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Prospects for vectorlike leptons at future proton-proton colliders

Prudhvi N. Bhattiprolu and Stephen P. Martin

Department of Physics, Northern Illinois University, DeKalb IL 60115

Vectorlike leptons are an intriguing possibility for physics beyond the Stan-

dard Model. We study the reach for discovering (at 5σ significance) or ex-

cluding (at 95% confidence) models of charged vectorlike leptons that mix

predominantly with the tau, using multi-lepton signatures at various future

proton-proton collider options: a high-luminosity LHC with
√
s = 14 TeV, a

high-energy LHC with
√
s = 27 TeV, and possible new longer-tunnel colliders

with
√
s = 70 or 100 TeV. For weak isodoublet vectorlike leptons, we esti-

mate that a 27 TeV high-energy LHC with 15 ab−1 could exclude masses up

to about 2300 GeV, or discover them if the mass is less than about 1700 GeV,

while a 100 TeV collider with 30 ab−1 could exclude masses up to about 5750

GeV, or make a discovery if the mass is less than about 4000 GeV. However,

we find that weak isosinglet vectorlike leptons present a much more difficult

challenge, with some reach for exclusion, but not for discovery at any of the

collider options considered.
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I. INTRODUCTION

The Large Hadron Collider (LHC) has conducted searches for new physics beyond the

Standard Model, at proton-proton center of mass energies up to
√
s = 13 TeV. Following the

discovery [1] of the Higgs scalar boson with mass near Mh = 125 GeV, the present evidence

from the LHC is consistent with the minimal version of the Standard Model, with direct

and indirect limits on new particles extending well into the TeV range. However, there are

many candidate new physics models that obey decoupling as the mass scale of new physics is

raised. These include supersymmetric theories, where agreement with the Standard Model

gets better as the scale of supersymmetry breaking is raised. An example of a non-decoupling

theory is a new chiral 4th family of fermions. Because of the necessity of generating the large

chiral fermion masses through Yukawa couplings and the Higgs mechanism, decoupling is

violated, which causes significant contributions to precision electroweak observables as well

as Higgs boson production and decay rates, in conflict [2] with the observations.

New fermions are still allowed, because they will obey decoupling, if they obtain their

mass entirely or mostly as bare electroweak-singlet terms in the Lagrangian, rather than

from the Yukawa couplings to the Higgs field. This implies that the new fermions are

vectorlike (the antonym of chiral). It is a notable common feature of many new physics

theories that are motivated for other reasons (such as the need for a cosmological and

astrophysical dark matter candidate, or to address the hierarchy problem) that they often

contain vectorlike fermions. For example, in supersymmetry [3], the Higgsinos have the same

gauge quantum numbers as would a vectorlike pair of weak isodoublet leptons. It is plausible

that additional vectorlike fermion masses are at the TeV scale, because whatever mechanism

is responsible for the Higgsino masses can also be applied to the vectorlike fermion masses,

which have the same structure. Vectorlike fermions can therefore be added on to the minimal

version of supersymmetry, with one possible benefit that they can contribute to the lightest

Higgs boson mass [4–18], which allows a lower supersymmetry breaking scale consistent

with Mh = 125 GeV. For example, adding vectorlike quarks to the simplest models of

gauge-mediated supersymmetry breaking allows [15–18] them to be still discoverable at the

LHC. However, even ignoring such motivations, it is also worthwhile to consider vectorlike

fermions merely on the merits of being a simple and consistent candidate extension of the

Standard Model.

For vectorlike quarks, the LHC pair production cross-section is determined from QCD,

and is therefore large and essentially model-independent.† The searches for vectorlike quarks

are consequently quite advanced, with current LHC limits (depending on the specific decay

modes) on pair-produced vectorlike quarks that can be found in refs. [19, 20].

In contrast, vectorlike leptons (VLLs) [21–71] are pair-produced by s-channel electroweak

vector boson diagrams, leading to cross-sections that are much smaller and dependent on

† Single production of vectorlike quarks is also subject to LHC limits, but in a much more model-dependent

way.



3

the choices of weak isospin and weak hypercharge of the new states.‡ For this reason, until

recently the LHC detector collaborations had not put limits on VLLs beyond those that

could be inferred from the CERN LEP e−e+ collider, which excluded [74] masses up to

101.2 GeV. There had been several phenomenological studies that looked into the LHC

discovery and exclusion capabilities. In ref. [50], search strategies and capabilities were

discussed for the optimistic case that the VLLs decayed mostly to muons, and an ATLAS

search was conducted for that case in [52]. In ref. [57], the more pessimistic case of decays

to tau-rich final states were considered, and it was argued that even with the (then current,

but now old) data at
√
s = 8 TeV it should be possible to exclude such SU(2)L-doublet

VLLs up to about Mτ ′ = 275 GeV, but not SU(2)L-singlet charged VLLs, which have

a much smaller production cross-section and unfavorable branching ratios. Since then, the

CMS collaboration has published [70, 71] the results of dedicated searches for doublet VLLs,

based on 41.4 fb−1 and 77.4 fb−1 data samples at
√
s = 13 TeV. Aided in part by a deficit

of events in the signal regions compared to the background expectation, CMS was able to

obtain an exclusion for 120 GeV < Mτ ′ < 790 GeV for a pure SU(2)L doublet VLL pair

that mixes with and decays to tau leptons.

In this paper, we will consider the prospects for exclusion or discovery of VLLs at planned

future proton-proton colliders. While there are a wide variety of possible VLL models, we

will consider as benchmark models two simple minimal cases as defined in ref. [57], a “Singlet

VLL” and a “Doublet VLL” model, with the mixing to the Standard Model leptons assumed

to be entirely with the tau, and small. One advantage of these models as benchmarks is

that the pair production cross-sections are uniquely determined as a function of the mass,

as discussed in ref. [57] and reviewed in the next section. As was the case in ref. [57],

our analysis below shows that the minimal Singlet VLL model is very difficult to probe at

proton-proton colliders. We will therefore also consider a class of non-minimal models which

are similar to the minimal Singlet VLL model and have the same production cross-section,

but have different branching ratios for the lightest charged new lepton.

We will consider the following proton-proton collider options:

• a High-Luminosity LHC (HL-LHC), defined as 3 ab−1 of proton-proton collisions at√
s = 14 TeV,

• a High-Energy LHC (HE-LHC), defined as 15 ab−1 at
√
s = 27 TeV,

• a very high energy pp collider, defined as up to 30 ab−1 at either
√
s = 70 or 100

TeV, which could be realized as e.g. a CERN hadron-hadron Future Circular Collider

(FCC-hh) [75] or a Super proton proton Collider (SppC) [76] in China.

The physics potential for HL-LHC and HE-LHC has been studied for various other beyond-

the-Standard-Model scenarios in ref. [77] and references therein.

‡ Here we concentrate on models with new charged vectorlike leptons. Signatures from models with neutrino

masses from electroweak singlet states at the TeV scale are reviewed in [72, 73], for example.
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For reach estimates, we will use a simple cut-based counting experiment criteria, where

the significance

Z =
√
2 erfc−1(2p). (1.1)

of an experimental result is related to the probability p of observing, in an ensemble of many

repeated experiments, a result of equal or greater incompatibility with the null hypothesis.

Let the number of background events be Poisson distributed with mean b, with the variance

in b (corresponding intuitively to an uncertainty in the expected number of background

events) given by ∆b, and suppose the number of signal events is Poisson distributed with

predicted mean s. Then the median expected significance for discovery (where the null

hypothesis is background only, and the signal is assumed to be present in the data) is

approximately [78–81]:

Zdisc =

[

2

(

(s+ b) ln

[

(s+ b)(b+∆2
b)

b2 + (s+ b)∆2
b

]

− b2

∆2
b

ln

[

1 +
s∆2

b

b(b+∆2
b)

])]1/2

. (1.2)

The median expected significance for exclusion (where the null hypothesis is now the back-

ground + signal model, but the signal is assumed to be actually absent in the data) can be

approximated by [57]:

Zexc =

{

2

[

s− b ln

(

b+ s+ x

2b

)

− b2

∆2
b

ln

(

b− s+ x

2b

)]

− (b+ s− x)(1 + b/∆2
b)

}1/2

, (1.3)

where

x =
√

(s+ b)2 − 4s∆2
b/(1 + ∆2

b/b). (1.4)

In the idealized limit of a perfectly known background prediction, ∆b = 0, these would

reduce to

Zdisc =
√

2[(s+ b) ln(1 + s/b)− s], (1.5)

Zexc =
√

2[s− b ln(1 + s/b)]. (1.6)

In the further limit of large b, these both approach Zdisc = Zexc = s/
√
b. In the following, we

will use as a criteria for expected 5-sigma discovery that s is at least 10 and eq. (1.2) should

exceed Zdisc > 5, and for an expected 95% exclusion that eq (1.3) should exceed Zexc > 1.645

corresponding to p = 0.05. We will use the somewhat arbitrary (since the capabilities of

the detectors are unknown at present) choices ∆b/b = 0.1, 0.2, and 0.5, corresponding to a

10%, 20%, and 50% uncertainty in the background. We have also assumed that b is always

at least 1 event, to be conservative.
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II. MINIMAL MODELS FOR PRODUCTION AND DECAY OF VECTORLIKE

LEPTONS

Following the terminology and definitions in ref. [57], the “Singlet VLL Model” contains

the Standard Model fields and interactions plus an SU(2)L-singlet charged VLL τ ′− and

its antiparticle τ ′+, which consist of 2-component left-handed fermions transforming under

SU(3)c × SU(2)L × U(1)Y as

τ ′ + τ ′ = (1, 1,−1) + (1, 1,+1). (2.1)

The “Doublet VLL Model” contains a new charged lepton and its neutral heavy Dirac

neutrino partner, realized as 2-component left-handed fermions transforming as

L+ L =





ν ′

τ ′



+





τ ′

ν ′



 = (1, 2,−1

2
) + (1, 2,+

1

2
). (2.2)

In both models, a single weak-isosinglet bare fermion mass parameter M is mostly responsi-

ble for the new fermion masses, with a small Yukawa couplings ǫ to the Higgs field providing

the mixing mass with the Standard Model τ lepton, which also has its own Yukawa coupling

yτ to the Higgs field. The charged fermion mass matrix for the τ, τ ′ system in each case

then can be written in the form

M =





yτv 0

ǫv M



 , (2.3)

where v ≈ 174 GeV is the Standard Model Higgs vacuum expectation value. The tree-level

mass eigenvalues, obtained from the square roots of the eigenvalues ofM†M after expanding

for yτv, ǫv ≪ M , are:

Mτ = yτv(1− ǫ2v2/2M2 + . . .), (2.4)

Mτ ′ = M(1 + ǫ2v2/2M2 + . . .), (2.5)

where the ellipses in both cases represent terms suppressed by ǫ4v4/M4 or ǫ2y2τv
4/M4, while

the tree-level neutral VLL mass in the Doublet model is simply Mν′ = M . There is also

a 1-loop radiative correction to the physical mass splitting Mν′ −Mτ ′ , but it is also small,

only of order a few hundred MeV [23].

In the special case of no mixing with the tau lepton, ǫ = 0, the lightest VLL would

be absolutely stable due to a conserved global symmetry. Here, we assume instead that

ǫ is small enough to be treated as a tiny perturbation in the mass matrix, but that it
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FIG. 2.1: The total pair production cross-sections for τ ′−τ ′+ in the Singlet VLL Model (left

panel) and for the sum of τ ′−τ ′+ and ν ′ν ′ and τ ′−ν ′ and τ ′+ν ′ in the Doublet VLL Model

(right panel), for proton-proton collisions at
√
s = 8, 13, 14, 27, 70, 100 TeV (bottom to top).

exceeds about 2× 10−7, which is large enough to allow [57] the VLLs to decay promptly† on

collider detector length scales to Standard Model states, with widths that dominate over the

competing mode τ−′ → π−ν ′ [23] in the Doublet VLL case. The fermion mass eigenstates

then consist of, besides the usual τ+, τ−, ντ and the rest of the Standard Model states, a

charged Dirac pair τ ′−, τ ′+ in both models, and a neutral Dirac pair ν ′, ν ′ in the Doublet

VLL model only. Due to the small size of ǫ and the 1-loop radiative splitting, we can take

Mν′ ≈ Mτ ′ for the purposes of collider simulations.

The collider pair production modes are

pp → γ∗, Z∗ → τ ′−τ ′+, (2.6)

pp → Z∗ → ν ′ ν ′, (2.7)

pp → W−∗ → τ ′−ν ′, (2.8)

pp → W+∗ → τ ′+ν ′, (2.9)

involving couplings to the γ, Z, and W± vector bosons, which are listed in ref. [57]. Of

course, only the first of these processes occurs for the Singlet VLL model.

In Figure 2.1, we show the total pair production cross-sections at a proton-proton collider

† If the τ ′ in the Singlet VLL model is quasi-stable, then search strategies based on time-of-flight and

ionization rate should apply, as in the ATLAS search in ref. [82]. Assuming that the τ ′ interacts similarly

to a chargino, we infer from the cross-section limit in Figure 10 of [82] that its mass should exceed about

750 GeV. This does not apply to the Doublet VLL model, where the τ ′ can decay to ν′ inside the detector.
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FIG. 2.2: The individual pair production

cross-sections in the Singlet VLL Model for

τ ′−τ ′+ (solid red line) and in the Doublet

VLL Model for τ ′−τ ′+ (dashed blue line)

and ν ′ν ′ (dotted blue line) and τ ′−ν ′ plus

τ ′+ν ′ (dot-dashed blue line) and total (solid

blue line), for proton-proton collisions at√
s = 27 TeV.

as a function of Mτ ′ = Mν′ , for the choices
√
s = 8, 13, 14, 27, 70, 100 TeV. Note that the

Doublet VLL model has a considerably larger total cross-section, which is partly responsible

for the much better search prospects as found in ref. [57] and below in the present paper.

For example, at Mτ ′ = 1000 GeV, the total cross-section is about 12.5 times larger in the

Doublet VLL model than for the Singlet VLL model, nearly independent of the proton-

proton collision energy over the range from 14 to 100 TeV. In the Doublet VLL model,

the total contribution is dominated by the W -boson-mediated τ ′−ν ′ and τ ′+ν ′ final states.

However, even if one restricts attention to only the τ ′−τ ′+ final state common to both models,

the Doublet VLL model has a significantly larger cross-section. This is illustrated in Figure

2.2, which compares the individual cross-sections for each of the final states at
√
s = 27

TeV. (Results are similar at other values of
√
s.)

The total pair-production cross-sections for these models are also shown in Figure 2.3 as

a function of
√
s, for various choices of Mτ ′ = Mν′ . Clearly, the cross-sections are getting

larger at higher collider energies. In the Doublet VLL model, one obtains roughly the same

cross-section for Mτ ′ = 4000 GeV at
√
s = 100 TeV as one would have for Mτ ′ = 1870 GeV

at
√
s = 27 TeV, or for Mτ ′ = 1220 GeV at

√
s = 14 TeV.

As for the decays, the lepton-flavor conserving charged current process τ ′ → ν ′π− is

kinematically allowed in the Doublet VLL model, but has a width smaller than the direct

lepton-flavor-violating decays to Standard Model fermions as long as ǫ ∼> 2× 10−7 [57], and

is therefore neglected. In the Doublet VLL model, the neutral VLLs decay 100% of the time

to a W boson and an ordinary tau lepton:

BR(ν ′ → W+τ−) = BR(ν ′ → W−τ+) = 1. (2.10)

This reflects our assumptions that there is no ν ′ mixing with the left-handed neutrinos of

the Standard Model and that the mixing Yukawa coupling ǫ involves the tau lepton, rather

than muon or the electron; otherwise the discovery and exclusion strategies would be much
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FIG. 2.3: The total pair production cross-sections for τ ′−τ ′+ in the Singlet VLL Model (left

panel) and for the sum of τ ′−τ ′+ and ν ′ν ′ and τ ′−ν ′ and τ ′+ν ′ in the Doublet VLL Model

(right panel), as a function of
√
s, for various values of Mτ ′ = Mν′ as labeled.

easier, due to the higher detection efficiency and lower fake rates for e, µ compared to τ .

In both models, the charged VLLs can decay into the final states Zτ , hτ , and Wντ . The

decay widths (neglecting the tau lepton mass) are [57]:

Γ(τ ′ → hτ) =
ǫ2

64π
Mτ ′(1− rh)

2, (2.11)

Γ(τ ′ → Zτ) =
ǫ2

64π
Mτ ′(1 + 2rZ)(1− rZ)

2, (2.12)

in both the Singlet and Doublet VLL models, while

Γ(τ ′ → Wν) =











ǫ2

32π
Mτ ′(1 + 2rW )(1− rW )2, (Singlet VLL model),

0, (Doublet VLL model),

(2.13)

where rX ≡ M2
X/M

2
τ ′ for each of X = h, Z,W . In the decays to Z and W , the factors

(1+2rZ) and (1+2rW ) can be understood as coming from the longitudinal (1) and transverse

(2rX) components of the weak vector bosons. The longitudinal components can in turn be

understood as essentially the Goldstone modes that are eaten by the vector bosons to obtain

their masses. This illustrates the usual Goldstone equivalence principle, which implies that
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FIG. 2.4: The branching ratios for τ ′ → Wν and Zτ and hτ , as a function of Mτ ′ , for the

Singlet VLL model (left panel) and the Doublet VLL model (right panel), showing the rapid

approach to the Goldstone boson equivalence limit for larger masses.

for the limit of large Mτ ′ the branching ratios should approach:

[BR(τ ′ → hτ), BR(τ ′ → Zτ), BR(τ ′ → Wν)] =

{

[0.25, 0.25, 0.5] (Singlet VLL model),

[0.5, 0.5, 0] (Doublet VLL model).

(2.14)

In Figure 2.4, we plot the branching ratios for the τ ′ decays in the two models, as a function

of the mass Mτ ′ , showing the asymptotic approach to the Goldstone equivalence limit.

The Doublet VLL model therefore has the following final states:

ZZτ−τ+, Zhτ−τ+, hhτ−τ+ (2.15)

from τ ′ pair production eq. (2.6),

W+W−τ−τ+ (2.16)

from ν ′ pair production eq. (2.7), and

ZW±τ−τ+, hW±τ−τ+ (2.17)

from τ ′ν ′ production eq. (2.8) and eq. (2.9). Besides the three signals in eq. (2.15), the
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Singlet VLL model also has final states

ZW±τ∓ + Emiss
T , hW±τ∓ + Emiss

T , W+W− + Emiss
T , (2.18)

with the last being the largest in the minimal Singlet VLL model.

With the above branching ratios for the minimal Singlet VLL model, the analysis below

does not find any reach for any of the signal regions at any of the collider options considered

below, due to the low cross-section and the unfortunate large branching ratio for τ ′ → Wν.

Therefore, we instead consider a class of non-minimal models which have the feature that the

lightest new fermion is still a charged, mostly isosinglet τ ′, but with other new fermions much

heavier and therefore not contributing to the production. Thus, the new particle content

first accessible to colliders is the same as in the minimal Singlet VLL model, but the mixing

with the much heavier vectorlike fermions allows the branching ratios of τ ′ to be essentially

arbitrary among the three final states listed above. We therefore present results for modified

Singlet VLL models, with the same τ ′+τ ′− production cross-section as the minimal Singlet

VLL model, but with branching ratios set to the following three sub-cases:

BR(τ ′ → hτ) = 1, “Higgs-philic Singlet VLL”, (2.19)

BR(τ ′ → Zτ) = 1, “Z-philic Singlet VLL”, (2.20)

BR(τ ′ → hτ) = BR(τ ′ → Zτ) = 0.5, “W -phobic Singlet VLL”. (2.21)

Realizations of these simplified models, from appropriate limits of mixing a vectorlike isosin-

glet fermion with a much heavier vectorlike isodoublet fermion, are discussed in an Appendix.

For signal simulation, we have input a Lagrangian which governs the production and

decay of the Doublet VLL and the Singlet VLL models (as discussed above) into FeynRules

v2.3 [83], a Mathematica package, to obtain the Feynman rules as a Universal FeynRules

Output (UFO) file, which is then imported into MadGraph5 aMC@NLO v2.6.5 [84] ‡ We

considered Standard Model production of the final states WZ, ZZ, ttZ, ttW , hW , hZ, tth,

WWW , WWZ, ZZW , and ZZZ as the main backgrounds contributing to multi-lepton

final states. We did not include reducible backgrounds such as W + jets, Z + jets, and

WZ + jets, where one or more jets fake a tau. While they could be important, we do not

have a way of reliably estimating them for unknown future detectors. Therefore it must be

kept in mind that if they are large, our projections may be too optimistic.

Both signal and background events were generated using MadGraph at leading order

(LO). The decay couplings in the (VLL) Lagrangian are left as free parameters in the model

file of FeynRules, so that one has the flexibility to adjust them during the run time of

MadGraph. The numerical values of the decay couplings that are used are actually not

important (as long as they are not too small or too large), because in each separate Madgraph

run the decays of VLL were forced into one of the individual channels mentioned above, and

later the event samples were normalized using the branching ratios shown in Figure 2.4. We

‡ Electronic input files relevant for VLL models are available from the authors on request.
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calculated the cross-sections for signal at LO and normalized the background cross-sections

as calculated at next-to-leading order (NLO), using MadGraph. While using MadGraph,

we used their default set of parton distribution functions (PDFs) based on NNPDF2.3 set

[85]. We used Pythia 8.2 [86, 87] for showering and hadronization. Then, Delphes 3.4

[88] was used for detector simulation. We have used the default Delphes tagging efficiencies

and misidentification rates for taus and b-jets, where the tau tagging efficiency is 0.6, and

the tau misidentification rate for QCD jets is 0.01. To increase the yield for background

events to pass cuts described below, we forced every particle, except for the SM Higgs boson

(h), to decay into leptons (including taus) and/or jets, such that they contribute to multi-

lepton final states with at least 3 leptons. For generation of both signal and background

events, we only considered the decay of h into W+W−, ZZ, and τ+τ−, ignoring all other

decays, and have normalized using the branching ratios of h from HDECAY [89]. Thus each

signal/background containing one or more h is split into 3 signal/background components

per h. We generated at least 105 events for each signal component at each mass point, and

at least 106 events for each background component, at each of
√
s = (14, 27, 70, 100) TeV.

These numbers of generated events are usually sufficient, with a few exceptions noted below.

In the real world, better background determinations may come from data.

In our analysis, we first impose object cuts on leptons ℓ = e, µ, τ , where, from now on, τ

refers to a tau lepton that undergoes a hadronic decay. These include minimum pT cuts that

depend on the collider option, and are therefore listed in the subsections below. In all cases,

the lepton candidates are required to pass the following further cuts on pseudo-rapidity η

and isolation from other lepton candidates or jets:

|η| < 2.5 (2.22)

∆Rl,l′ > 0.1 (for each ℓ, ℓ′ = e, µ, τ) (2.23)

∆Rl,j > 0.3 (for each jet and ℓ = e, µ, τ). (2.24)

Here, ∆R =
√

(∆φ)2 + (∆η)2 as is usual.

Events are then selected with at least 3 three leptons, of which at least 2 must be e or µ.

The leading e or µ lepton is also required to satisfy a minimum pT trigger requirement that

depends on the collider option, and is therefore listed separately in each of the subsections

below. We also veto b-jets to reduce large backgrounds from tt production processes. Thus

our event pre-selection common to all signal regions is:

N(e, µ, τ) ≥ 3 (2.25)

N(e, µ) ≥ 2 (2.26)

pe1T or pµ1

T > ptriggerT (2.27)

N(b-jets) = 0 (2.28)

Events with no e+e− or µ+µ− pair with invariant mass within 15 GeV of MZ are referred

to below as “no-Z”, and events with exactly two e/µ that have same-sign charges will be
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labeled as “SS”. We then considered the following 6 distinct types of signal regions:

2 SS e/µ+≥ 1τ (2.29)

2 SS e/µ+≥ 1τ with Emiss
T > 150 GeV (2.30)

≥ 3e/µ+ 1τ (2.31)

≥ 3e/µ+ 1τ , no-Z (2.32)

≥ 2e/µ+ 2τ (2.33)

≥ 2e/µ+ 2τ , no-Z (2.34)

Finally, in each of these signal regions, we imposed a minimum lower bound cut on LT ,

which is defined to be the sum of the transverse momentum of all leptons:

LT =
∑

ℓ=e,µ,τ

pT (ℓ). (2.35)

We varied the choice of this cut to obtain good exclusion and discovery reach simultaneously

for each signal region and collider option and assumed fractional background uncertainty

∆b/b = (0.1, 0.2, 0.5). However, we have only done a very rough optimization for the LT

cut, in part because the optimization is different for exclusion and for discovery, and also

because the Monte Carlo simulations are only an approximation to the actual experimental

capabilities, which will rely on detector designs yet to be determined. In general, the results

found below reflect that the choice of cut on LT increases with the mass Mτ ′ at the edge

of the reach. Also, for convenience, we always chose the same LT cut for both exclusion

and discovery, even though an optimized cut would likely be somewhat different for the two

cases.

Note that the signal regions considered in eqs. (2.29)-(2.34) are far from exclusive of each

other. Therefore, to be conservative we have not attempted to combine them, although

doing so could lead to some extension of the reach prospects.

III. RESULTS FOR THE HL-LHC COLLIDER

In this section, we discuss the possibility of exclusion or discovery of both Doublet and

Singlet VLL (including the minimal and non-minimal versions) at
√
s = 14 TeV with 3

ab−1 of pp collisions. In addition to the pseudo-rapidity, isolation and other requirements of

eqs. (2.22)-(2.28), we require all leptons including hadronic tau candidates to satisfy

pℓT > 15 GeV. (3.1)
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FIG. 3.1: LT event distributions for total background (shaded) and Doublet VLL models

(lines), for pp collisions at
√
s = 14 TeV with an integrated luminosity L = 3 ab−1. Five

different masses Mτ ′ = Mν′ = 500, 700, 900, 1100, and 1300 GeV are shown in each panel.

The four panels show results for the four best signal regions, as labeled.

Additionally, the leading e or µ in each event is required to satisfy a trigger requirement:

pe1T or pµ1

T > 30 GeV. (3.2)

We then considered the six signal regions mentioned in eqs. (2.29)-(2.34).

A. Doublet VLL model

In Figure 3.1, we show the LT distributions for the best four of these signal regions, for

five different choices of Mτ ′ as labeled, and for the total of all backgrounds shown as the

shaded histogram. For pp collisions with
√
s = 14 TeV with 3 ab−1, we found that the

expected reach is approximately maximized if we then choose a cut LT > 800 GeV.

Figure 3.2 shows the LT distributions for all background components, for the four best

signal regions as labeled. The LT cut is shown in the figure as a vertical dashed line. After

imposing the LT cut, the dominant SM backgrounds are WZ, tt̄V and V V V (where V =
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FIG. 3.2: LT event distributions for all processes contributing to total SM background, for pp

collisions at
√
s = 14 TeV with an integrated luminosity L = 3 ab−1. The four panels show

results for the four best signal regions, as labeled. The vertical dashed line in all four panels

shows our choice of LT cut.

W,Z) in the two signal regions with 2 SS e/µ+≥ 1τ , while the dominant SM backgrounds

are tt̄V and ZZ in the signal region with ≥ 2e/µ+ 2τ , and tt̄V and tt̄h in the signal region

with ≥ 2e/µ+ 2τ (no-Z).

Figure 3.3 shows the resulting median expected significances for exclusion (left panels)

and discovery (right panels), for ∆b/b = 0.1 (top row), 0.2 (middle row), and 0.5 (bottom

row), with the cut requirement LT > 800 GeV imposed. In all cases, the best signal

regions for both exclusion and discovery scenarios are the ones with 2 SS e/µ+≥ 1τ , with

the additional requirement Emiss
T > 150 GeV providing slightly more reach. The two signal

regions with ≥ 2e/µ+2τ give slightly less reach at higher masses, but could actually provide

comparable exclusion significances for lower masses.

From Figure 3.3 we conclude that a 14 TeV high-luminosity LHC with 3 ab−1 should be

able to exclude Doublet VLLs with Mτ ′ up to about 1250 GeV if they are indeed absent, or

discover them if the mass is less than about 900 GeV, assuming that the future background

determination from data is subject to uncertainties of order 10% or less. The figure also

shows that prospects for exclusion are much less sensitive to uncertainty in the background

than the prospects for discovery. For ∆b/b = 0.5, one can still expect to exclude Doublet
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FIG. 3.3: The median expected significances for exclusion Zexcl (left panels) and discovery

Zdisc (right panels) as a function of Mτ ′ in the Doublet VLL model, for pp collisions at
√
s = 14

TeV with integrated luminosity L = 3 ab−1, for six different signal regions as described in

the text, each including a cut LT > 800 GeV. The fractional uncertainty in the background

is assumed to be ∆b/b = 0.1 (top row), 0.2 (middle row), and 0.5 (bottom row).

VLLs up to about Mτ ′ = 1190 GeV, or discover them if the mass is less than about 690

GeV, but the latter has already been excluded at 95% confidence level by CMS [70, 71].

In the case that there are enough events for a clear discovery, one can also hope to

measure the mass of the τ ′. In figure 3.4, we show the event distributions for the 3-body

invariant mass of τ±e+e− or τ±µ+µ−, for the signal region with ≥ 2e/µ+2τ , for two different
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FIG. 3.4: The event distributions for 3-

body invariant mass of τ±e+e− or τ±µ+µ−,

for total background (shaded) and Doublet

VLLs (lines), such that the e+e− or µ+µ−

pair have an invariant mass within 10 GeV

of MZ in a signal region with ≥ 2e/µ + 2τ ,

with the cut LT > 800 GeV imposed. Two

different masses Mτ ′ = Mν′ = 700 and 800

GeV are shown.

choices of input Mτ ′ , and for the total of all backgrounds shown as the shaded histogram.

(Combinatorial backgrounds from wrong associations of the lepton pair and tau in the signal

sample are of course also present and included.) Here, we require the 2-body invariant mass

of the e+e− or µ+µ− pair to be within 10 GeV of MZ . Additionally, we also impose the cut

LT > 800 GeV. From Figure 3.4, we observe that the distributions for Doublet VLLs are

peaked just below their respective masses, which gives a possibility to measure the masses

of Doublet VLLs, if they are indeed discovered. At
√
s = 14 TeV, the range of masses that

one can hope to measure in this way is limited by the present exclusion up to Mτ ′ = 790

GeV by CMS [71] and by the fact that the cross-section decreases rapidly for higher masses.

B. Singlet VLL models

Singlet VLLs are much more challenging than Doublet VLL, due to their much smaller

production cross sections. For the minimal Singlet model, we find no possible exclusion or

discovery at
√
s = 14 TeV with integrated luminosity of 3 ab−1. And, for the non-minimal

Singlet models, we find some exclusion possibility, but with no prospects for discovery. In

view of the difficulties involved, below we consider only the case that the uncertainty in the

background is ∆b/b = 0.1.

To maximize the exclusion reach in the non-minimal cases, we chose a cut LT > 700

GeV for the Z-philic Singlet VLL, LT > 400 GeV for the W -phobic Singlet VLL and

LT > 200 GeV for the Higgs-philic Singlet VLL. Figure 3.5 shows the resulting median

expected significances for exclusion, for ∆b/b = 0.1, for the best signal region for each of the

Singlet VLL models, with the cuts on LT imposed. In all the models, the best signal region

for exclusion is the one which requires ≥ 2e/µ + 2τ . However, for the Higgs-philic Singlet

VLL model, the additional requirement of no-Z proved to be beneficial.

From Figure 3.5, we conclude that assuming ∆b/b = 0.1, a 14 TeV pp collider with 3

ab−1 should be able to exclude Singlet VLLs with masses up to about 600 GeV if they are

Z-philic, or exclude masses up to about 360 GeV if they are W -phobic, or exclude masses

up to about 300 GeV if they are Higgs-philic. We find that there is no possible exclusion

of Singlet VLLs in the minimal model. Furthermore, there are no discovery prospects in
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FIG. 3.5: The median expected significances

for exclusion Zexcl as a function of Mτ ′ in

the Singlet VLL models, for pp collisions

at
√
s = 14 TeV with integrated luminos-

ity L = 3 ab−1, for the best signal region

for each of the Singlet VLL models, includ-

ing a cut on LT as shown in the plot. The

fractional uncertainty in the background is

assumed to be ∆b/b = 0.1.

minimal or non-minimal Singlet VLL models.

IV. RESULTS FOR THE HE-LHC COLLIDER

In this section, we discuss the prospects for exclusion and discovery of VLLs at
√
s = 27

TeV with 15 ab−1 of pp collisions in the six signal regions mentioned in eqs. (2.29)-(2.34).
All leptons including hadronic tau candidates are required to satisfy:

pℓT > 25 GeV. (4.1)

along with the same pseudo-rapidity, isolation and other requirements of eqs. (2.22)-(2.28),

with a trigger requirement of:

pe1T or pµ1

T > 50 GeV. (4.2)

A. Doublet VLL model

In Figure 4.1, we show the LT distributions for the best four of these signal regions, for
four different choices of Mτ ′ as labeled, and for the total of all backgrounds shown as the

shaded histogram. The cut chosen to enhance the reach for exclusion and discovery in this
case was LT > 1500 GeV.

Figure 4.2 shows the LT distributions for all background components, for the four best
signal regions as labeled. The LT cut is shown in the figure as a vertical dashed line. After

imposing the LT cut, the most important SM backgrounds are tt̄V and V V V in all four of

these signal regions.
Figure 4.3 shows the Zexcl (left panels) and Zdisc (right panels) as a function of Mτ ′ , for

∆b/b = 0.1 (top row), 0.2 (middle row), and 0.5 (bottom row), with the cut LT > 1500 GeV
imposed. The signal region with 2 SS e/µ +≥ 1τ with Emiss

T > 150 GeV has the farthest

mass reach. However, at lower masses the two signal regions with ≥ 2e/µ+ 2τ give slightly
better exclusion and discovery significances.
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FIG. 4.1: LT event distributions for total background (shaded) and Doublet VLL models

(lines), for pp collisions at
√
s = 27 TeV with an integrated luminosity L = 15 ab−1. Four

different masses Mτ ′ = Mν′ = 750, 1000, 1500, and 2000 GeV are shown in each panel. The

four panels show results for the four best signal regions, as labeled.

By looking at Figure 4.3, we conclude that a 27 TeV high-energy LHC with 15 ab−1 could
exclude Doublet VLLs with masses up to about 2300 GeV or discover them if the mass is

less than about 1700 GeV, assuming the fractional uncertainty in the background to be 0.1.
On the other hand, if we assume ∆b/b = 0.5, we would still be able to exclude Doublet VLLs

up to Mτ ′ = 2050 GeV, or discover them if the mass is less than about 1250 GeV. Just as
in the case of the HL-LHC, from Figure 4.3, a larger uncertainty in the background has a

moderate effect on the prospects for exclusion, but a much larger impact on the prospects
for discovery.

We again consider the prospects for observing a mass peak in the case that there are
enough events for a clear discovery. In figure 4.4, we show the event distributions for the 3-

body invariant mass of τ±e+e− or τ±µ+µ−, for the signal region with ≥ 2e/µ+2τ , for three
different choices of Mτ ′ . The total of all backgrounds is shown as the shaded histogram. We

require the 2-body invariant mass of the e+e− or µ+µ− pair to be within 10 GeV of MZ .
Additionally, we also impose the cut LT > 1500 GeV. From Figure 4.4, we observe that the

distributions for Doublet VLLs are peaked just below their respective masses, which gives

a possibility to measure the masses of Doublet VLLs, if they are indeed discovered. For
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FIG. 4.2: LT event distributions for all processes contributing to total SM background, for pp

collisions at
√
s = 27 TeV with an integrated luminosity L = 15 ab−1. The four panels show

results for the four best signal regions, as labeled. The vertical dashed line in all four panels

shows our choice of LT cut of 1500 GeV.

higher masses, statistical limitations and the combinatorial background mean that the mass
determinations will be problematic.

B. Singlet VLL models

At
√
s = 27 TeV with integrated luminosity of 15 ab−1, we find that there is no exclusion

or discovery reach for the minimal and the Higgs-philic Singlet VLL models. For the other

two non-minimal Singlet models, we find some exclusion possibility, but again with no
prospects for discovery.

We chose a cut LT > 1400 GeV for the Z-philic Singlet VLL, LT > 800 GeV for the
W -phobic Singlet VLL, to maximize the exclusion reach. A cut LT > 600 GeV for the Higgs-

philic Singlet VLL and LT > 800 GeV for the minimal Singlet VLL model were chosen for

the best possible exclusion significance. Figure 4.5 shows the resulting median expected
significances for exclusion, for ∆b/b = 0.1, for the best signal region for each of the Singlet

VLL models, with the cuts on LT imposed, as mentioned above. The best signal region for
exclusion, for all the Singlet VLL models is the one which requires ≥ 2e/µ+2τ , except that
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FIG. 4.3: The median expected significances for exclusion Zexcl (left panels) and discovery

Zdisc (right panels) as a function of Mτ ′ in the Doublet VLL model, for pp collisions at
√
s = 27

TeV with integrated luminosity L = 15 ab−1, for six different signal regions as described in

the text, each including a cut LT > 1500 GeV. The fractional uncertainty in the background

is assumed to be ∆b/b = 0.1 (top row), 0.2 (middle row), and 0.5 (bottom row).

an additional requirement of no-Z gave better results for the Higgs-philic model.

From Figure 4.5, we can conclude that a 27 TeV pp collider with 15 ab−1 could possibly
exclude Singlet VLLs with masses up to about 1200 GeV in the Z-philic model, or exclude

masses up to about 670 GeV in the W -phobic model, but with no prospects for discovery.
These results assume a fractional uncertainty in the background of ∆b/b = 0.1. In both

minimal and the Higgs-philic Singlet VLL models, there is no possibility for exclusion or



21

0 500 1000 1500 2000 2500
Mℓℓτ [GeV]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Ev
en

ts
/(1

25
 G
eV

 b
in
s)

(  2 e/μ + 2 τ

D ublet VLL at √s =  27 TeV, =  15 ℓμ−1

Backgr und
Mτ′ =  1000 GeV
Mτ′ =  1250 GeV
Mτ′ =  1500 GeV

FIG. 4.4: The event distributions for 3-

body invariant mass of τ±e+e− or τ±µ+µ−,

for total background (shaded) and Doublet

VLLs (lines), such that the e+e− or µ+µ−

pair have an invariant mass within 10 GeV

of MZ in a signal region with ≥ 2e/µ + 2τ ,

with the cut LT > 1500 GeV imposed.

Three different masses Mτ ′ = Mν′ = 1000,
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FIG. 4.5: The median expected significances

for exclusion Zexcl as a function of Mτ ′ in

the Singlet VLL models, for pp collisions

at
√
s = 27 TeV with integrated luminos-

ity L = 15 ab−1, for the best signal region

for each of the Singlet VLL models, includ-

ing a cut on LT as shown in the plot. The

fractional uncertainty in the background is

assumed to be ∆b/b = 0.1.

discovery. From the results for Singlet VLL analyses for 14 and 27 TeV colliders, we can
note that the exclusion reach scaled approximately linearly with

√
s, for both Z-philic and

the W -phobic Singlet VLL models.

V. RESULTS FOR A pp COLLIDER WITH
√
s = 70 TEV

In this section, we turn our attention to prospects for exclusion and discovery of VLLs

at possible future pp collider at
√
s = 70 TeV, with integrated luminosity of 30 ab−1 in the

six signal regions mentioned in eqs. (2.29)-(2.34). All the leptons including hadronic tau

candidates are required to satisfy:

pℓT > 75 GeV. (5.1)

along with the same pseudo-rapidity, isolation and other requirements of eqs. (2.22)-(2.28),
with at least one e or µ satisfying a trigger requirement:

pe1T or pµ1

T > 150 GeV. (5.2)
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FIG. 5.1: LT event distributions for total background (shaded) and Doublet VLL models

(lines), for pp collisions at
√
s = 70 TeV with an integrated luminosity L = 30 ab−1. Four

different masses Mτ ′ = Mν′ = 1000, 2000, 3000, and 4000 GeV are shown in each panel. The

four panels show results for the four best signal regions, as labeled.

A. Doublet VLL model

In Figure 5.1, we show the LT distributions for the best four of the signal regions, for
four different choices of Mτ ′ as labeled, and for the total of all backgrounds shown as the

shaded histogram. We found that choosing the cut LT > 2800 GeV provides a good reach
for both exclusion and discovery in this case.

Figure 5.2 shows the LT distributions for all background components, for the four best
signal regions as labeled. The LT cut is shown in the figure as a vertical dashed line. After

imposing the LT cut, the most important SM backgrounds are tt̄V and V V V in the two
signal regions with 2 SS e/µ +≥ 1τ , while the most important SM backgrounds are WZ

and tt̄V in the signal region with ≥ 2e/µ + 2τ , and tt̄h and tt̄V in the signal region with

≥ 2e/µ + 2τ (no-Z). We note that the fluctuation of about 66 normalized events in the
bin from 4000 to 4500 GeV in the lower left panel (i.e. signal region with ≥ 2e/µ + 2τ)

of Figure 5.1 is due to a single simulated event of WZ background. This is because of the
large cross-section but extremely low yield for this background component in this signal

region even after forcing decays to leptons. This is an unavoidable source of uncertainty
for our analysis; given that our sample size was already 5.5 × 106 simulated events for this
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FIG. 5.2: LT event distributions for all processes contributing to total SM background, for pp

collisions at
√
s = 70 TeV with an integrated luminosity L = 30 ab−1. The four panels show

results for the four best signal regions, as labeled. The vertical dashed line in all four panels

shows our choice of LT cut of 2800 GeV.

component, no practically feasible increase in sample size would yield significantly better
statistics. However, in the real world the background can perhaps be determined more

accurately from data.
Figure 5.3 shows the median expected significances for exclusion Zexcl (left panels) and

discovery Zdisc (right panels) as a function of Mτ ′ , for ∆b/b = 0.1 (top row), 0.2 (middle

row), and 0.5 (bottom row), with the cut LT > 2800 GeV imposed. The two signal regions
with 2 SS e/µ + ≥ 1τ and the signal region with ≥ 2e/µ + 2τ (no-Z) have comparable

exclusion significances and reaches. However, the latter has higher discovery significances at
lower masses, as well as at higher fractional uncertainties in the background, e.g. ∆b/b = 0.5

.
Figure 5.3 shows a possibility of excluding Doublet VLLs of masses up to about 4700

GeV or discovering them if mass is less than about 3400 GeV with a 70 TeV pp collider
with 30 ab−1, assuming the fractional uncertainty in the background to be ∆b/b = 0.1.

If ∆b/b = 0.5, we can still expect to exclude Doublet VLLs up to Mτ ′ = 4150 GeV, or
discover them if the mass is less than about 2400 GeV. Again, a larger uncertainty in the

background has a moderate effect on the prospects for exclusion, but a much larger impact
on the prospects for discovery.
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FIG. 5.3: The median expected significances for exclusion Zexcl (left panels) and discovery

Zdisc (right panels) as a function of Mτ ′ in the Doublet VLL model, for pp collisions at
√
s = 70

TeV with integrated luminosity L = 30 ab−1, for six different signal regions as described in

the text, each including a cut LT > 2800 GeV. The fractional uncertainty in the background

is assumed to be ∆b/b = 0.1 (top row), 0.2 (middle row), and 0.5 (bottom row).



25

250 500 750 1000 1250 1500 1750 2000
Mτ′ [GeV]

0

1

2

3

4

5

6
Z e

xc
l

√s  = 70 TeV,  = 30 ab−1 (Δb/bΔ=Δ0.1)
) Δ2Δe/μΔ+Δ2ΔτΔ(noΔZ),ΔμcutT = 1000ΔGeV,ΔS ngletΔVLL
) Δ3Δe/μΔ+Δ1Δτ,ΔLcutT = 2100ΔGeV,ΔZ-ph l cΔS ngletΔVLL
) Δ2Δe/μΔ+Δ2ΔτΔ(noΔZ),ΔLcutT = 950ΔGeV,ΔW-phob cΔS ngletΔVLL
) Δ2Δe/μΔ+Δ2ΔτΔ(noΔZ),ΔLcutT = 1000ΔGeV,Δh-ph l cΔS ngletΔVLL

FIG. 5.4: The median expected significances

for exclusion Zexcl as a function of Mτ ′ in

the Singlet VLL models, for pp collisions

at
√
s = 70 TeV with integrated luminos-

ity L = 30 ab−1, for the best signal region

for each of the Singlet VLL models, includ-

ing a cut on LT as shown in the plot. The

fractional uncertainty in the background is

assumed to be ∆b/b = 0.1.

B. Singlet VLL models

For pp collisions with
√
s = 70 TeV with 30 ab−1, we again find that there is no possi-

ble exclusion or discovery reach for the minimal and the Higgs-philic Singlet VLL models.

While we find some exclusion possibility for the Z-philic and the W -phobic Singlet VLL
models, there are again no prospects for discovery. Figure 5.4 shows the resulting median

expected significances for exclusion, for ∆b/b = 0.1, for the best signal region for each of
the Singlet VLL models, with appropriate cuts on LT imposed. To approximately maximize

the exclusion reaches for the Z-philic and W -phobic Singlet VLL models, we chose a cut
LT > 2100 GeV for the former and LT > 950 GeV for the latter. The best signal region for

exclusion for the Z-philic Singlet VLL model is the one which requires ≥ 3e/µ + 1τ , while
it was ≥ 2e/µ+ 2τ , no-Z for all other Singlet VLL models.

From Figure 5.4, we conclude that a 70 TeV pp collider with 30 ab−1 could possibly
exclude Singlet VLLs with masses up to about 1700 GeV in the Z-philic model, or exclude

masses up to 850 GeV in the W -phobic model, but with no prospects for 5σ discovery. In

both minimal and the Higgs-philic Singlet VLL models, there is unfortunately no possibility
for exclusion or discovery, at least with the signal regions we considered.

VI. RESULTS FOR A pp COLLIDER WITH
√
s = 100 TEV

Finally, we consider the possibility of excluding or discovering VLLs at a future very

high energy pp collider at
√
s = 100 TeV, with integrated luminosity of 30 ab−1, in the six

signal regions mentioned in eqs. (2.29)-(2.34). We require all leptons including hadronic tau

candidates to satisfy:

pℓT > 100 GeV. (6.1)
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FIG. 6.1: LT event distributions for total background (shaded) and Doublet VLL models

(lines), for pp collisions at
√
s = 100 TeV with an integrated luminosity L = 30 ab−1. Four

different masses Mτ ′ = Mν′ = 2000, 3000, 4000, and 5000 GeV are shown in each panel. The

four panels show results for the four best signal regions, as labeled.

along with the same pseudo-rapidity, isolation and other requirements of eqs. (2.22)-(2.28).

We then require the leading e or µ in each event to satisfy a trigger requirement:

pe1T or pµ1

T > 200 GeV. (6.2)

A. Doublet VLL model

In Figure 6.1, we show the LT distributions for the best four of these signal regions, for
four different choices of Mτ ′ as labeled, and for the total of all backgrounds shown as the

shaded histogram. To obtain enhanced expected reaches for both exclusion and discovery,
we then chose a cut LT > 3500 GeV.

Figure 6.2 shows the LT distributions for all background components, for the four best
signal regions as labeled. The LT cut is shown in the figure as a vertical dashed line. After

imposing the LT cut, the most important SM backgrounds are tt̄V and V V V in the two
signal regions with 2 SS e/µ +≥ 1τ and in the signal region with ≥ 2e/µ + 2τ , while the

most important SM background in the signal region with ≥ 2e/µ+ 2τ (no-Z) is V V V .



27

0 1000 2000 3000 4000 5000 6000 7000 8000
 LT [GeV]

10−1

100

101

102

103

104
Ev

en
ts

/(5
00

 G
eV

 b
in
s)

2 e/μ + /  1 τ (SS) (μmiss
T >150)

Back ro)nds a( √s =  100 TeV, =  30 ab−1

ZZ
WZ
hV
( ,(V
( ,(h
VVV

0 1000 2000 3000 4000 5000 6000 7000 8000
 LT [GeV]

10−1

100

101

102

103

104

Ev
en

ts
/(5

00
 G

eV
 b

in
s)

2 e/μ + ≥  1 τ (SS)

Backgro(nds at √s =  100 TeV, =  30 μb−1

ZZ
WZ
hV
t ̄tV
t ̄th
VVV

0 1000 2000 3000 4000 5000 6000 7000 8000
 LT [GeV]

10−1

100

101

102

103

104

Ev
en

ts
/(5

00
 G

eV
 b

 n
s)

≥  2 e/μ + 2 τ

Backgrounds at √s =  100 TeV, =  30 μb−1

ZZ
WZ
hV
t ̄tV
t ̄th
VVV

0 1000 2000 3000 4000 5000 6000 7000 8000
 LT [GeV]

10−1

100

101

102

103

104

Ev
en

ts
/(5

00
 G

eV
 b

 n
s)

≥  2 e/μ + 2 τ (no Z)

Backgrounds at √s =  100 TeV, =  30 μb−1

ZZ
WZ
hV
t ̄tV
t ̄th
VVV

FIG. 6.2: LT event distributions for all processes contributing to total SM background, for pp

collisions at
√
s = 100 TeV with an integrated luminosity L = 30 ab−1. The four panels show

results for the four best signal regions, as labeled. The vertical dashed line in all four panels

shows our choice of LT cut of 3500 GeV.

Figure 6.3 shows the median expected significances for exclusion Zexcl (left panels) and
discovery Zdisc (right panels) as a function of Mτ ′ , for ∆b/b = 0.1 (top row), 0.2 (middle

row), and 0.5 (bottom row), with the cut LT > 3500 GeV imposed. The signal regions
which require 2 SS e/µ+≥ 1τ usually provide the best exclusion and discovery reaches. An

exception is that with the fractional uncertainty in the background ∆b/b = 0.5, the signal

regions with ≥ 3e/µ+ 1τ have the farthest discovery reach.
From Figure 6.3, we conclude that a 100 TeV pp collider with 30 ab−1 could exclude

Doublet VLLs with Mτ ′ up to about 5750 GeV or discover them if the mass is less than
about 4000 GeV, assuming the fractional uncertainty in the background to be 0.1. For

∆b/b = 0.5, one can still expect to exclude Doublet VLLs if the mass is up to about 5100
GeV, or discover them if the mass is less than about 3100 GeV. Again, as a recurring theme

at all the collider options considered, a larger uncertainty in the background produces a
moderate reduction of the exclusion reach, but has a much greater impact on the prospects

for discovery.
We again consider the possibility of observing a mass peak for the τ ′ when a clear discovery

can be made. Figure 6.4 shows the event distributions for 3-body invariant mass of τ±e+e−

or τ±µ+µ−, for the signal region with ≥ 2e/µ+2τ , for three different choices of Mτ ′ , and for
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FIG. 6.3: The median expected significances for exclusion Zexcl (left panels) and discovery

Zdisc (right panels) as a function of Mτ ′ in the Doublet VLL model, for pp collisions at√
s = 100 TeV with integrated luminosity L = 30 ab−1, for six different signal regions as

described in the text, each including a cut LT > 3500 GeV. The fractional uncertainty in the

background is assumed to be ∆b/b = 0.1 (top row), 0.2 (middle row), and 0.5 (bottom row).

the total of all backgrounds shown as the shaded histogram. We require the 2-body invariant
mass of e+e− or µ+µ− pair to be within 10 GeV of MZ . We also impose the cut LT > 3500

GeV. From Figure 6.4, we note that there are peaks in the distributions for Doublet VLLs

corresponding to, and slightly below, their respective masses, giving a possibility to measure
the masses of Doublet VLLs, if they are indeed discovered.
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FIG. 6.5: The median expected significances

for exclusion Zexcl as a function of Mτ ′ in

the Singlet VLL models, for pp collisions at√
s = 100 TeV with integrated luminosity

L = 30 ab−1, for the best signal region for

each of the Singlet VLL models, including a

cut on LT as shown in the plot. The frac-

tional uncertainty in the background is as-

sumed to be ∆b/b = 0.1.

B. Singlet VLL models

We find no possible exclusion of Singlet VLLs in the minimal and the Higgs-philic Singlet
VLL models, for pp collisions with

√
s = 100 TeV with integrated luminosity of 30 ab−1.

We find some exclusion prospects for the Z-philic and W -phobic Singlet VLL models, as-
suming that the fractional uncertainty in the background is ∆b/b = 0.1. Again, there are

no discovery prospects in any of the Singlet VLL models.
We chose cuts of LT > 3000 GeV for the Z-philic Singlet VLL, and LT > 1200 GeV for

the W -phobic Singlet VLL, to approximately maximize the exclusion reach in each case.
Figure 6.5 shows the resulting median expected significances for exclusion, for ∆b/b = 0.1,

for the best signal region for each of the Singlet VLL models, with the cuts on LT imposed,
as mentioned above. The best signal region for exclusion for the Z-philic Singlet VLL model

is the one which requires ≥ 3e/µ+ 1τ , while it was ≥ 2e/µ+ 2τ , no-Z for all other Singlet
VLL models.

From Figure 6.5, assuming ∆b/b = 0.1, we conclude that a 100 TeV pp collider with 30
ab−1 should be able to exclude Singlet VLLs with masses up to about 2850 GeV, if they

are Z-philic, or exclude masses up to 1200 GeV, if they are W -phobic. We find that there

are no prospects for exclusion of Singlet VLLs in both minimal and the Higgs-philic Singlet
VLL models.
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TABLE 7.1: Summary of mass reaches for the 95% exclusion and 5σ discovery of Doublet VLL at

future pp colliders. The fractional uncertainty in the background is assumed to be ∆b/b = 0.1.

Collider Exclusion reach Discovery reach
14 TeV HL-LHC, 3 ab−1 1250 GeV 900 GeV
27 TeV HE-LHC, 15 ab−1 2300 GeV 1700 GeV
70 TeV pp collider, 30 ab−1 4700 GeV 3400 GeV
100 TeV pp collider, 30 ab−1 5750 GeV 4000 GeV

TABLE 7.2: Summary of mass reaches for the exclusion of Singlet VLL in the non-minimal models

at future pp colliders. The fractional uncertainty in the background is assumed to be ∆b/b = 0.1.

Collider Z-philic W -phobic Higgs-philic
14 TeV HL-LHC, 3 ab−1 600 GeV 360 GeV 300 GeV
27 TeV HE-LHC, 15 ab−1 1200 GeV 670 GeV −
70 TeV pp collider, 30 ab−1 1700 GeV 850 GeV −
100 TeV pp collider, 30 ab−1 2850 GeV 1200 GeV −

VII. OUTLOOK

Vectorlike leptons are a common feature of motivated theories of physics beyond the

Standard Model. In this paper, we have studied the prospects for discovering simple VLL
models at future pp colliders, assuming that the new particles decay promptly by mixing

with taus, using multi-lepton signatures at high transverse momentum. The results of this
paper should be considered as first estimates, which certainly should be reassessed as the

plans and parameters for future colliders and their detectors become clearer. We have not
attempted to make use of h → bb decays, due in part to a relative lack of confidence in

what should be assumed about b-jet tagging capabilities compared to e, µ identification. We

have also based our analysis entirely on a cut-and-count strategy, while a more sophisticated
method such as a likelihood analysis would certainly be able to do better.

Summaries of our results are shown in Table 7.1 for the Doublet VLL model, and in Table
7.2 for the non-minimal Singlet VLL models. In the weak isodoublet case, we have found

excellent reach prospects for both 95% exclusion (if the VLLs are absent) or 5σ discovery
(if the VLLs are present). In the latter case, we also showed that there is a possibility to

observe an invariant mass peak, although we did not pursue this in detail and the mass peak
observation is often quite limited by statistics. In the weak isosinglet case, the situation is

much more difficult. We found no discovery or exclusion reach at all,† at any pp collider, for
the simple and well-motivated (e.g. [8]) case of a promptly decaying pure isosinglet τ ′ that

mixes with the Standard Model tau. This should stand as a challenge to future work.

† The only limits on such a particle at present are Mτ
′ > 101.2 GeV from LEP [74], and our estimate above

in a footnote in section II, inferred from the ATLAS long-lived chargino search of ref. [82], of Mτ
′ > 750

GeV if it is quasi-stable on detector scales.
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Appendix A: Mixed singlet/doublet VLL models

Consider a generalized model framework that contains, besides the Standard Model chiral
third-family leptons ℓ3 and e3, a vectorlike weak isosinglet pair E,E and a weak isodoublet

pair L, L. (Here we use 2-component fermion notation [90, 91], so that barred fields have
electric charge +1 and unbarred fields have electric charge −1. The bar is part of the name

of the 2-component fermion field, and does not denote any kind of conjugation.) After
electroweak symmetry breaking, the Lagrangian mass terms for the charged leptons can be

written in the form

−L =
(

e3 E L
)

M











ℓ3

E

L











+ c.c., (A.1)

where the charged lepton mixing mass matrix is

M =











yτv 0 ǫ2v

ǫ1v M1 x2v

0 x1v M2











(A.2)

where v = 174 GeV is the Standard Model Higgs expectation value, yτ , ǫ1, ǫ2, x1, and x2 are
Yukawa couplings, and M1 and M2 are electroweak-singlet bare mass terms for the isosinglet

and isodoublet vectorlike lepton pairs, respectively. This can be diagonalized to obtain mass
eigenstates according to:

R∗ML† = diag(Mτ ,Mτ ′,Mτ ′′) (A.3)

where R and L are unitary 3× 3 matrices and, by convention, Mτ < Mτ ′ < Mτ ′′ , where τ is

the usual tau lepton with Mτ = 1.777 GeV, and in the special cases considered here τ ′′ will
be taken to be heavy enough to decouple from direct experimental observation. The neutral

VLL ν ′ has mass M2.
For the lighter new charged VLL τ ′, we have partial decay widths:

Γ(τ ′ → Wντ ) =
Mτ ′

32π
(1− rW )2(1 + 2rW )|gW

τ ′ν†τ
|2/rW , (A.4)

Γ(τ ′ → Zτ) =
Mτ ′

32π
(1− rZ)

2(1 + 2rZ)
(

|gZτ ′τ† |2 + |gZτ ′τ† |2
)

/rZ , (A.5)

Γ(τ ′ → hτ) =
Mτ ′

32π
(1− rh)

2
(

|yhτ ′τ |2 + |yhττ ′ |2
)

, (A.6)
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where rX = M2
X/M

2
τ ′ for each of X = h, Z,W , and

gW
τjν

†
τ
=

g√
2
L∗
j1, (A.7)

gZ
τjτ

†
k

=
g

cos θW

[

1

2
L∗
j2Lk2 +

(

−1

2
+ sin2 θW

)

δjk

]

, (A.8)

gZ
τ jτ

†
k

=
g

cos θW

[

1

2
R∗

j3Rk3 − sin2 θW δjk

]

, (A.9)

yhτjτk =
1√
2

[

yτL
∗
j1R

∗
k1 + ǫ2L

∗
j3R

∗
k1 + ǫ1L

∗
j1R

∗
k2 + x2L

∗
j3R

∗
k2 + x1L

∗
j2R

∗
k3

]

, (A.10)

for (τ1, τ2, τ3) corresponding to mass eigenstates (τ, τ ′, τ ′′) respectively.
In general, the decay widths to Standard Model states are quadratic in ǫ1, ǫ2 for small

values of those parameters. For example, expanding to obtain the terms proportional to ǫ21,
ǫ1ǫ2, and ǫ22, and then keeping only the leading order in a further expansion in yτ , x1, and

x2 in each of these terms, we obtain for M2
2 ≪ M2

1 :

|gW
τ ′ν†τ

|2/rW ≈
[

ǫ1v(x1M1 + x2M2)

M2
1

− ǫ2yτv

M2

]2

, (A.11)

(

|gZτ ′τ† |2 + |gZτ ′τ† |2
)

/rZ ≈ ǫ21v
2M

2
2 (x1M2 + x2M1)

2

2M6
1

− ǫ1ǫ2yτv
2 (x1M1 + x2M2)

M2
1M2

+
ǫ22
2
, (A.12)

|yhτ ′τ |2 + |yhττ ′ |2 ≈ ǫ21v
2 (2x1M1 + x2M2)

2

2M4
1

− 3ǫ1ǫ2yτv
2 (x1M1 + x2M2)

M2
1M2

+
ǫ22
2
, (A.13)

and for M2
1 ≪ M2

2 :

|gW
τ ′ν†τ

|2/rW ≈
[

ǫ1 − ǫ2yτv
2 (x1M2 + x2M1)

M1M
2
2

]2

, (A.14)

(

|gZτ ′τ† |2 + |gZτ ′τ† |2
)

/rZ ≈ ǫ21
2
− ǫ1ǫ2yτv

2 (x1M2 + x2M1)

M1M2
2

+ ǫ22v
2M

2
1 (x1M1 + x2M2)

2

2M6
2

, (A.15)

|yhτ ′τ |2 + |yhττ ′ |2 ≈ ǫ21
2
− 3ǫ1ǫ2yτv

2 (x1M2 + x2M1)

M1M2
2

+ ǫ22v
2 (2x1M2 + x2M1)

2

2M4
2

. (A.16)

Some special limits of interest follow:

• If M2
2 ≪ M2

1 and ǫ1 = 0, then the isosinglet heavier fermion mass eigenstate τ ′′

decouples from experiment, and the lighter states τ ′ and ν ′ form the minimal Doublet
VLL model as discussed above in section II with ǫ = ǫ2 and Mτ ′ = Mν′ = M2, and

branching ratios that asymptotically approach BR(τ ′ → hτ) = BR(τ ′ → Zτ) = 0.5
and BR(ν ′ → Wτ) = 1.

• If M2
1 ≪ M2

2 and ǫ2 = 0, then the heavy isodoublet fermions τ ′′ and ν ′ decouple,
and the result is the minimal Singlet VLL model as discussed above in section II with
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ǫ = ǫ1 and Mτ ′ = M1, and branching ratios that asymptotically approach BR(τ ′ →
hτ) = BR(τ ′ → Zτ) = 0.25 and BR(τ ′ → Wντ ) = 0.5.

• If M2
1 ≪ M2

2 and ǫ1 = 0 and ǫ2 6= 0, then the lightest new fermion will again be a

mostly isosinglet τ ′ vectorlike lepton with mass approximately Mτ ′ = M1. Since the τ
′

is mostly isosinglet, its production cross-section is nearly the same as in the minimal

Singlet VLL model. However, due to its mixing with the heavier isodoublets rather
than direct mixing with the Standard Model tau lepton, the decay τ ′ → Wντ is highly

suppressed. The possibilities include the sub-cases:

⋆ W -phobic Singlet VLL: if x1 = 0, then BR(τ ′ → hτ) ≈ BR(τ ′ → Zτ) ≈ 0.5.

⋆ Higgs-philic Singlet VLL: if x2 = 0, then BR(τ ′ → hτ) ≈ 1.

⋆ Z-philic Singlet VLL: if x1 ≈ −x2M1/2M2, then BR(τ ′ → Zτ) ≈ 1.

These of course do not exhaust the possibilities, and in a more general search it would be

sensible to simply take Γ(τ ′ → Zτ) and Γ(τ ′ → hτ) and Γ(τ ′ → Wντ) to be free parameters.
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