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We present an implementation and numerical study of the Standard Model cou-
plings, masses, and vacuum expectation value (VEV), using the pure MS renor-
malization scheme based on dimensional regularization. Here, the MS Lagrangian
parameters are treated as the fundamental inputs, and the VEV is defined as the
minimum of the Landau gauge effective potential, so that tadpole diagrams vanish,
resulting in improved convergence of perturbation theory. State-of-the-art calcula-
tions relating the MS inputs to on-shell observables are implemented in a consistent
way within a public computer code library, SMDR (Standard Model in Dimensional
Regularization), which can be run interactively or called by other programs. In-
cluded here for the first time are the full 2-loop contributions to the Fermi constant
within this scheme and studies of the minimization condition for the VEV at 3-loop
order with 4-loop QCD effects. We also implement, and study the scale dependence
of, all known multi-loop contributions to the physical masses of the Higgs boson, the
W and Z bosons, and the top quark, the fine structure constant and weak mixing
angle, and the renormalization group equations and threshold matching relations for
the gauge couplings, fermion masses, and Yukawa couplings.
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I. INTRODUCTION

With the discovery of the Higgs boson, the Standard Model is technically complete. This is
despite indications that it will have to be extended to accommodate dark matter and to solve issues
such as the hierarchy problem, the strong CP problem, and the cosmological constant problems.
At this writing, the LHC continues to strengthen lower bounds on the masses of new particles
in hypothetical ultraviolet completions such as supersymmetry. It is therefore plausible that we
should view the Standard Model as a valid, complete effective field theory up to the TeV scale
and perhaps well beyond, with non-renormalizable terms in the Lagrangian correspondingly highly
suppressed. This paper is concerned with the ongoing program of determining, as accurately as
possible, the relations between the renormalizable Lagrangian parameters that define the theory
and the observables and on-shell quantities that are more directly connected to experimental results.
This is part of a larger goal of improving our understanding of the Standard Model at the level of
accuracy required to test it with future experiments.

A convenient method of handling the ultraviolet divergences of the Standard Model is provided
by dimensional regularization [1-5] followed by renormalization by modified minimal subtraction,
MS [6, 7]. To describe the effects of electroweak symmetry breaking induced by the Higgs VEV,
there are at least two distinct ways to proceed. Consider the Higgs potential

V(p)=A+m2H'H+ \H H)?, (1.1)

where H is the canonically normalized complex Higgs doublet field. First, one may choose to
organize perturbation theory by expanding the electrically neutral component of H around a tree-
level VEV vipee/V/2, defined by:

Vgree = /—mZ/A. (1.2)

This is used in many works, because it has the advantage that vi.c. is manifestly independent of
the choice of gauge-fixing. However, it has the disadvantage that Higgs tadpole loop diagrams
do not vanish, and must be included order-by-order in perturbation theory. This comes with a
parametrically slower convergence of perturbation theory, as the tadpole contributions to other
calculated quantities will include powers of 1/A due to their zero-momentum Higgs propagators.
We choose instead to expand the Higgs field around a loop-corrected VEV v, which is defined to
be the minimum of the full effective potential [8-10] in Landau gauge. For the Standard Model (and
indeed for a general renormalizable field theory), the effective potential has now been obtained at
2-loop [11, 12] and 3-loop [13, 14] orders, with the 4-loop contributions known [15] at leading order
in QCD. The choice of Landau gauge is made because other gauge-fixing choices lead to unpleasant
technical problems including kinetic mixing between the longitudinal components of the vector and
the Goldstone scalar degrees of freedom.” The disadvantage of defining the VEV in this way is that
calculations that make use of it are then restricted to Landau gauge. But the advantage of this

T The full 2-loop effective potential has been recently obtained in a large class of more general gauge-fixing schemes
in ref. [16], but it is quite unwieldy, and extending it to 3-loop order is a daunting challenge.



choice is that the sum of all Higgs tadpole diagrams (including the tree-level tadpole) automatically
vanishes, and there are no corresponding 1/A™ contributions in perturbation theory.

Another issue to be dealt with is that the minimization condition for the effective potential
requires resummation of Goldstone boson contributions, as explained in [17, 18], in order to avoid
spurious imaginary parts and infrared divergences at higher loop orders. (For further perspectives
and developments on this issue, see refs. [19-25].) The end result can be written as a relation
between the tree-level and loop-corrected VEVs:

J IR
2 .2
Vtree = ¥ + X Z (167‘(‘2)" Ana (13)
n=1

with n-loop order contributions A,, that are free of spurious imaginary parts and infrared diver-
gences and do not depend at all on the Goldstone boson squared mass. (The 1/X in this equation is
the source of the tadpole effects noted above if one chooses to expand in terms of vce rather than
v.) The full 3-loop contributions were given in [14] in terms of 2-loop and 3-loop basis integrals
that can be efficiently evaluated numerically using the computer code 3VIL [26],% and the 4-loop
contribution was obtained at leading order in QCD in [15]. However, a numerical illustration of
these effects was deferred. One of the purposes of the present paper is to remedy this by providing
a numerical study of the 3-loop and 4-loop effects.

We also have a broader purpose here; to bring together in a coherent form, implemented as a
public computer code, results obtained in recent years relating pole masses and other observables
to the Lagrangian parameters in the tadpole-free pure MS scheme. The new code, called SMDR for
Standard Model in Dimensional Regularization, is a software library written in C with functions
callable from user C or C++ programs. It uses the MS input parameters that define® the Standard
Model theory at a given renormalization scale Q:

5
v, )‘7 93, 9, gla Yty Yby Yes Yss Yds Yus Yrs y/u Ye, Aaﬁla)d(MZ)' (14)

All of these, except the last, are defined as running parameters in the non-decoupled (high-energy)
Standard Model, with gauge group SU(3). x SU(2)r x U(1)y with gauge couplings g3, g, and
¢ respectively, and 6 active quarks. Note that the running MS Higgs squared mass parameter
m? need not be included among these, because it is not independent, being determined in terms
of A, v, and the other parameters by the effective potential minimization condition eq. (1.3).
Also, the hadronic light-quark contribution to the fine-structure constant is given by a parameter
Aag)d(M 7). In principle this is not independent of the others in eq. (1.4), but in practice it must
(at least, at present) be treated as an independent input because it depends on non-perturbative

# 3VIL computes 3-loop vacuum basis integrals numerically using the differential equations method, except in special
cases for which they can be computed analytically, including the cases found in refs. [27]-[47]. See ref. [48] for an
alternative evaluation of 3-loop vacuum integrals based on dispersion relations.

§ Cabibbo-Kobayashi-Maskawa mixing and neutrino mass and mixing effects are neglected in the present version.
Including them would have a negligible effect on the quantities in eq. (1.5), compared to other sources of uncertainty.



physics. The code then provides computations of the following “on-shell” output quantities:

heavy particle pole masses: My, My, My, My,
running light quark masses: mp(my), me(me), ms(2 GeV), mg(2 GeV), m,(2 GeV),
lepton pole masses: M, M,, M.,
5-quark QCD coupling: oz(;) (My),
Fermi constant: Gp = 1.1663787... x 107° GeV 2,
fine structure constant: a9 = 1/137.035999139... and Aa}(g)d(MZ), (1.5)

which can be viewed as dual to the MS inputs. (Even though G and aq are extremely accurately
known from experiment, as indicated, they are considered as outputs from the point of view of the
pure MS renormalization scheme.) However, note that My is actually extra, in the sense that the
other parameters in eq. (1.5) are already sufficient to fix the MS quantities in eq. (1.4); therefore, the
computation of My provides a consistency check on the Standard Model. The quantity Aa]ﬁ)d (My)
appears in both lists (1.4) and (1.5), due to its non-perturbative nature; it always is obtained from
experiment rather than fits to other quantities. The SMDR code also computes the weak mixing
angle as defined by the Particle Data Group’s Review of Particle Properties (RPP) [49] (which,
unlike the present paper, uses a scheme with the top quark decoupled but the massive W boson
active, corresponding to a non-renormalizable effective theory even when the Lagrangian couplings
of negative mass dimension are neglected), but this is again extra, since it is not needed in order
to fix the MS quantities.

The relationship between the Sommerfeld fine-structure constant ag appearing in eq. (1.5) and
the couplings g and ¢’ in eq. (1.4) can be expressed as (see, for example, refs. [50-53]):

 gA(Mg)g?*(Myg)
A (g2 (Mz) + g2 (My)]

[1—Aa§;’;>d(MZ) — A0, — At ], (1.6)

Qo pert — pert

where the sum of 1-loop contributions from ¢, W, 7, u, e (but not b, ¢, s,d,u) are:

o o [202 32 8
Aapert = E |:2—7 + 141H(MW/MZ) — 5 ln(Mt/MZ) — g ln(MT/Mz)
8 8
—gln(Mu/MZ) — gln(Me/MZ) , (1.7)

and the higher-order perturbative contribution Aozggt has been given as an interpolating formula in

egs. (19)-(21) of ref. [53]. For the running o™5(Q) in the decoupled theories used for renormalization
group (RG) running below My [with the numbers of active (quarks, charged leptons) equal to (5, 3)
or (4, 3) or (4, 2) or (3, 2)], we use the results obtained in [54], as discussed in the next section.

The pole masses My, My, Mz, Myy, M, M,, and M, are each defined in terms of the complex
pole in the renormalized propagator,

Spole = M? —iT'M. (1.8)



For the top-quark pole mass, the pure QCD contributions were obtained at 1-loop, 2-loop, 3-loop,
and 4-loop orders in refs. [55], [56], [57], and [58, 59], respectively. The non-QCD contributions to
M; at 1-loop and 2-loop orders had also been obtained in other schemes and approximations. At 1-
loop order they were found in refs. [60-62], and mixed electroweak-QCD 2-loop contributions were
obtained in [63—-65]. Further 2-loop contributions in the gauge-less limit (in which the electroweak
boson masses are taken to be small compared to the top-quark mass) were found in refs. [66-69].
Finally, the full 2-loop results for M; were provided in the tree-level VEV scheme in ref. [70], and
in the tadpole-free scheme used in the present paper in [71].

For the Higgs boson mass, we use our calculation in ref. [72], which contains all 2-loop contri-
butions and the leading (in the limit ¢%, ¢, A\ < gg,yf) 3-loop contributions in the tadpole-free
pure MS scheme. Earlier works on Mj, at the 2-loop level in other schemes and approximations
include ref. [73] which included the mixed QCD/electroweak contributions to Mp, ref. [74] which
used the gauge-less limit approximation at 2-loop order, and the full 2-loop approximation given
as an interpolating formula in a hybrid MS /on-shell scheme in ref. [75].

For the W and Z boson pole masses, we use the full 2-loop calculations using the tadpole-free
pure MS scheme given in refs. [76] and [77], respectively. Previous 2-loop calculations of the vector
boson pole masses in other schemes (expanding around vy rather than v) appeared in refs. [78],
[62], [53], and [70]. It is important to note that for the vector bosons V' = W and Z, the values
usually quoted, including by the RPP, are not the pole masses but the variable-width Breit-Wigner
masses. These can be related to the pole masses by [79-82]:

M\z/, Breit-Wigner — Mg +T%. (1.9)
Thus, the Z- and W-boson pole masses defined by eq. (1.8) are, respectively, approximately 34.1
MeV and 27.1 MeV smaller than the Breit-Wigner masses that are usually quoted.

The charged lepton pole masses are computed at 2-loop order in QED, by converting the
corresponding QCD formulas given in ref. [56] and including small effects from non-zero lighter
fermion masses from ref. [83].

The running light-quark masses in eq. (1.5) are defined in appropriate SU(3). x U(1)gm effective
field theories in which the heavier particles have been decoupled. Although it is possible to evaluate
the QCD contributions to the bottom-quark and charm-quark pole masses, this is deprecated,
because there is no semblance of convergence of the perturbative series relating the pole masses
to the running masses for bottom and charm (and obviously for the lighter quarks as well); see
ref. [59]. Therefore we use running MS masses for all lighter quarks. Thus my(my) is defined as an
MS running mass in the 5-quark, 3-lepton QCD+QED effective theory, while m.(m.) is similarly
defined in the 4-quark, 2-lepton theory, and m4(2 GeV), my(2 GeV), m,(2 GeV) are defined in
the 3-quark, 2-lepton theory. We follow the RPP ref. [49] in choosing to evaluate the last three at,
somewhat arbitrarily, Q = 2 GeV, in order to avoid larger QCD effects at smaller Q).

To obtain the 5-quark, 3-lepton QCD+QED effective field theory, we simultaneously decouple
the heavier Standard Model particles ¢, h, Z, W at a common matching scale, which can be chosen
at will, but should presumably be in the range from about My to M;. Because W and Z are
decoupled from it, this low-energy effective theory is a renormalizable gauge theory supplemented
by interactions with couplings of negative mass dimension (including the Fermi four-fermion inter-



actions). The decouplings of the bottom quark, tau lepton, and charm quark are then performed
individually.

In one mode of operation, the SMDR code takes the MS input parameters of eq. (1.4) provided
by the user, and outputs the on-shell quantities in eq. (1.5). Alternatively, in a dual mode of
operation, the SMDR code instead takes user input for the on-shell quantities in eq. (1.5) (except for
My), and determines as outputs the MS quantities in eq. (1.4) and then My, by doing a fit. The
SMDR code also implements all known contributions to the running and decoupling of the gauge
and Yukawa couplings.

In the numerical studies below, we employ a benchmark model point, chosen to yield the central
values of the quantities in eq. (1.5) (other than My, as noted above), as given in the 2019 update
of the 2018 edition of the Review of Particle Properties ref. [49]:

M; = 1731 GeV,  M;, = 1251 GeV, My Breip Wigner = 91.1876 GeV,

Gr = 1.1663787 x 1079 GeV?,  ag = 1/137.035999139, o (Mz) = 0.1181,
my(my) = 4.18 GeV, me(m.) = 1.27 GeV, ms(2 GeV) = 0.093 GeV

maq(2 GeV) = 0.00467 GeV, my(2 GeV) = 0.00216 GeV, M, = 1.77686 GeV,
M, = 0.1056583745 GeV, M, = 0.000510998946 GeV,

Aol (My) = 0.02764, (1.10)

The MS input quantities that do this are found (with default scale choices for evaluations in SMDR)
to be:

Qo = 173.1 GeV,

v(Qo) = 246.60109 GeV,  \(Qo) = 0.12603842,

93(Qo) = 1.1636241, 92(Qo) = 0.64765961, g (Qo) = 0.35853877,

y:(Qo) = 0.93480082,  w,(Qo) = 0.015480097,  y.(Qo) = 0.0099944422,

y.(Qo) = 0.0033820038,  y5(Qo) = 0.00029094484,  y,(Qo) = 0.00058837986,
ya(Qo) = 1.4609792 x 1075, 5,(Qo) = 6.7227779 x 1075,

y.(Qo) = 2.7929820 x 107°, (1.11)

This set of values obviously includes more significant digits than justified by the experimental
and theoretical uncertainties; this is for the sake of reproducibility and checking when changes
are made to the code, or to the default choices of matching or evaluation scales. Equation (1.11)
will be referred to below as the reference model point, and a sample input file included with the
SMDR. distribution provides for automatic loading of these parameters. As future versions of the
RPP with new experimental results become available, corresponding new versions of the reference
model file will be included in new SMDR distributions; they can also be constructed easily by using
functions provided. All of the figures appearing below are made using short programs (included
with the SMDR distribution) that employ the SMDR library functions, in order to illustrate how the
latter should be used.



II. RENORMALIZATION GROUP RUNNING AND DECOUPLING

The MS renormalization group equations for the Standard Model used in this paper, and by
default in the SMDR code, are the state-of-the-art ones. These include the 2-loop [84-88] and 3-loop
[89-97] order contributions for all parameters, including the gauge couplings, the fermion Yukawa
couplings, the Higgs self-coupling A\, VEV v, and negative squared mass m?. In addition, for the
strong coupling, the contributions to the beta function at 4-loop order in the limit ¢2, ¢> < 932,, 10
[98-102] and pure QCD 5-loop order [103, 104] are included. Similarly, the higher-order QCD
contributions to the beta functions of the quark Yukawa couplings are included, using results
found at 4-loop order in refs. [105, 106] and at 5-loop order in ref. [107]. Finally, the leading QCD
4-loop contribution to the beta function of the Higgs self-coupling \ is included from refs. [15, 108].

Using the reference model of eq. (1.11) as inputs, the renormalization group running of the
couplings are illustrated in Figure 2.1 for the range 10> GeV < Q < 10! GeV. The left panel
shows the inverse gauge couplings 1/a3 = 4m/g3 and 1/as = 47 /g? and (in a Grand Unified Theory
[GUT] normalization) 1/a; = (3/5)4n /g%, while the right panel shows the Yukawa couplings for
all of the Standard Model charged fermions.

For lower scales, we use the results given in ref. [54] to simultaneously decouple the top quark,
Higgs boson, Z boson, and W boson at a common matching scale, so that the low-energy effective
field theory is renormalizable and has gauge group SU(3). x U(1)gm. The common matching scale
is, in principle, arbitrary; by default the SMDR code uses Q = My for the matching but this can
be modified at run time by the user. The matching results include the 2-loop matching found
in [54] for the electromagnetic MS coupling a(Q) in the theory with 5 quarks and 3 leptons, as
well as the matching relation for the 5-quark QCD coupling ag(Q) at 1-loop [109, 110], 2-loop
[111, 112], 3-loop [113, 114], and 4-loop [115, 116] orders together with the complete Yukawa and
electroweak 2-loop contributions obtained first in ref. [117] (and verified and written in a different
way compatible with the present paper in ref. [54]). The pure QCD corrections to the quark mass
matching relations were given at 3-loop order in ref. [113, 114] and 4-loop order in ref. [118].

For the QCD parts of the matching relations and beta functions, complete results had been
calculated and incorporated long ago into the RunDec and CRunDec [119-121] codes. In addition,
the 2-loop mixed QCD/electroweak and pure electroweak contributions to matching of the running
b,c,s,d,u and T, u, e fermion masses were obtained in refs. [69, 70, 122-124] and [54]. They are
implemented in SMDR using the formulas provided in ref. [54] consistent with the conventions of the
present paper.

The running and decoupling of the QCD and QED gauge couplings and running fermion masses
are shown in Figure 2.2 for the sequence of effective theories with 5 quarks and 3 charged leptons
(for mp(myp) < Q < My), with 4 quarks and 3 charged leptons (for M, < Q < my(my)), with
4 quarks and 2 charged leptons (for m.(m.) < @ < M;), and with 3 quarks and 2 charged
leptons (for @ < m.(m.)). The boundaries between these effective theories are somewhat arbitrary,
and correspond to the default points within the SMDR code, which can be adjusted by the user.
At each of the matching points @ = my(my) and M, and m.(m,), the parameters are actually
discontinuous due to the matching mentioned above due to changing effective theories, but this
cannot be discerned with the resolution of the plots.
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FIG. 2.1: Renormalization group running of the MS inverse gauge couplings 1/as, 1/as, and 1/a; in
a grand unified theory normalization (left panel) and charged fermion Yukawa couplings (right panel),
as functions of the renormalization scale (). The input parameters are given by the reference model
point defined in eq. (1.11) at Qo = 173.1 GeV.
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FIG. 2.2: Renormalization group running of the MS QCD and QED gauge couplings as and o (left
panel) and fermion masses (right panel), as functions of the renormalization scale @. The beta functions
used are 5-loop order in QCD and 3-loop order in QED, with active fermion contents as follows: 5-quark,
3-lepton for my(myp) < Q < 91.1876 GeV; 4-quark, 3-lepton for M, < Q < my(my); 4-quark, 2-lepton
for me(m.) < Q < M.; and 3-quark, 2-lepton for Q@ < m.(m.). The matchings at Q@ = my(ms) and M-
and m.(m,.) are done at 4-loop order for the QCD coupling, 2-loop order for the QED coupling, and
the fermion mass matchings include effects at 3-loop order in QCD and 2-loop order in QED. The input
parameters are defined by the reference model point given in eq. (1.11), with ¢, h, Z, W simultaneously
decoupled at Q = 91.1876 GeV.



III. MINIMIZATION OF THE EFFECTIVE POTENTIAL AND THE VACUUM
EXPECTATION VALUE

We first consider a numerical illustration of the minimization condition for the effective potential,
eq. (1.3), which can be used to trade m? for v, when all of the other MS parameters are taken to
be known inputs. The quantities A,, have been given up to 3-loop order in ref. [14] and the 4-loop
order contribution at leading order in QCD is found in ref. [15].

In Figure 3.1, we start with the MS quantities taken to be their benchmark reference point
values defined at Q = Qg = 173.1 in eq. (1.11). From eq. (1.3), the value of m? at Qg for the
reference model is then found to be (again including more significant digits than justified by the
uncertainties):

m?(Qo) = —(92.878850 GeV)2. (3.1)

At other renormalization group scales @, we determine m?(Q) in two different ways. For the
first way, we renormalization-group run all of the other parameters to ), where m?(Q)min is then
determined by again applying eq. (1.3). The results are shown in the left panel of Figure 3.1,
in various approximations (as labeled) for the minimization condition. The second way is to
directly RG run m?(Q),un starting with eq. (3.1) as its boundary condition. In the right panel, we
show the ratio of m?(Q)min/m?(Q)run as a function of Q. This provides a scale-invariance check
yielding a lower bound on the error, because in the idealized case of calculations to all orders in
perturbation theory, the ratio should be exactly 1. We find that in the case of the full 3-loop
plus QCD 4-loop approximation, the deviation of the ratio from unity is less than 10~* for the
entire range shown from 70 GeV to 220 GeV, and over most of this range the deviation is actually
much smaller. Without including the 4-loop QCD contribution, the scale dependence is still quite
good, but is a few times 107*. In both cases, the parametric uncertainties from experimentally
measured quantities would seem to be probably larger than the theoretical uncertainties, although
we emphasize that the scale-dependence check can only give a lower bound on the theoretical error.

In Figure 3.2, we perform the inverse of the preceding analysis. This time, we take m?(Qq) as
an input given by eq. (3.1) and determine v(Q) as an output. Of course, at Q = @, the result
is exactly as given in eq. (1.11). At other @, we obtain v(Q)min by first running all of the other
MS quantities from Qg to @ and then apply eq. (1.3) again. The results are shown in the left
panel of Figure 3.2. We also obtain v(Q);un by directly running it using its RG equations from Q.
The ratio v(Q)min/v(Q)run is shown in the right panel of Figure 3.2. Again, in the best available
approximation, the scale dependence of the ratio is much smaller than 10~* over the entire range.

IV. THE FERMI DECAY CONSTANT

The Fermi weak decay constant is closely related to the vacuum expectation value, with Gp =
1/ V202 at tree-level. Including radiative corrections, one can write:

1+ A7 1+ A7F
Gr = = . 4.1
PSR, T v 1)
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FIG. 3.1: The MS Higgs squared mass parameter, as a function of the renormalization scale @, for the
reference model point defined at Qo = 173.1 GeV in eq. (1.11). The other input parameters, including
the VEV v(Q), are obtained from the reference model by evolving them using their RG equations to
the scale @@, where the Landau gauge effective potential is then required to be minimized to determine
m2(Q)min- In the left panel, results are shown for the 1-loop, 2-loop, 2-loop plus leading 3-loop, full
3-loop, and 3-loop plus QCD 4-loop approximations to the effective potential minimization condition.
The right panel shows the results for m2(Q)min/m?(Q)run, Where m?(Q)min is determined as in the left
panel, and m?(Q),un is obtained directly by renormalization running its input value from the reference

scale Qp = 173.1 GeV.
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the Landau gauge effective potential is minimized to obtain v(Q)min. In the left panel, results are
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approximations to the effective potential minimization condition. The right panel shows the results
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scale Qg = 173.1 GeV.
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Expressions for A7 have been given at 2-loop order in the so-called gauge-less limit (g%, ¢ <
g3,y%,A\) in ref. [69] and ref. [70], using expansions in terms of MS and on-shell quantities respec-
tively, but in both cases determined in terms of the tree-level VEV. The full 2-loop version of A7
is quite lengthy, and to our knowledge has not appeared in print, but was obtained and presented
within the public computer code mr [124]. We have obtained the corresponding complete 2-loop
result for A7 in terms of v,

AF = L AFD !

72
6.2 + (167?2)2AT +.... (4.2)

The 1-loop order part is

AT = 2067 +gPNA) — AWN(Z = W)+ ] [(4g® = 2N A0V) — 2AW)] /(b — W)

+3[y7 A(t) — gy AD)]/(t — b) + 2A(7) /v* — (3¢ + ¢™) /8 + By + 3up +42)/2, (4.3)
where

Z = (¢* + g"*)v?/4, W = g*v?/4, h = 2)\v?, (4.4)
= yt2v2/27 b = y§v2/2, T = 313112/27

are the running MS squared masses, and

A(z) = 2Tn(z) — (4.6)
with
In(z) = In(z/Q2). (4.7)
The 2-loop part is
AT = g22(8¢, — 17 — 16A(t) /t — 12A()2/t2] + Mffgn-qcnv (4.8)

where A;‘fﬂn—QCD is again rather lengthy, and so is provided in its complete form as an ancillary
file Deltartilde.txt distributed with this paper, rather than in text form here. It has the form:

no. J
i<k J

2 2) r(2 1,1) (1) 4(1 1) (1
AR e = 2 CPIP + 3 eV + 3 et 4 ¢ (4.9)
: .

where the lists of 2-loop and 1-loop basis integrals required are:

I® = {¢, I(h,h, h), I(h,t,t), 1(0,h,t), 1(0,h, W), I(0,h,Z), 1(0,t, W),
1(0,t,Z), I(0,W, Z), I(h,h, W), I(h, W,W), I(h,W,Z), I(h,Z,Z),
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I(t,t, W), I(t,t,Z), I[(W,W, W), I(W,W,Z), (W, Z,Z)}, (4.10)
IV = [A®), A(h), A(Z), A(W)}, (4.11)

with the 2-loop vacuum integral function I(x,y,z) as defined as in previous papers e.g. [26, 125,
126], and the coefficients C’](-z), CJ(’lél), C’J(»l), and C'©) are rational functions of ¢, h, Z, W, and
v. (The v dependence is 1/v* in each case.) The Goldstone boson contributions in A7 have
been resummed, so that, as explained in refs. [14, 17|, the Higgs squared mass appearing here is
h = 2 02, and not m? + 3 v?. Also, note that A7) is well-defined in the formal limits W — Z,
W — h, and b — ¢, despite denominators that vanish in those limits. Furthermore, although A72)
has several individual terms with A in the denominator, once can check that the whole expression
for A7 is finite in the limit A — 0, unlike A7. This illustrates the absence of 1/\ effects in the
tadpole-free scheme based on v; more generally, the absence of 1/\ effects provides useful checks
on calculations. We have also checked that A7®) is well-defined in the formal limits where Z — 4¢
and h— W and W — Z and h — 47 and h — 4W vanish, despite many of the individual coefficients
having denominators containing factors of these quantities. Furthermore, we have checked that
Gr = (1 + A7)/v/2v? is RG scale invariant through 2-loop order, as required by its status as a
physical observable.

This numerical result for Gz in terms of the MS quantities is shown in Figure 4.1 for the
benchmark reference model as a function of the scale () at which it is computed. The scale variation
is less than 1 part in 107* for @ between 100 and 220 GeV. By default, the SMDR code evaluates
Gr at Q = M;, and so the benchmark point there agrees exactly with the experimental value. The
results can also be compared to those of formulas relating Gr to My given by Degrassi, Gambino,
and Giardino in ref. [53], which is larger by a fraction of about 0.0002 (or 0.0001), provided that
@ in our calculation is taken to be close to M; (or My). This corresponds to a difference in the
physical W-boson mass of about 8 MeV (or 4 MeV), less than the current experimental uncertainty
in Myy. A further reduction in the purely theoretical sources of uncertainty in our approach could
come about from including the leading (in g3 and y;) 3-loop contributions to Gr, Mz, and Myy.
There appear to be no technical obstacles to performing these calculations; when they become
available, they will be included in the SMDR code.

V. PHYSICAL MASSES OF HEAVY PARTICLES

For the case of the benchmark reference model defined in eq. (1.11), we show the pole masses
of t and h and the Breit-Wigner masses of W and Z in various approximations, as a function
of the renormalization scale @) used for the computation, in Figure 5.1. The results shown are
obtained using SMDR, which implements the formulas found in refs. [71, 72, 76, 77| for the tadpole-
free pure MS scheme. These papers make use of the TSIL software library in order to numerically
evaluate the required two-loop self-energy basis integrals, using the differential equations method
as described in [126], and analytical special cases found in refs. [56, 63, 127-135] and [126].

In the case of the Higgs boson pole mass, the () dependence is seen to be of order several tens of
MeV in Figure 5.1, for the best available approximation, which includes the full 2-loop and leading
(in g3 and ;) 3-loop contributions. However, as we argued in ref. [72], in the specific case of M,
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FIG. 4.1: The Fermi constant G, as a func-
tion of the renormalization scale @) at which
it is computed from the MS input parame-
ters, for the reference model point defined
at Qo = 173.1 GeV in eq. (1.11). The short-
dashed, long-dashed, and solid lines show
the results of including the 1-loop, 1-loop
plus 2-loop QCD, and full 2-loop contribu-
tions, respectively.

Renormalization scale Q [GeV]

a renormalization scale close to Q = 160 GeV should be made in order to minimize the error from
other 3-loop contributions, and this choice is used by default in SMDR.

In the case of the top-quark pole mass, in Figure 5.1 we start with the known 4-loop pure
QCD approximation. Although other works often treat the top-quark pole mass using only QCD
effects, the neglect of electroweak corrections is certainly not justified. Indeed, the 4-loop pure
QCD approximation is seen to have a very large scale dependence of about 1.7 GeV as @ is varied
from 70 GeV to 200 GeV. This shows that failing to include the electroweak contributions at 1-
loop order contributes a very large and scale-dependent error, although this is obscured if one also
neglects the corresponding non-QCD contributions in the renormalization group running of the
parameters. Even the 2-loop mixed QCD/electroweak and non-QCD effects are roughly of order
200 MeV and 100 MeV, and scale dependent. By default, the SMDR code uses a scale choice Q = M,
when computing M;, but this can be changed by the user, as for example when making Figure 5.1.

The lower two panels of Figure 5.1 show the dependences of the Breit-Wigner My and My
on the scale @ at which they are computed, based on the full 2-loop calculations in refs. [76, 77].
The ) dependences are seen to be greatly reduced by the inclusion of the 2-loop contributions,
as expected. The reference model shown was chosen to reproduce the experimental value of My,
for Q = 160 GeV. The result for My is then a prediction, since it was not used at all in the
determination of the model parameters in eq. (1.11). Note that the range of values obtained in
Figure 5.1 is lower than the current world average from the Review of Particle Properties in ref. [49],
which is My, = 80.379 4 0.012 GeV. This reflects the well-known observation that the predicted
central value of My, in the Standard Model is somewhat lower than the observed range, but not by
enough to draw any firm conclusions about the validity of the minimal Standard Model. (There is
a long history of calculation of higher-loop contributions [32, 66, 128, 136-155] to the p parameter,
which gives the W boson mass in terms of the Z boson mass and other on-shell parameters.) By
default, SMDR uses a choice Q = 160 GeV when computing both the Z and W physical masses, but
these choices can again be modified independently by the user at run time, as of course was done
when making Figure 5.1.

The information from the Higgs boson mass M), can be inverted to obtain the self-coupling A,
assuming the minimal Standard Model. This is illustrated in the left panel of Figure 5.2 where
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FIG. 5.1: Physical masses of the Higgs boson, top quark, Z boson, and W boson, as functions of
the renormalization scale @) at which they are computed, in various approximations as labeled. The
MS input parameters at @ are determined by RG evolution from the reference model point defined
at Qo = 173.1 GeV in eq. (1.11). In the case of My, we also show the present experimental central
(horizontal solid line) and +1c (horizontal dashed lines) values.

we compute A\(Q) at the renormalization scale @) by requiring it to give M} = 125.10 GeV, using
various approximations for the calculation of the latter. In the right panel, we then show the ratio
of the value Ay, obtained in this way to the value Ay, obtained by RG running it from the value
in the reference model at Qg = 173.1 GeV. This ratio is exactly 1 by construction at QQ = Qg in
the approximation used to define the reference model. In this approximation, the ratio remains
less than 1 part in 10 over the entire range shown for . The parameters A\(Q) and m?(Q) can
also be run up to very high scales using the RG equations. These results are shown in Figure
5.3, including the central value fit as well as the envelopes resulting from varying each of My,
My, and ag independently within their 1-sigma and 2-sigma experimentally allowed ranges. As
is now well-known (see for example refs. [156] and [73-75] and references therein), in the best-fit
case with M} near 125 GeV, A\(Q)) runs negative at a scale intermediate between the weak scale
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and the Planck mass, indicating that our vacuum state may be quasi-stable if one makes the bold

assumption that there is really no new physics all the way up to mass scales comparable to the

scale @ where \(Q) < 0.
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FIG. 5.2: The MS Higgs self-coupling ), as a function of the renormalization scale Q, for the reference
model point defined at Qo = 173.1 GeV in eq. (1.11). The other input parameters are obtained from
the reference model by evolving them using their RG equations to the scale @, where A(Q) is then
obtained by requiring the Higgs pole mass to be 125.10 GeV. In the left panel, results are shown
when the calculation of Mj, is done in the 1-loop, 1-loop plus 2-loop QCD, full 2-loop, and 2-loop plus
leading 3-loop approximations. The right panel shows the results for A\(Q) M, /A @)run, where A(Q) M,
is determined as in the left panel, and A(Q)run is obtained directly by renormalization running from
the reference scale Qyp = 173.1 GeV.
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FIG. 5.3: Renormalization group running of the MS Higgs potential parameters A and v/—m2, as
as a function of the renormalization scale (. The black lines are the central values obtained from
present experimental inputs. Also shown are the envelopes obtained by varying My, M}, and a(55) (Mz)
within 1-sigma (blue shaded region) and 2-sigma (red shaded region) of their central values. The slight
“pinch” in the envelopes in the right panel near @ = 10'* GeV is due to a focusing behavior of the ag

dependence of the m?(Q) renormalization group equation.
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VI. THE SMDR CODE

As noted above, we have collected our results and methods in the form of a public software
library written in C, which can be used interactively or incorporated into other software, and which
is modular enough to be easily modified and updated.t A full description of how to use SMDR, and
some example programs, are included with the distribution, which is available for download at
[157]. For comprehensive information, we refer the reader to the file README. txt. In this section
we give only a brief listing of some of the more common user interface variables and functions

available. Note that these always begin with SMDR_ to avoid naming conflicts with user code.

e The input values of @ and the MS parameters in eq. (1.4) are specified by global variables
SMDR_Q_in, SMDR_v_in, SMDR_lambda_in, SMDR _g3_in etc. These can be set or adjusted by
the user at any time, but typically remain fixed as multiple different tasks are performed,
with corresponding temporary global variables SMDR_Q, SMDR_v, SMDR_lambda, SMDR_g3
etc. used for renormalization group running to various other scales () and subsequent indi-
vidual calculations.

e Renormalization group running in the full, non-decoupled theory is done with the function
SMDR_RGeval_SM(). In the decoupled QCD+QED theory with 5 quarks and 3 charged lep-
tons, the evaluation of running parameters (with simultaneous decoupling of ¢, h, Z, W at a
scale of choice) is done by SMDR_RGeval QCDQED_53(). Similarly, evaluation of running pa-
rameters at lower scales including the sequential decoupling of the bottom quark, the tau lep-
ton, and the charm quark, is done by SMDR_RGeval_QCDQED_43(), SMDR_RGeval _QCDQED_42(),
and SMDR_RGeval QCDQED_32(), respectively, where (5,3) and (4, 3) and (4, 2) and (3, 2) refer
to the numbers of active quarks and leptons.

e Minimization of the effective potential to find m?(Q) from v(Q), or vice versa, are accom-
plished with functions SMDR_Eval m2() or SMDR_Eval_vev(), respectively. These make use
of the quantity A = > A, /(167%)" appearing in eq. (1.3), which can also be computed
separately with SMDR_Eval _vevDelta().

e Evaluation of the complex pole masses of the four heavy particles is done with functions
SMDR_Eval_Mt (), SMDR_Eval_Mh(), SMDR_Eval MZ(), and SMDR_Eval MW(). The last two
functions also evaluate the variable-width Breit-Wigner masses of Z and W, which are the
traditional ways of reporting those masses. In each case, one can specify the scale () at which
the computation is performed.

e Evaluation of the Fermi decay constant is done with the function SMDR Eval GFermi (), again
with the computation performed at any specified choice of Q.

e The single function SMDR_Eval_Gauge() simultaneously evaluates the Sommerfeld fine struc-
ture constant ag and the RPP “MS” scheme (with only the top-quark decoupled) values

&(Q) and §%,(Q).

T The code SMDR subsumes and replaces our earlier program SMH, which evaluated only the Higgs pole mass and was
described in ref. [72].
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e The light quark MS masses my(mp), me(me), ms(2 GeV), mg(2 GeV), and m,, (2 GeV) are
evaluated using SMDR_Eval mbmb (), SMDR Eval mcmc (), and SMDR_Eval mquarks 2GeV().

e The charged lepton physical masses can be evaluated using SMDR_Eval Mtau pole(),
SMDR_Eval Mmuon_pole(), and SMDR_Eval Melectron_ pole().

e A function SMDR_Fit_Inputs() performs a simultaneous fit to all of the MS quantities in
eq. (1.4), for specified values of the on-shell observable quantities (except for My ) in eq. (1.5),
providing the results at a specified choice of Q.

e Various utility functions exist for reading parameters from and writing to electronic files.

e Our programs TSIL [125] for 2-loop self-energy integrals and 3VIL [26] for 3-loop vacuum in-
tegrals are included within the SMDR distribution, and so need not be downloaded separately.

e Interfaces for calling SMDR from external C or C++ code are included.

e A command-line program calc_all takes the MS inputs of eq. (1.4) and outputs all of the
on-shell observables of eq. (1.5).

e Another command-line program calc_fit takes the on-shell observables of eq. (1.5) as in-
puts, and outputs the results of a fit to the MS inputs of eq. (1.4), by using the function
SMDR_Fit_Inputs() mentioned above. This was used to obtain eq. (1.11).

As examples, the short C programs that produced all of the data used in the figures in this paper
are included within the SMDR distribution. We also include several other command line programs.
These should serve to illustrate how to incorporate SMDR into new programs.

VII. OUTLOOK

In this paper, we have studied the map between the MS Lagrangian parameters of the Standard
Model and the observables to which they most closely correspond. In doing so, we have assumed
that the minimal Standard Model is really the correct theory up to some high mass scale, so that
new physics contributions effectively decouple. With the present absence of evidence at the LHC
for new physics, this is at least a tenable hypothesis, and plausibly will remain so for quite some
time. We therefore suggest that in the future the Review of Particle Properties should provide
the best-fit values of the MS Lagrangian parameters of the Standard Model in the non-decoupled
theory, since these fundamentally define the best model that we have to describe particle physics.

Another useful software package with rather similar aims to SMDR but a different implementation
(including expansion around what we call vt rather than v) is mr [124]. There is also a very
large number of works that test the whole space of electroweak precision observables in different
ways; for an incomplete set of recent references and reviews on this approach, see refs. [158—
167]. We emphasize that our primary goal here, of obtaining the best fit to the MS Lagrangian
parameters, is different and complementary to that of testing the whole space of electroweak
precision observables, as we are not considering possible non-negligible contributions from physics
beyond the Standard Model. However, one application is to the matching to new physics models
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(for example, supersymmetry) characterized by some mass scale much larger than the electroweak
scale. This will necessitate a matching between the high energy theory and the Standard Model
as an effective field theory, including with non-renormalizable operators. For a very incomplete
sample of recent works on this subject, see refs. [168-183].

New theoretical refinements as well as more accurate experimental measurements will certainly
come. We have therefore chosen a modular framework in which it should be straightforward to
incorporate such new developments into the SMDR code. For example, we have avoided using
numerical interpolating formulas from approximate fits to analytic formulas, instead opting to
provide and use analytical calculations directly, up to the level of loop integrals that must then be
evaluated numerically. This of course results in longer computation times, but is more transparent
and easier to update. Most of the results presented in this paper are based on calculations that
have appeared before, but we have provided for the first time a study of the impact of the 3-loop
contributions to the effective potential on the relation between the loop-corrected VEV and the
other Lagrangian parameters. We have also provided (in section IV and an ancillary file, as well
as in the SMDR code) the full 2-loop relation between the loop-corrected VEV and the Fermi
constant, as an alternative to the relation between Gr and the tree-level VEV that was found
in refs. [69, 70, 124]. It is clear that significant advances will be needed in order to match the
accuracy that can be obtained at proposed future e*e™ colliders; for a recent review, see ref. [167].
Future work in the tadpole-free pure MS scheme will likely include the leading 3-loop correc-
tions to My, Mz, and Gr. These and Aafl‘r;)d(M z) and M, are the present bottlenecks to accuracy.
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