5.5. [12, Theorem 12] If X is a set parameterized by monomials lying on a 
projective torus and 1 ≤ r ≤ |X| be a fixed integer, then there is an integer d0 ≥ 1 such 
that

δr(CX(1)) > δr(CX(2)) > · · · > δr(CX(d0)) = δr(CX(d)) = r for d ≥ d0.

Proof. It follows at once from Theorems 5.1 and 5.3. �
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Corollary 5.6. Let X be a finite set of points of P s−1 and let δX(d) be the minimum 
distance of CX(d). Then δX(d) = 1 if and only if d ≥ v(I).

Proof. It follows from Proposition 4.6, and Theorems 5.1 and 5.3. �
Corollary 5.7. If X is a finite set of P s−1 over a field K, then δX(d, HX(d)) = |X| for 
d ≥ 1.

Proof. It follows at once from Proposition 3.14 and Theorem 5.1. �
6. Complete intersections

In this section we examine minimum distance functions of complete intersection ideals.

Definition 6.1. An ideal I ⊂ S is called a complete intersection if there exist g1, . . . , gr
in S such that I = (g1, . . . , gr), where r = ht(I) is the height of I.

There are a number of interesting open problems regarding the minimum distance of 
complete intersection functions. We discuss one such problem in Conjecture 6.2 below 
and relate this problem to [8, Conjecture CB12]) in the second part of this section.

Conjecture 6.2. [24] Let I ⊂ S := K[t1, . . . , ts] be a complete intersection graded ideal of 
dimension 1 generated by forms f1, . . . , fc, c = s −1, with di = deg(fi) and 2 ≤ di ≤ di+1
for i ≥ 1. If the associated primes of I are generated by linear forms, then

δI(d) ≥ (dk+1 − 	)dk+2 · · · dc if 1 ≤ d ≤
c∑

i=1
(di − 1) − 1,

where 0 ≤ k ≤ c − 1 and 	 are integers such that d =
∑k

i=1 (di − 1) + 	 and 1 ≤ 	 ≤
dk+1 − 1.

This conjecture holds if the initial ideal of I with respect to some monomial order is a 
complete intersection [24, Theorem 3.14]. Our results show that for complete intersections 
v(I) = reg(S/I) (Theorem 4.10) and δI(d) ≥ reg(S/I) − d + 1 for 1 ≤ d < reg(S/I) if 
I is a vanishing ideal (Corollary 5.4). Thus the conjecture is best possible for vanishing 
ideals in the sense that it covers all cases where δI(d) > 1 because the regularity of S/I
is equal to 

c∑
i=1

(di − 1).

Two special cases of the conjecture that are still open are the following.

Conjecture 6.3. Let X be a finite set of reduced points in P s−1 and suppose that I = I(X)
is a complete intersection generated by f1, . . . , fc, c = s − 1, with di = deg(fi) for 
i = 1, . . . , c, and 2 ≤ di ≤ di+1 for all i. Then
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(a) [32, Conjecture 4.9] δI(1) ≥ (d1 − 1)d2 · · · dc.
(b) If f1, . . . , fc are quadratic forms, then δI(d) ≥ 2c−d for 1 ≤ d ≤ c or equivalently 

hypI(d) ≤ 2c − 2c−d for 1 ≤ d ≤ c.

We prove part (a) of this conjecture, in a more general setting, when I is equigenerated.

Proposition 6.4. Let I ⊂ S be an unmixed graded ideal of height c, minimally generated 
by forms of degree e ≥ 2, whose associated primes are generated by linear forms. Then

hypI(1) ≤ ec−1

and δI(1) ≥ deg(S/I) − ec−1. Furthermore δI(1) ≥ ec − ec−1 if I is a complete intersec-
tion.

Proof. Since the associated primes of I are generated by linear forms and e ≥ 2, one has 
F1(I) �= ∅. Take any linear form h = tk −

∑
j �=i λjtj in F1(I), λj ∈ K. For simplicity of 

notation assume k = 1. It suffices to show that deg(S/(I, h)) ≤ ec−1. Let {f1, . . . , fn} be 
a minimal set of generators of I consisting of homogeneous polynomials with deg(fi) = e

for all i. Setting f ′
i = fi(

∑
j �=1 λjtj , t2, . . . , ts) for i = 1, . . . , n, S′ = K[t2, . . . , ts], and 

I ′ = (f ′
1, . . . , f

′
n), there is an isomorphism ϕ of graded K-algebras

S/(I, h) ϕ−→ S′/I ′, t1 �→ λ2t2 + · · · + λsts, ti �→ ti, i = 2, . . . , s.

Note that ϕ(f +(I, h)) = f(λ2t2 + · · ·+λsts, t2, . . . , ts) + I ′ for f in S and that ϕ has 
degree 0, that is, ϕ is degree preserving. Hence S/(I, h) and deg(S′/I ′) have the same 
degree and the same dimension. Since ht(I, h) = ht(I), we get ht(I ′) = ht(I) − 1, that 
is, ht(I ′) = c − 1. By definition f ′

i is either 0 or has degree e, that is, I ′ is generated 
by forms of degree e. As K is infinite, there exists a minimal set of generators of I ′, 
{g1, . . . , gt}, such that deg(gi) = e for all i and g1, . . . , gc−1 form a regular sequence (see 
Lemma 2.11). From the exact sequence

0 −→ I ′/(g1, . . . , gc−1) −→ S′/(g1, . . . , gc−1) −→ S′/I ′ −→ 0,

we get ec−1 = deg(S/(g1, . . . , gc−1)) ≥ deg(S′/I ′) = deg(S/(I, h)). This proves that 
hypI(1) is less than or equal to ec−1. Hence δI(1) ≥ deg(S/I) − ec−1. Therefore, if I is a 
complete intersection, deg(S/I) = ec and we obtain the inequality δI(1) ≥ ec− ec−1. �

As a consequence, we recover the fact that Conjecture 6.3(a) holds for P 2 [32, Theo-
rem 4.10].

Corollary 6.5. Let I ⊂ S be a graded ideal of height 2, minimally generated by two forms 
f1, f2 of degrees e1, e2, with 2 ≤ e1 ≤ e2, whose associated primes are generated by linear 
forms. Then hypI(1) ≤ e2 and δI(1) ≥ e1e2 − e2.
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Proof. It follows adapting the proof of Proposition 6.4. �
Corollary 6.6. Let I ⊂ S be an unmixed graded ideal minimally generated by forms of 
degree e ≥ 2 whose associated primes are generated by linear forms. If 1 ≤ r ≤ ht(I), 
then

hypI(1, r) ≤ eht(I)−r,

δI(1, r) ≥ deg(S/I) − eht(I)−r, and δI(1, r) ≥ eht(I) − eht(I)−r if I is a complete intersec-
tion.

Proof. This follows by adapting the proof of Proposition 6.4 and observing the following. 
If f1, . . . , fr are linearly independent linear forms and t1 � · · · � ts is the lexicograph-
ical order, we can find linear forms h1, . . . , hr such that in≺(h1) � · · · � in≺(hr) and 
(f1, . . . , fr) is equal to (h1, . . . , hr). �
Cayley-Bacharach conjectures. In the following we explore the connections between a 
modified form of Conjecture 6.2 and a conjecture of Eisenbud-Green-Harris [8, Conjec-
ture CB12].

Conjecture 6.7 (Strong form of [8, Conjecture CB12] ). Let Γ be any subscheme of a 
zero-dimensional complete intersection of hypersurfaces of degrees d1 ≤ · · · ≤ dc in 
a projective space P c. If Γ fails to impose independent conditions on hypersurfaces of 
degree m, then

deg(Γ) ≥ (e + 1)dk+2dk+3 · · · dc

where e and k are defined by the relations

c∑
i=k+2

(di − 1) ≤ m + 1 <

c∑
i=k+1

(di − 1) and e = m + 1 −
c∑

i=k+2

(di − 1).

Proposition 6.8. Conjectures 6.2 and 6.7 are equivalent for radical complete intersections.

Proof. We first prove that Conjecture 6.7 for m =
∑c

i=k+1(di−1) −	 −1 and e = dk+1−
	 − 1 implies Conjecture 6.2. Let I be a radical complete intersection ideal minimally 
generated by forms of degrees d1 ≤ · · · ≤ dc. Let H be any hypersurface defined by a form 
F of degree d. Let X be the scheme defined by I(X) = (I, F ) and let Γ be the residual 
scheme defined by I(Γ) = I : F . By the Cayley-Bacharach Theorem [8, CB7], Γ must fail 
to impose independent conditions on hypersurfaces of degree 

∑c
i=1(di − 1) − d − 1 = m. 

Now Conjecture 6.7 implies deg(S/I : F ) = deg(Γ) ≥ edk+2dk+3 · · · dc, which in view of 
Theorem 3.5 gives

δI(d) ≥ (e + 1)dk+2dk+3 · · · dc = (dk+1 − 	)dk+2dk+3 · · · dc.
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For the converse, we prove that Conjecture 6.2 with d =
∑c

i=1(di − 1) − m − 1
and 	 = dk+1 − e − 1 recovers Conjecture 6.7. Let Γ be any subscheme of a complete 
intersection, and suppose that Γ fails to impose independent conditions on hypersurfaces 
of degree m. Assuming that Γ spans a projective space P c, take a radical complete 
intersection ideal I contained in IΓ, and let X be the scheme defined by I(X) = I : I(Γ). 
By [8, CB7], X lies on a hypersurface of degree 

∑c
i=1(di − 1) − m − 1 = d. Then 

Conjecture 6.2 and Theorem 3.5 give

deg(Γ) = deg(S/I : F ) ≥ (dk+1 − 	)dk+2dk+3 · · · dc = (e + 1)dk+2dk+3 · · · dc. �
Conjecture 6.7 has been recently proven in [19, Theorem 5.1] for k = 1 under addi-

tional assumptions on the Picard group of the complete intersection. We now consider the 
case when d1 = · · · = dc = 2. In this case Conjecture 6.2 specializes to Conjecture 6.3(b) 
and Conjecture 6.7 is related to [8, Conjecture CB10].

Proposition 6.9. The following statements are equivalent:

(1) [Conjecture 6.3(b)] Let I be a complete intersection generated by c quadratic forms. 
Then δI(d) ≥ 2c−d for 1 ≤ d ≤ c or equivalently hypI(d) ≤ 2c − 2c−d for 1 ≤ d ≤ c.

(2) [8, Conjecture CB10] If X is an ideal-theoretic complete intersection of c = s − 1
quadrics in P s−1 and f ∈ S := K[t1, . . . , ts] is a homogeneous polynomial of degree 
d such that deg(S/(I(X), f)) > 2c − 2c−d, then f ∈ IX.

Proof. Let I = I(X) be a complete intersection ideal of c quadratic homogeneous 
polynomials. Then deg(S/I) = 2c and (2) is equivalent to the statement for any 
f ∈ Fd, deg(S/(I(X), f)) ≤ 2c − 2c−d. Using Definition 1.1, this is in turn equivalent to 
δI(d) ≥ 2c−d, for d = 1, . . . , c, which is precisely the statement of (1). �

As an application of our earlier results we recover the following cases of Conjec-
ture 6.3(b) under the more general hypothesis that I(X) is a not necessarily a radical 
complete intersection.

Corollary 6.10. [8] If I is a complete intersection ideal generated by c quadratic forms, 
then δI(d) ≥ 2c−d, for d = 1, c − 1, and c.

Proof. Case d = 1 follows by taking e = 2 in Proposition 6.4. Case d = c − 1 follows 
from Corollary 4.20 because complete intersections are Gorenstein and vanishing ideals 
of finite sets of points are Geramita. For Case d = c recall that By Proposition 4.6 and 
Theorem 4.10, reg(S/I) is the regularity index of δI . Thus Case d = c follows since 
reg(S/I) = c. �

If X ⊂ P c is a reduced set of points such that I(X) is a complete intersection ideal 
and the points of X are in linearly general position, i.e., any c + 1 points of X span P c, 
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then [1, Theorem 1] adds more cases when [8, Conjecture CB10] holds. If we assume 
that the quadrics that cut out X are generic, then the assumptions of that result are 
satisfied, and we can conclude by Proposition 6.9 that if 1 ≤ d ≤ c − 1, then δI(d) ≥
c(c −1 −d) +2. Suppose d := c −k, for some 1 ≤ k ≤ c −1. Then this inequality becomes 
δI(c −k) ≥ c(k−1) +2. We observe that this inequality is sufficiently strong to establish 
[Conjecture 6.3(b)] asymptotically for c sufficiently large:

• k = 2. If c ≥ 2, then δI(c − 2) ≥ c + 2 ≥ 22.
• k = 3. If c ≥ 3, then δI(c − 3) ≥ 2c + 2 ≥ 23.
• k = 4. If c ≥ 5, then δI(c − 4) ≥ 3c + 2 ≥ 24.
• k ≥ 5. If c ≥ (2k − 2)/(k − 1), then δI(c − k) ≥ 2k.
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Appendix A. Procedures for Macaulay2

Procedure A.1. Computing the footprint matrix with Macaulay2 [16]. This procedure 
corresponds to Example 3.15. It can be applied to any vanishing ideal I to obtain the 
entries of the matrix (fpI(d, r)) and is reasonably fast.

S=QQ[t1,t2,t3], I=ideal(t1^3,t2*t3)
M=coker gens gb I
regularity M, degree M, init=ideal(leadTerm gens gb I)
er=(x)-> if not quotient(init,x)==init then degree ideal(init,x) else 0
fpr=(d,r)->degree M - max apply(apply(apply(
subsets(flatten entries basis(d,M),r),toSequence),ideal),er)
hilbertFunction(1,M),fpr(1,1),fpr(1,2),fpr(1,3)
--gives the first row of the footprint matrix

Procedure A.2. Computing the GMD function with Macaulay2 [16] over a finite field and 
computing an upper bound over any field using products of linear forms. This procedure 
corresponds to Example 3.11.

q=3,S=ZZ/3[t1,t2,t3,t4,t5,t6],I=ideal(t1*t6-t3*t4,t2*t6-t3*t5)
G=gb I, M=coker gens gb I
regularity M, degree M, init=ideal(leadTerm gens gb I)
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genmd=(d,r)->degree M-max apply(apply(subsets(apply(apply(apply(
toList (set(0..q-1))^**(hilbertFunction(d,M))-
(set{0})^**(hilbertFunction(d,M)),toList),x->basis(d,M)*vector x),
z->ideal(flatten entries z)),r),ideal),
x-> if #set flatten entries mingens ideal(leadTerm gens x)==r
and not quotient(I,x)==I then degree(I+x) else 0)
hilbertFunction(1,M),fpr(1,1),fpr(1,2),fpr(1,3),fpr(1,4),fpr(1,5),
fpr(1,6)
genmd(1,1), L={t1,t2,t3,t4,t5,t6}
linearforms=(d,r)->degree M - max
apply(apply(apply((subsets(apply(apply(
(subsets(L,d)),product),x-> x % G),r)),toList),ideal),
x-> if #set flatten entries mingens ideal(leadTerm gens x)==r
and not quotient(I,x)==I then degree(I+x) else 0)
linearforms(1,2),linearforms(1,3),linearforms(1,4),linearforms(1,5)
--gives upper bound for genmd

Procedure A.3. Computing the minimum socle degree and the v-number of an ideal I
with Macaulay2 [16]. This procedure corresponds to Example 4.3.

S=QQ[t1,t2,t3,t4]
p1=ideal(t2,t3,t4),p2=ideal(t1,t3,t4),p3=ideal(t1,t2,t4),
p4=ideal(t1,t2,t3)
I=intersect(ideal(t2^10,t3^9,t4^4,t2*t3*t4^3),
ideal(t1^4,t3^4,t4^3,t1*t3*t4^2),ideal(t1^4,t2^5,t4^3),
ideal(t1^3,t2^5,t3^10))
h=ideal(t1+t2+t3+t4)--regular element on S/I
J=quotient(I+h,m), regularity coker gens gb I
soc=J/(I+h), degrees mingens soc
J1=quotient(I,p1), soc1=J1/I, degrees mingens soc1

Procedure A.4. Computing the v-number of a vanishing ideal I(X), the regularity in-
dex of δX, and the minimum distance δX(d) of the Reed–Muller-type code CX(d) with 
Macaulay2 [16]. This procedure corresponds to Example 4.5.

q=3, G=ZZ/q, S=G[t3,t2,t1,MonomialOrder=>Lex]
p1=ideal(t2,t1-t3),p2=ideal(t2,t3),p3=ideal(t2,2*t1-t3)
p4=ideal(t1-t2,t3),p5=ideal(t1-t3,t2-t3), p6=ideal(2*t1-t3,2*t2-t3)
p7=ideal(t1,t2),p8=ideal(t1,t3),p9=ideal(t1,t2-t3),p10=ideal(t1,2*t2-t3)
I=intersect(p1,p2,p3,p4,p5,p6,p7,p8,p9,p10)
M=coker gens gb I, regularity M, degree M
init=ideal(leadTerm gens gb I)
genmd=(d,r)->degree M-max apply(apply(subsets(apply(apply(apply(
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toList (set(0..q-1))^**(hilbertFunction(d,M))-
(set{0})^**(hilbertFunction(d,M)),toList),x->basis(d,M)*vector x),
z->ideal(flatten entries z)),r),ideal),
x-> if #set flatten entries mingens ideal(leadTerm gens x)==r
and not quotient(I,x)==I then degree(I+x) else 0)
genmd(1,1), genmd(2,1)
J1=quotient(I,p1), soc1=J1/I, degrees mingens soc1--gives 4
J7=quotient(I,p7), soc7=J7/I, degrees mingens soc7--gives 3
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