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Mixed gluinos and sgluons from a new SU(3) gauge group
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I study supersymmetric models in which the QCD gauge group is the remnant

diagonal subgroup from the spontaneous breaking of an SU(3)×SU(3) gauge group

at a multi-TeV scale. In renormalizable models with soft supersymmetry break-

ing, the scalar potential is shown to have global minima with the required gauge

symmetry breaking pattern. In addition to a massive color octet vector boson, this

framework predicts 3 color octet spin-0 sgluons, and 4 color octet gluinos with both

Dirac and Majorana mass terms. One of the gluino mass eigenstates typically has a

coupling to quark-squark pairs that is at least as large as the prediction of minimal

supersymmetry, but it need not be the lightest one.
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I. INTRODUCTION

The Large Hadron Collider (LHC) has discovered the Higgs boson associated with electroweak

symmetry breaking, but so far has not provided any insight into the hierarchy problem. Instead, it

has imposed significant lower limits on the masses of supersymmetric particles, and more generally

on any new particles that could be involved in symmetries or dynamics that might explain why the

electroweak scale is so much lighter than the Planck scale and other high mass scales associated

with new physics. At the same time, a mass near 125 GeV for the lightest Higgs boson, within

the context of supersymmetric extensions of the Standard model, suggests that the top squark and

other superpartner masses could very well lie at a characteristic scale MSUSY in the multi-TeV

range, beyond the reach of the 14 TeV LHC.

One possibility is that supersymmetry really is the essential part of the explanation for the

big hierarchy problem M2
Z ≪ MPlanck, but that there is some other subsidiary principle,† not yet

understood, that could explain the little hierarchy problem M2
Z ≪ M2

SUSY. A common feature to

be expected in that case is that the minimal supersymmetric standard model (MSSM) should be

extended beyond the minimal particle content in the multi-TeV mass range or below. Attempts

along these lines are far too numerous to review here.

The MSSM already contains one vectorlike combination of fields, the Higgs supermultiplets Hu

and Hd, which obtain a bare supersymmetry-preserving mass term, µ. Whatever mechanism is

responsible for ensuring that µ is non-zero but also not far above the TeV scale could plausibly

also be responsible for placing other vectorlike chiral supermultiplets at the TeV scale. In the

same spirit, one can also suppose that there are other gauge supermultiplets that obtain masses

at the TeV scale, where the corresponding gauge symmetries are spontaneously broken. In this

paper, I will consider one such possibility that has already been widely considered [1–22] in the

non-supersymmetric context: that the QCD SU(3)C gauge group of the MSSM and the Standard

Model is the remnant of a spontaneous breaking of the type:

SU(3)A × SU(3)B → SU(3)C . (1.1)

The gauge bosons associated with the diagonal subgroup of SU(3)A × SU(3)B are the massless

gluons of the Standard Model. The remaining 8 vector bosons have been variously referred to in

the literature as axigluons [1–6] or topgluons [7–11] or colorons [12–22], depending on how the

Standard Model fermions are assigned to SU(3)A and SU(3)B representations. Here, I will study

the possibility of realizing this symmetry breaking consistently in a renormalizable softly broken

supersymmetric model. This requires the presence of two chiral superfields that transform as the

fundamental and anti-fundamental representations of both gauge groups, to be denoted in this

paper as:

Φk
j ∼ (3, 3), Φ

j
k ∼ (3, 3). (1.2)

† It is also possible that the little hierarchy is just the result of a coincidence. This should be taken seriously
because it is enormously less severe than the big hierarchy problem. However, there is no objective, scientific way
of deciding how much of a coincidence is too severe; in my view this is a personal and inherently subjective choice
that scientists must nevertheless make in order to decide how to allocate limited resources such as time and money.
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A lowered index corresponds to a fundamental 3 representation of SU(3), and a raised index to

an anti-fundamental 3. Thus, in both instances in eq. (1.2), j is an SU(3)A index, and k is an

SU(3)B index.

This supersymmetric model then predicts the existence of, in addition the coloron vector boson

X, four gluino mass eigenstates (including an admixture of what can be regarded as the MSSM

gluino) with both Dirac and Majorana mass contributions, three color octet scalars (sgluons), two

color singlet fermions (singlinos) and four real scalar singlets, in addition to the usual superpartners

of the MSSM. Models with Dirac mass terms for gauginos have a long history [23–44]. The

present paper is an alternative to models where Dirac gaugino masses arise due to supersoft [28]

supersymmetry breaking following from D-term breaking and feature a continuous R symmetry

[25, 28, 31], where the gauge supermultiplet sector can be considered as N = 2 supersymmetry

multiplets. Instead, the Dirac gluino mass parameters here arise from an additional gauge group

and the chiral fermions associated with its breaking. There are also Majorana gluino masses, so

that the gluinos are mixed.

I now discuss some other conventions and notations to be used below. Adjoint representation

indices of SU(3) are represented by letters a, b, c, . . .. The generators of the fundamental repre-

sentation are T ak
j , and obey the general SU(Nc) trace, commutator, anti-commutator, and Fierz

identities:

Tr[T aT b] =
1

2
δab, (1.3)

[T a, T b]j
k = ifabcT ck

j , (1.4)

{T a, T b}jk =
1

Nc
δabδkj + dabcT ck

j , (1.5)

T ak
j T am

l =
1

2
δmj δ

k
l − 1

2Nc
δkj δ

m
l . (1.6)

Here eq. (1.3) establishes the usual normalization of the generators, while eq. (1.4) defines the

anti-symmetric structure constants fabc and eq. (1.5) defines the symmetric anomaly coefficients

dabc. There follows:

Tr[T aT bT c] =
1

4

(

dabc + ifabc
)

, (1.7)

T ak
j T al

k =
N2

c − 1

2Nc
δlj . (1.8)

Also, for Nc = 3 only (as assumed from now on), there are the anti-symmetric tensor invariant

symbols ǫjkl and ǫjkl, which by convention are taken here to have

ǫ123 = ǫ123 = 1. (1.9)

Then one also has the useful identity:

ǫjlmǫ
knpT al

n T
bm
p = dabcT ck

j − 1

6
δabδkj . (1.10)
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The notations and conventions for supersymmetry and 2-component fermions follow those in [45].

For an appropriate choice of potential parameters, as demonstrated below, the scalar compo-

nents of Φ and Φ will acquire vacuum expectation values (VEVs) of the form

〈φkj 〉 = δkj v, 〈φkj 〉 = δkj v. (1.11)

In that case, the massless gluon field G and the massive color octet vector field X are related to

the SU(3)A and SU(3)B gauge vector fields by:





Ga
µ

Xa
µ



 =





cos θ sin θ

− sin θ cos θ









Aa
µ

Ba
µ



 , (1.12)

where

sin θ = gA/
√

g2A + g2B , cos θ = gB/
√

g2A + g2B , (1.13)

and X obtains a squared mass:

M2
X = (g2A + g2B)(|v|2 + |v|2). (1.14)

The QCD coupling is related to the original gauge couplings by

g3 = gAgB/
√

g2A + g2B , (1.15)

and fields that transform as (RA, RB) under SU(3)A ×SU(3)B will transform as the (reducible, in

general) representation RA×RB of SU(3)C . In particular, for quarks originally in the fundamental

3 representation of the SU(3)A gauge group, the covariant derivative is:

Dµqj = (∂µqj − ig3G
a
µT

ak
j qk) + ig3 tan θ X

a
µT

ak
j qk. (1.16)

On the other hand, for quarks originally in the fundamental representation of SU(3)B , then we

have

Dµqj = (∂µqj − ig3G
a
µT

ak
j qk)− ig3 cot θ X

a
µT

ak
j qk. (1.17)

In the following, I will assume that all of the Standard Model quarks and their superpartners live

in the fundamental representation of SU(3)A, although this is not inevitable. There can also be

additional vectorlike quarks and squarks transforming under SU(3)B , and these will indeed play

a role in section IV. These can mix with the usual quarks by Yukawa couplings to the Φ and Φ

fields, breaking flavor symmetries and thus allowing the vectorlike quarks to decay. For simplicity,

it is assumed that these Yukawa couplings are non-zero but very small, as is technically natural.
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In the remainder of this paper, I will explore one possible supersymmetric setup that is renor-

malizable and avoids fundamental singlets (with potentially dangerous tadpoles). I will show that

the symmetry breaking pattern given above can indeed be realized in a stable vacuum that is the

global minimum of the potential. In similar non-supersymmetric models, the minimization of the

potential has been analyzed in ref. [19]. However, the softly broken supersymmetric case is quite

different because two Higgsing fields Φ,Φ are required by the anomaly cancellation associated with

the fermionic components, and because the structure of the dimensionless couplings in the scalar

potential is constrained as dictated by supersymmetry. The resulting theory naturally includes

Dirac masses for the MSSM gluinos along with the usual Majorana masses. The lightest of the

mixed gluino states can be significantly lighter than the color octet vectors X and the spin-0 sglu-

ons. There are also inevitably new color singlet scalars and fermions. The phenomenology of these

states will be briefly considered in section V.

II. SUPERSYMMETRIC MODELS WITH SU(3)A × SU(3)B → SU(3)C

Consider a model consisting of the MSSM and the fields Φ and Φ. The most general renormal-

izable superpotential of this theory is:

W =
1

6
ǫjklǫmnp

(

yΦm
j Φn

kΦ
p
l + yΦ

m
j Φ

n
kΦ

p
l

)

− µΦΦ
k
jΦ

j
k +WMSSM, (2.1)

where y and y are Yukawa couplings and µΦ is a mass term, which is analogous to the µ term of

the MSSM, and can be presumed to have the same sort of origin. As a very rough estimate, µΦ

can therefore be taken to be of order a multi-TeV scale. The existence of y and y relies on the

fact that the gauge groups are SU(3), because only in this case among the special unitary groups

does the invariant symbol ǫjkl exist, corresponding to the group theory fact that the antisymmetric

product of fundamental representations 3× 3× 3 contains a singlet. As a convention, y and y can

be taken real and positive without loss of generality; then the phase of µΦ is physical. The soft

supersymmetry breaking Lagrangian is:

Lsoft =

[

−1

2
MAλ

a
Aλ

a
A − 1

2
MBλ

a
Bλ

a
B − 1

6
ǫjklǫmnp

(

aφmj φ
n
kφ

p
l + a φ

m
j φ

n
kφ

p
l

)

+ bφφ
k
jφ

j
k

]

+ c.c.

−m2(φkj )
∗φkj −m2(φ

k
j )

∗φ
k
j , (2.2)

where λaA and λaB are the gauginos for the SU(3)A and SU(3)B gauge groups respectively.

One can now expand the scalar fields around diagonal VEVs:

φkj = δkj

(

v +
φ0√
3

)

+
√
2T ak

j φa, (2.3)

φ
k
j = δkj

(

v +
φ0√
3

)

+
√
2T ak

j φ
a
, (2.4)

where φ0, φ0 and φa, φ
a
are complex scalar fields with canonically normalized kinetic terms, which
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live in the singlet and adjoint representations of SU(3)C . Similarly, the fermionic components of

Φ and Φ can be expanded as:

ψk
j =

1√
3
δkj ψ0 +

√
2T ak

j ψa, (2.5)

ψ
k
j =

1√
3
δkj ψ0 +

√
2T ak

j ψ
a
, (2.6)

where ψ0 and ψ
a and ψ0 and ψ

a
are 2-component fermion fields with canonically normalized kinetic

terms.

The interactions of the new fermions with the scalars and their VEVs are

L =

[

(v + φ0/
√
3)∗(gAλ

a
Aψ

a − gBλ
a
Bψ

a
) + (v + φ0/

√
3)∗(gBλ

a
Bψ

a − gAλ
a
Aψ

a)

+
1√
2
(dabc + ifabc)

(

gAφ
a∗
ψ
b
λcA − gAφ

a∗λbAψ
c + gBφ

a∗ψbλcB − gBφ
a∗
λbBψ

c
)

+
gA√
3

(

φ
a∗
λaAψ0 − φa∗λaAψ0

)

+
gB√
3

(

φa∗λaBψ0 − φ
a∗
λaBψ0

)

]

+ c.c. (2.7)

from gaugino-fermion-scalar interactions, and

L =

{

y

[

−(v + φ0/
√
3)ψ0ψ0 +

1

2
(v + φ0/

√
3)ψaψa +

1√
3
φaψ0ψ

a − 1√
2
dabcφaψbψc

]

+y

[

−(v + φ0/
√
3)ψ0ψ0 +

1

2
(v + φ0/

√
3)ψ

a
ψ
a
+

1√
3
φ
a
ψ0ψ

a − 1√
2
dabcφ

a
ψ
b
ψ
c
]

+µΦ
[

ψ0ψ0 + ψaψ
a]
}

+ c.c. (2.8)

from the superpotential. The mass eigenstates are then obtained as follows. There are four 2-

component SU(3)C -octet fermions (gluinos), with mass matrix in the basis g̃a = (λaA, λ
a
B , ψ

a, ψ
a
):

Mg̃ =

















MA 0 gAv
∗ −gAv∗

0 MB −gBv∗ gBv
∗

gAv
∗ −gBv∗ −yv −µΦ

−gAv∗ gBv
∗ −µΦ −yv

















. (2.9)

This can be diagonalized by a unitary matrix U to obtain the mass eigenvalues:

Mdiag
g̃ = U∗Mg̃U

†. (2.10)

There are also two gauge-singlet 2-component fermions, which in the basis χ̃ = (ψ0, ψ0) have a
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mass matrix

Mχ̃ =





2yv −µΦ
−µΦ 2yv



 , (2.11)

with squared mass eigenvalues

|µΦ|2 + 2|yv|2 + 2|yv|2 ± 2
√

|yvµ∗Φ + y∗v∗µΦ|2 + (|yv|2 − |yv|2)2. (2.12)

In order to obtain the new scalar mass eigenvalues, one can proceed by first obtaining the scalar

potential

V = VD + VF + Vsoft (2.13)

as a function of the canonically normalized fields. The supersymmetric D-term contribution is

VD =
1

2
(Da

AD
a
A +Da

BD
a
B), (2.14)

where

Da
A =

gA√
2

[

(v + φ0/
√
3)φ

a∗
+ (v + φ0/

√
3)∗φ

a − (v + φ0/
√
3)φa∗ − (v + φ0/

√
3)∗φa

+
1√
2

(

dabc + ifabc
)(

φ
b∗
φ
c − φbφc∗

)]

, (2.15)

Da
B =

gB√
2

[

(v + φ0/
√
3)φa∗ + (v + φ0/

√
3)∗φa − (v + φ0/

√
3)φ

a∗ − (v + φ0/
√
3)∗φ

a

+
1√
2

(

dabc + ifabc
)(

φb∗φc − φ
b
φ
c∗
)]

. (2.16)

The supersymmetric F -term contribution is

VF = |F0|2 + |F a|2 + |F 0|2 + |F a|2, (2.17)

where

F ∗
0 = µΦ(

√
3 v + φ0)− y(

√
3 v + φ0)

2/
√
3 + yφaφa/2

√
3, (2.18)

F
∗
0 = µΦ(

√
3 v + φ0)− y(

√
3 v + φ0)

2/
√
3 + yφ

a
φ
a
/2
√
3, (2.19)

F a∗ = µΦφ
a
+ y(v + φ0/

√
3)φa − ydabcφbφc/

√
2, (2.20)

F
a∗

= µΦφ
a + y(v + φ0/

√
3)φ

a − ydabcφ
b
φ
c
/
√
2. (2.21)
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Finally, the expansion of the soft supersymmetry-breaking part Vsoft is

Vsoft =

{

a

[

(v + φ0/
√
3)3 − 1

2
(v + φ0/

√
3)φaφa +

1

3
√
2
dabcφaφbφc

]

+a

[

(v + φ0/
√
3)3 − 1

2
(v + φ0/

√
3)φ

a
φ
a
+

1

3
√
2
dabcφ

a
φ
b
φ
c
]

−bφ
[

(
√
3 v + φ0)(

√
3 v + φ0) + φaφ

a
]

}

+ c.c.

+m2(|
√
3 v + φ0|2 + |φa|2) +m2(|

√
3 v + φ0|2 + |φa|2). (2.22)

Isolating the quadratic parts of V , the squared masses for the real scalar fields in Φ, Φ are

as follows. Writing φa = (Ra + iIa)/
√
2 and φ

a
= (R

a
+ iI

a
)/
√
2 and φ0 = (R0 + iI0)/

√
2 and

φ0 = (R0 + iI0)/
√
2, the singlet spin-0 squared mass matrix in the basis ϕ = (R0, R0, I0, I0) is:

M2
ϕ =

















U + 4|yv|2 − 2X1 −2X2 − Re[bφ] 2Y1 −2Y2 + Im[bφ]

−2X2 −Re[bφ] U + 4|yv|2 − 2X1 2Y2 + Im[bφ] 2Y 1

2Y1 2Y2 + Im[bφ] U + 4|yv|2 + 2X1 −2X2 +Re[bφ]

−2Y2 + Im[bφ] 2Y 1 −2X2 +Re[bφ] U + 4|yv|2 + 2X1

















, (2.23)

where

U = |µ|2 +m2, U = |µ|2 +m2, (2.24)

X1 + iY1 = y(µv − yv2)∗ − av, (2.25)

X1 + iY 1 = y(µv − yv2)∗ − av, (2.26)

X2 = Re[µ∗(yv + yv)], Y2 = Im[µ∗(yv − yv)], (2.27)

and the octet spin-0 (sgluon) squared mass matrix in the basis Sa = (Ra, R
a
, Ia, I

a
) is:

M2
S =

















U + |yv|2 +X1 X2 − Re[bφ] −Y1 Y2 + Im[bφ]

X2 − Re[bφ] U + |yv|2 +X1 −Y2 + Im[bφ] −Y 1

−Y1 −Y2 + Im[bφ] U + |yv|2 −X1 X2 +Re[bφ]

Y2 + Im[bφ] −Y 1 X2 +Re[bφ] U + |yv|2 −X1

















+(g2A + g2B)

















v2R − vRvR vRvI − vRvI

−vRvR v2R − vRvI vRvI

vRvI −vRvI v2I −vIvI
−vRvI vRvI −vIvI v2I

















, (2.28)
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where

vR + ivI = v, vR + ivI = v. (2.29)

The real symmetric squared mass matrices M2
S and M2

ϕ can be diagonalized by orthogonal trans-

formations to obtained the squared mass eigenvalues for the real color octet and singlet spin-0

particles. One of the octet spin-0 eigenvectors is the would-be Goldstone boson of the symmetry

breaking, which is absorbed as the longitudinal mode of the massive vector. In the limit of van-

ishing vI , vI , Im[bφ], Y1, and Y2 (i.e., no CP-violating phases), the diagonalizations separate into

2 × 2 blocks corresponding to scalar and pseudo-scalar states. In that case, there are two scalar

and one pseudo-scalar sgluons, and two scalar and two pseudo-scalar singlets.

III. MINIMIZATION OF THE SCALAR POTENTIAL

A. The supersymmetric limit

As a warm-up example and a useful limiting case, consider the supersymmetric limit in which

the soft parameters a, a, bφ, m
2, and m2 are all set to 0. Then the scalar potential as a function

of v and v becomes simply:

V (v, v) = 3|yv2 − µΦv|2 + 3|yv2 − µΦv|2, (3.1)

as this is a D-flat direction. This has distinct minima at v = v = 0, where the gauge symmetry is

unbroken, and at

v = µΦ/(y
2y)1/3, v = µΦ/(yy

2)1/3, (3.2)

where the gauge symmetry is broken to SU(3)C . These are degenerate global minima, with V = 0

in both cases, so that supersymmetry is not spontaneously broken. They can be checked to be

minima of the full potential eqs. (2.13)-(2.22), by evaluating the scalar squared masses and noting

that they are non-negative, other than the octet of vanishing eigenvalues corresponding to the

would-be Goldstone bosons of the spontaneously broken gauge symmetry in the case of eq. (3.2).

The mass spectrum of the theory contains a massive vector supermultiplet, consisting of the vector

bosons, a Dirac fermion (two 2-component fermions), and a real scalar, all of which are octets of

SU(3)C with squared massesM2
X = (g2A+g2B)(|v|2+ |v|2). There is also a massive color octet chiral

supermultiplet (one 2-component fermion and a complex scalar) with squared masses

M2
octet = R2|µΦ|2, (3.3)

and two singlet chiral supermultiplets with squared masses

M2
singlets =

(

2R2 − 3± 2R
√

R2 − 3
)

|µΦ|2, (3.4)
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where

R = |y/y|1/3 + |y/y|1/3 . (3.5)

Because R ≥ 2 (with equality if |y| = |y|), these squared masses are always positive. One of

the singlet chiral supermultiplets is always lighter, and one always heavier, than the octet chiral

supermultiplet. There is also an SU(3)C octet massless vector supermultiplet (the MSSM gluon

and gluino), and one massless SU(3)C octet real scalar would-be Goldstone boson which is absorbed

by the massive color octet vector boson, becoming its longitudinal mode.

B. Realistic examples with supersymmetry breaking

Now consider the realistic case that supersymmetry breaking is included. It is useful to take a

more general form for the possible scalar field expectation values, to include the possibility that

the remnant gauge symmetry is not SU(3)C :

〈φkj 〉 = δkj v + δj3δ
k3s, 〈φkj 〉 = δkj v + δj3δ

k3s. (3.6)

Now if s = s = 0 and v, v are non-zero, the unbroken gauge symmetry will be SU(3)C . If v = v = 0

and s, s are non-zero, then the unbroken gauge symmetry is SU(2) × SU(2) × U(1). For general

v, v, s, s, the unbroken gauge symmetry would be SU(2)×U(1). I do not consider even more general

VEVs, for which the unbroken gauge symmetry would be even smaller. This is because both the

D-term and F -term contributions to the potential are non-negative, and they favor the larger

unbroken symmetries SU(3)C or SU(2)×SU(2)×U(1). As found [19] in the non-supersymmetric

case with one (3,3) scalar field, no local minimum is expected in the case of a SU(2) × U(1) or

smaller residual symmetry, and I have confirmed this in numerical examples, although I have not

attempted a formal or general proof.

The scalar potential D-term, F -term, and soft contributions are then:

VD =
1

6
(g2A + g2B)

(

|v + s|2 − |v + s|2 − |v|2 + |v|
)2
, (3.7)

VF = |yv2 − µΦ(v + s)|2 + |yv2 − µΦ(v + s)|2 + 2|yv(v + s)− µΦv|2

+2|yv(v + s)− µΦv|2, (3.8)

Vsoft =
(

av2(v + s) + av2(v + s)− bφ [(v + s)(v + s) + 2vv]
)

+ c.c.

+m2
(

|v + s|2 + 2|v|2
)

+m2
(

|v + s|2 + 2|v|2
)

. (3.9)

There is a D-flat direction |s| = |s| when v = v = 0. This is unaffected by the y, y, a, a couplings,

but it is lifted by the F -term contribution V = |µΦ|2(|s|2 + |s|2), so it is not a minimum of the

supersymmetric limit of the previous section. However, it can be favored by the soft supersymmetry

breaking squared mass terms, leading to a runaway unbounded from below (UFB) direction, in

which |s| = |s| becomes arbitrarily large and the phase of ss is the same as that of b∗φ. This will
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occur unless

|bφ| < |µΦ|2 + (m2 +m2)/2. (3.10)

This UFB solution can be separated by a barrier from other local minima with non-zero v, v, which

could therefore in principle be viable if the tunneling rate is small enough.

Next, take the possibility that v = v = 0 with |s| 6= |s|, which would lead to the symmetry

breaking pattern SU(3)A × SU(3)B → SU(2) × SU(2)× U(1), and consider

V (s, s) =
1

6
(g2A + g2B)(|s|2 − |s|2)2 + (m2 + |µΦ|2)|s|2 + (m2 + |µΦ|2)|s|2 − (bφss+ c.c.). (3.11)

Assumingm2 ≤ m2 without loss of generality [otherwise the discussion goes through with (s,m2) ↔
(s,m2)], the possible nontrivial stable minimum of V (s, s) is at:

|s|2 =
3

4(g2A + g2B)d

[

(|µΦ|2 +m2)2 − (|µΦ|2 +m2 + d)2
]

, (3.12)

|s|2 =
3

4(g2A + g2B)d

[

(|µΦ|2 +m2 − d)2 − (|µΦ|2 +m2)2
]

, (3.13)

where

d =
√

(2|µΦ|2 +m2 +m2)2 − 4|bφ|2. (3.14)

To satisfy the necessary conditions that d and |s|2 and |s|2 are real and positive, |bφ| must satisfy:

(|µΦ|2 +m2)(|µΦ|2 +m2) < |bφ|2 < (|µΦ|2 +m2)(|µΦ|2 +m2) +
1

4
(m2 −m2)2, (3.15)

where the right inequality coincides with the no-UFB condition eq. (3.10), and the left inequality

coincides with the destabilization of the trivial vacuum with s = s = 0. In practice, this is usually

a very narrow range of allowed |bφ|; in particular, it vanishes in the limit m2 = m2. Also, while the

condition eq. (3.15) is necessary and sufficient for a non-trivial minimum of V (s, s), it is far from

sufficient to guarantee that eqs. (3.12)-(3.14) provide a local minimum of the whole potential (not

restricted to the s, s subspace). The sufficient conditions follow from also requiring the positivity

of the 36− 9 = 27 non-Goldstone squared mass eigenvalues, of which 8 are distinct. These depend

on the other parameters in a more complicated way, and can be evaluated on a case-by-case basis.

Now consider the D-flat direction defined by s = s = 0 and non-zero v, v, which gives SU(3)A×
SU(3)B → SU(3)C as desired. For simplicity, consider first a special case that has Φ ↔ Φ and CP

symmetries, where y = y is real and positive by convention, µΦ is chosen to be real and positive,

b and a = a are chosen to be real but not necessarily positive, and† m2 = m2, which must be

real (by the reality of the Lagrangian) but not necessarily positive. For convenience, define real

† This choice precludes the possibility of a SU(2) × SU(2) × U(1)-preserving minimum, as just discussed.
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dimensionless supersymmetry breaking parameters

A = a/(yµΦ), (3.16)

B = b/µ2Φ, (3.17)

C = m2/µ2Φ, (3.18)

in terms of which eq. (3.10) becomes the requirement

|B| < 1 + C (3.19)

to avoid an UFB runaway solution. Then one can look for minima

v = (µΦ/y)xe
iα, v = (µΦ/y)xe

iβ , (3.20)

where x is real, non-negative, and dimensionless, and α and β are phases. By examining the first

derivatives of the potential, one finds that a minimum with x 6= 0 that satisfies eq. (3.19) must

have β = α. The potential then becomes simply

V (x, α) =
6µ4Φ
y2

x2
(

x2 +

[(

8

3
cos2 α− 2

)

A− 2

]

x cosα+B
(

1− 2 cos2 α
)

+ C + 1

)

. (3.21)

Minimizing the restricted potential V (x, α) gives a necessary condition, but one must also check

using the full scalar potential that at any putative local minimum, all of the 36 real scalar squared

masses are non-negative, including an octet of vanishing scalar squared masses for the would-be

Goldstone bosons.

For A = B = C = 0, one recovers the supersymmetric limit of the previous section, with a

minimum at x = 1, α = 0. More generally, the supersymmetric part of the scalar potential clearly

favors α = 0 when x 6= 0. The A term also favors α = 0 for large negative A. However, for large

positive A, the A term part favors symmetry breaking with cos2 α = 1/2. The B term favors

α = 0 if B < 0, but α = π if B > 0. The tension between these contributions means that even

though all potential parameters were chosen to be real, the VEV can be forced to be complex at

a local minimum if A is positive and sufficiently large. There are thus two types of possible local

symmetry breaking minima, which from now on are parameterized by xeiα = xR + ixI . Without

loss of generality, one can take xI to be non-negative.

For the first type, the VEV is real and satisfies the stationary condition

2x2R + (A− 3)xR + 1 + C −B = 0, (3.22)

leading to

xR =
3−A

4

(

1 +
√

1 + 8(B − C − 1)/(3 −A)2
)

, (3.23)

xI = 0, (3.24)
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For this to be a local minimum, it is necessary but not sufficient that the argument of the square

root is positive:

(3−A)2 > 8(1 −B + C). (3.25)

From requiring positivity of the 36 − 8 = 28 non-Goldstone scalar squared masses, one finds the

other necessary conditions:

(1 + nxR)
2 + C > |B + nxR(A+ xR − 1)| (3.26)

to be imposed for each of n = 1, 2,−2, and

(g2A + g2B)x
2
R + (1− xR)

2 > −C. (3.27)

Together, the five conditions (3.25)-(3.27) are sufficient to guarantee the existence of this local

minimum. The constraint (3.27) is the only one that depends on the gauge couplings, and it rarely

comes into play; it is automatic unless C < 0, and even then it is always satisfied for sufficiently

large gauge couplings. If the no-UFB condition eq. (3.19) is also imposed, then the three conditions

of eq. (3.26) can be simplified to:

2xR +B > 0, (3.28)

(1− 3A)xR + 2B > 0, (3.29)

(11−A)xR − 2 + 4B − 2C > 0. (3.30)

For eq. (3.23) to be the global minimum, it is necessary but not sufficient (because of the possibility

of the second type of solution below) that eq. (3.19) is also satisfied as well as V ≤ 0, which yields

(3−A)2 ≥ 9(1 −B + C), (3.31)

which is slightly stronger than eq. (3.25).

The second type of local minimum has a complex VEV, with stationary conditions

x2I + x2R − (1 +A)xR + (1 +B + C)/2 = 0, (3.32)

4Ax2R − [(1 +A)2 + 2B]xR + (1 +A)(1 +B + C)/2 = 0, (3.33)

leading to

xR =
(1 +A)2 + 2B

8A

[

1 +
√

1− 8A(1 +A)(1 +B + C)/[(1 +A)2 + 2B]2
]

, (3.34)

xI =
√

xR(1 +A− xR)− (1 +B + C)/2. (3.35)
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As necessary but not sufficient requirements, both square roots must have positive argument, so

[(1 +A)2 + 2B]2 > 8A(1 +A)(1 +B + C), (3.36)

2xR(1 +A− xR) > 1 +B + C, (3.37)

The remaining necessary conditions, coming from positivity of the four distinct non-Goldstone

scalar boson squared mass eigenvalues, are:

(1 + nxR)
2 + n2x2I + C >

√

[B − nx2I + nxR(A+ xR − 1)]2 + n2x2I(1 +A− 2xR)2, (3.38)

again for each of n = 1, 2,−2, and

(g2A + g2B)(x
2
I + x2R) + (1− xR)

2 + x2I > −C. (3.39)

Together, the six conditions eqs. (3.36)-(3.39) are sufficient to guarantee the existence of this local

minimum. Again, eq. (3.39) can only come into play if C < 0, and even then it is automatically

satisfied if the gauge couplings are sufficiently large. For a local minimum of this type to be the

global minimum, it is necessary but not sufficient (because of the possibility of the first type of

solution described above) that eq. (3.19) is satisfied as well as V ≤ 0, a constraint that can be

written as

(x2R + x2I)
2 + (2B − 8AxR/3)x

2
R ≥ 0. (3.40)

The implications of the preceding results are illustrated in Figure 3.1, which shows a phase

diagram for symmetry breaking in the B = bφ/µ
2
Φ vs. A = a/yµΦ = a/yµΦ plane, for the choices

C = m2/µ2Φ = m2/µ2Φ = 0 (left panel) and 0.5 (right panel). As noted above, there can be no

SU(2) × SU(2) × U(1)-preserving vacuum here, because of the choice m2 = m2. The red shaded

regions on the left and right sides of each plot have UFB runaway solutions because |B| is too large.

In the central unshaded regions, there are no symmetry breaking local minima. The green region

shows the points where the global minimum of the potential breaks SU(3)A ×SU(3)B → SU(3)C ,

and the blue region shows where there is at least one such local minimum with no UFB runaway.

These are the regions that could be our world. At A = B = C = 0, the supersymmetric limit is

realized, so that this point is on the border between the local and global minimum regions in the

left panel. A dotted curve separates the region where the lowest symmetry breaking local minimum

has a real VEV from the region where it has a complex VEV (which occurs for A positive and not

too small), given our choice of all real input parameters.

In view of the rather complicated set of requirements given above even in the simplifying case

of assumed real parameters with a Φ ↔ Φ symmetry in the Lagrangian, I have not attempted to

characterize the necessary and sufficient conditions in the general case. However, using numerical

methods I have checked that in generic cases, for large areas in a general parameter space, there

are global minima that realize the SU(3)A × SU(3)B → SU(3)C breaking. For example, Figure

3.2 shows phase diagrams for the case that there is no symmetry between Φ and Φ, for y = 0.5y
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FIG. 3.1: Phase diagrams for symmetry breaking in the case y = y and a = a, for m2 = m2 = 0 (left
panel) and m2 = m2 = 0.5µ2

Φ
(right panel), with the input parameters µΦ and y real and positive, and a, bφ

chosen real, so that the discussion of eqs. (3.19)-(3.40) applies to the minimization of the scalar potential.
In the red shaded regions on the left and right sides of each plot, the scalar potential has an unbounded
from below direction. In the unshaded central region, the SU(3)A × SU(3)B gauge symmetry is not broken
at any local minimum of the potential. The symmetry breaking SU(3)A × SU(3)B → SU(3)C occurs at a
global minimum of the potential in the large green shaded regions, and at only a local minimum in the thin
blue shaded regions. The supersymmetric limit occurs at the origin (bφ, a) = (0, 0) in the left panel; there
the local symmetry breaking minimum is degenerate with the local non-symmetry breaking minimum. In
each panel, the lowest SU(3)C-symmetric minimum has complex v = v above the dotted curve.

real and positive and with m2 = 0, m2 = 0.5µ2Φ (left panel) and with m2 = 0.25µ2Φ, m
2 = µ2Φ

(right panel). The axes of the plots are bφ/µ
2
Φ and a/yµΦ = a/yµΦ, which are assumed to be

real but can have either sign. In this example, because m2 6= m2, there are very small regions

where minima with unbroken gauge group SU(2)×SU(2)×U(1) can exist, depending on the other

parameters. From eq. (3.15), these occur within the narrow ranges adjacent to the UFB region,

1.2247 < |B| < 1.25 (left panel) and 1.5811 < |B| < 1.625 (right panel). The exact extents of these

small regions depend on other parameters besides the plot axes, so they are not shown. I have

also checked in other examples that global minima with unbroken gauge group SU(3)C do occur

in large regions of generic parameter space, including where µΦ and the soft input parameters are

allowed to have complex phases, and that smaller residual gauge symmetries like SU(2) × U(1)

generally do not occur.
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FIG. 3.2: Phase diagrams for symmetry breaking in the case y = 0.5y real and positive, with m2 = 0,
m2 = 0.5µ2

Φ
(left panel) and with m2 = 0.25µ2

Φ
, m2 = µ2

Φ
(right panel). The axes are B = bφ/µ

2

Φ
and

A = a/yµΦ = a/yµΦ, which are assumed to be real but can have either sign. In the red shaded regions
on the left and right sides of each plot, the scalar potential has an unbounded from below direction. In
the unshaded central region, the SU(3)A × SU(3)B gauge symmetry is not broken at any local minimum
of the potential. The symmetry breaking SU(3)A × SU(3)B → SU(3)C occurs at a global minimum of the
potential in the large green shaded regions, and at only a local minimum in the thinner blue shaded regions.
In each panel, the lowest SU(3)C-symmetric minimum has complex VEVs v and v above the dotted curve.
Minima with unbroken gauge group SU(2) × SU(2) × U(1) can also occur, but only in very small regions
that are subsets of thin strips adjacent to the UFB region, namely 1.2247 < |B| < 1.25 (left panel) and
1.5811 < |B| < 1.625 (right panel). These small regions are not shown because they depend on the other
parameters.

IV. MODEL REALIZATION WITH GAUGE COUPLING UNIFICATION

A. Renormalization group running

One aspect of low-energy supersymmetry that has often been touted as an attractive feature

is the apparent unification of gauge couplings above 1016 GeV. In the case that SU(3)C is the

remnant of two independent SU(3) gauge groups, this is certainly no longer automatic (but as we

will see it can at least be accommodated). Furthermore, given the Standard Model value of αS ,

the formula eq. (1.15) implies that both gA and gB must be fairly strong at the multi-TeV scale,

since g3 is necessarily smaller than both of them, and if they were equal, g3 ≈ gA/
√
2. Assuming

that the MSSM quark supermultiplets live in the SU(3)A representation, then the presence of 6

additional triplets Φ and Φ means that the 1-loop β function for SU(3)A must be non-negative,

and the 2-loop β function is positive, so that gA cannot be asymptotically free as in the MSSM.

To unify with gB , additional fields charged under SU(3)B must be included.

There are many ways to include chiral superfield representations that are charged under SU(3)B .

Suppose that there are additional vectorlike quark and lepton supermultiplets in representations
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(and their conjugates) as in the MSSM, but with color charges only under SU(3)B . This will

ensure that the new fields are not exotic and none of them need be stable, since they can decay by

mixing with MSSM states. In particular, consider possible chiral supermultiplets in the following

vectorlike representations of SU(3)A × SU(3)B × SU(2)L × U(1)Y :

nQ ×
[

(1,3,2,
1

6
) + (1,3,2,−1

6
)
]

, (4.1)

nd ×
[

(1,3,1,−1

3
) + (1,3,1,

1

3
)
]

, (4.2)

nu ×
[

(1,3,1,
2

3
) + (1,3,1,−2

3
)
]

, (4.3)

nL ×
[

(1,1,2,−1

2
) + (1,1,2,

1

2
)
]

, (4.4)

ne ×
[

(1,1,1,−1) + (1,1,1, 1)
]

, (4.5)

for integers nQ, nd, nu, nL, and ne. These fields are supposed to have weak isosinglet bare masses

in the multi-TeV range, due to whatever mechanism also provides for the MSSM µ term. They

can also mix with the MSSM quarks and leptons, in the case of quarks through Yukawa couplings

to Φ and Φ. That mixing is assumed here to be too small to affect anything else significantly. In

the following, beta functions will be denoted in the general loop expansion form

βX =
∑

n≥1

1

(16π2)n
β
(n)
X . (4.6)

Then at 2-loop order,† the gauge couplings in a Grand Unified Theory (GUT) normalization have

beta functions:

β(1)gA = 0, (4.7)

β(2)gA = g3A

(

48g2A + 16g2B + 9g22 +
11

5
g21 − 6y2 − 6y2 − 4y2t − 4y2b

)

, (4.8)

β(1)gB = g3B(−6 + 2nQ + nu + nd), (4.9)

β(2)gB
= g3B

(

[−20 +
34

3
(2nQ + nd + nu)]g

2
B + 16g2A + 6nQg

2
2

+
2

15
[nQ + 2nd + 8nu]g

2
1 − 6y2 − 6y2

)

, (4.10)

β(1)g2 = g32 (1 + 3nQ + nL) , (4.11)

β(2)g2 = g32

(

24g2A + 16nQg
2
B + [25 + 21nQ + 7nL]g

2
2 +

1

5
[9 + nQ + 3nL]g

2
1

−6y2t − 6y2b − 2y2τ

)

, (4.12)

β(1)g1 =
g31
5

(33 + nQ + 2nd + 8nu + 3nL + 6n3) , (4.13)

† In all numerical results below, the full 3-loop beta functions are used to run all supersymmetric parameters and the
2-loop results are used for soft parameters. These can be straightforwardly obtained from the general expressions
in refs. [46–60], so only the partial 2-loop or 1-loop formulas are shown here for illustration.
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β(2)g1 =
g31
5

(

88g2A +
16

3
[nQ + 2nd + 8nu]g

2
B + [27 + 3nQ + 9nL]g

2
2

+
g21
15

[597 + nQ + 8nd + 128nu + 27nL + 216ne]− 26y2t − 14y2b − 18y2τ

)

. (4.14)

The SU(3)A coupling does not run in the 1-loop approximation, but this is an accident, violated

by 2-loop effects. The Yukawa couplings y and y will be assumed not to be small in the following,

and so their running is important, and given by:

β(1)y = y(6y2 − 8g2A − 8g2B), (4.15)

β(2)y = 8y
(8

3
g4A +

16

3
g2Ag

2
B +

[

2nQ + nd + nu −
10

3

]

g4B + 2(g2A + g2B)y
2 − 3y4

)

, (4.16)

with the same equations for y → y. The beta functions for the top-quark, bottom-quark, and

tau-lepton Yukawa couplings are obtained from the MSSM results with the replacement g3 → gA.

There are several choices for the integers nQ, nd, nu, nL, and ne that can lead to approximate

gauge coupling unification. In the following, I will simply choose one that seems interesting, with

no claim or expectation of uniqueness:

nQ = 1, nd = 3, nu = 0, nL = 0, ne = 1. (4.17)

It is also possible, for example, to include a chiral supermultiplet which would transform as an

octet under SU(3)B ; this would also lead to three new possible Yukawa couplings. One reason for

the choice made here is that one can arrange for gauge coupling unification at high scales while

having gB > gA at the symmetry breaking scale, with g3 consistent with the Standard Model QCD

coupling.

Since β
(1)
gA = 0 and β

(1)
gB = −g2B are both accidentally small in magnitude due to the choice

of chiral superfield representations, and β
(2)
gA and β

(2)
gB both have large positive contributions, the

RG running can have a character similar to the Caswell-Banks-Zaks infrared fixed point [61, 62],

although here the conformal regime is not actually reached. In the following, I consider a case that

realizes approximate gauge coupling unification through y and y that are large at the TeV scale.

This is natural in the sense that the negative contributions proportional to g2A and g2B in eq. (4.15)

will drive y and y to be larger in the infrared, since the SU(3) gauge couplings are necessarily

large. However, when y and y themselves become sufficiently large, the terms proportional to y2

in eq. (4.15) and proportional to y2 in its counterpart for y will put the brakes on, leading to a

quasi-fixed point behavior. (This is not a true fixed point, because gA and gB are still running,

and thus provide a moving target.)

As an illustration, Figure 4.1 shows a sample 3-loop RG trajectory, starting with an assumption

that at the low-energy threshold scale Q = 7.5 TeV, where they are taken to match onto the

Standard Model,

gB/gA = 1.5, g3 = 0.96171, (4.18)

g2 = 0.628645, g1 = 0.366436, (4.19)
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FIG. 4.1: Three-loop renormalization group running of supersymmetric couplings for the example model de-
fined by eqs. (4.18)-(4.21) and (4.37)-(4.41), as a function of the renormalization scale Q. The inverses of the
gauge couplings αa = g2a/4π are shown in the left panel. The right panel shows a variety of renormalization
group trajectories for the Yukawa coupling y = y, obtained by taking different boundary conditions at the
unification scale, illustrating the strongly attractive infrared quasi-fixed point behavior, with power-law–like
running for small y due to the influence of large gA and especially gB.

y = y = 2.38, (4.20)

yt = 0.783363, yb = 0.012305, yτ = 0.010205, (4.21)

with the Standard Model Yukawa couplings chosen to correspond to tan β = 10. In the left panel,

the gauge couplings are seen to nearly unify at a scale 7.1× 1017 GeV, much closer to the reduced

Planck scale than the unification scale found in the MSSM. The SU(3)B coupling increases in

strength in the infrared, but does not hit a pole, with αB = 0.239 at Q = 7.5 TeV; this is

comparable to αS evaluated at 3.5 GeV in the Standard Model. The chosen value of y = y is near

the 3-loop quasi-fixed point value for the RG equation system. This is illustrated in the right panel

of Figure 4.1, which shows the running for a variety of different input values. Note that even if

y and y start at much lower values (say, of order 0.1) at the apparent unification scale, they are

efficiently driven with power-law-like running in the infrared to the quasi-fixed point regime due

to the influence of the large, and slowly running, gauge couplings gA and especially gB .

The beta functions for dimensionful parameters can also be obtained from the general results

in refs. [46–60]. For the supersymmetric parameter µΦ, one has

β(1)µΦ
= µΦ

[

2y2 + 2y2 − 16

3
(g2A + g2B)

]

, (4.22)

β(2)µΦ
= µΦ

[128

9
g4A +

256

9
g2Ag

2
B +

(

−160

9
+

16

3
[2nQ + nu + nd]

)

g4B

+
16

3
(g2A + g2B)(y

2 + y2)− 8y4 − 8y4
]

. (4.23)

As long as y and y are small, this provides for µΦ to grow rapidly in the infrared, but this running
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slows as y and y approach the quasi-fixed point regime. This makes it plausible that if µΦ has an

origin similar to that of the MSSM µ parameter, that µΦ should be larger than µ at the low scale.

In any case, it is technically natural for it to have any value; in the following it is assumed to be

of the same order of magnitude as the soft supersymmetry breaking masses, as could follow for

example from the Kim-Nilles [63] or Giudice-Masiero [64] mechanisms. For the gaugino masses:

β
(1)
MA

= 0, (4.24)

β
(2)
MA

= g2A

(

[192g2A − 12y2 − 12y2 − 8y2t − 8y2b ]MA + 32g2B [MA +MB] + 18g22 [MA +M2]

+
22

5
g21 [MA +M1] + 12ay + 12ay + 16atyt + 16abyb

)

, (4.25)

β
(1)
MB

= (−12 + 4nQ + 2nd + 2nu) g
2
BMB, (4.26)

β
(2)
MB

= g2B

(

{−80 + 136(2nQ + nd + nu)/3]g
2
B − 12y2 − 12y2}MB + 32g2A[MA +MB ]

+12nQg
2
2 [M2 +MB] +

4

15
(nQ + 2nd + 8nu)g

2
1 [M1 +MB ] + 12ay + 12ay

)

, (4.27)

β
(1)
M2

= (2 + 6nQ + 2nL)g
2
2M2, (4.28)

β
(2)
M2

= g22

(

[(100 + 84nQ + 28nL)g
2
2 − 12y2t − 12y2b − 4y2τ ]M2 + 48g2A[M2 +MA]

+32nQg
2
B [M2 +MB ] +

2

5
(9 + nQ + 3nL)g

2
1 [M2 +M1] + 24atyt + 24abyb + 8aτyτ

)

, (4.29)

β
(1)
M1

=
2g31
5

(33 + nQ + 2nd + 8nu + 3nL + 6n3)M1, (4.30)

β
(2)
M1

=
g21
5

([

(
796

5
+

4

15
nQ +

32

15
nd +

512

15
nu +

36

5
nL +

288

5
ne)g

2
1 − 52y2t − 28y2b − 36y2τ

]

M1

+176g2A[M1 +MA] +
32

3
g2B(nQ + 2nd + 8nu)[M1 +MB ]

+(54 + 6nQ + 18nL)g
2
2 [M1 +M2] + 104atyt + 56abyb + 72aτyτ

)

, (4.31)

and for the soft supersymmetry breaking parameters associated with the Φ,Φ sector:

β(1)a = 18y2a+ 8g2A(2yMA − a) + 8g2B(2yMB − a), (4.32)

β
(1)
a = 18y2a+ 8g2A(2yMA − a) + 8g2B(2yMB − a), (4.33)

β
(1)
bφ

= 2bφ

[

y2 + y2 − 8

3
(g2A + g2B)

]

+ 4µΦ

[

ay + a y +
8

3
(g2AMA + g2BMB)

]

, (4.34)

β
(1)
m2 = 12y2m2 + 4|a|2 − 32

3
(g2A|MA|2 + g2B |MB |2), (4.35)

β
(1)

m2 = 12y2m2 + 4|a|2 − 32

3
(g2A|MA|2 + g2B |MB |2). (4.36)

A consequence of these results is that if the gaugino masses are taken to be positive and large,

then a/y, a/y, and b/µΦ tend to run to negative values in the conventions used here.

The special case that will be adopted as an example here is the “no-scale” limit, which presumes

that at very high scales the supersymmetry breaking is dominated by gaugino masses, with all other

soft supersymmetry breaking parameters arising from them due to renormalization group running.

A nice feature of this limit is that it automatically provides for nearly flavor-blind first and second
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FIG. 4.2: Renormalization group running gaug-
ino masses (solid lines) and MSSM squark and
slepton masses (dashed lines), as a function of
the renormalization scale Q, for the example
model defined by eqs. (4.18)-(4.21) and (4.37)-
(4.41), with vanishing scalar masses and unified
gaugino masses m1/2 at the high scale.

family squark and slepton masses, due to the observed fact that the corresponding Yukawa couplings

are small. As an illustration, Figure 4.2 shows the running of the gaugino masses and the MSSM

squark and slepton masses as a function of the renormalization scale Q, for the case of a common

gaugino mass m1/2 at the apparent unification scale. Note that all of the sleptons are significantly

heavier than the wino and bino, in contrast to the no-scale limit of the usual MSSM. This is due

to the couplings g1 and g2 being much larger at high RG scales than is the case in the MSSM. It

is also worth noting that the 1-loop approximation is not very good, notably for MA, which has

an accidentally vanishing beta function at 1-loop order, but is seen to decrease significantly in the

infrared due to 2-loop and higher order effects. The squark masses are larger than both MA and

MB , again in contrast to the no-scale limit in the MSSM. Of course, these expectations could easily

be modified if the high-scale boundary conditions are different, for example due to non-universal

gaugino masses.

B. Mass spectrum for an example model line

As an illustration of the possibilities for masses in the SU(3)A×SU(3)B gauge/gaugino and Φ,

Φ sector, consider an example model defined by the parameters of eqs. (4.18)-(4.21) and the results

following from renormalization group evolution as described in the previous subsection starting

with a universal gaugino mass parameter m1/2:

a = a = −2.381m1/2, (4.37)

bφ = −0.6669m1/2µΦ, (4.38)

m2 = m2 = (0.30806m1/2)
2, (4.39)

MA = 0.5467m1/2 , (4.40)

MB = 1.1156m1/2 , (4.41)
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FIG. 4.3: The ratios of fermion and scalar masses to the mass of the color octet vector boson MX , as a
function of µΦ/m1/2, for the example model line defined by eqs. (4.18)-(4.21) and (4.37)-(4.41). The left
panel shows the masses of the gluinos (octet fermions) and sgluons (octet scalars). The right panel shows
the masses of the color-singlet scalars and fermions from the Φ and Φ multiplets. The right side of each plot
approaches the supersymmetric limit, with masses as discussed in subsection III A with R = 2.

where µΦ is the value at the low renormalization scale. Although these values were obtained at

Q = 7.5 TeV, I will not commit to a particular overall mass scale for the superpartners or the

new states in the results shown below, but instead show mass ratios normalized to the octet vector

boson mass.

The potential minimization is then found to be of the type with a real VEV given by eq. (3.23),

with v = v = xR, where xR then depends on the ratio r = µΦ/m1/2. I vary this ratio to obtain

a one-parameter model line. The numerical values of the dimensionless supersymmetry breaking

parameters defined in eqs. (3.16)-(3.18) are A = −1.00034/r, B = −0.6669/r, C = 0.0949/r2.

These obey each of the constraints in eqs. (3.25)-(3.31) for all r, and therefore yield a global

minimum of the potential at which the breaking SU(3)A × SU(3)B → SU(3)C occurs, except

for the range 0.2058 < r < 0.4611 where it is only a local minimum due to a UFB solution, see

eq. (3.19). Even in that range of r, the SU(3)C -preserving vacuum is separated from the UFB by

a barrier, making it potentially viable despite the UFB, if the tunneling rate is acceptably small.

In any case, that range of r will be included in the following plots, for the sake of continuity. (Note

that a slight decrease in |B| would ensure that the whole range of r would be a global minimum

for the SU(3)C preserving vacuum.)

In Figure 4.3, I show the masses of the four gluinos (spin-1/2 color octets), the three sgluons

(real spin-0 octets), the two singlinos (spin-1/2 color singlets) and the four spin-0 color singlets,

all normalized to the vector (coloron) mass MX . Note that large r = µΦ/m1/2 corresponds to

the supersymmetric limit, in which one gluino is much lighter than the other new states whose

masses are then given by eqs. (1.14), and (3.2)-(3.5), with R = 2 in the present case, which leads

to Msinglets = µΦ and 3µΦ and Moctets = 2µΦ, where µΦ = yMX/
√

2(g2A + g2B) ≈ 0.808MX . In

the opposite limit of small µΦ/m1/2, the lightest of the new particles is the pseudo-scalar sgluon.

More generally, everywhere along the model line there is always at least one gluino state and one

sgluon state and one singlet scalar with mass below or close to the octet vector boson mass.
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In Figure 4.4, for each of the four gluino mass eigenstates (g̃j , j = 1, 2, 3, 4, in increasing

order of mass) I show the square of the ratio of the coupling to MSSM squark/quark pairs to the

corresponding coupling that occurs in the MSSM. This is given by |Uj1gA/g3|2, in terms of the

unitary matrix U defined in eq. (2.10) and the gauge couplings gA and g3, governed by eq. (1.15).

The result is that there is always a gluino mass eigenstate with coupling to quark/squark pairs at

least as large as in the MSSM, with the ratio of couplings for the lightest gluino approaching 1 in

the supersymmetric limit. However, if µΦ/m1/2 is small, then the lightest gluino mass eigenstate

is not MSSM-gaugino-like and has essentially no tree-level coupling to quark-squark pairs. The

second lightest gluino state in that regime does couple to quark-squark states, but with a strong

suppression. The MSSM-gluino-like state that has enhanced couplings to quark/squark pairs can

be up to about 1.6 times heavier than the lightest gluino state, and 1.3 times heavier than the X

vector boson. Also, in that case of small µΦ/m1/2, the lightest new state by far is one of the sgluons;

it is possible that this would be the first new particle discovered. In contrast, along this model

line, none of the singlinos and singlet scalars are ever much lighter than the massive vector boson.

For all values of the ratio µΦ/m1/2, a gluino or a sgluon is the lightest of the non-MSSM states.

Of course, the above results hold for a very specific set of assumptions about the RG boundary

conditions and vectorlike supermultiplet content, but I have checked that they are qualitatively

typical at least for a (certainly non-exhaustive) variety of modifications of the above assumptions.

V. COMMENTS ON COLLIDER PHENOMENOLOGY

The collider phenomenology of colorons, Dirac and mixed Majorana/Dirac gluinos, and sgluons

has already been the subject of many papers, see refs. [9, 12–18, 21, 22, 65, 66], and [67–73], and

[74–79], respectively. A detailed discussion of the LHC phenomenology is beyond the scope of the

present paper, but a few brief comments are in order, with emphasis on qualitative issues where

the model described above differs from the situation encountered in previous studies based on pure

Dirac gluinos from supersoft and and hybrid models with an N = 2 gauge sector. In this section,
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the particle mass eigenstates beyond those of the MSSM† will be denoted:

X = color octet massive vector (5.1)

g̃j = color octet gluinos, (j = 1, 2, 3, 4) (5.2)

χ̃j = color singlet fermion singlinos, (j = 1, 2) (5.3)

Sj = color octet real scalar sgluons, (j = 1, 2, 3) (5.4)

ϕj = color singlet real scalars, (j = 1, 2, 3, 4), (5.5)

where the ordering is in increasing mass. In the example model of the previous section, the lightest

of these is either g̃1 or S1. If R-parity is conserved, then the bosons have even R-parity and the

fermions have odd R-parity.

A stringent experimental constraint comes from the fact that the color octet vectorsX (colorons)

have tree-level couplings to ordinary quarks, and so can be detected in dijet events at hadron

colliders. They have a partial width ΓX =
g4A

24π(g2
A
+g2

B
)
MX to each flavor of quark-antiquark pair,

but can also in principle have loop-induced decays to gluon pairs. In particular, they can be

produced singly as dijet resonances via qq → X → qq, resulting in the most recent LHC bound

of MX > 6.6 TeV assuming gA = gB [80–85]. However, in the context of the present paper the

bounds will be somewhat weaker if gA < gB , as in the example model of the previous section. The

experimental limits also assume that the di-jet decays of X dominate. If kinematically allowed,

they could also in principle decay to squark-antisquark q̃q̃∗ or gluino pairs g̃j g̃k or sgluon pairs

SjSk. They could even decay to Sjϕk (for a related study see [22]) or χ̃g̃, although these are

kinematically forbidden throughout most of the example model line of the previous section.

The gluinos g̃j will be pair-produced in gluon-gluon and quark-antiquark fusion, as is familiar

from standard supersymmetry. Just as in the MSSM, they can always decay to quark-squark final

states if kinematically allowed, and in the alternative through virtual squarks to qqÑ or qq′C̃

where Ñ and C̃ are ordinary neutralinos and charginos. If kinematically allowed, they can also

decay in a variety of 2-body modes at tree-level, to g̃kX or χ̃kX or g̃kS or χ̃kS or g̃kϕl (if g̃k is a

lighter gluino). The couplings Sg̃g̃ and Sg̃χ̃ and ϕg̃g̃ needed for the last three decays arise from

both supersymmetric gauge interactions (scalar-fermion-gaugino) and the y, y Yukawa couplings.

As in the MSSM, the final states of pair-produced gluino decays will always lead to at least four

jets plus missing transverse energy signatures, sometimes with leptons from chargino or neutralino

decays, and often with bottom jets from the kinematic enhancement of lighter bottom and top

squarks in the cascade decays. As noted in the previous section, one of the gluinos is likely to have

an enhanced coupling to quark-squark pairs compared to the MSSM, unlike the case in models

with pure or mostly Dirac gluinos. However, the gluino with enhanced couplings may not be the

lightest gluino g̃1. In the example model of the previous section, when g̃1 is not gaugino-like and

has essentially no couplings to quark-squark pairs, it is accompanied by a much lighter sgluon.

The sgluons S can also be pair-produced in gluon-gluon and quark-antiquark fusion, but can

also be singly produced due to 1-loop effective couplings. The diagrams leading to an effective Sgg

vertex are shown in Figure 5.1. Here, I note a difference compared to the sgluon models previously

† One of the g̃j corresponds to the MSSM gluino. The vectorlike quarks and leptons introduced for their renormal-
ization group running contributions in subsection IVA will not be discussed; assume they are heavier.
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FIG. 5.1: Feynman diagrams leading to effective sgluon-gluon-gluon (top row) and sgluon-quark-antiquark
(bottom row) couplings, which provide for single production and two-body decays of sgluons.

analyzed in refs. [74, 75]. In those cases, the gluino-loop contribution to the Sgg vertex (and, more

generally, the 1-loop gluino-induced effective couplings of S to any number of gluons) was found

to vanish, because the Sj g̃kg̃l vertex in the 1-loop diagram was proportional to fabc, which then

requires k 6= l, causing the effective Sgg coupling to vanish, since the gluon couples only diagonally

to gluino mass eigenstates due to the unbroken QCD gauge invariance. However, in the model

considered in the present paper, there are also Sj g̃kg̃k couplings proportional to the symmetric

factor dabc, both from the gauge couplings gA and gB as can be seen from eq. (2.7) and from the

Yukawa couplings y and y as seen in eq. (2.8). This coupling does not vanish when inserted in

the first of the loop diagrams in Figure 5.1, although there is a gluino mixing factor suppression.

There is also a contribution from sgluons in the loop, in addition to the ordinary squarks, as seen

in the second and third diagrams of Figure 5.1. Another difference from the models analyzed in

refs. [74, 75] is that massive vector loops can contribute to the effective Sgg vertex, as shown in

the last two diagrams in the first row of eq. 5.1. The SXX vertex appearing here is proportional

to dabc; it vanishes for the pseudo-scalar sgluon if CP is conserved. These effects mean that the

loop-induced Sgg vertices can be significant, and single production of S due to gluon fusion can

be larger than considered previously.

There are also loop-induced contributions to the Sqq vertex, as shown in the second row of

Figure 5.1, although this effective coupling is helicity-suppressed by the corresponding quark mass,

as in [74, 75]. At tree-level the sgluons could also decay to MSSM squark-antisquark pairs if

kinematically allowed, through the coupling inherited from the D-term contribution to the scalar

potential. Other two-body decays that can occur at tree-level, if kinematically allowed, are g̃g̃, and

χ̃g̃, and XS, and Xϕ, and ϕS, and SS.

The lightest sgluon mass eigenstate can therefore be produced in gluon fusion and decay to

gg (or to tt), leading to a dijet signature for which LHC searches [80–85] exist. However, sig-

nal/background interference effects can be very large [86] for heavy scalar di-gluon resonances, so

that if the di-gluon production and decay dominate, the resonance may manifest as a dip/peak or

step-function invariant mass distribution rather than a pure resonance peak. These interference ef-

fects have not been included in the experimental limits, which could be quite significantly modified

if they were taken into account.

The singlet scalars ϕ can likewise have loop-induced couplings to gluon-gluon and quark-

antiquark. They can therefore also be singly produced at the LHC, and would decay to jet pairs,
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where the same comments just made about dijet searches apply. If kinematically allowed, they

could also decay to g̃g̃, χ̃χ̃, ϕϕ, SS, or XS final states.

The singlino fermions χ̃ from the Φ,Φ supermultiplets are a new feature of the model considered

here. They have tree-level couplings χ̃g̃S and χ̃g̃X (proportional to gauge couplings) and χ̃χ̃ϕ

(proportional to Yukawa couplings y and y), which allows for them to decay to other odd R-parity

final states, with decay chains that will eventually terminate in the MSSM lightest supersymmetric

particle. They can always decay in this way, through off-shell intermediate states if necessary, so

they are not stable unless χ̃1 is the lightest supersymmetric particle. However, they cannot be

singly produced due to their R-parity, and cannot even be pair-produced at tree-level at colliders

due to the lack of couplings to gluons or quarks. Therefore it seems unlikely that they could be

part of a discovery, unless through the cascade decays of the other states mentioned above. This

also seems quite unlikely due to kinematics, at least for the mass spectra along the sample model

line considered in the previous section.

VI. OUTLOOK

If supersymmetric particles exist at a multi-TeV scale, as suggested by the tension between the

big hierarchy problem and the 125 GeV Higgs scalar boson mass, it is sensible to consider extensions

of the minimal supersymmetric framework, including even radical ones that would not be viable

at lower mass scales. In this paper, I have considered the possibility that the color gauge group is

extended to SU(3)×SU(3). This symmetry breaking pattern was shown to be easy to attain in the

case of the most general renormalizable and softly broken potential that can be constructed using

the minimal field content with the necessary order parameters. Indeed, other possible remnant

groups of the symmetry breaking were found to be highly disfavored. The model predicts several

new color octets of spin 1, 1/2, and 0, and new spin 1/2 and spin 0 singlets, all with masses that

are presumably at multi-TeV scales. In an example model framework motivated by gauge coupling

unification with an infrared quasi-fixed point for the Yukawa couplings, gaugino-mass-dominated

supersymmetry breaking leads to weakly interacting superpartners that are relatively light, and still

could be discovered at the LHC. The phenomenology of these models at future colliders (including

a high-energy LHC) will involve multiple gluino and sgluon states, in addition to a coloron vector

boson, all of which could be lighter than the ordinary squarks. The lightest gluino could have

either enhanced or highly suppressed couplings to quarks and squarks. The phenomenology can

differ from that found in previous studies of Dirac and mixed gluinos and sgluons that occur in

supersoft and models with an N = 2 gauge sector. Although not explored here, it should also be

possible to realize the same gauge symmetry breaking pattern by introducing new singlet or octet

chiral superfields. It is also possible to enlarge the gauge group that breaks down to SU(3)C in

various ways.
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