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Unit Commitment With Gas Network Awareness
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Abstract—Recent changes in the fuel mix for electricity gener-
ation and, in particular, the increase in Gas-Fueled Power Plants
(GFPP), have created significant interdependencies between the
electrical power and natural gas transmission systems. However,
despite their physical and economic couplings, these networks are
still operated independently, with asynchronous market mecha-
nisms. Thismode of operationmay lead to significant economic and
reliability risks in congested environments as revealed by the 2014
polar vortex event experienced by the northeastern United States.
To mitigate these risks, while preserving the current structure
of the markets, this paper explores the idea of introducing gas
network awareness into the standard unit commitment model.
Under the assumption that the power system operator has some
(or full) knowledge of gas demand forecast and the gas network,
the paper proposes a tri-levelmathematical programwhere natural
gas zonal prices are given by the dual solutions of natural-gas flux
conservation constraints and commitment decisions are subject to
bid-validity constraints that ensure the economic viability of the
committed GFPPs. This tri-level program can be reformulated as
a single-level Mixed-Integer Second-Order Cone program which
can then be solved using a dedicated Benders decomposition. The
approach is validated on a case study for the Northeastern United
States [1] that can reproduce the gas and electricity price spikes
experienced during the early winter of 2014. The results on the
case study demonstrate that gas awareness in unit commitment
is instrumental in avoiding the peaks in electricity prices while
keeping the gas prices to reasonable levels.

Index Terms—Unit commitment, multi-energy systems,
hierarchical optimization, interdependencies, polar vortex.

I. INTRODUCTION

GAS-Fueled Power Plants (GFPPs) have become a signif-
icant part of the energy mix in the last decades, primarily

because of their operational flexibility and lower environmental
impacts. Although GFPPs have introduced interdependencies
between the natural gas and electrical power systems, these
networks are still operated independently, with asynchronous
market mechanisms. In particular, the unit commitment de-
cisions in the electrical power system take place before the
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realization of natural gas spot prices, introducing reliability risks
and economic inefficiencies in congested environments. Indeed,
the GFPPs may not be able to secure gas at reasonable prices,
introducing either reliability issues or electricity price spikes.
This undesirable outcomeoccurred in theNortheasternUnited

States during the early winter of 2014. Extremely low temper-
atures induced an unusual coincident peak in electricity and
natural gas demand. On the one hand, it produced record-high
natural gas spot prices due to congestion. On the other hand,
high electricity loads led the electrical power system operator
to call for some emergency actions, which resulted in higher
electricity prices [2]. Moreover, the power system operator,
valuing reliability the most, encouraged committed GFPPs to
buy natural gas at all costs without assurance of cost recovery,
further aggravating the economic cost [3]. It is important to
mention that the critical issue in this case was not the gas supply,
but rather congestion in the gas transmission network.Moreover,
a recent study [1] has shown that the cost of expanding the gas
and electricity network infrastructure to avoid such eventswould
be prohibitive.
To address these interdependencies, a number of researchers

have studied how to incorporate the natural gas transmission
capabilities into the operational decisions of electrical power
systems. See, for instance, [4]–[13]. Other researchers have
also studied how to incorporate the economic coupling between
these two infrastructure systems using newmarket mechanisms.
A new market framework with a joint ISO, using price- or
volume-based approaches,was investigated in [14], [15]. Instead
of introducing one joint ISO, other researchers have proposed
a new market framework that assumes centralized independent
gas markets, synchronizes the electricity and gas market days,
and allows some information exchange between some parties in
the electricity and gasmarkets (e.g., market operators or GFPPs)
[16]–[21].
This paper takes a different approach that stays within the

current operating practices and does not introduce a new market
mechanism. Instead, the approach generalizes the unit commit-
ment model to capture the physical and economic couplings
and strive to ensure both physical feasibility and economic
viability ofGFPPs.More precisely, the paper introduces theUnit
Commitment problem with Gas Network Awareness (UCGNA)
to schedule a set of generating units for the next daywhile taking
account the fuel delivery and the natural gas prices that are prop-
agated back by the natural gas system. The UCGNA imposes
bid-validity constraints on theGFPPs to ensure their profitability
and estimates the natural gas prices for these constraints with the
dual solutions associated with the flux conservation constraints
of the gas market.
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The UCGNA is formulated as a tri-level mathematical pro-
gram and assumes that the power system operator has partial
(or full) knowledge on gas demand forecast and gas network.
When the power system is modeled with its DC approximation
and the gas network with the second-order cone program from
[22] to model its steady-state physics, the tri-level mathematical
program can be reformulated as a single-level Mixed-Integer
Second-Order Cone Program (MISOCP) through strong duality
of the innermost problem. The resulting MISOCP can then
be solved using a dedicated Benders decomposition recently
proposed in [23].
The key contributions of this paper are threefold. First, it

proposes the first unit commitment model (UCGNA) that in-
corporates both the physical and economic couplings of elec-
trical power and natural gas transmission systems and can be
used within current operating practices. Second, it proposes a
MISOCP that captures the UCGNA and can be solved through
Benders decomposition. Finally, it demonstrates the potential
practicality of the approach on a detailed case study that repli-
cates the behavior of the 2014 polar vortex event on the North-
eastern United States. In particular, the paper shows that, on the
case study, the UCGNA obtains a functional unit commitment
decision, which avoids the electricity price peaks and keeps the
total gas costs reasonable, contrary to current practice, even for
highly congested electrical and gas networks.
The rest of this paper is organized as follows. Section II

formalizes the UCGNA and Section III presents the MISOCP.
Section IVbriefly reviews the solutionmethods for theMISOCP.
Section V describes the test cases and Section VI analyzes the
behavior of the model on the case study. Lastly, Section VII
discusses implications of the UCGNA and Section VIII con-
cludes the paper.

II. UNIT COMMITMENT WITH GAS AWARENESS

This section specifies the UCGNA, including its electricity
system, its natural gas network, and their physical and economic
couplings. The electricity transmission grid is represented by an
undirected graph Ge = (N , E) and the natural gas transmission
system by a directed graph Gg = (V,A)1. Boldface letters rep-
resent vectors of variables, [a, b]Z denotes the set of integers in
interval [a, b], and [n] denotes the set {1, . . . , n} for some integer
n ≥ 1. The letterT denotes the set of time periods {0, 1, . . . , T}.

A. The Electricity Transmission System

In the United States, Unit Commitment (UC) and Economic
Dispatch (ED) problems are solved daily to determine the hourly
operating schedule of generating units for the next day from bids
submitted by market participants. Tables I and II summarize the
parameters and variables of the UC/ED problems. With these
notations, the UC model is specified in Problem (1).

1In this paper, the gas flux direction is assumed to be fixed, sincemanymodern
gas networks are not as loopy as the power transmission systems, and they are
nearly tree like [24]. Therefore, for most of the pipelines, the flow directions
remain unchanged. In addition, since the changes in natural gas flux are in a
much slower pace, the directions do not vary too much from day to another.
For a non-tree like network, we can generalize the model by including binary
variables that represent the flux direction [22].

TABLE I
PARAMETERS OF THE ELECTRICITY SYSTEM

TABLE II
VARIABLES OF THE ELECTRICITY SYSTEM

min
∑

t∈[T ]

∑

u∈U
(cuou,t + ru,t +

∑

b∈Bu

βbs
e
b,t) (1a)

s.t. ru,t ≥ Cu,h(ou,t −
∑

n∈[h]

ou,t−n),

∀h ∈ Ψs, u ∈ U , t ∈ [T ], (1b)

ru,t ≥ 0, ∀u ∈ U , t ∈ [T ], (1c)

ou,t = ou,0, ∀u ∈ U , t ∈ [0, τu,0 + τu,0]Z, (1d)
∑

t′∈[t−τu+1,t]Z

v+u,t′ ≤ ou,t,

∀u ∈ U , t ∈ [max{τu, τu,0 + 1}, T ]Z, (1e)
∑

t′∈[t−τu+1,t]Z

v+u,t′ ≤ 1− ou,t−τu
,

∀u ∈ U , t ∈ [max{τu, τu,0 + 1}, T ]Z, (1f)
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v+u,t − v−u,t = ou,t − ou,t−1, ∀u ∈ U , t ∈ [T ], (1g)

v+u,t, v
−
u,t, ou,t ∈ {0, 1},∀u ∈ U , t ∈ [T ], (1h)

se = argmin Q(o,v+,v−), (1i)

where Q(u,v+,v−) denotes the ED problem specified
as follows:

min
∑

t∈[T ]

∑

u∈U

(
∑

b∈Bu

βbs
e
b,t

)
(1j)

s.t.
∑

u∈U(i)

pu,t − dei,t =
∑

l∈E:lt=i

fl,t −
∑

l∈E:lh=i

fl,t,

∀i ∈ N , t ∈ [T ], (1k)

pu,t =
∑

b∈Bu

seb,t ∀u ∈ U , t ∈ [T ], (1l)

0 ≤ seb,t ≤ sb, ∀b ∈ Bu, u ∈ U , t ∈ [T ], (1m)

p
u
ou,t ≤ pu,t ≤ puou,t, ∀u ∈ U , t ∈ [T ], (1n)

pu,0 = pu,0, ∀u ∈ U , (1o)

pu,t − pu,t−1 ≤ Ruou,t−1 + puv
+
u,t, ∀u ∈ U , t ∈ [T ],

(1p)

pu,t−1 − pu,t ≤ Ruou,t−1 + p
u
v−u,t, ∀u ∈ U , t ∈ [T ],

(1q)

fl,t = −bl(θlh,t − θlt,t), ∀l ∈ E , t ∈ [T ], (1r)

− f l ≤ fl,t ≤ f l, ∀l ∈ E , t ∈ [T ], (1s)

θi ≤ θi,t ≤ θi, ∀i ∈ N , t ∈ [T ], (1t)

−∆l ≤ θlh,t − θlt,t ≤ ∆l, ∀l ∈ E , t ∈ [T ]. (1u)

The objective function of the upper level problem (Equations
(1a)–(1h)) includes the no-load costs, the start-up costs, and
the costs of the selected supply bids of each electrical power
generating units. Equation (1b) computes the start-up cost ru,t
of a generator u for time period t based on how long u has been
offline [25]. The expression ou,t −

∑h
n=1 ou,t−n is one when

generator u becomes online after it has been turned off for h
time periods. Equation (1c) states the nonnegativity requirement
on ru,t. Equation (1d) specifies the initial on-off status of each
generator. The minimum-up and -down constraints are speci-
fied in Equations (1e) and (1f) respectively. The relationship
between the variables for the on-off, start-up, and shut-down
statuses of each generator is stated in Equation (1g). The binary
requirements for logical variables v+u,t, v

−
u,t, ou,t are specified in

Equation (1h).
Based on the commitment decisions, the lower-level problem

(i.e., Equations (1j)–(1u)) decides the hourly operating schedule
of each committed generators in order to minimize the system
production costs. Equation (1k) states the flow conservation
constraints for real power at each bus, using lh and lt to represent
the head and tail of l ∈ E . Equation (1l) states that the total real
power generation of a generator u is equal to the production of
its selected bids. Equation (1m) constrains the power generation

TABLE III
PARAMETERS OF THE GAS SYSTEM

seb,t frombid b ∈ Bu to be nomore than the submitted amount s̄b.
Equation (1n) enforces the bound on the real power generation
of each generator. Equation (1o) specifies the initial generation
amount of each generator, and Equations (1p) and (1q) state
the ramp-up and -down constraints of each generator. Equation
(1r) captures the DC approximation of the power flow equations
and Equation (1s) specifies the thermal limit on each line.
Equations (1t) and (1u) state the voltage angle bounds on each
bus and the bounds on the angle difference of two adjacent buses
respectively.

B. The Natural Gas Transmission System

min
∑

t∈[T ]

∑

j∈V




∑

s∈Sj

cj,ss
g
s,t + κjqj,t



 (2a)

s.t. sgj,t − lj,t − γj,t =
∑

a∈A:at=j

φa,t −
∑

a∈A:ah=j

φa,t,

∀j ∈ V, t ∈ [T ], (2b)

lj,t = dgj,t − qj,t, ∀j ∈ V, t ∈ [T ], (2c)

0 ≤ qj,t ≤ dgj,t, ∀j ∈ V, t ∈ [T ], (2d)

φa,t ≥ 0,∀a ∈ A, t ∈ [T ], (2e)

sgj ≤ sgj,t ≤ sgj , ∀j ∈ V, t ∈ [T ], (2f)

αc
aπah,t ≤ πat,t ≤ αc

aπah,t, ∀a ∈ Ac, t ∈ [T ], (2g)

αv
aπah,t ≤ πat,t ≤ αv

aπah,t, ∀a ∈ Av, t ∈ [T ], (2h)

πah,t − πat,t = Waφ
2
a,t, ∀a ∈ A \ (Av ∪Ac), t ∈ [T ],

(2i)

πj ≤ πj,t ≤ πj , ∀j ∈ V, t ∈ [T ] (2j)

sgj,t =
∑

s∈Sj

sgs,t (2k)

Tables III and IV specify the parameters and variables of the
steady-state natural gas model, which is given in Problem (2).
The modeling is similar to those in [1], [22], [26] and uses
the Weymouth equation to capture the relationship between
pressures and flux. The flux conservation constraint is given
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TABLE IV
VARIABLES OF THE GAS SYSTEM

TABLE V
PARAMETERS FOR THE ELECTRICITY AND GAS COUPLING

in Equation (2b), where ah and at represent the head and tail
of a ∈ A. Equation (2c) determines the demand served at each
junction: It captures the amount of gas load shedding which
must be nonnegative and cannot exceed the demand at the
corresponding junction (Equation (2d)). The model assumes
that gas flow directions are predetermined and Equation (2e)
enforces the sign of gas flow variables, i.e., it constrains φa,t

to be nonnegative. Equation (2f) specifies the upper and lower
limits of natural gas supplies. The change in pressure through
compressors and control valves are formulated in Equations
(2g) and (2h) and the model uses a single compressor machine
approximation as in prior work. The steady-state physics of gas
flows is formulated with the Weymouth equation in Equation
(2i). Equation (2j) states the bounds onnodal pressures. Equation
(2i) can be convexified using the second-order cone relaxation
from [26]: πah,t − πat,t ≥ Waφ2

a,t. This relaxation is very tight
[26].
When the gas system is not congested, the price of natural

gas is relatively stable. However, during congestion and when
some loads are being shed, natural gas prices increase sharply.
The cost of gas in the objective function captures this behavior:
For a junction j, it is specified with an almost-linear piecewise
linear function for production and a high penalty cost κj for gas
shedding. To be specific, let Sj be a set of non-overlapping in-
tervals covering [0, sgj ], each with a distinct slope cj,s satisfying
cj,s ≤ cj,s+1 for all consecutive intervals s, s+ 1 ∈ Sj . Define
an auxiliary nonnegative variable sgs,t that represents the amount
of gas supply from s ∈ Sj at time t. The objective function is
then stated as Equation (2a). The model also includes constraint
(2k) to link the gas variable at junction j with the auxiliary
variables.

C. Physical and Economic Couplings

GFPPs are the physical and economic interface between the
electrical power andgas networks.This sectionfirst describes the
resulting coupling constraints before describing how the natural
gas zonal prices are computed. Tables V and VI describe the
parameters for the coupling.

TABLE VI
VARIABLES FOR THE ELECTRICITY AND GAS COUPLING

The physical couplings between Ge and Gg can be formulated
as follows (t ∈ [T ], j ∈ N ∩ V):

γj,t =
∑

u∈U(j)∩Ug

Hu,2p
2
u,t +Hu,1pu,t +Hu,0. (3)

The real power generation p of a GFPP induces a demand γ in
the natural gas system. Equation (3) specifies the relationship
between the real power generation of a GFPP and the amount of
natural gas needed for the generation. In the equation, this rela-
tionship is approximated by a quadratic heat-rate curve, whose
coefficients are given as Hu. The equation can be convexified
like the Weymouth equation.
Since the level of power generation of the GFPPs determines

the load in the gas system, the physical coupling also affects the
natural gas prices. The price formation of natural gas, in turn,
governs the profitability of GFPPs, which submit bids before the
realization of gas prices. To capture these economic realities, the
model introduces binary variables of the form wb,t ∈ {0, 1} for
each bid b of a GFPP to Problem (1): Variable wb,t indicates
whether bid b is selected during time period t. Equation (1m) is
then replaced by the following constraints (for all t ∈ [T ]):

ρu,t =
∑

b∈[Bu−1]

βb(wb,t − wb+1,t) + βBuwBu,t, ∀u ∈ Ug,

(4a)

0 ≤ seb,t ≤ sb, ∀b ∈ Bu, u ∈ U \ Ug, (4b)

0 ≤ seb,t ≤ sbwb,t, ∀b ∈ Bu, u ∈ Ug, (4c)

wb,t ≤ ou,t, ∀b ∈ Bu, u ∈ Ug, (4d)

sbwb+1,t ≤ sb,t, ∀b ∈ [1, Bu − 1]Z, u ∈ Ug. (4e)

Equations (4b) and (4c) are bound constraints for the bids
submitted by the non-GFPPs and GFPPs respectively. Equation
(4c) ensures that the indicator variablewb,t is onewhenever bid b
is used for time period t (i.e., seb,t > 0). Equation (4d) states that
the bid of a generator can be selected only when it is committed
and Equation (4e) ensures that the (b+ 1)th bid is selected only
if the bid b is fully used. Accordingly, Equation (4a) states that
ρu,t is the maximum/marginal bid price of GFPP u ∈ Ug among
its currently selected bids.
The economic coupling between the electricity and gas net-

works is enforced by bid-validity constraints that ensure that
the marginal costs of producing electricity by GFPPs are lower
than their marginal bid prices. Although the natural gas system
is operated in a decentralized manner, the zonal price of natural
gas ψ can be modeled as a function g of the market supply and
demand, i.e., as a function of the binary and continuous variables
of Problems (1) and (2), which are denoted by z and x. Under
this assumption, the bid validity constraints can be expressed as
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follows (for all t ∈ [T ]):

ψ = g(z, x), (5a)

αuρu,t ≥ [2pu,tHu,2 +Hu,1]ψk,tou,t,

∀k ∈ K, i ∈ V(k), u ∈ U(i) ∩ Ug, (5b)

where

2pu,tHu,2 +Hu,1

is the derivative of the heat rate curve (i.e., Equation (3)) that
represents the amount of natural gas needed for generating one
additional unit of real power by GFPP u. The nonlinear term in
the right-hand side of Equation (5b) is linearized by employing
an exact McCormick relaxation. Accordingly, when a GFPP u
is online, the right-hand side of Equation (5b) represents the
realized natural gas price for generating one additional unit
of real power by the GFPP u. Hence, Equation (5b) captures
the fact that, when the realized natural gas price for generating
one additional unit of real power by GFPP u is greater than its
marginal bid price ρu,t, GFPP u is not profitable. This situation
arises because GFPP u submits its bids before the realization of
ψ. The bid validity constraint is expressed in Equation (5b) and
ensures that only profitable GFPPs are committed. Note that,
as discussed at length subsequently, αu is best viewed as a part
of the bid for GFPP u that reflects its risk aversion level; The
larger αu is (possibly greater than 100%), the less likely GFPP
u is of being de-committed due to the bid validity constraint and
the larger the risk u is willing to take in terms of natural gas
prices. The bid validity constraints use the realized zonal gas
prices from Equation (5a) and the maximum natural gas price
(e.g., $200 per mmBtu) multiplied by [2puHu,2 +Hu,1] as the
upper bound of the continuous term in its right-hand side for the
McCormick relaxation.
It remains to specify how to compute the zonal gas prices, i.e.,

the function g in Equation (5a). The UCGNA assumes that the
nodal natural gas price at each junction j is given by themarginal
cost of supplying natural gas at j. This marginal cost is the dual
solution associated with the corresponding flux conservation
constraint in Problem (2). The zonal natural gas prices ψ are
then computed by averaging the nodal natural gas prices of a
subset of junctions in the zone. Therefore, the zonal natural gas
price ψ are given by linear functions of the dual solution to
Problem (2).
Note that, by construction, the natural gas zonal prices ψ

under normal operating conditions are given by the almost
linear part of objective (2a). However, when the gas network
is congested and load needs to be shed, the zonal prices increase
sharply due to the high penalty cost κj . As a result, the resulting
model closely captures the behavior of the market during the
2014 polar vortex. Note also that the model does not shed the
demand of the GFPPs. The model assumes that GFPPs buy
natural gas at any cost to meet its commitment obligation. Once
again, this captures the 2014PolarVortex situationwhereGFPPs
were encouraged to buy the natural gas from the spot market at
any cost for the sake of the power system reliability [3].

III. REFORMULATION OF THE UCGNA

This section shows how the UCGNA can be expressed as a
MISOCP. Let variable subscripts e and g respectively denote
the electricity and the gas systems. Let ze and xe respectively
denote the vector of binary and continuous variables of the power
system (i.e., Problem (1)) and let xg be the vector of continuous
variables of the gas system (i.e., Problem (2)). The UCGNA can
be stated as a trilevel program2:

min
xe≥0,yg
ze∈{0,1}m

cTe xe + hTze (6a)

s.t. ze ∈ Z, (6b)

(xe,yg) = argmin
xe≥0,yg

cTe xe (6c)

s.t. Axe +Bze ≥ b, (6d)

yg ∈ Dual sol. of (7), (6e)

Eyg +Mze ≥ h (6f)

where Z denotes the feasible region of the unit commitment
problem (i.e., Equations (1b)-(1h)), the third level problem is
defined as

min
xg∈K

cTg xg : Dexe +Dgxg ≥ d, (7)

and K is the proper cone denoting the domain of xg .
The first-level problem (i.e., Equations (6a) and (6b)) formu-

lates the unit-commitment problem (i.e., Equations (1a)–(1h)
and Equation (4)). The unit-commitment decisions ze from
the first-level problem are then plugged into the second-level
problem (i.e., Equation (6c)-(6d)), which formulates the eco-
nomic dispatch problem (i.e., Equations (1j)–(1u)) and decides
the hourly operating schedule of committed generating units.
The economic dispatch decisions xe determine natural gas de-
mand of committed GFPPs and are plugged into the third-level
problem (i.e., Problem (6e)), which formulates the natural gas
problem (i.e., Problem (2) and Equation (3)). Then, the third
level problem determines the resulting nodal prices for natural
gas based on the dual solution yg of the gas flux conservation
constraints (i.e., Equation (2b)).
Equations (6a)–(6e) capture the current operating practice of

the power system. Without Equation (6f), the first level captures
the commitment decisions that are taken without consideration
of the gas network. The second and third levels implement a
Stackelberg game,where the dispatch decisions of the electricity
system are followed by those of the natural gas network. The
novelty in the UCGNA is the bid-validity constraint (6f), which
corresponds to Equation (5b): It ensures that only profitable
GFPPs are selected in the first level and uses the dual variables of
the third-level problem to do so, allowing the unit-commitment
problem to anticipate the zonal prices of natural gas.

2From a game theoretic perspective, the problem at hand is a two-level prob-
lem (See Appendix A). However, for ease of deriving a single-level formulation
in Theorem 1 and to make the UCGNA formulations more intuitive, the problem
is posed as a tri-level.
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The following theorem, whose proof is in Appendix B, shows
that the tri-level problem can be reformulated as a single-level
mathematical program. The proof uses strong duality on the
third-level problem and lexicographic optimization to merge the
second and third levels.

Theorem 1: Problem (6) can be asymptotically approxi-
mated by the following mathematical program:

min δhTze + δcTe xe + (1− δ)cTg xg (8a)

s.t. ze ∈ Z, ze ∈ {0, 1}m, (8b)

Axe +Bze ≥ b, (8c)

Dexe +Dgxg ≥ d, (8d)

yT
e (b−Bze) + yT

g d ≥ δcTe xe + (1− δ)cTg xg, (8e)

yT
g Dg )K∗ (1− δ)cTg , (8f)

yT
e A+ yT

g De ≤ δcTe , (8g)

1

1− δ
Eyg +Mze ≥ h, (8h)

xe ≥ 0,xg ∈ K, (8i)

ye ≥ 0,yg ≥ 0, (8j)

for some δ ∈ (0, 1).Moreover,when δ → 1, the optimal solution
of Problem (8) converges to the optimal solution of Problem (6).
Observe that Problem (8) has a bilinear term of yT

e Bze in
Equation (8e). Assuming that y has an upper bound of y, this
term can be rewritten using an exact McCormick relaxation to
produce a MISOCP.

Remark 1: Problem (8) is best viewed as a “standard” MIS-
OCP to which a constraint on the dual variables of its inner-
continuous problem has been added. The “standard” MISOCP
optimizes the joint electricity and natural gas problem

min δhTze + δcTe xe + (1− δ)cTg xg (9a)

s.t. ze ∈ Z, (9b)

Axe +Bze ≥ b, (9c)

Dexe +Dgxg ≥ d, (9d)

xe ≥ 0,xg ∈ K, ze ∈ {0, 1}m, (9e)

and the additional constraints

1

1− δ
Eyg +Mze ≥ h.

on the dual variables (ye, yg) of its inner continuous prob-
lem capture the bid validity. That is because Problem (8)
consists of the following four main components: (i) primal
constraints (e.g., Equations (8c), (8d), and (8i)) and (ii) dual
constraints (e.g., Equations (8f), (8g), and (8j)) of the inner-
continuous problem of Problem (9), (iii) the optimality condi-
tion (e.g., Equation (8e)) that states that the inner-continuous
problem and its dual counterpart have the same objective value
(note that the other direction holds by weak duality), and (iv)
the bid validity constraints (e.g., Equation (8h)).

IV. SOLUTION APPROACH

This section briefly sketches how the MISOCP is solved.
Problem (8) can be reformulated as

min
ze∈Bn

δhTze + f(ze) (10a)

s.t. ze ∈ Z. (10b)

where

f(ze) = min δcTe xe + (1− δ)cTg xg (11a)

s.t. Axe +Bze ≥ b, (11b)

Dexe +Dgxg ≥ d, (11c)

yT
e (b−Bze) + yT

g d ≥ δcTe xe + (1− δ)cTg xg,
(11d)

yT
g Dg )K∗ (1− δ)cTg , (11e)

yT
e A+ yT

g De ≤ δcTe , (11f)

1

1− δ
Eyg +Mze ≥ h, (11g)

xe ≥ 0,xg ∈ K,ye ≥ 0,yg ≥ 0. (11h)

The implementation applies a Benders decomposition on this
formulation to solve Problem (8).Moreover, the dual of Problem
(11) has a special structure that can be exploited by the dedicated
Benders decomposition from [23]. The idea is to decompose the
dual of Problem (11) into two more tractable problems. The
extreme points and rays of these subproblems can be used to
find the (feasibility and optimality) Benders cuts of Problem
(11). The solution method also uses the acceleration schemes
from [27], [28] which normalize the rays ŷ and perturb ẑe.
The solution method also obtains feasible solutions periodically
(e.g., every 30 iterations) heuristically by turning off violated
generators. Finally, the solution method applies a preprocessing
step to eliminate some invalid bids. It exploits the fact that
the natural gas prices without the GFPP load gives a lower
bound on the natural gas zonal prices. Therefore, the imple-
mentation solves Problem (2) with no GFPPs, i.e., γj,t = 0
for all j ∈ V, t ∈ [1, T ]Z. Those bids violating the bid-validity
constraint with regard to these zonal prices are not considered
further.

V. DESCRIPTION OF THE DATA SETS

The UCGNA model is evaluated on the gas-grid test system
from [1], which is representative of the natural gas and electric
power systems in the Northeastern United States. This test
system is composed of the IEEE 36-bus NPCC electric power
system [29] and a multi-company gas transmission network
covering the Pennsylvania-To-Northeast New England area in
the United States [1]. The data for the test system can be found
online at https://github.com/lanl-ansi/GasGridModels.jl and we
only decrease nodal pressure bounds by a factor of 3 to get an
interesting test case.
The test system consists of 91 generators of various types

(e.g., hydro, gas-fueled, coal-fired, etc.). The unit-commitment
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data for these generators (e.g., generator offer curves including
start-up and no-load costs and operational parameters such as
minimum run time) was obtained from the RTO unit commit-
ment test system [30]. Each generator in the gas-grid test system
is assigned the unit commitment data adapted to its fuel-type
and megawatt capacity. To introduce more variety on bidding
behaviors, we modify some offer curves.
The data sets account for the fact that prices in the gas spot

market in the United States is zonal [31], and the gas-grid
test case consists of two natural gas pricing zones: Transco
Zone 6 non NY and Transco Leidy Line. The Transco Leidy
Line represents the natural gas prices in the Marcellus Shale
production area, which has a wealth of natural gas. On the other
hand, the Transco Zone 6 non NY represents the natural gas
prices near consumption points. Therefore, a large difference
in prices between these two pricing zones implies a scarcity
of transmission capacities between these two points. During
normal operations, the average natural gas prices in the Transco
Zone 6 non NY and the Leidy Line are around $3/mmBtu and
$1.5/mmBtu respectively. The slopes cj,s at junction j ∈ V (see
Section (II-B)) are chosen to be around these numbers. The
penality cost for load shedding κj is set as $130/mmBtu for
all junctions. The results are given for a single time-period (i.e.,
T = 1).

VI. CASE STUDY

This section analyzes, under various operating conditions, the
behavior of the UCGNA on the realistic test system described
in Section V. The results are compared with current practices.
The case study varies the level of stress on both the electrical
power and gas systems. For the electrical power system, the load
is uniformly increased by 30% and 60%. For the gas system, the
load is uniformly increased by 10% up to 130%. Parameters ηe
and ηg respectively represent the stress level imposed on the
electrical power and gas systems. In the results, (A) denotes
existing practices and (B) the UCGNA model. Solutions for
(B) are obtained with a wall-clock time limit of 1 hour, while
solutions for (A) is obtained by the following procedure:

i) Solve the power model (i.e., Problem (1));
ii) Retrieve the demand of GFPPs using Equation (3) and

plug it into the gas model (i.e., Problem (2));
iii) Solve the gas model and compute the natural gas zonal

prices using the dual values associated with the flux
conservation constraints;

iv) Based on the zonal prices, determine the set of GFPPs
violating the bid-validity constraint (i.e., Equation (5b))
and compute the loss of such GFPPs by multiplying
the violation, i.e., the difference between the marginal
gas price and the marginal bid price, with the scheduled
amount of power generation.

The behaviors of (A) and (B) in the normal, stressed, and
highly-stressed power systems are compared in Figs. 1, 2, and 3
respectively. In each figure, (a) and (c) display the system costs
and natural gas prices of (A), and (b) and (d) display those of
(B). More precisely, (a) and (b) present the total cost breakdown
in terms of the cost of electrical power system, the cost of the

Fig. 1. Results for the normal operating conditions of the electrical power
system (ηe = 1), where x-axis represents ηg . (a) System costs (A). (b) System
costs (B). (c) Natural gas prices (A). (d) Natural gas prices (B).

Fig. 2. Results for the stressed electrical power system (ηe = 1.3),
where x-axis represents ηg . (a) System costs (A). (b) System costs (B).
(c) Natural gas prices (A). (d) Natural gas prices (B).

gas system, and the economic loss from invalid bids. (c) and (d)
depict the natural gas zonal prices in each pricing zone.3

Figs. 1(a) and 1(c) show that the gas system cost gradually
increases as ηg increases up to 1.7, then it grows rapidly from
ηg = 1.8 on. The rapid increase is due to load shedding (see
Section II-B) and leads to natural gas price spikes in Transco
Zone 6 non NY. The large difference between the prices in Zone
6 and Leidy Line indicates that the load shedding occurs due to
the lack of transmission capacity between these two points, not
because of a lack of gas supply. Due to the gas price spike in
Transco Zone 6 non NY, some bids of GFPPs become invalid
and incur some losses, which increases the total cost. On the

3Note that, as ηg increases, the total cost of (A) always increases, while the
cost of (B) temporarily decreases sometimes. This is due to the presense of
optimality gaps for some hard instances.
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Fig. 3. Results for the highly-stressed electrical power system (ηe = 1.6),
where x-axis represents ηg . (a) System costs (A). (b) System costs (B).
(c) Natural gas prices (A). (d) Natural gas prices (B).

other hand, for (B), the electrical power system cost is slightly
higher than for (A), but it does not incur any economic loss
from invalid bids and the overall cost is lower. Observe also
that model (A) captures the same behavior as in the 2014 polar
vortex. Additionally, observe that the gas price in the Zone 6
region is also exhibiting sharp increases in model (B). However,
this peak has significantly less impact for (B) given the different
commitment decisions.
The differences in behavior between systems (A) and (B)

become clearer as the load increases in the electrical power
system. For the stressed power system, displayed in Fig. 2,
the difference between the total cost of (A) and (B) becomes
very large: There are many invalid bids for (A), which puts
the reliability of the power system at high risk and induces an
electricity price peak. The price of gas and the economic losses
both increase significantly in (A) and the increases start at stress
level 1.5 for the gas network. In contrast, (B)maintains a reliable
operation independently of the stress imposed on the natural gas
system. The price of gas increases obviously but less than in (A)
and the cost of the power system remains stable. The peak in
gas price only starts at stress level 1.7, showing that (B) delays
the impact of congestion in the gas networks by making better
commitment decisions.
Fig. 3 shows the benefits of (B) over (A) become even more

substantial when both systems are highly stressed. Observe that
the cost of the electrical power system remains stable once again
in (B) and that the cost of the gas network increases reasonably.
In contrast,Model (A) exhibits significant increases in gas prices
and economic cost from invalid bids. These results indicate that
bringing gas awareness in unit commitment brings significant
benefits in congested networks. By choosing commitment de-
cisions that ensure bid validity, the UCGNA brings substantial
cost and reliability benefits for congested situations like the 2014
polar vortex.
The great cost and reliability benefits of (B) are owing to better

commitment decisions that anticipate the future state of the gas

system. Table VII in Appendix C summarizes some statistics on
committed generators under the highly stressed power system.
As the gas load increases, some of the GFPPs in (T) are no
longer committed and the lost generation is replaced by gen-
erators of different types or GFPPs with reasonable bid prices.
More specifically, Fig. 4 in Appendix C shows the commitment
decision of (A) and (B) for (ηe, ηg) = (1.6, 2.3). The numbers
in black in Figs. 4(a) and 4(c) report the number of committed
GFPPs on the corresponding bus; Those in Figs. 4(b) and 4(d)
display the number of committed non-GFPPs. In Figs. 4(a),
the numbers in red on the bottom right corner of some buses
represent the number of committed GFPPs located at the bus
without bid validity. Most invalid GFPPs in Fig. 4(a) are turned
off in Fig. 4(c) and replaced by some non-GFPPs as Fig. 4(d)
indicates.
Finally, Table VIII in Appendix C summarizes the objective

value and the optimality gap of (B) for each instance. For 16 out
of 42 instances, the algorithm times out (wall-clock limit time
of 1 hour) and it reports sub-optimal solutions whose optimality
gaps are presented in columns denoted by (ii).
Suboptimal solutions are not desirable in market clearing,

so future research should be devoted to improve these com-
putational results further. Note however that these suboptimal
results arise for highly congested situations in both networks.
In such circumstances, operators are typically switching to an
emergency reliability state, as was the case during the polar
vortex events [3]. The results thus demonstrate that the UCGNA
bring significant benefits for reliability of gas-grid networks.

VII. DISCUSSION

The contribution of this paper is best viewed as two synergistic
component: (1) a richer bid language for GFPPs allowing to
express their risk aversion and (2) a market clearing mecha-
nism, that use the more expressive bids to obtain the UCGNA,
a gas-aware unit commitment for the electricity market. This
section discusses the practical applicability and implication of
the UCGNA as an alternative market clearing mechanism to the
current practice.
A potential criticism of the UCGNA is the assumption that

the power system operator has partial (or full) knowledge on
the gas demand forecast and the gas network, which may
require some level of cooperation of the natural gas system.
It should be noted that both the electricity and natural gas
markets have been wishing for measures that address the risks
stemming from inter-dependencies between the two networks.
Continuous development of regulations on these two systems
reflects themarket needs; For example, FERCOrder 787 permits
electricity and natural gas transmission operators to share, with
each other, information that they deem necessary to promote
the reliability and integrity of their systems [32]. When the
natural gas demand forecast and the gas network data are shared,
the UCGNA has the potential to enhance the reliability and
efficiency of both systems, as demonstrated by the detailed case
study in Section VI. Indeed, the results show that, in congested
environments, the gas-aware unit commitment reduces the gas
system cost and postpones the natural gas price spikes. This

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 05,2020 at 17:42:30 UTC from IEEE Xplore.  Restrictions apply. 



BYEON AND VAN HENTENRYCK: UNIT COMMITMENT WITH GAS NETWORK AWARENESS 1335

benefit would incentivize gas transmission operators to coop-
erate. Even without the cooperation of the natural gas system,
the proposed model can still be used with natural gas demand
forecast that is obtained by the power system operator, as well
as an incomplete description of the natural gas networks. The
quality of the estimate, however, would improve as the power
systemoperator acquiremore accurate information about the gas
system.
It is important to note that the UCGNA enables the GFPPs to

hedge against risks induced by volatile natural gas prices. The
main purpose of day-ahead markets is to produce a dispatch
that anticipates and hedges against uncertainty that are observed
in real time [33], [34]. In addition, the market should provide
instruments that allow their participants to hedge risks so that a
competitive equilibrium corresponds to the social optimum [35].
The current practice, however, neither anticipates uncertainty in
the natural gas system nor has a market instrument for the GF-
PPs to hedge against their volatile operating costs. The GFPPs
currently lack the ability to reflect changes to their operating
costs after the reoffer period [3] and they have restrictive bidding
language that cannot correctly incorporate their risk-appetite.
Hence, the GFPPs may endure severe consequences when in-
correctly forecasting natural gas prices. This makes the GFPPs
less competitive and may eventually discourage them from
staying in themarket, which is highly undesirable, especially for
power systems with a significant portion of renewable energy.
The UCGNA, on the other hand, allows the GFPPs to make
conditional bids: their bids are only valid as long as the realized
natural gas prices are anticipated not to bemuch higher than their
forecasts. It should be noted that, in the bid validity constraint,
the system operator accepts different risk-aversion levels of each
GFPP u through αu.
This paper also advocates for a richer bidding languages

so that GFPPs have more flexibility in the UCGNA. Indeed,
ideally, a GFPP should be able to submit multiple bids, each of
which is conditional on an anticipated range of realized natural
gas prices and has an associated threshold αu. This enables the
commitment decision to correctly reflect the “actual” price that
the GFPP is willing to offer, which is conditional on natural
gas prices. This can be naturally incorporated into the UCGNA
by introducing additional binary variables in the first level that
represent the expected price range of natural gas.
Another potential criticism of the UCGNA concerns the

transparency of the natural gas price estimation that will be
endogenously obtained and used in the UCGNA. One may
question whether the GFPPs would be willing to accept the
commitment decisionwhen they are de-committed due to the bid
validity constraints. In practice, the estimated natural gas prices
in the UCGNA are largely dependent on natural gas demand
forecast. The disclosure of natural gas demand forecast toGFPPs
before the bid submission period closes thus gives GFPPs the
opportunity to design their bidding strategy accurately.
Note also that the economic feedback from the natural gas

system affects the commitment and dispatch decisions in a
completely discrete manner: Once the binary decisions are
committed and ensure that the bid validity constraints are met,
the second level clears the market in the same way as in the

current practice. Thus, the current market properties (e.g., rev-
enue adequacy of ISOs and cost recovery for committed gen-
erators achieved under some assumptions/market instruments)
also applies to the UCGNA. Recently, several papers proposed
stochastic energy-only market clearing mechanisms to address
undesirable properties of the current market introduced by the
increasing penetration of intermittent generators [33], [34], [36],
[37]. TheUCGNAcan be adapted to embody a single-settlement
stochastic dispatch (e.g., [34]) in the second level problem,
which would result in a stochastic economic feedback from the
gas system. In this case, the bid validity constraint should be
formulated differently to accommodate the uncertainty (e.g., by
using chance constraints). Future research will be devoted to
incorporating a stochastic dispatch into the UCGNA.

VIII. CONCLUSION

The 2014 polar vortex showed how interdependencies be-
tween the electrical power and gas networks may induce signif-
icant economic and/or reliability risks under heavy congestion.
This paper has demonstrated that these risks can be effectively
mitigated by making unit commitment decisions informed by
the physical and economic couplings of the gas-grid network.
The resulting Unit Commitment with Gas Network Awareness
(UCGNA) model builds upon the standard unit commitment
used in current practices but also reasons about the feasibility of
gas transmission feasibility and the profitability of committed
GFPPs. In particular, the UCGNA introduces bid-validity con-
straints that ensure the economic viability of committed GFPPs,
whose marginal bid prices must be higher than the marginal
natural gas prices by some percentage αu. Section VII also
advocated for a richer bidding language that the GFPPs can
use to express more complex bids capturing different levels of
natural gas prices.
The UCGNA is a three-level model whose bid validity con-

straints operate on the dual variables of flux conservation con-
straints in the gas network, which calculate the marginal cost of
gas for producing a unit of electricity. It can be formulated as
a Mixed-Integer Second-Order Cone Program (MISOCP) and
solved using a dedicated Benders decomposition approach. The
case study, based on a modeling of the gas-grid network in the
North-East of the United States, shows that the UCGNA has
significant benefits compared to the existing operations: It is
capable to ensure valid bids even at highly-stressed levels, while
only increasing the cost of gas and electricity in a reasonable
way. In contrast, the existing operating practices induce signifi-
cant economic losses and gas price increases.
In summary, theUCGNAallowsGFPPs to hedge against their

volatile operating costs by providing bids that are conditional
to anticipated natural gas prices. The resulting bids effectively
give them an opportunity to “withdraw” their bids when the gas
prices are too high. The UCGNA also helps system operators
to avoid the default of GFPPs and fuel supply issues that have
plagued the gas network during the polar vertex events. The
current market properties are maintained since the economic
feedback only affects the first level solution. Future researchwill
be devoted to adapting the second-level problem to a stochastic
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dispatch problem and further improving the solution techniques
to solve the UCGNA, including the use of cut bundling and
Pareto-optimal cuts.

APPENDIX A
EQUIVALENCE OF PROBLEM (6) TO A TWO-LEVEL PROBLEM

Consider the following two-level problem:

min
xe≥0,yg
ze∈{0,1}m

cTe xe + hTze (12a)

s.t. ze ∈ Z, (12b)

Axe +Bze ≥ b, (12c)

yg ∈ Dual sol. of min
xg∈K

cTg xg (12d)

s.t. Dexe +Dgxg ≥ d, (12e)

Eyg +Mze ≥ h, (12f)

where the first level (i.e. Equations (12a), (12b), and (12c))
represents the power system’s action taken by UC/ED problem,
and the second level problem represents the response of the
natural gas system (i.e., natural gas price yg). In addition, the
bid validity constraint (i.e., Constraint (12f)) affects the power
system’s commitment decisions based on the response of the gas
system. Hence the power system can be viewed as a “leader” and
the gas system as a “follower” in the Stackelberg game.
Let (ẑe, x̂e, ŷg) be a feasible solution of Problem (6). Then,

it is easy to see that (ẑe, x̂e, ŷg) is also a feasible solution to
Problem (12) with the same objective function value.
Conversely, consider a feasible solution to Problem (12),

(z̃e, x̃e, ỹg). Note that, with ze fixed to z̃e ∈ Z , (x̃e, ỹg) is
also an optimal solution of the lower level problem of Problem
(6). This is because the second level decision (i.e., xe) is not
affected by the third level decision, thus xe = x̃e is an optimal
solution of the second level problem. Then, when xe fixed to
x̃e, yg = ỹg is a valid response of the gas system. Accordingly,
Constraint (12f) is satisfied and hence (z̃e, x̃e, ỹg) is feasible
for Problem (6) with the same objective value. Therefore, the
two problems are equivalent.

APPENDIX B
PROOF OF THEOREM 1

Proof: By strong duality of the third-level optimization in
Problem (6), the lower-level problem (i.e., second- and third-
level) of Problem (6) is equivalent to:

(xe,yg) = argmin
xe≥0,yg

cTe xe (13a)

s.t. Axe +Bze ≥ b, (13b)

yg = argmin
xg∈K,yg≥0

cTg xg

s.t. Dexe +Dgxg ≥ d,

yT
g (d−Dexe) ≥cTg xg,

yT
g Dg )K∗ cg. (13c)

where K∗ denotes the dual cone of K. The first and third
constraints of Problem (13c) state the primal and dual feasibility

of the third-level problem, while the second constraint ensures
their optimality.
Equation (13b) (i.e., the constraint of the upper level problem

of Problem (13)) does not involve the lower-level variables (i.e.,
xg and yg of Problem (13c)), which means the upper-level
solution is not affected by the solutions to the lower-level
problem. Problem (13) can thus be solved in two steps: (i) solve
the upper-level problem and obtain x̄e, (ii) solve the lower-level
problem with xe fixed as x̄e and obtain ȳg . Accordingly,
Problem (13) can be expressed as a Lexicographic optimization
problem [38] as follows:

(xe,yg) = argmin
xe≥0,xg∈K,yg≥0

< cTe xe, c
T
g xg > (14a)

s.t. Axe +Bze ≥ b, (14b)

Dexe +Dgxg ≥ d, (14c)

yT
g (d−Dexe) ≥ cTg xg, (14d)

yT
g Dg )K∗ cg. (14e)

The optimal solution (x̄e, x̄g, ȳg) of Problem (14) satisfies the
following conditions:

x̄e = argmin
xe≥0,xg∈K

cTe xe (15a)

s.t. Axe ≥ b−Bze, (15b)

Dexe +Dgxg ≥ d. (15c)

(x̄g, ȳg) = argmin
xg∈K,yg≥0

cTg xg (16a)

s.t. Dgxg ≥ d−Dex̄e, (16b)

yT
g (d−Dex̄e) ≥ cTg xg, (16c)

yT
g Dg )K∗ cg. (16d)

Observe that any feasible (x̂g, ŷg) of Problem (16) is optimal.
That is because, by strong duality forced in Equation (16c),
(x̂g, ŷg) satisfies the following conditions:

x̂g = argmin
xg∈K

cTg xg (17a)

s.t. Dgxg ≥ d−Dex̄e. (17b)

ŷg = argmax
yg≥0

yT
g (d−Dex̄e) (18a)

s.t. yT
g Dg )K∗ cg. (18b)

Accordingly, using the weighted-sum method [38] for Lexi-
cographic optimization problems and the optimality conditions
of Problem (14), given in Problems (15) and (17)–(18), we
approximate Problem (14) as follows:

min
xe≥0,xg∈K

δcTe xe + (1− δ)cTg xg (19a)

s.t. Axe +Bze ≥ b, (19b)

Dexe +Dgxg ≥ d, (19c)
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for some δ ∈ (0, 1), and yg is obtained by the dual solution
associated with Equation (19c).
As a result, Problem (6) can be approximated by

min δhTze + δcTe xe + (1− δ)cTg xg (20a)

s.t. ze ∈ Z, (20b)

(xe,xg,yg) = Primal & dual opt. sol. of (19), (20c)

1

1− δ
Eyg +Mze ≥ h, , (20d)

xe ≥ 0,xg ∈ K,ye ≥ 0,yg ≥ 0, (20e)

ze ∈ {0, 1}m. (20f)

Hence, by strong duality of Problem (19), stated in Equation
(8e), Problem (8) is equivalent to Problem (20).
It remains to show that Problem (8) is indeed an asymptotic

approximation of Problem (6). Replacing ye with ye/δ and yg
with yg/(1− δ) in Problem (8) gives the following equivalent
problem:

min δhTze + δcTe xe + (1− δ)cTg xg (21a)

s.t. ze ∈ Z, (21b)

Axe +Bze ≥ b, (21c)

Dexe +Dgxg ≥ d, (21d)

yT
e (b−Bze)− cTe xe ≥

1− δ

δ

[
cTg xg − yT

g d
]
,

(21e)

yT
g Dg )K∗ cTg , (21f)

yT
e A+

1− δ

δ
yT
g De ≤ cTe , (21g)

Eyg +Mze ≥ h, (21h)

xe ≥ 0,xg ∈ K,ye ≥ 0,yg ≥ 0, (21i)

ze ∈ {0, 1}m. (21j)

Let P (ẑe) and P̂ (ẑe) denote Problems (14) and (21) in which
the binary variables ze are fixed to some ẑe ∈ {0, 1}m. Let
(x̂e, x̂g, ŷe, ŷg) be the optimal solution of P̂ (ẑe). Note that, as
δ → 1, Equations (21e) and (21g) become as follows:

yT
e (b−Bẑe) ≥ cTe xe, (22a)

yT
e A ≤ cTe , (22b)

which implies that x̂e and ŷe approximate the optimal primal
and dual solutions of Problem (15) when ze is fixed as ẑe. This
is because x̂e is feasible for (15) (by Equation (21c)), (ŷe, 0)
becomes feasible to the dual of Problem (15) as δ approaches
1 (by Equation (22b)), and together they satisfy the strong
duality condition of Equation (22a) as δ becomes closer to 1
(by Equation (22a)). Therefore, as δ → 1, (x̂e, ŷe) becomes a

feasible solutions of P (ẑe) and has the same optimal objective
value.
Moreover, combining Equations (21e) and (21g) gives

(Equation (21e))− x̂e

× (Equation (21g))

→ ŷTe (b−Bẑe −Ax̂e) +
1− δ

δ

× ŷTg (d−Dex̂e) ≥
1− δ

δ
cTg x̂g

→ ŷTg (d−Dex̂e) ≥ cTg x̂g, (23a)

where the last derivation follows from Equation (21c) and yg ≥
0. Therefore, x̂g and ŷg are the optimal solutions of Problem
(16) when xe is fixed as x̂e (since its feasibility is guaranteed by
Equations (21d) and (21f), while the optimality is guaranteed by
Equation ((23a))).
In summary, x̂e is an approximate solution of P (ẑe) that

becomes increasingly close to the optimal solution of Problem
P (ẑe) as δ → 1, and ŷg is the exact response of the follower with
respect to x̂e for any δ ∈ (0, 1). Therefore, the approximation
may sacrifice the leader’s optimality when δ is not large enough,
but it always gives a feasible solution. !

APPENDIX C

TABLE VII
STATISTICS ON COMMITTED GENERATORS FOR THE STRESSED ELECTRICAL
POWER SYSTEM (ηe = 1.6): THE FIRST SEVEN COLUMNS DISPLAY THE

NUMBER OF COMMITTED GENERATORS WITH RESPECT TO ITS FUEL TYPE,
WHERE (O) OIL, (C) COAL, (G) GAS, (H) HYDRO, (R) REFUSE, (N) NUCLEAR,

(E) OTHERS, AND THE LAST TWO COLUMNS SHOW THE NUMBER OF
COMMITTED GFPPS IN EACH PRICING ZONE, WHERE (T) TRANSCO

ZONE 6 NON NY AND (L) TRANSCO LEIDY LINE

TABLE VIII
SOLUTION STATISTICS FOR (B), WHERE COLUMN (I) DENOTES THE FINAL

OBJECTIVE VALUE OF (B) FOR EACH INSTANCE AND COLUMN (II) REPRESENTS
THE OPTIMALITY GAP (TIME LIMIT: ONE HOUR)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 05,2020 at 17:42:30 UTC from IEEE Xplore.  Restrictions apply. 



1338 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 35, NO. 2, MARCH 2020

Fig. 4. Results for the highly-stressed condition (ηe, ηg) = (1.6, 2.3). (a) Number of committed GFPPs (A). (b) Number of committed non-GFPPs (A).
(c) Number of committed GFPPs (B). (d) Number of committed non-GFPPs (B).
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