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Abstract
A number of integrable nonlocal discrete nonlinear Schrödinger (NLS) type 
systems have been recently proposed. They arise from integrable symmetry 
reductions of the well-known Ablowitz–Ladik scattering problem. The equations 
include: the classical integrable discrete NLS equation, integrable nonlocal: PT 
symmetric, reverse space time (RST), and the reverse time (RT) discrete NLS 
equations. Their mathematical structure is particularly rich. The inverse scattering 
transforms (IST) for the nonlocal discrete PT symmetric NLS corresponding to 
decaying boundary conditions was outlined earlier. In this paper, a detailed study 
of the IST applied to the PT symmetric, RST and RT integrable discrete NLS 
equations is carried out for rapidly decaying boundary conditions. This includes 
the direct and inverse scattering problem, symmetries of the eigenfunctions and 
scattering data. The general linearization method is based on a discrete nonlocal 
Riemann–Hilbert approach. For each discrete nonlocal NLS equation, an explicit 
one soliton solution is provided. Interestingly, certain one soliton solutions of 
the discrete PT symmetric NLS equation  satisfy nonlocal discrete analogs of 
discrete elliptic function/Painlevé-type equations.
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1.  Introduction

The nonlinear Schrödinger (NLS) equation

iqt = qxx − 2σq2q∗, σ = ∓1,� (1.1)

where q* is the complex conjugate of q, is a prototypical dispersive nonlinear partial differ
ential equation that has been derived in many areas of physics and analyzed in detail for over 
50 years. The NLS equation arises in electromagnetics, fluid dynamics/water waves, magnetic 
spin systems, Bose–Einstein condensation amongst many others [1–6]. When σ = −1 the 
NLS equation exhibits modulational instability and contains localized solitary waves/solitons. 
On the other hand, for σ = +1, the NLS equation is modulationally stable; it has dark solitary 
waves/solitons which have nonzero boundary values at infinity [6]. Mathematically speaking, 
the NLS equation attains even broader significance since, in one plus one dimension, it is 
integrable via the inverse scattering transform (IST) [7–12].

While for the past few decades much attention have been directed at the mathematical 
structure and physical applications of the continuous NLS equation  (1.1), in recent years, 
a relatively new research area devoted to discrete photonics has emerged [13–18]. Progress 
in the mathematics and physics of complex discrete systems was possible due to advances 
in technology along side the successful asymptotic derivation of reduced discrete models. 
Among such a discrete equation is the well known discrete nonlinear Schrödinger

i
dqn

dt
= qn+1 + qn−1 + |qn|2qn,� (1.2)

where qn(t) describes a time-dependent discrete envelope function, dot stands for time deriva-
tive and n is an integer. This model successfully predicts numerous important phenomena 
in the physical and biological sciences. Examples include wave propagation in coupled 
waveguide arrays [19–25], biophysical system [26], molecular crystals [27], atomic chains  
[27, 28] as well as many recent observations related to PT symmetric arrays of linearly and/or 
nonlinearly coupled optical waveguide.

Although the discrete NLS (1.2) is commonly used in modeling wave propagation in pho-
tonic systems and optical waveguide arrays, to date, it is widely believed to not be integrable. 
In a series of papers published in 1975/76, Ablowitz and Ladik (AL) [29, 30] discovered an 
integrable discretization of the continuous NLS equation (1.1) given by

i
dQn(t)

dt
= Qn+1(t)− 2Qn(t) + Qn−1(t)− σ|Qn(t)|2[Qn+1(t) + Qn−1(t)],

� (1.3)
also frequently called the integrable AL model. If one let Qn(t) ≡ hqn(t) with constant h, 
then in the limit of h → 0, the integrable discrete NLS equation (1.3) tends to the continuous 
NLS equation (1.1), recovering all the underlying integrable properties of the NLS plus new 
mathematical features.

Importantly, the AL model arises from a compatibility condition applied to the following 
system:

i
dQn(t)

dt
= Qn+1(t)− 2Qn(t) + Qn−1(t)− Qn(t)Rn(t)[Qn+1(t) + Qn−1(t)],

� (1.4)

−i
dRn(t)

dt
= Rn+1(t)− 2Rn(t) + Rn−1(t)− Qn(t)Rn(t)[Rn+1(t) + Rn−1(t)].

� (1.5)
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Indeed, one recovers equation (1.3) from the symmetry reduction

Rn(t) = σQ∗
n(t), σ = ∓1.� (1.6)

The integrable discrete AL model has been studied in various mathematical settings (see [31–
34] and references therein). Among them is the quantization of the AL model and its solution 
method using the so-called quantum inverse scattering transform [35–37]; local Darboux-
Bäcklund transformations for the AL model with general discretizations and solutions via 
dressing methods [38, 39]. In 2014, Ablowitz and Musslimani [40] discovered a new, PT 
symmetric reduction of the AL scattering problem (see equation (2.1) below). It is given by

Rn(t) = σQ∗
−n(t),� (1.7)

giving rise to the so-called integrable discrete nonlocal PT symmetric NLS equation:

i
dQn(t)

dt
= Qn+1(t)− 2Qn(t) + Qn−1(t)− σQn(t)Q∗

−n(t)[Qn+1(t) + Qn−1(t)].
� (1.8)

Subsequently, two new integrable symmetry reductions were identified [41]. These are

Rn(t) = σQ−n(−t),� (1.9)

Rn(t) = σQn(−t),� (1.10)

giving rise to the so-called integrable discrete reverse space time (RST) and reverse time (RT) 
NLS equations respectively

i
dQn(t)

dt
= Qn+1(t)− 2Qn(t) + Qn−1(t)− σQn(t)Q−n(−t)[Qn+1(t) + Qn−1(t)],

� (1.11)

i
dQn(t)

dt
= Qn+1(t)− 2Qn(t) + Qn−1(t)− σQn(t)Qn(−t)[Qn+1(t) + Qn−1(t)].

� (1.12)
Notice that one can recover the PT symmetric, RST and RT continuous NLS limits

iqt = qxx − 2σq(x, t)2q∗(−x, t),� (1.13)

iqt = qxx − 2σq(x, t)2q(−x,−t),� (1.14)

iqt = qxx − 2σq(x, t)2q(x,−t),� (1.15)

by letting Qn(t) ≡ hqn(t) and take the h → 0 limit. Equations  (1.13)–(1.15) were found in 
[41–43] as a nonlocal in space and/or in time integrable symmetry reductions of the well-
known AKNS scattering problem [44]. Furthermore, equations (1.13)–(1.15) were recently 
shown to arise from an integrable nonlocal asymptotic reductions of physically significant 
nonlinear equations such as the cubic nonlinear Klein–Gordon, the Korteweg–de Vries and 
water wave equations [45].

The new results and organization of the paper are summarized as follows:

	 •	�The inverse scattering transforms are developed for the integrable discrete PT, RST and 
RT nonlinear Schrödinger equations with rapidly decaying boundary conditions:

lim
n→±∞

Qn = 0, lim
n→±∞

Rn = 0.� (1.16)
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		 More general integrable boundary conditions, such as limn→±∞ Qn = Q±∞ �= 0 and 
limn→±∞ Rn = R±∞ �= 0 is still an open problem and will be studied in the future. Some 
recent relevant results for the AL model and the behavior of its solitons (with non-zero 
boundary conditions) are presented in [46–49].

	 •	�This includes a detailed study of the discrete direct and inverse scattering theory for 
general potentials Qn, Rn. In particular we derive all symmetries satisfied by the eigen-
functions, scattering data and norming constants for all three reduction cases. We note 
that all relevant symmetry conditions are very different than the classical integrable AL 
model in the sense that they are nonlocal and their derivation requires a forward and a 
backward scattering problems. This paper also formulates the IST in order to also solve 
the discrete RST and RT symmetric nonlocal systems.

	 •	�Soliton solutions for all three nonlocal integrable discrete NLS equations are obtained. 
Their properties are discussed particularly the issue of singularity formation in finite time. 
We note that physical systems can exhibit finite-time blow up singularities as evidenced 
by the physically significant two dimensional nonlinear Schrödinger equation [50]. As 
shown in this paper, interesting blow up solutions can occur in these nonlocal discrete 
systems.

	 •	�Novel reconstruction formulae for the potentials are found. This in turn enables one to 
observe the integrable symmetry on the inverse side simply by looking at the functional 
form of both potentials Rn and Qn.

	 •	�Trace formulae are developed for the RST and PT symmetric cases and used to find an 
explicit expressions for the norming constants in terms of scattering data.

	 •	�Discrete and continuous RT and RST nonlocal Painlevé equations are introduced.
	 •	�Sections 2–6 discuss the direct scattering associated with the above integrable discrete 

PT, RST and RT nonlinear Schrödinger equations: (1.8), (1.11) and (1.12), and their asso-
ciated scattering space symmetry relations. Sections 8–10 details the inverse scattering, 
time dependence and reconstruction formulae. Sections 11 and 12 discuss norming con-
stants, trace formulae and symmetries needed to compute soliton solutions. Section 13 
provides one soliton solutions for all cases. In section 14 remarks about nonlocal Painlevé 
equations are provided and section 15 is the conclusion.

2.  Linear pairs and integrability

We start by considering the Ablowiz–Ladik scattering problem

vn+1(z, t) =
(

z Qn(t)
Rn(t) z−1

)
vn(z, t),� (2.1)

dvn(t)
dt

=

(
iQn(t)Rn−1(t)− i

2 (z − z−1)2 −i(zQn(t)− z−1Qn−1(t))
i(z−1Rn(t)− zRn−1(t)) −iRn(t)Qn−1(t) + i

2 (z − z−1)2

)
vn(t),

� (2.2)

where vn(t) ≡ (v(1)
n (t), v(2)

n (t))T  is a complex valued function of t � 0 and n ∈ Z; Qn(t) and 
Rn(t) are complex valued potentials that rapidly decay to zero as n → ±∞. Here, z is a spectral 
parameter taken to be (in general) complex and independent of t, n. The discrete compatibility 
condition d

dt vn+1 = ( d
dt vm)m=n+1 yields the system of equations (1.4) and (1.5). As mentioned 

earlier, all of the above integrable discrete equations, i.e. (1.3), (1.8), (1.11) and (1.12) are 
obtained from the symmetry reductions between Rn(t) and Qn(t) given by equations  (1.6), 
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(1.7), (1.9) and (1.10). As such, they all form integrable infinite-dimensional Hamiltonian 
dynamical systems; their conserved quantities are given in [34, 40].

Due to the nonlocal (in space) nature of the symmetry reductions (1.7) and (1.9), it proves 
crucial in the analysis of the direct scattering problem (particularly for obtaining the sym-
metries in scattering space) to supplement the AL system (2.1) with a ‘backward’ scattering 
problem (obtained by inverting equation (2.1)) defined by

wn−1(z, t) =
(

z−1 −Qn(t)
−Rn(t) z

)
wn(z, t).� (2.3)

Importantly, any solution vn(z, t) of (2.1) can be related to a solution of (2.3) via the 
transformation

wn(z, t) = fn(t)vn+1(z, t), fn(t) ≡
n∏

k=−∞

1
1 − Qk(t)Rk(t)

.� (2.4)

Since both scattering problems (2.1) and (2.3) are linear, the presence of the factor f n(t) in 
equation (2.4) suggests that the solution set {vn(t), wn(t)} need to be ‘chosen’ in such a way 
that the correct boundary conditions are satisfied (see section 3). For the rest of the paper, and 
to avoid any confusion, we shall explicitly highlight the time-dependence of the eigenfunc-
tions, scattering data, all symmetry relations, and potentials for the RST and RT nonlocal 
NLS cases. Furthermore, we shall suppress the time dependence of any equation that depend 
locally on time.

3.  Direct scattering problem: general consideration

In this section, we provide the main ingredients necessary to solve the AL scattering problem 
for generic potentials. Since the discrete potentials Qn, Rn vanish rapidly as n → ±∞, the 
scattering problem (2.1) is defined by the following boundary conditions [34]:

lim
n→−∞

φn(z) = zn
(

1
0

)
, lim

n→−∞
φn(z) = z−n

(
0
1

)
,� (3.1)

lim
n→+∞

ψn(z) = z−n
(

0
1

)
, lim

n→+∞
ψn(z) = zn

(
1
0

)
,� (3.2)

where each φn(z),φn(z) and ψn(z),ψn(z) individually satisfy equation (2.1). Furthermore, the 
scattering problem (2.3) is subject to the same boundary conditions. In essence, transforma-
tion (2.4) implies that each eigenfunction need to be properly ‘normalized’ such that the corre
sponding boundary conditions between vn and wn match. Throughout the rest of the paper, 
star is used to indicate complex conjugation (and not bar). Clearly, the eigenfunction pair 
{φn(z),φn(z)} are linearly independent (similarly for {ψn(z),ψn(z)}). Thus, since the scat-
tering problem (2.1) is second order, the two eigenfunctions sets are related. Mathematically 
speaking, this fact is expressed as

φn(z) = b(z)ψn(z) + a(z)ψn(z),� (3.3)

φn(z) = a(z)ψn(z) + b(z)ψn(z),� (3.4)

where a(z), a(z), b(z), b(z) are the scattering data given by the relations

a(z) = cnW (φn(z), ψn(z)) ,� (3.5)
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a(z) = cnW
(
ψn(z), φn(z)

)
,� (3.6)

b(z) = cnW
(
ψn(z), φn(z)

)
,� (3.7)

b(z) = cnW
(
φn(z), ψn(z)

)
.� (3.8)

Here, W is the Wronskian defined by

W(vn, wn) = v(1)
n w(2)

n − v(2)
n w(1)

n ,� (3.9)

where vn = (v(1)
n , v(2)

n )T  and wn = (w(1)
n , w(2)

n )T  and

cn =

+∞∏
k=n

(1 − QkRk) .� (3.10)

The above scattering data also satisfies the unitarity condition (see [34])

a(z)a(z)− b(z)b(z) = c−∞.� (3.11)

As we shall see later, the scattering data a(z), a(z) and the product b(z)b(z) turn out to be 
time-independent (see [34] for further details.) This fact implies c−∞ be time-independent 
as well, thus making it a constant of motion. In the following analysis, it is convenient to 
consider functions with constant boundary conditions. We define the bounded eigenfunctions 
as follows:

Mn(z) = z−nφn(z), Mn(z) = znφn(z),� (3.12)

Nn(z) = znψn(z), Nn(z) = z−nψn(z).� (3.13)

For the convenience of the reader, we write down the boundary conditions associated with 
these eigenfunctions:

lim
n→−∞

Mn(z) =
(

1
0

)
, lim

n→−∞
Mn(z) =

(
0
1

)
,� (3.14)

lim
n→+∞

Nn(z) =
(

0
1

)
, lim

n→+∞
Nn(z) =

(
1
0

)
.� (3.15)

In [34] it was shown that if ‖Q‖1 =
∑∞

−∞ |Qn| < ∞ and ‖R‖1 =
∑∞

−∞ |Rn| < ∞,  
then Mn(z), Nn(z), a(z) are analytic for |z| > 1 and continuous for |z| � 1. Furthermore, 
Mn(z), Nn(z), a(z) are analytic for |z| < 1 and continuous for |z| � 1. The scattering data 
a(z), a(z) are even functions of z while b(z), b(z) are odd functions of z. The eigenfunctions 
admit the following asymptotic expansions as z → ∞, z → 0 (which will be used when solv-
ing the inverse problem)

Mn(z) =
(

1 + O(z−2), even powers of z only
z−1Rn−1 + O(z−3), odd powers of z only

)
as |z| → ∞,� (3.16)

Nn(z) =
(
−z−1c−1

n Qn + O(z−3), odd powers of z only
c−1

n + O(z−2), even powers of z only

)
as |z| → ∞,

� (3.17)
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Mn(z) =
(

zQn−1 + O(z3), odd powers of z only
1 + O(z2), even powers of z only

)
as z → 0,� (3.18)

Nn(z) =
(

c−1
n + O(z2), even powers of z only

zc−1
n Rn + O(z3), odd powers of z only

)
as z → 0.� (3.19)

The scattering data have the following asymptotic behavior for large and small z:

a(z) = 1 + O(z−2), even powers of z only as |z| → ∞,� (3.20)

a(z) = 1 + O(z2), even powers of z only as |z| → 0,� (3.21)

where, as mentioned above, cn =
∏+∞

k=n (1 − QkRk). Notice that the factor cn explicitly 
depends on the unknown potentials Qn, Rn. This fact makes the Riemann–Hilbert (RH) 
inverse problem a more difficult task. To remedy this issue, it proves convenient to modify the 
eigenfunctions Mn(z), Nn(z); Mn(z), Nn(z) and introduce instead a new set of eigenfunctions, 

M′
n(z), N′

n(z); M
′
n(z), N

′
n(z), whose definition and asymptotic behavior (for large and small z) 

are given by [34]

N′
n ≡ ANn =

(
−z−1c−1

n Qn

1

)
+ O(z−2) as z → ∞,� (3.22)

M′
n ≡ AMn =

(
1

z−1cnRn−1

)
+ O(z−2) as z → ∞,� (3.23)

N
′
n ≡ ANn =

(
c−1

n

−zRn

)
+ O(z2) as z → 0,� (3.24)

M
′
n ≡ AMn =

(
zQn−1

cn

)
+ O(z2) as z → 0,� (3.25)

where A denotes the matrix

A ≡
(

1 0
0 cn

)
.� (3.26)

When solving the inverse problem from the left, the auxiliary functions µn,µn,µ′
n and µ′

n will 
be used with their asymptotic behavior (in z):

µn(z) ≡
Mn(z)
a(z)

, µ′
n(z) ≡

M′
n(z)

a(z)
,� (3.27)

µn(z) ≡
Mn(z)
a(z)

, µ′
n(z) ≡

M
′
n(z)

a(z)
,� (3.28)

µn(z) =
(

1 + O(z−2)

z−1Rn−1 + O(z−3)

)
, as |z| → ∞,� (3.29)

µn(z) =
(

zQn−1 + O(z3)

1 + O(z2)

)
, as z → 0,� (3.30)
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µ′
n(z) =

(
1

z−1cnRn−1

)
+ O(z−2) as |z| → ∞,� (3.31)

µ′
n(z) =

(
zQn−1

cn

)
+ O(z2) as |z| → 0.� (3.32)

So far we have presented generic basic properties of the eigenfunctions and scattering data 
needed in the analysis of the inverse scattering problem. No symmetry assumption was made 
on the potentials Qn and Rn.

4.  Ablowitz–Ladik reduction Rn = σQ∗
n

For completeness and to make the comparison between all four different integrable symmetry 
reductions of the AL scattering problem easier, in this section we provide the reader with a 
brief summary of the major symmetry results between the eigenfunctions, scattering data and 
norming constants, see [34].

4.1.  Symmetries between eigenfunction

(
M

(1)
n (z)

M
(2)
n (z)

)
=

(
σM(2)∗

n (1/z∗)

M(1)∗
n (1/z∗)

)
,

(
N

(1)
n (z)

N
(2)
n (z)

)
=

(
N(2)∗

n (1/z∗)

σN(1)∗
n (1/z∗)

)
.

� (4.1)

4.2.  Symmetries between scattering data

a(z) = a∗(1/z∗), b(z) = σb∗(1/z∗),� (4.2)

zj = 1/z∗j , Cj = −σ(z∗j )
−2C∗

j , ρ(z) = σρ∗(1/z∗),� (4.3)

where here and below zj, zj mean:

a(zj) = 0, a(zj) = 0.� (4.4)

Due to analyticity properties, zj  and zj, are finite in number. We will assume that zj, zj are 
simple zero’s, termed proper zero’s, and have same total number outside/inside the unit circle 
|z| = 1: j = 1, 2, ...J . These are also the eigenvalues giving rise bound states.

The norming constants are defined by

φn(zj) = bjψn(zj), φn(zj) = bjψn(zj),

Cj = bj/a′(zj), Cj = bj/a′(zj).
� (4.5)

4.3.  Symmetries of the modified eigenfunctions

M
(1)′

n (z) = σ(cσn )
−1 M(2)′∗

n (1/z∗),� (4.6)

M
(2)′

n (z) = cσn M(1)′∗
n (1/z∗),� (4.7)
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N
(1)′

n (z) = (cσn )
−1 N(2)′∗

n (1/z∗),� (4.8)

N
(2)′

n (z) = σcσn N(1)′∗
n (1/z∗),� (4.9)

where we have defined

cσn =

∞∏
k=n

(
1 − σ|Qk|2

)
.� (4.10)

5.  Reverse-time symmetry reduction Rn(t) = σQn(−t), σ = ∓1

In this section, we shall establish a crucial integrable symmetry relation that holds between 
sets of eigenfunctions solutions to the AL scattering problem. This in turn induces an impor-
tant symmetry restriction between the scattering data.

5.1.  Symmetries between the eigenfunctions

To that purpose we write φn(z, t) ≡ (φ
(1)
n (z, t), φ

(2)
n (z, t))T  (note that we have now included 

the variable t in the eigenfunctions), where superscript T denotes matrix transpose, as a solu-
tion to system (2.1) with Rn(t) = σQn(−t):

φ
(1)
n+1(z, t) = zφ(1)

n (z, t) + Qn(t)φ(2)
n (z, t),� (5.1)

φ
(2)
n+1(z, t) = σQn(−t)φ(1)

n (z, t) + z−1φ(2)
n (z, t).� (5.2)

Let t → −t, z → 1/z in the above equations; rearrange terms to find

φ
(2)
n+1(1/z,−t) = zφ(2)

n (1/z,−t) + Qn(t)
[
σφ(1)

n (1/z,−t)
]

,� (5.3)

σφ
(1)
n+1(1/z,−t) = σQn(−t)φ(2)

n (1/z,−t) + z−1
[
σφ(1)

n (1/z,−t)
]

.� (5.4)

Now, define the quantities:

φ(2)
n (1/z,−t) ≡ Φ(1)

n (z, t), σφ(1)
n (1/z,−t) ≡ Φ(2)

n (z, t).� (5.5)

Then equations (5.3) and (5.4) read

Φ
(1)
n+1(z, t) = zΦ(1)

n (z, t) + Qn(t)Φ(2)
n (z, t),� (5.6)

Φ
(2)
n+1(z, t) = σQn(−t)Φ(1)

n (z, t) + z−1Φ(2)
n (z, t),� (5.7)

which is exactly the scattering problem (2.1) under the symmetry reduction Rn(t) = σQn(−t). 
Therefore, from (5.6) and (5.7) we have the following symmetry relation

If

(
φ
(1)
n (z, t)

φ
(2)
n (z, t)

)
solves equation (2.1) with Rn(t) = σQn(−t) so does

(
φ
(2)
n (1/z,−t)

σφ
(1)
n (1/z,−t)

)
.

M J Ablowitz et alNonlinearity 33 (2020) 3653



3662

Similar symmetry arguments hold for φn(z, t) ≡ (φ
(1)
n (z, t), φ

(2)
n (z, t))T .

Next we discuss how the above symmetry and the corresponding boundary conditions 
(3.1) induce certain symmetry conditions on the eigenfunctions pair and (as we shall se in 
the next section) on the scattering data. Again let φn(z, t) be a solution to system (2.1) with 
Rn(t) = σQn(−t) obeying the boundary condition given on the left part of equation  (3.1). 
Now, let z → 1/z, t → −t  in (3.1) to obtain

lim
n→−∞

(
σφ

(2)
n (1/z,−t)

φ
(1)
n (1/z,−t)

)
= z−n

(
0
1

)
.� (5.8)

Next, let φn(z, t) be another solution to system (2.1) with Rn(t) = σQn(−t) satisfying the 
boundary condition given on the right part of equation (3.1). Therefore, we have the important 
result:

(
φ
(1)
n (z, t)

φ
(2)
n (z, t)

)
=

(
σφ

(2)
n (1/z,−t)

φ
(1)
n (1/z,−t)

)
.� (5.9)

This symmetry relation induces an important symmetry between the eigenfunctions Mn(z, t) 
and Mn(z,t) which reads

(
M

(1)
n (z, t)

M
(2)
n (z, t)

)
=

(
σM(2)

n (1/z,−t)

M(1)
n (1/z,−t)

)
.� (5.10)

Similarly, we assume that ψn(z, t) ≡ (ψ
(1)
n (z, t), ψ

(2)
n (z, t))T  is a solution to system (2.1) with 

Rn(t) = σQn(−t) that satisfies the boundary condition (3.2). By letting z → 1/z, t → −t  in 
(3.2) we obtain

lim
n→+∞

(
ψ
(2)
n (1/z,−t)

σψ
(1)
n (1/z,−t)

)
= zn

(
1
0

)
.� (5.11)

Clearly, if ψn(z, t) is a solution to system (2.1), with Rn(t) = σQn(−t), satisfying the bound-
ary condition (3.2) we have the result:

(
ψ
(1)
n (z, t)

ψ
(2)
n (z, t)

)
=

(
ψ
(2)
n (1/z,−t)

σψ
(1)
n (1/z,−t)

)
.� (5.12)

To obtain a symmetry relation between the corresponding eigenfunctions Nn(z,t) and Nn(z, t) 
we use the result obtained in (5.12) and find

(
N

(1)
n (z, t)

N
(2)
n (z, t)

)
=

(
N(2)

n (1/z,−t)

σN(1)
n (1/z,−t)

)
.� (5.13)

5.2.  Symmetries between the modified eigenfunctions

Recall the relation between the two sets of eigenfunctions {Mn(z), Nn(z); Mn(z), Nn(z)} 

and {M′
n(z), N′

n(z); M
′
n(z), N

′
n(z)} given by equations  (3.22)–(3.25). Use the symmetry 

relation between the ‘unprimed’ eigenfunctions established in (5.10) and (5.13), we find, 
componentwise
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M
(1)′

n (z, t) = σ(cσn (t))
−1 M(2)′

n (1/z,−t),� (5.14)

M
(2)′

n (z, t) = cσn (t) M(1)′
n (1/z,−t),� (5.15)

N
(1)′

n (z, t) = (cσn (t))
−1 N(2)′

n (1/z,−t),� (5.16)

N
(2)′

n (z, t) = σcσn (t) N(1)′
n (1/z,−t).� (5.17)

Note that, by definition, cn(t) ≡ cn(Qk(t), Rk(t)) =
∏∞

k=n (1 − Qk(t)Rk(t)) . At the symmetry 
point where Rn(t) = σQn(−t) we have

cσn (t) ≡ cn(Qk(t),σQk(−t)) =
∞∏

k=n

(1 − σQk(t)Qk(−t)) = cσn (−t).� (5.18)

5.3.  Symmetry of scattering data

To establish the symmetry relation between the scattering data a(z) and a(z) we start from 
(3.5), (3.6) and the assumption that Rn(t) = σQn(−t). Now we have

a(z, t) = cσn (t)
(
ψ(2)

n (1/z,−t)φ
(2)
n (z, t)− σψ(1)

n (1/z,−t)φ
(1)
n (z, t)

)
� (5.19)

= cσn (t)
(
ψ(2)

n (1/z,−t)φ(1)
n (1/z,−t)− σ2ψ(1)

n (1/z,−t)φ(2)
n (1/z,−t)

)
.� (5.20)

However, from (3.5) we get

a(1/z,−t) = cσn (−t)
(
ψ(2)

n (1/z,−t)φ(1)
n (1/z,−t)− ψ(1)

n (1/z,−t)φ(2)
n (1/z,−t)

)
.

� (5.21)
Since cσn (t) = cσn (−t), as s a result we have

a(z, t) = a(1/z,−t).� (5.22)

As we shall see later, it turns out that the scattering data a(z, t) and a(z, t) are time-indepen-
dent giving rise to the following symmetry between the zeros of a(z, t) and a(z, t) (see equa-
tion (4.4); these zeros are also termed soliton eigenvalues:

If zj, zj ∈ C are eigenvalues then zj = 1/zj.� (5.23)

To find the symmetry relation between the scattering data b(z, t) and b(z, t) we start from equa-
tion (3.8), the symmetry relation (5.9) and the assumption that Rn(t) = σQn(−t). We have

b(z, t) = cn(t)
(
φ
(1)
n (z, t)ψ(2)

n (z, t)− φ
(2)
n (z, t)ψ(1)

n (z, t)
)

= cσn (t)
(
σφ(2)

n (1/z,−t)ψ(2)
n (z, t)− φ(1)

n (1/z,−t)ψ(1)
n (z, t)

)
.

� (5.24)

Next, from (3.7) we let z → 1/z, t → −t  and make use of the symmetry relation (5.12) to find

b(1/z,−t) = cn(−t)
(
ψ
(1)
n (1/z,−t)φ(2)

n (1/z,−t)− ψ
(2)
n (1/z,−t)φ(1)

n (1/z,−t)
)

= cσn (−t)
(
ψ(2)

n (z, t)φ(2)
n (1/z,−t)− σψ(1)

n (z, t)φ(1)
n (1/z,−t)

)
.

� (5.25)
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Since cσn (−t) = cσn (t) we have

b(z, t) = σb(1/z,−t).� (5.26)

Finally, we derive the symmetry relation between the norming constants, Cj(t), Cj(t) and 
reflection coefficients ρ(z, t), ρ(z, t). By definition, we have

ρ(z, t) =
b(z, t)
a(z, t)

=
σb(1/z,−t)
a(1/z,−t)

= σρ(1/z,−t),� (5.27)

where, in obtaining the last result, we used the symmetry relations (5.22) and (7.27). 
To derive a relation between the norming constants, define a new variable w  =  1/z. Then 
d/dz = −w2d/dw. With this at hand, we next take the derivative of equation (5.22) and find

a′(zj, t) = −z2
j a′(zj,−t),� (5.28)

where a′(ξ) ≡ da/dξ. Now, from the definition of the norming constants (see (4.5)), we get

Cj(t) =
bj(t)

a′(zj, t)
=

σbj(t)
−z2

j a′(zj,−t)
= −σz−2

j Cj(−t),� (5.29)

where zj  and zj are the zeros of the scattering data a(z, t) and a(z, t)) (see equation (4.4)), i.e. 
a(zj, 0) = 0; a(zj, 0) = 0. Furthermore, zj  and zj are related throughout the symmetry condi-
tion (5.23).

6.  Reverse space-time reduction Rn(t) = σQ−n(−t),σ = ∓1

In this section we obtain all symmetries between the scattering eigenfunctions, reflection coef-
ficients and norming constants for the reverse space-time reduction Rn(t) = σQ−n(−t).

6.1.  Symmetries between the eigenfunctions

To that purpose assume that φn(z) ≡ (φ
(1)
n (z), φ

(2)
n (z))T , where T  denotes matrix transpose, is 

a solution to system (2.1) with Rn(t) = σQ−n(−t):

φ
(1)
n+1(t) = zφ(1)

n (t) + Qn(t)φ(2)
n (t),� (6.1)

φ
(2)
n+1(t) = σQ−n(−t)φ(1)

n (t) + z−1φ(2)
n (t).� (6.2)

Let n → −n, t → −t  in (6.1) and (6.2); rearrange the result to find

φ
(2)
−(n−1)(−t) = z−1φ

(2)
−n(−t) + σQn(t)φ

(1)
−n(−t),� (6.3)

φ
(1)
−(n−1)(−t) = Q−n(−t)φ(2)

−n(−t) + zφ(1)
−n(−t).� (6.4)

Define the quantities

Φ(1)
n (t) ≡ φ

(2)
−n(−t), Φ(2)

n (t) ≡ −σφ
(1)
−n(−t).� (6.5)

These auxiliary eigenfunctions satisfy a ‘backward’ scattering problem

Φ
(1)
n−1(t) = z−1Φ(1)

n (t)− Qn(t)Φ(2)
n (t),� (6.6)
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Φ
(2)
n−1(t) = −σQ−n(−t)Φ(1)

n (t) + zΦ(2)
n (t),� (6.7)

which is exactly the scattering problem (2.3) under the symmetry reduction Rn(t) = σQ−n(−t). 
Thus, we have the following symmetry relation:

If

(
φ
(1)
n (z, t)

φ
(2)
n (z, t)

)
solves (2.1) with Rn(t) = σQ−n(−t) then

(
Φ

(1)
n (z, t)

Φ
(2)
n (z, t)

)
solves (2.3).

Note that if (ψ(1)
n (z, t), ψ

(2)
n (z, t))T  solves (2.1) so does γ(ψ(1)

n (z, t), ψ
(2)
n (z, t))T  for any non 

zero constant γ . Thus, using relation (2.4) we have

Φ(1)
n (z, t) = γ f σn (t)ψ(1)

n+1(z, t), Φ(2)
n (z, t) = γ f σn (t)ψ(2)

n+1(z, t),� (6.8)

with

f σn (t) ≡
n∏

j=−∞

1
1 − σQj(t)Q−j(−t)

.� (6.9)

In terms of the eigrnfunction Φn(t) defined in equation (6.5), we find

φ
(2)
−n(z,−t) = γ f σn (t)ψ(1)

n+1(z, t), −σφ
(1)
−n(z,−t) = γ f σn (t)ψ(2)

n+1(z, t).
� (6.10)

Next, we determine the value of γ  so that the proper boundary conditions are satisfied. First 
note that limn→+∞ f σn (t) = 1/c−∞ (time-independent). From the boundary conditions (3.1) 
and (3.2) we find

lim
n→+∞

[
−σφ

(1)
−n(z,−t)

]
= −σz−n = lim

n→+∞

[
γ f σn (t)ψ(2)

n+1(z, t)
]
=

γ

c−∞
z−(n+1),

� (6.11)
giving rise to γ = −σzc−∞. To this end, we have the following relations between the 
eigenfunctions:

(
ψ
(1)
n+1(z, t)

ψ
(2)
n+1(z, t)

)
=

1
zcσ−∞f σn (t)

(
−σφ

(2)
−n(z,−t)

φ
(1)
−n(z,−t)

)
.� (6.12)

To establish the symmetry relation between the corresponding eigenfunctions Nn(z,t) and 
Mn(z,t) we use the definition Nm(z, t) = zmψm(z, t) and Mm(z, t) = z−mφm(z, t). Multiply 
(6.12) by zn+1 and, after some algebra, one concludes that

(
N(1)

n+1(z, t)

N(2)
n+1(z, t)

)
=

1
cσ−∞f σn (t)

(
−σM(2)

−n(z,−t)

M(1)
−n(z,−t)

)
.� (6.13)

Note that this is a relation between both analytic eigenfunctions outside the unit circle in the 
complex z plane. Next, we derive the symmetry relations between the ‘bar’ eigenfunctions. 
Following similar steps as before, we have:

If

(
φ
(1)
n (z, t)

φ
(2)
n (z, t)

)
solves (2.1) with Rn(t) = σQ−n(−t) then

(
Φ

(1)
n (z, t)

Φ
(2)
n (z, t)

)
solves (2.3),

where φ
(2)
−n(t) ≡ Φ

(1)
n (−t) and φ

(1)
−n(t) ≡ −σΦ

(2)
n (−t). To make sure the boundary conditions 

are correctly incorporated, we introduce an ‘arbitrary’ non zero constant γ  so that γψn(z, t) is 
a solution to system (2.1). With the help of the transformation (2.4) one has
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φ
(2)
−n(z,−t) = γ f σn (t)ψ

(1)
n+1(z, t), −σφ

(1)
−n(z,−t) = γ f σn (t)ψ

(2)
n+1(z, t).

� (6.14)
From the boundary conditions (3.1) and (3.2) we have

lim
n→+∞

[
φ
(2)
−n(z,−t)

]
= zn = lim

n→+∞

[
γ f σn (t)ψ

(1)
n+1(z, t)

]
=

γ

cσ−∞
zn+1,� (6.15)

leading to γ = c−∞
z . Thus, the ‘bar’ eigenfunctions satisfy the following symmetry:

(
ψ
(1)
n+1(z, t)

ψ
(2)
n+1(z, t)

)
=

z
cσ−∞f σn (t)

(
φ
(2)
−n(z,−t)

−σφ
(1)
−n(z,−t)

)
.� (6.16)

To find the corresponding symmetry between the eigenfunctions Mn(z, t) and Nn(z, t), we 
multiply (6.16) by z−(n+1); use the definition Nn(z, t) = z−nψn(z, t) and Mn(z, t) = znφn(z, t) 
to find

(
N

(1)
n+1(z, t)

N
(2)
n+1(z, t)

)
=

1
cσ−∞f σn (t)

(
M

(2)
−n(z,−t)

−σM
(1)
−n(z,−t)

)
.� (6.17)

This is a relation between both analytic eigenfunctions inside |z| < 1.

6.2.  Symmetries between the modified eigenfunctions

Since the inverse problem is formulated in terms of the modified eigenfunctions 

M′
n(z, t), N′

n(z, t); M
′
n(z, t), N

′
n(z, t), it proves convenient to derive the corresponding symmetry 

relations that these ‘primed’ eigenfunctions satisfy . In fact this symmetry is later used in order 
to determine the relations between the norming constants and scattering data from the left 
and right scattering problems. Furthermore, they are needed in order to obtain an alternative 
reconstruction formula for the potentials that allows one to observe the integrable symmetry 
at the inverse side. To do so, first note that, by definition, cn(t) =

∏∞
k=n (1 − QkRk) . Thus, at 

the symmetry point Rk(t) = σQ−k(−t) one can show

cσn (t) =
1

f σ−n(−t)
, cσm+1(t) = cσ−∞f σn (t).� (6.18)

These results are later used to obtain a simplified form for the symmetry relations between the 
eigenfunctions. With this at hand, we start from the definition of the ‘primed’ and the stan-
dard eigenfunctions given in equations (3.22)–(3.25). Apply the symmetry condition between 
them, established in (6.13) and (6.17), one finds

N(1)′

n+1(z, t) = −σ(cσ−∞)−1M(2)′

−n (z,−t),� (6.19)

N(2)′

n+1(z, t) = M(1)′

−n (z,−t),� (6.20)

N
(1)′

n+1(z, t) = (cσ−∞)−1M
(2)′

−n (z,−t),� (6.21)

N
(2)′

n+1(z, t) = −σM
(1)′

−n (z,−t).� (6.22)
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6.3.  Symmetry of scattering data

In this section we obtain all symmetry relations between the scattering data and norming con-
stants. Contrary to the RT NLS case, where the scattering data sets, {a(z, t), b(z, t), C(t)} and 
{a(z, t), b(z, t), C(t)} are connected through a symmetry condition, here (RST case) the two 
sets are actually not related. Rather, as we shall see, each scattering data (except b(z, t), b(z, t)) 
satisfy its own symmetry requirement.

We start from the definition given in (3.5). Use the symmetry relation between the eigen-
functions obtained in (6.12) to find

a(z, t) = cn+1(t)
(
φ
(1)
n+1(z, t)ψ(2)

n+1(z, t)− φ
(2)
n+1(z, t)ψ(1)

n+1(z, t)
)

=
cσn+1(t)

zcσ−∞f σn (t)

(
φ
(1)
n+1(z, t)φ(1)

−n(z,−t) + σφ
(2)
n+1(z, t)φ(2)

−n(z,−t)
)

,
�

(6.23)

where using (3.10) we define

cσm(t) ≡ cm(Qk(t),σQ−k(−t)) =
+∞∏
k=m

(1 − σQk(t)Q−k(−t)) .� (6.24)

By letting n → −n − 1, t → −t in (6.23) one arrives at

a(z,−t) =
cσ−n(−t)

zcσ−∞f σ−n−1(−t)

(
φ
(1)
−n(z,−t)φ(1)

n+1(z, t) + σφ
(2)
−n(z,−t)φ(2)

n+1(z, t)
)

.

� (6.25)
Recall the definitions of cn, fn from (3.10) and (6.9); make use of the identities listed in (6.18) 
to obtain

cσn+1(t)
f σn (t)

=
cσ−n(−t)

f σ−n−1(−t)
.� (6.26)

This last result together with (6.23) and (6.25) imply the symmetry condition

a(z, t) = a(z,−t).� (6.27)

The derivation of the symmetry relation for the scattering data a(z, t) follows similar line of 
arguments as discussed above (hence we omit details). Thus, we have

a(z, t) = a(z,−t).� (6.28)

Thus a(z, t) and a(z, t), which are analytic in different regions of the complex z plane, satisfy 
their own symmetry relationships. Since, as we shall later see, the scattering data a(z, t) and 
a(z, t) are time-independent, equations (6.27) and (6.28) impose no restriction on the soliton 
eigenvalue zj  and zj. As such, they are counted as free parameters (complex in general). Next, 
we proceed with the derivation of the symmetry between b(z, t) and b(z, t). For that purpose, 
we start from equation (3.8); use the symmetry conditions between the eigenfunctions given 
in (6.13) and (6.17)

b(z, t) = cn+1(t)
(
φ
(1)
n+1(z, t)ψ(2)

n+1(z, t)− φ
(2)
n+1(z, t)ψ(1)

n+1(z, t)
)

=
cσn+1(t)

zcσ−∞f σn (t)

(
φ
(1)
n+1(z)φ

(1)
−n(z,−t) + σφ

(2)
n+1(z, t)φ(2)

−n(z,−t)
)

.
�

(6.29)
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Next, from (3.7) it follows that

b(z, t) = cn+1(t)
(
ψ
(1)
n+1(z, t)φ(2)

n+1(z, t)− ψ
(2)
n+1(z, t)φ(1)

n+1(z, t)
)

=
zcσn+1(t)

cσ−∞f σn (t)

(
φ
(2)
−n(z,−t)φ(2)

n+1(z, t) + σφ
(1)
−n(z,−t)φ(1)

n+1(z, t)
)

.
�

(6.30)

Let n → −n − 1, t → −t in (6.30) we find

b(z,−t) =
zcσ−n(−t)

cσ−∞f σ−n−1(−t)

(
φ
(2)
n+1(z, t)φ(2)

−n(z,−t) + σφ
(1)
n+1(z, t)φ(1)

−n(z,−t)
)

=
σzcσ−n(−t)

cσ−∞f σ−n−1(−t)

(
σφ

(2)
n+1(z, t)φ(2)

−n(z,−t) + φ
(1)
n+1(z, t)φ(1)

−n(z,−t)
)

.

� (6.31)
Again use the result established in (6.26) to find

b(z, t) =
σ

z2 b(z,−t).� (6.32)

Since the scattering data a and a  are analytic in different regions of the complex z plane, they 
are not related through any symmetry (see equations (6.27) and (5.22)), as a result, the corre
sponding norming constants Cj  and Cj  do not satisfy a symmetry relation by themselves. One 
needs to go back to the original definitions, see formula (4.5), and find separate symmetry 
conditions on bj, bj and derive a trace-type formula to separately determine a′(zj), a′(zj).

7.  PT symmetric reduction Rn = σQ∗
−n, σ = ∓1

In 2014, Ablowitz and Musslimani [40] discovered a new nonlocal reduction to the AL scat-
tering problem (2.1) that preserves a discrete type of PT symmetry, i.e. invariance under the 
combined transformation of n → −n, t → −t and complex conjugation. However, due to size 
limitation, many significant details pertaining to the direct and inverse problems, particularly 
the derivation of all implied symmetries were omitted. In this section, we provide detailed 
analysis of all symmetries that the eigenfunctions, scattering data and norming constants sat-
isfy. We note that the inverse scattering transform for the AL model with PT symmetry has 
been extended by Grahovski, Mohammed and Susanto; one and two-soliton solutions for 
the nonlocal Ablowitz–Ladik equation were also obtained [51]. This paper goes further by 
formulating and solving the RST and RT discrete symmetric nonlocal systems and obtains all 
necessary scattering space symmetries for these and the PT symmetric case.

Importantly, as we shall see later, the PT symmetric case is fundamentally different from 
the RST one in the sense that complex conjugation need not commute with time reversal sym-
metry. This means, one cannot simply replace complex conjugation by  −t.

7.1.  Symmetries between the eigenfunctions

Here, we will write down all symmetries of the scattering problem under the reduction 
Rn = σQ∗

−n. Since this reduction is local in time, we shall omit the explicit time dependence from 

all dependent variables. To that purpose assume (as before) that φn(z) ≡ (φ
(1)
n (z), φ

(2)
n (z))T  

is a solution to system (2.1) with Rn = σQ∗
−n. After complex conjugation is taken combined 

with the transformation n → −n, z → z∗ one obtains

φ
(2)∗

−(n−1)(z
∗) = z−1φ

(2)∗

−n (z∗) + σQnφ
(1)∗

−n (z∗),� (7.1)
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φ
(1)∗

−(n−1)(z
∗) = Q∗

−nφ
(2)∗

−n (z∗) + zφ(1)∗

−n (z∗).� (7.2)

Now, define the quantities Φ(1)
n (z) ≡ φ

(2)∗

−n (z∗),Φ(2)
n (z) ≡ −σφ

(1)∗

−n (z∗). It can been shown 
that these new functions satisfy the ‘reverse’ scattering problem (2.3). Therefore, we arrive at 
the following conclusion

If

(
φ
(1)
n (z)

φ
(2)
n (z)

)
solves (2.1) with Rn = σQ∗

−n then

(
Φ

(1)
n (z)

Φ
(2)
n (z)

)
solves (2.3).

In view of the transformation (2.4) we have

φ
(2)
−n

∗
(z∗) = γ f σn ψ

(1)
n+1(z), φ

(1)
−n

∗
(z∗) = −σγ f σn ψ

(2)
n+1(z),� (7.3)

with a nonzero constant γ  (to be determined) and

f σn ≡
n∏

j=−∞

1
1 − σQjQ∗

−j
.� (7.4)

Next, we check boundary conditions (recall that limn→+∞ f σn (t) = 1/cσ−∞). From the bound-
ary conditions (3.1) and (3.2) we have

lim
n→+∞

φ
(1)∗

−n (z∗) = z−n = −σγ lim
n→+∞

[
f σn ψ

(2)
n+1(z)

]
= − σγ

cσ−∞
z−(n+1).� (7.5)

In order for equation (6.11) to hold true we require γ = −σcσ−∞z. Thus, we have the follow-
ing relations between the eigenfunctions:

(
ψ
(1)
n+1(z)

ψ
(2)
n+1(z)

)
=

1
zcσ−∞f σn

(
−σφ

(2)∗

−n (z∗)

φ
(1)∗

−n (z∗)

)
.� (7.6)

To establish the symmetry relation between the corresponding eigenfunctions Nn(z) and Mn(z) 
we multiply (7.6) by zn+1; use the definition Nm(z) = zmψm(z) and Mm(z) = z−mφm(z) to 
obtain

(
N(1)

n+1(z)

N(2)
n+1(z)

)
=

1
cσ−∞f σn

(
−σM(2)∗

−n (z∗)

M(1)∗

−n (z∗)

)
.� (7.7)

We next establish the symmetry relations between the ‘bar’ eigenfunctions. Following similar 
steps as before, we conclude:

If

(
φ
(1)
n (z)

φ
(2)
n (z)

)
solves (2.1) with Rn(t) = σQ∗

−n then

(
Φ

(1)
n (z)

Φ
(2)
n (z)

)
solves (2.3),

where φ
(2)∗

−n (z∗) ≡ Φ
(1)
n (z) and −σφ

(1)∗

−n (z∗) ≡ Φ
(2)
n (z). Note that if (ψ

(1)
n (z, t), ψ

(2)
n (z, t))T  

solves (2.1), so does γ(ψ
(1)
n (z, t), ψ

(2)
n (z, t))T  for any nonzero constant γ . Thus, using the 

transformation (2.4) we find

φ
(2)∗

−n (z∗) = γ f σn ψ
(1)
n+1(z), −σφ

(1)∗

−n (z∗) = γ f σn ψ
(2)
n+1(z).� (7.8)

To determine the value of the constant γ  we examine the boundary conditions (3.1) and (3.2). 
In this case, one sets
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lim
n→+∞

[
φ
(2)∗

−n (z∗)
]
= zn = lim

n→+∞

[
γ f σn ψ

(1)
n+1(z)

]
=

γ

cσ−∞
zn+1,� (7.9)

that leads to γ =
cσ−∞

z . Thus we have the following relations between the eigenfunctions:
(
ψ
(1)
n+1(z)

ψ
(2)
n+1(z)

)
=

z
cσ−∞f σn

(
φ
(2)∗

−n (z∗)

−σφ
(1)∗

−n (z∗)

)
.� (7.10)

The symmetry between the corresponding eigenfunctions Mn(z) and Nn(z) are obtained fol-
lowing similar steps as before. One has

(
N

(1)
n+1(z)

N
(2)
n+1(z)

)
=

1
cσ−∞f σn

(
M

(2)∗

−n (z∗)

−σM
(1)∗

−n (z∗)

)
.� (7.11)

7.2.  Symmetry between the modified eigenfunctions

Having determined the symmetries between all eigenfunctions, we turn our attention next to 
compute the symmetries between the modified eigenfunctions defined by equations (3.22)–
(3.30). Since all dependent variables are local in time, we shall suppress the explicit time 
dependence. In this section, we shall make a frequent use of the identity cσn = 1/f σ

∗

−n valid 
whenever Rn = σQ∗

−n.
We have shown that under the reduction Rn = σQ∗

−n the set of eigenfunctions {Mn, Nn} 
and {Mn, Nn} satisfy the symmetry relation given in (7.7) and (7.11). These symmetries, in 
turn, induce another symmetries between the ‘primed’ eigenfunctions given by

N(1)′

n+1(z) = − σ

cσ−∞
M(2)′∗

−n (z∗),� (7.12)

N(2)′

n+1(z) = M(1)′∗

−n (z∗),� (7.13)

N
(1)′

n+1(z) =
1

cσ−∞
M

(2)′∗

−n (z∗),� (7.14)

N
(2)′

n+1(z) = −σM
(1)′∗

−n (z∗).� (7.15)

7.3.  Symmetry between scattering data

To establish the symmetry relation between the scattering data we start from (3.5) combined 
with the symmetries between the eigenfunctions given in (7.6). We have

a(z) = cn+1

(
φ
(1)
n+1(z)ψ

(2)
n+1(z)− φ

(2)
n+1(z)ψ

(1)
n+1(z)

)

=
cσn+1

zcσ−∞f σn

(
φ
(1)
n+1(z)φ

(1)∗

−n (z∗) + σφ
(2)
n+1(z)φ

(2)∗

−n (z∗)
)

,
� (7.16)

where using (3.10) we have defined

cσm ≡ cm(Qk,σQ∗
−k) =

+∞∏
k=m

(
1 − σQkQ∗

−k

)
.� (7.17)
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Next, let z → z∗, n → −n in (3.5) to find

a∗(z∗) = c∗−n

(
φ
(1)∗

−n (z∗)ψ(2)∗

−n (z∗)− φ
(2)∗

−n (z∗)ψ(1)∗

−n (z∗)
)

=
cσ

∗

−n

zcσ∗
−∞f σ∗

−n−1

(
φ
(1)∗

−n (z∗)φ(1)
n+1(z) + σφ

(2)∗

−n (z∗)φ(2)
n+1(z)

)
.

� (7.18)

With the definitions of f σn  and cσn , we conclude

cσn+1

f σn
=

+∞∏
k=n+1

n∏
j=−∞

[
1 − σQkQ∗

−k

] [
1 − σQjQ∗

−j

]
= cσ−∞.� (7.19)

On the other hand we have

cσ
∗

−n

f σ∗
−n−1

=

+∞∏
k=−n

−n−1∏
j=−∞

[
1 − σQkQ∗

−k

]∗ [
1 − σQjQ∗

−j

]∗
= cσ

∗

−∞,� (7.20)

where cσ
∗

−∞ ≡ (cσ−∞)∗. Comparing equations (7.16) with (7.18) gives the symmetry result

a(z) = a∗(z∗).� (7.21)

Equation (6.27) implies that if zj  is an eigenvalue, i.e. a simple zero of the scattering data a(z) 
with |zj |  >  1 then z∗j  is a simple zero of a(z).

The derivation of the symmetry relation for the scattering data a(z) follows similar steps 
as for a(z). Indeed, if one starts from the definition (3.6); utilize the symmetry between the 
eigenfunctions given in (7.10), one arrives at the result

a(z) = a∗(z∗).� (7.22)

The above equation implies that if zj is a zero of a(z) with |zj| < 1 then z∗j  is a zero of a(z) as 
well, in which case, they are all counted as a (complex) free parameters. It is interesting to note 
that for the PT symmetric case (in fact also for the RST) , all ‘bar’ quantities (eigenfunctions, 
scattering data and norming constants) do not ‘mix’ with their respective ‘unbar’ quantities. 
This is in sharp contrast to the RT and AL cases where all eigenfunctions and scattering data 
in the upper half complex z plane are related throughout a symmetry to their corresponding 
‘partners’ in the lower half complex z plane. In summary, we have the following conclusion:

If {zj, zj} ∈ C are zeros of a(z), a(z), i.e. eigenvalues, satisfying
|zj| > 1 and |zj| < 1, so do {z∗j , z∗j }.

Finally, we next determine the symmetry of scattering data b(z) and b(z). As before, we start 
from equation  (3.8); use the symmetry between the eigenfunctions (7.6) and the identity 
(7.19) to find

b(z) =
1
z

(
φ
(1)
n+1(z)φ

(1)∗

−n (z∗) + σφ
(2)
n+1(z)φ

(2)∗

−n (z∗)
)

.� (7.23)

With this at hand, it follows from (3.7) that

b(z) = cn+1

(
ψ
(1)
n+1(z)φ

(2)
n+1(z)− ψ

(2)
n+1(z)φ

(1)
n+1(z)

)

=
zcσn+1

cσ−∞f σn

(
φ
(2)∗

−n (z∗)φ(2)
n+1(z) + σφ

(1)∗

−n (z∗)φ(1)
n+1(z)

)
.

� (7.24)
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Let z → z∗ and −n → n + 1 in (7.24) and complex conjugate the result to find

b∗(z∗) =
σzcσ

∗

−n

cσ∗
−∞f σ∗

−n−1

(
σφ

(2)
n+1(z)φ

(2)∗

−n (z∗) + φ
(1)
n+1(z)φ

(1)∗

−n (z∗)
)

.� (7.25)

Again use the result established in (7.20), i.e. cσ−n
fσ−n−1

= cσ−∞ in which case we get

b∗(z∗) = σz
(
σφ

(2)
n+1(z)φ

(2)∗

−n (z∗) + φ
(1)
n+1(z)φ

(1)∗

−n (z∗)
)

.� (7.26)

From equations (7.23) and (7.26) it follows

b(z) =
σ

z2 b∗(z∗).� (7.27)

A summary and highlights of the key symmetry results related to all three nonlocal integrable 
reductions, including the AL, is given in table 1 (explicit time dependence is indicated only 
for the RT and RST cases).

8.  Inverse problem: Riemann–Hilbert approach

8.1.  Preliminaries

In this section we apply the inverse scattering transform to construct an explicit formula for the 
potentials Qn(t) and Rn(t). This is accomplished by reformulating the AL scattering problem 
as a Riemann–Hilbert problem and use projection operators (defined below) to solve for the 
potentials. Within the framework of AKNS theory, all is needed to solve an integrable evolution 
equation are symmetries between the eigenfunctions, scattering data and a reconstruction form
ula for both potentials. While this approach is sufficient to obtain any soliton solution, in this 
paper (and due to nonlocality), we solve two inverse problems: one from the left and the other 
from the right, then ‘glue’ them using the nonlocal symmetries obtained above.

The scattering problem (2.1) can possess discrete eigenvalues (bound states). These occur 

whenever a(z) has J simple zeros at {zj s.t. |zj| > 1}J
j=1, i.e. a(zj )  =  0 and a(z) has J ≡ J  sim-

ple zeros at {zj s.t. |zj| > 1}J
j=1, i.e. a(zj) = 0. Indeed, for such values of the spectral param

eters W(φn(zj),ψn(zj)) = 0 and W(φn(zj),ψn(zj)) = 0. Therefore, from (3.3) and (3.4) we find

φn(zj) = bjψn(zj),� (8.1)

φn(zj) = bjψn(zj).� (8.2)

In terms of the eigenfunctions {Mn, Nn, Mn, Nn} and {M′
n, N′

n, M
′
n, N

′
n}, equations  (8.1) and 

(8.2) imply

Mn(zj) = bjz−2n
j Nn(zj), M′

n(zj) = bjz−2n
j N′

n(zj),� (8.3)

Mn(z�) = b�z2n
� Nn(z�), M

′
n(z�) = b�z2n

� N
′
n(z�),� (8.4)

where, bj, bj is a short notation for b(zj), b(zj) respectively. Furthermore, one can show that the 
residue of the functions µn(z),µn(z) at eigenvalues zj, zj can be computed using the definition 
(3.29) and (3.30). Thus we have

Res(µn; zj) =
Mn(zj)

a′(zj)
=

bjz−2n
j Nn(zj)

a′(zj)
= z−2n

j CjNn(zj),� (8.5)
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Res(µn; z�) =
Mn(z�)
a′(z�)

=
b�z2n

� Nn(z�)
a′(z�)

= z2n
� C�Nn(z�),� (8.6)

where, we remind the reader, that the norming constants C� ≡ C(z�), C� ≡ C(z�) (see also 
(4.5)) are defined by

Cj =
bj

a′(zj)
,� (8.7)

C� =
b�

a′(z�)
.� (8.8)

Note that the poles of µ′
n(z) and µ′

n(z) (see equations (3.23) and (3.25)) are the same as the 
poles of µn(z) and µn(z) respectively. Moreover, the residues of these poles are determined 

by the relations Res(µ′
n; zj) = z−2n

j CjN′
n(zj), Res(µ′

n; z�) = z2n
� C�N

′
n(z�). As pointed out ear-

lier, the projection operators P< and P> will be frequently used to solve a Riemann–Hilbert 
problems. They are defined as follows: Let f (w), w ∈ C be analytic inside the unit circle in 
the complex z plane. Then

P<( f )(z) = lim
ζ→z
|ζ|<1

1
2πi

∮

|w|=1

f (w)
w − ζ

dw.� (8.9)

Similarly, for any f (w), w ∈ C analytic outside the unit circle in the z plane one have

P>( f )(z) = lim
ζ→z
|ζ|>1

1
2πi

∮

|w|=1

f (w)
w − ζ

dw.� (8.10)

Below we list some important properties of the projection operators that we shall use in the 
formulation of a RH problem. Let f in(w) ( f out(w)) be an analytic function inside (outside) the 
unit circle. Then we have

	 (i)	�P<( f in)(z) = f in(z),
	(ii)	�P<( f out)(z) = f out

∞ ,
	(iii)	�P>( f in)(z) = 0,
	(iv)	�P>( f out)(z) = f out

∞ − f out(z).

Next, we apply the inverse scattering transform on the scattering problem from the left.

8.2.  Left jump condition

To set up the RH problem from the left, we divide equation (3.3) by a(z), equation (3.4) by 
a(z); use the definition of the eigenfunctions in section 3, then one can show that the new func-
tions µ′

n(z) and µ′
n(z) satisfy the jump conditions on |z| = 1

µ′
n(z) = N

′
n(z) + z−2nρ(z)N′

n(z),� (8.11)

µ′
n(z) = N′

n(z) + z2nρ(z)N
′
n(z).� (8.12)

We subtract from both sides of equation (8.11) the vector (1 0)T and the non analytic parts of 
µ′

n(z); apply the projection operator P< on both sides of the resulting equation to get
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P<



µ′

n(z)−
(

1
0

)
−

J∑
j=1

Cjz−2n
j

[
N′

n(zj)

z − zj
+

N′
n(−zj)

z + zj

]


= P<


N

′
n(z)−

(
1
0

)
−

J∑
j=1

Cjz−2n
j

[
N′

n(zj)

z − zj
+

N′
n(−zj)

z + zj

]
+ z−2nρ(z)N′

n(z)



 .

� (8.13)
The function on the left hand side of equation (8.13) is analytic outside the unit circle and 
approach zero as |z| → ∞ hence, using the properties of the projection operators, we have that 
the left hand side of equation (8.13) is zero (note: f out

∞ = 0.)

P<



N

′
n(z)−

(
1
0

)
−

J∑
j=1

Cjz−2n
j

[
N′

n(zj)

z − zj
+

N′
n(−zj)

z + zj

]
 + P<

{
z−2nρ(z)N′

n(z)
}
= 0.� (8.14)

Since |zj |  >  1 and N
′
n(z) is analytic inside the unit circle, the function

N
′
n(z)−

(
1
0

)
−

J∑
j=1

Cjz−2n
j

[
N′

n(zj)

z − zj
+

N′
n(−zj)

z + zj

]
,� (8.15)

is analytic inside the unit circle and constitute an ‘in’ function. Using the projections proper-
ties, after some algebra, one finds

N
′
n(z) =

(
1
0

)
+

J∑
j=1

Cjz−2n
j

[
N′

n(zj)

z − zj
+

N′
n(−zj)

z + zj

]
− lim

ζ→z
|ζ|<1

1
2πi

∮

|w|=1

w−2nρ(w)N′
n(w)

w − ζ
dw.� (8.16)

Similarly, we subtract from both sides of equation (8.12) all the non analytic parts; identify 
all functions that are analytic inside and outside the unit circle, one finds (after applying the 
projection operator)

N′
n(z) =

(
0
1

)
+

J∑
j=1

Cjz2n
j

[
N

′
n(zj)

z − zj
+

N
′
n(−zj)

z + zj

]
+ lim

ζ→z
|ζ|>1

1
2πi

∮

|w|=1

w2nρ(w)N
′
n(w)

w − ζ
dw.� (8.17)

8.3.  Closing the system from the left

To close the system, we evaluate equation (8.16) at the eigenvalues ±zj and equation (8.17) at 
±zj. This results in a linear algebraic-integral system in the form

N
′
n(zj) =

(
1
0

)
+

J∑
k=1

Ckz−2n
k

[
N′

n(zk)

zj − zk
+

N′
n(−zk)

zj + zk

]
− 1

2πi

∮

|w|=1

w−2nρ(w)N′
n(w)

w − zj
dw,� (8.18)

N
′
n(−zj) =

(
1
0

)
−

J∑
k=1

Ckz−2n
k

[
N′

n(zk)

zj + zk
+

N′
n(−zk)

zj − zk

]
− 1

2πi

∮

|w|=1

w−2nρ(w)N′
n(w)

w + zj
dw,� (8.19)

N′
n(zj) =

(
0
1

)
+

J∑
k=1

Ckz2n
k

[
N

′
n(zk)

zj − zk
+

N
′
n(−zk)

zj + zk

]
+

1
2πi

∮

|w|=1

w2nρ(w)N
′
n(w)

w − zj
dw,� (8.20)
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Table 1.  Symmetry relations between scattering data, norming constants and eigenfunctions for the classical integrable Ablowitz–Ladik model, RT, RST and PT 
symmetric nonlocal integrable discrete NLS equations. Here σ = ∓1.

Symmetry property AL model Rn = σQ∗
n

RT reduction 
Rn(t) = σQn(−t) RST reduction Rn(t) = σQ−n(−t) PT symmetric Rn = σQ∗

−n

Scattering data a(z) = a∗(1/z∗) a(z, t) = a(1/z,−t) a(z, t) = a(z,−t) a(z) = a∗(z∗)
b(z) = σb∗(1/z∗) b(z, t) = σb(1/z,−t) a(z, t) = a(z,−t) a(z) = a∗(z∗)

b(z, t) = σ
z2 b(z,−t) b(z) = σ

z2 b∗(z∗)

Eigenvalues zj = 1/z∗j zj = 1/zj zj, zj ∈ C zj, z∗j ; zj, z∗j
free zj ∈ C free zj ∈ C free parameters free parameters

Norming constants Cj = −σ(z∗j )
−2C∗

j Cj(t) = −σz−2
j Cj(−t) Cj, Cj ∈ C Cj, Cj

free Cj ∈ C free Cj ∈ C depend on zj, zj depend on zj, zj

Reflection coefficients ρ(z) = σρ∗(1/z∗) ρ(z, t) = σρ(1/z,−t) No relation No relation

between ρ  and ρ between ρ  and ρ

Eigenfunctions Mn(z) Mn(z, t) Nn+1(z,t) Nn+1(z)

= ΛM∗
n

( 1
z∗
)

= ΛMn
( 1

z ,−t
)

= Λ
cσ−∞fσn (t)M−n(z,−t) = Λ

cσ−∞fσn
M∗

−n(z
∗)

Nn(z) Nn(z, t) Nn+1(z, t) Nn+1(z)
= Λ−1N∗

n

( 1
z∗
)

= Λ−1Nn
( 1

z ,−t
)

= Λ−1

cσ−∞fσn (t)M−n(z,−t) = Λ−1

cσ−∞fσn
M

∗
−n(z

∗)

Modified eigenfunctions M
′
n(z) M

′
n(z, t) N′

n+1(z, t) N′
n+1(z)

= ΛcM
′∗

n

( 1
z∗
)

= ΛcM′
n

( 1
z ,−t

)
= ΛcM′

−n(z,−t) = ΛcM
′∗

−n(z
∗)

N
′
n(z) N

′
n(z, t) N

′
n+1(z, t) N

′
n+1(z)

= Λ−1
c N

′∗

n

( 1
z∗
)

= Λ−1
c N′

n

( 1
z ,−t

)
=

Λ−1
c

cσ−∞
M

′
−n(z,−t) =

Λ−1
c

cσ−∞
M

′∗

−n(z
∗)

Λ
(

0 σ

1 0

) (
0 σ

1 0

) (
0 −σ

1 0

) (
0 −σ

1 0

)

Λc
(

0 σcσ
−1

−∞
cσ−∞ 0

) (
0 σcσ

−1

−∞
cσ−∞ 0

) (
0 −σcσ

−1

−∞
1 0

) (
0 −σcσ

−1

−∞
1 0

)

M
 J A

blow
itz et al

N
onlinearity 33 (20

20) 3
6

53



3676

N′
n(−zj) =

(
0
1

)
−

J∑
k=1

Ckz2n
k

[
N

′
n(zk)

zj + zk
+

N
′
n(−zk)

zj − zk

]
+

1
2πi

∮

|w|=1

w2nρ(w)N
′
n(w)

w + zj
dw.� (8.21)

8.4. Time-evolution: left scattering problem

In this section, we provide the time evolution of all scattering data and norming constants. 
Following similar lines of derivation as detailed in [34] one finds the time-evolution of the 
scattering data to be

∂τa(z, τ) = 0, ∂τb(z, τ) = 2iωb(z, τ),� (8.22)

in which case, the explicit time-dependence is give by

a(z, τ) = a(z, 0), b(z, τ) = e2iωτb(z, 0).� (8.23)

Similarly, the other set of scattering data satisfy the evolution equations

∂τa(z, τ) = 0, ∂τb(k) = −2iωb(z, τ).� (8.24)

Thus, we have

a(z, τ) = a(z, 0), b(z, τ) = e−2iωτb(z, 0).� (8.25)

The evolution of the norming constants Cj  and Cj defined in equations (8.7) and (8.8) is given 
by

C� = C�(0)e2iω�τ , C�(0) =
b�(0)

a′(z�, 0)
,� (8.26)

C� = C�(0)e−2iω�τ , C�(0) =
b�(0)

a′(z�, 0)
,� (8.27)

where

ω� =
1
2
(
z� − z−1

�

)2
, ω� =

1
2
(
z� − z−1

�

)2
.� (8.28)

8.5.  Reconstruction of the potentials: left scattering problem

To reconstruct the potential we subtract from both sides of (8.12) all the non analytic parts of 
µ′

n(z) and apply P< to both sides of equation (8.12) to find

P<



µ′

n(z)−
J∑

j=1

Cjz2n
j

[
N

′
n(zj)

z − zj
+

N
′
n(−zj)

z + zj

]


= P< {N′
n(z)}+ P<

{
z2nρ(z)N

′
n(z)

}
− P<




J∑
j=1

Cjz2n
j

[
N

′
n(zj)

z − zj
+

N
′
n(−zj)

z + zj

]
 .

� (8.29)
The function inside the brackets, on the right hand side of equation (8.29), is an analytic func-
tion inside the unit circle therefore, using properties of projection operators, we find
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P<



µ′

n(z)−
J∑

j=1

Cjz2n
j

[
N

′
n(zj)

z − zj
+

N
′
n(−zj)

z + zj

]
 = µ′

n(z)−
J∑

j=1

Cjz2n
j

[
N

′
n(zj)

z − zj
+

N
′
n(−zj)

z + zj

]
.

Moreover, the function N′
n(z) is analytic outside the unite circle and approach (0 1)T as 

|z| → ∞ hence P< {N′
n(z)} = (0 1)T . Similarly, the function 

∑J
j=1 Cjz2n

j

[
N′

n(zj)
z−zj

+
N′

n(−zj)
z+zj

]
 is 

analytic outside the unit circle and tend to zero as |z| → ∞, thus,

P<





J∑
j=1

Cjz2n
j

[
N

′
n(zj)

z − zj
+

N
′
n(−zj)

z + zj

]
 = 0.� (8.30)

Putting all things together we obtain

µ′
n(z) =

(
0
1

)
+

J∑
j=1

Cjz2n
j

[
N

′
n(zj)

z − zj
+

N
′
n(−zj)

z + zj

]
+ lim

ζ→z
|ζ|<1

1
2πi

∮

|w|=1

w2nρ(w)N
′
n(w)

w − ζ
dw.� (8.31)

Note that the eigenfunctions Nn and Nn satisfy the parity relation [34]

N′(1)
n (−z) = −N′(1)

n (z), N′(2)
n (−z) = N′(2)

n (z),� (8.32)

N
′(1)
n (−z) = N

′(1)
n (z), N

′(2)
n (−z) = −N

′(2)
n (z).� (8.33)

From equations (8.16), (8.32) and the expansion 1
w−z ≈ 1

w + z
w2 + · · · as z → 0 we find

N
′(2)
n (z) = 2z

J∑
j=1

Cjz−2n
j N′(2)

n (zj)

z2 − z2
j

− lim
ζ→z
|ζ|<1

1
2πi

∮

|w|=1

w−2nρ(w)N′(2)
n (w)

w − ζ
dw

≈ −2z
J∑

j=1

Cjz
−2(n+1)
j N′(2)

n (zj)−
z

2πi

∮

|w|=1
w−2(n+1)ρ(w)N′(2)

n (w)dw

− 1
2πi

∮

|w|=1
w−(2n+1)ρ(w)N′(2)

n (w)dw + · · · , as z → 0.

�

(8.34)

Comparing (8.34) with the asymptotic form (z → 0) of the eigenfunction N
′(2)
n (z) given by 

equation (3.24) one finds

Rn(t) = 2
J∑

j=1

Cj(t)z
−2(n+1)
j N′(2)

n (zj, t) +
1

2πi

∮

|w|=1
w−2(n+1)ρ(w, t)N′(2)

n (w, t)dw.

� (8.35)
Remark. In deriving the expression for Rn we used the fact that

∮

|w|=1
w−(2n+1)ρ(w)N′(2)

n (w)dw = 0,� (8.36)

which can be proved using the symmetry property between the eigenfunctions given in (8.32) 
and the fact that ρ(w) is an odd function. To obtain the expression for the potential Qn, start 
from (8.31); use (8.33) and the expansion 1

w−z ≈ 1
w + z

w2 + · · · as z → 0 to find
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µ′(1)
n (z) = 2z

J∑
j=1

Cjz2n
j N

′(1)
n (zj)

z2 − z2
j

+
1

2πi

∮

|w|=1

w2nρ(w)N
′(1)
n (w)

w − z
dw

≈ −2z
J∑

j=1

Cjz
2(n−1)
j N

′(1)
n (zj) +

z
2πi

∮

|w|=1
w2(n−1)ρ(w)N

′(1)
n (w)dw

+
1

2πi

∮

|w|=1
w2n−1ρ(w)N

′(1)
n (w)dw + · · · , as z → 0.

� (8.37)
Comparing (8.37) with its asymptotic (in z) expansion given in (3.25) one finds

Qn−1 ≈ −2
J∑

j=1

Cjz
2(n−1)
j N

′(1)
n (zj) +

1
2πi

∮

|w|=1
w2(n−1)ρ(w)N

′(1)
n (w)dw

+
1

2πiz

∮

|w|=1
w2n−1ρ(w)N

′(1)
n (w)dw + · · · , as z → 0.

�

(8.38)

Use the result
∮

|w|=1
w2n−1ρ(w)N

′(1)
n (w)dw = 0,� (8.39)

which can be proved using the symmetry property between the eigenfunctions given in (8.32) 
and the fact that ρ(w) is an odd function, gives

Qn−1(t) = −2
J∑

j=1

Cj(t)z
2(n−1)
j N

′(1)
n (zj, t) +

1
2πi

∮

|w|=1
w2(n−1)ρ(w, t)N

′(1)
n (w, t)dw.� (8.40)

8.6.  Right scattering problem

One could instead work out the entire inverse problem using a ‘right’ scattering problem:

ψn(z) = α(z)φn(z) + β(z)φn(z),� (8.41)

ψn(z) = α(z)φn(z) + β(z)φn(z).� (8.42)

Clearly, the left and right scattering problems are related by SR(z) = S−1
L (z), where SR, SL 

are the scattering matrices from the right and left respectively. Component-wise, we have
(
α(z) β(z)
β(z) α(z)

)
=

1
c−∞

(
a(z) −b(z)
−b(z) a(z)

)
.� (8.43)

To setup a jump condition for a RH problem, divide equation (8.42) by α(z); use the definition 
of the eigenfunctions Mn(z), Mn(z), Nn(z), Nn(z) to get

νn(z) = Mn(z) + R(z)z−2nMn(z),� (8.44)

where νn(z) ≡ Nn(z)
α(z)  and R(z) ≡ β(z)

α(z) . Next, divide equation (8.41) by α(z) and make use of 

the modified eigenfunctions to find

νn(z) = Mn(z) + R(z)z2nMn(z),� (8.45)
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where, νn(z) ≡ Nn(z)
α(z) . The eigenfunctions have the following definitions and asymptotic 

behavior

νn(z) =
Nn(z)
α(z)

=

(−z−1c−∞c−1
n Qn + O(z−3)

c−∞c−1
n + O(z−2)

)
|z| → ∞,� (8.46)

νn(z) =
Nn(z)
α(z)

=

(
c−∞c−1

n + O(z2)

−zc−∞c−1
n Rn + O(z3)

)
, as z → 0.� (8.47)

The scattering problem from the right can possess discrete eigenvalues (bound states). These 

occur whenever α(z) has J simple zeros at {zj s.t. |zj| > 1}J
j=1, i.e. a(zj )  =  0 and α(z) has 

J simple zeros at {zj s.t. |zj| > 1}J
j=1, i.e. α(zj) = 0. Indeed, for such values of the spectral 

parameters W(φn(zj),ψn(zj)) = 0 and W(φn(zj),ψn(zj)) = 0. Therefore, from (8.41) and 
(8.42) we find

ψn(zj) = βjφn(zj), ⇒ Nn(zj) = βjz2n
j Mn(zj),� (8.48)

ψn(z�) = β�φn(z�), ⇒ Nn(z�) = β�z
−2n

� Mn(z�).� (8.49)

The residues of the functions νn(z) and νn(z) at the eigenvalues are given by

Res(νn; zj) =
βjz2n

j Mn(zj)

α′(zj)
= z2n

j BjMn(zj),� (8.50)

Res(νn; z�) =
β�z

−2n

� Mn(z�)
α′(z�)

= z
−2n

� B�Mn(z�),� (8.51)

where we have defined βj ≡ β(zj); β� ≡ β(z�) and

Bj =
βj

α′(zj)
,� (8.52)

B� =
β�

α′(z�)
.� (8.53)

8.7.  Right jump condition

As was done with the left scattering problem, here we shall use the modified eigenfunction 
to formulate and solve a right Riemann–Hilbert problem. First, define the functions ν′n(z) and 
ν′n(z)

ν′n(z) ≡
N′

n(z)
α(z)

, ν′n(z) ≡
N

′
n(z)
α(z)

,� (8.54)

whose asymptotic behavior in z is given by

ν′n(z) =
(
−z−1c−∞c−1

n Qn

c−∞

)
+ O(z−2) as |z| → ∞,� (8.55)
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ν′n(z) =
(

c−∞c−1
n

−zc−∞Rn

)
+ O(z2) as |z| → 0.� (8.56)

Note that the functions ν′n(z) and ν′n(z) also satisfy the jump conditions on |z| = 1

ν′n(z) = M
′
n(z) + R(z)z2nM′

n(z),� (8.57)

ν′n(z) = M′
n(z) + R(z)z−2nM

′
n(z).� (8.58)

Remark. The poles of ν′n(z) and ν′n(z) are the same as the poles of νn(z) and νn(z) 
respectively. Moreover, the residues of these poles are determined by the relations 

Res(ν′n; zj) = z2n
j BjM′

n(zj), Res(ν′n; z�) = z
−2n

� B�M
′
n(z�). We subtract from both sides of equa-

tion (8.57) the value of ν′n(z) at infinity, i.e. (0 c−∞)T  and all the non analytic parts of ν′n(z); 
apply the projection operator P< on both sides of the resulting system; one gets

P<



ν′n(z)−

(
0

c−∞

)
−

J∑
j=1

Bjz2n
j

[
M′

n(zj)

z − zj
+

M′
n(−zj)

z + zj

]


= P<


M

′
n(z)−

(
0

c−∞

)
−

J∑
j=1

Bjz2n
j

[
M′

n(zj)

z − zj
+

M′
n(−zj)

z + zj

]
+ z2nR(z)M′

n(z)



 .

�

(8.59)

The function inside the brackets on the left hand side of equation (8.59) is analytic outside 
the unit circle and approach zero as |z| → ∞ hence, by properties of the projectors, the left 

hand side of equation (8.59) vanishes. Since |zj |  >  1 and M
′
n(z) is analytic inside the unit cir-

cle, the function

M
′
n(z)−

(
0

c−∞

)
−

J∑
j=1

Bjz2n
j

[
M′

n(zj)

z − zj
+

M′
n(−zj)

z + zj

]
,� (8.60)

is analytic inside the unit circle and constitute an ‘in’ function. Now use the definition of the 
projection P< from (8.9) to find

M
′
n(z) =

(
0

c−∞

)
+

J∑
j=1

Bjz2n
j

[
M′

n(zj)

z − zj
+

M′
n(−zj)

z + zj

]
− lim

ζ→z
|ζ|<1

1
2πi

∮

|w|=1

w2nR(w)M′
n(w)

w − ζ
dw.

� (8.61)
Similarly, we subtract from both sides of equation  (8.58) all the non analytic parts; apply 
the projection operator P> on both sides of the resulting equation; identify parts of the equa-
tion that are analytic inside and/or outside the unite circle to finally find

M′
n(z) =

(
1
0

)
+

J∑
j=1

Bjz
−2n

j

[
M

′
n(zj)

z − zj
+

M
′
n(−zj)

z + zj

]
+ lim

ζ→z
|ζ|>1

1
2πi

∮

|w|=1

w−2nR(w)M
′
n(w)

w − ζ
dw.

� (8.62)

8.8.  Closing the system from right

To close the system, we evaluate equation (8.61) at the eigenvalues ±zj and (8.62) at ±zj. This 
results in a linear algebraic-integral system composed of
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M
′
n(zj) =

(
0

c−∞

)
+

J∑
k=1

Bkz2n
k

[
M′

n(zk)

zj − zk
+

M′
n(−zk)

zj + zk

]
− 1

2πi

∮

|w|=1

w2nR(w)M′
n(w)

w − zj
dw,� (8.63)

M
′
n(−zj) =

(
0

c−∞

)
−

J∑
k=1

Bkz2n
k

[
M′

n(zk)

zj + zk
+

M′
n(−zk)

zj − zk

]
− 1

2πi

∮

|w|=1

w2nR(w)M′
n(w)

w + zj
dw,� (8.64)

M′
n(zj) =

(
1
0

)
+

J∑
k=1

Bkz
−2n

k

[
M

′
n(zk)

zj − zk
+

M
′
n(−zk)

zj + zk

]
+

1
2πi

∮

|w|=1

w−2nR(w)M
′
n(w)

w − zj
dw,� (8.65)

M′
n(−zj) =

(
1
0

)
−

J∑
k=1

Bkz
−2n

k

[
M

′
n(zk)

zj + zk
+

M
′
n(−zk)

zj − zk

]
+

1
2πi

∮

|w|=1

w−2nR(w)M
′
n(w)

w + zj
dw.� (8.66)

8.9.  Reconstruction of the potentials: right scattering problem

To reconstruct the potential we subtract from both sides of (8.58) all the non analytic parts of 
ν′n(z) and apply P< to both sides of equation (8.58) to find

P<



ν′n(z)−

J∑
j=1

Bjz−2n
j

[
M

′
n(zj)

z − zj
+

M
′
n(−zj)

z + zj

]


= P< {M′
n(z)}+ P<

{
z−2nR(z)M

′
n(z)

}
− P<




J∑
j=1

Bjz−2n
j

[
M

′
n(zj)

z − zj
+

M
′
n(−zj)

z + zj

]
 .

�

(8.67)

The function inside the brackets in the right hand side of equation (8.67) is an analytic func-
tion inside the unit circle. Moreover, the function M′

n(z) is analytic outside the unite cir-
cle and approach (1 0)T as |z| → ∞ hence P< {M′

n(z)} = (1 0)T . Similarly, the function 
∑J

j=1 Bjz−2n
j

[
M′

n(zj)
z−zj

+
M′

n(−zj)
z+zj

]
 is analytic outside the unit circle and tend to zero as |z| → ∞. 

Using properties of the projectors, we obtain

ν′n(z) =
(

1
0

)
+

J∑
j=1

Bjz−2n
j

[
M

′
n(zj)

z − zj
+

M
′
n(−zj)

z + zj

]
+ lim

ζ→z
|ζ|<1

1
2πi

∮

|w|=1

w−2nR(w)M
′
n(w)

w − ζ
dw.

� (8.68)

Note that the eigenfunctions M′
n and M

′
n  satisfy the parity relation M′(1)

n (−z) = M′(1)
n (z),

M′(2)
n (−z) = −M′(2)

n (z), M
′(1)
n (−z) = −M

′(1)
n (z), M

′(2)
n (−z) = M

′(2)
n (z). From (8.61); the par-

ity symmetries and the expansion 1
w−z ≈ 1

w + z
w2 + · · · as z → 0 one finds

M
′(1)
n (z) = 2z

J∑
j=1

Bjz2n
j M′(1)

n (zj)

z2 − z2
j

− 1
2πi

∮

|w|=1

w2nR(w)M′(1)
n (w)

w − z
dw

≈ −2z
J∑

j=1

Bjz
2(n−1)
j M′(1)

n (zj)−
z

2πi

∮

|w|=1
w2(n−1)R(w)M′(1)

n (w)dw

− 1
2πi

∮

|w|=1
w2n−1R(w)M′(1)

n (w)dw + · · · , as z → 0.

� (8.69)
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Since R and M′(1)
n  are respectively odd and even functions of their argument, we have
∮

|w|=1
w2n−1R(w)M′(1)

n (w)dw = 0.� (8.70)

Comparing (8.69) with the asymptotic expansion M
′(1)
n (z) = zQn−1 + O(z2), as |z| → 0 one 

finds

Qn−1(t) = −2
J∑

j=1

Bj(t)z
2(n−1)
j M′(1)

n (zj, t)− 1
2πi

∮

|w|=1
w2(n−1)R(w, t)M′(1)

n (w, t)dw.� (8.71)

To obtain the expression for the potential Rn we start from equation (8.68); use the parity in z 
of the eigenfunctions and the expansion 1

w−z ≈ 1
w + z

w2 + · · · as z → 0 to find

ν′(2)
n (z) = 2z

J∑
j=1

Bjz−2n
j M

′(2)
n (zj)

z2 − z2
j

+
1

2πi

∮

|w|=1

w−2nR(w)M
′(2)
n (w)

w − z
dw

≈ −2z
J∑

j=1

Bjz
−2(n+1)
j M

′(2)
n (zj) +

z
2πi

∮

|w|=1
w−2(n+1)R(w)M

′(2)
n (w)dw

+
1

2πi

∮

|w|=1
w−2n−1R(w)M

′(2)
n (w)dw + · · · , as z → 0.

�

(8.72)

To that end, use the result
∮

|w|=1
w−(2n+1)R(w)M

(2)′

n (w)dw = 0,� (8.73)

along with the asymptotic expression ν′(2)
n (z) = −zc−∞Rn + O(z2) as |z| → 0 to get

Rn(t) = 2c−1
−∞

J∑
j=1

Bj(t)z
−2(n+1)
j M

′(2)
n (zj, t)−

c−1
−∞
2πi

∮

|w|=1
w−2(n+1)R(w, t)M

′(2)
n (w, t)dw.� (8.74)

Remark. To solve for Rn one of course needs to find c−∞ which formally depends on both 
Qn and Rn (which are formally unknown.) However, since c−∞ is constant in time (see equa-
tion (3.11)), it is therefore determined by the initial conditions.

8.10.Time-evolution: right scattering problem

In this section  we give the time evolution of the scattering problem from the right side. 
Following the ideas presented in [34] one gets

∂τα(z, τ) = 0, ∂τβ(z, τ) = −2iωβ(z, τ),� (8.75)

∂τα(z, τ) = 0, ∂τβ(k) = 2iωβ(z, τ).� (8.76)

The explicit time-dependence is found to be

α(z, τ) = α(z, 0), β(z, τ) = e−2iωτβ(z, 0),� (8.77)

α(z, τ) = α(z, 0), β(z, τ) = e2iωτβ(z, 0).� (8.78)
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With this at hand, the evolution of the norming constants B� and B� define by equations (8.52) 
and (8.53) is readily obtained from

B� = B�(0)e−2iω�τ , B�(0) =
β�(0)

α′(z�, 0)
,� (8.79)

B� = B�(0)e2iω�τ , B�(0) =
β�(0)

α′(z�, 0)
,� (8.80)

with ω� and ω� defined by equation (8.28).

9.  Relation between the reflection coefficients

In this section we establish the symmetry relation between the left and right reflections coef-
ficients. The connection is possible only for the PT symmetric and RST cases where symme-
tries in scattering space do not mix the ‘bar’ quantities with their respective ‘unbar’ ones. This 
is in sharp contrast to the AL and RT cases where scattering data outside and inside the unit 
circle are related. By definition, we have

R(z) =
β(z)
α(z)

= −b(z)
a(z)

, R(z) =
β(z)
α(z)

= −b(z)
a(z)

,� (9.1)

ρ(z) =
b(z)
a(z)

, ρ(z) =
b(z)
a(z)

.� (9.2)

9.1.  AL reduction Rn(t) = σQ∗
n (t)

For the Ablowitz–Ladik case (and RT), the symmetries given in section 4 (for AL) and sec-
tion 5 (for RT) were obtained from the left scattering problem and relate the reflection coef-
ficient ρ(z) (defined outside the unit circle) to ρ(z) (defined inside the unit circle). For the AL 
model, they are given by

a(z) = a∗(1/z∗), b(z) = σb∗(1/z∗), ρ(z) = σρ∗(1/z∗).� (9.3)

Thus, it is expected that the symmetry between the reflection coefficients R(z) and R(z) 
(defined for the right scattering problem) to be related. Indeed, from (9.1)–(9.3) we find

R(z) = σR∗(1/z∗).� (9.4)

9.2.  RT reduction Rn(t) = σQn(−t)

Here, a similar situation happens as for the AL case. The ‘left’ symmetries in scattering space 
were derived in section 5 and are given by

a(z, t) = a(1/z,−t), b(z, t) = σb(1/z,−t), ρ(z, t) = σρ(1/z,−t).� (9.5)

Using the definitions (9.1) and (9.2) we find, after some algebra,

R(z, t) = σR(1/z,−t).� (9.6)
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9.3.  RST reduction Rn(t) = σQ−n(−t)

In this case we have

a(z, t) = a(z,−t), a(z, t) = a(z,−t), b(z, t) =
σ

z2 b(z,−t).� (9.7)

Using the definition of the reflection coefficients (given above), one finds

R(z, t) = − σ

z2 ρ(z,−t), R(z, t) = −σz2ρ(z,−t).� (9.8)

9.4.  PT symmetric reduction Rn = σQ∗
−n

For the PT symmetric case, the scattering data satisfy the following symmetries

a(z) = a∗(z∗), a(z) = a∗(z∗), b(z) =
σ

z2 b∗(z∗).� (9.9)

Now from the definition of the reflection coefficients we have

R(z) = − σ

z2 ρ
∗(z∗), R(z) = −σz2ρ∗(z∗).� (9.10)

10.  Norming constants: symmetries and time evolution

In this section, we connect the norming constants pair {Cj(t), Cj(t)} (defined in the left scat-
tering problem) to their respective one {Bj(t), Bj(t)} (defined in the right scattering) for the PT 
symmetric and RST cases only. For the AL and RT cases (where Cj (t) and Cj(t) already related 
via a symmetry), we derive the symmetry condition between Bj (t) and Bj(t). Furthermore, we 
give the time evolution of each norming constant, which later, is used in determining the time 
evolution of the potentials.

10.1.AL reduction Rn = σQ∗
n

Since the AL case is local in time, we shall omit all explicit time-dependence. Our starting 

point is equation (8.63), which together with the fact that M(1)′
n (zk) is an even function of zk 

takes the form

M
(1)′

n (zj) = 2zj

J∑
k=1

Bkz2n
k

M(1)′
n (zk)

z2
j − z2

k

− 1
2πi

∮

|w|=1

w2nR(w)M(1)′
n (w)

w − zj
dw.� (10.1)

Now use the symmetries between the corresponding eigenfunctions as well as scattering data 

established in section  4, i.e. M
(1)′

n (z) = σ(cσn )
−1 M(2)′∗

n (1/z∗), M
(2)′

n (z) = cσn M(1)′∗
n (1/z∗) 

together with (9.4) to rewrite equation (10.1):

M(2)′∗
n (1/z∗j ) = 2σzj

J∑
k=1

Bkz2n
k

M
(2)′∗

n (1/z∗k )
z2

j − z2
k

− 1
2πi

∮

|w|=1

w2nR
∗
(1/w∗)M

(2)′∗

n (1/w∗)

w − zj
dw.

�

(10.2)
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Upon using the symmetry between the eigenvalues, zj = 1/z∗j , in (10.2) together with complex 
conjugation we find

M(2)′
n (zj) = −2σzj

J∑
k=1

(z∗k )
−2B∗

k (z
∗
k )

2n M
(2)′

n (1/z∗k )
z2

j − (z∗k )−2

+
1

2πi

∮

|w|=1

(w∗)2nR(1/w∗)M
(2)′

n (1/w∗)

w∗ − z−1
j

dw∗.

�

(10.3)

Next, we consider the integral term in equation (10.3). With the change of variables ζ = 1/w∗, 
we have

∮

|w|=1

(w∗)2nR(1/w∗)M
(2)′

n (1/w∗)

w∗ − z−1
j

dw∗ = −
∮

|ζ|=1

zjζ
−2nR(ζ)M

(2)′

n (ζ)

ζ(zj − ζ)
dζ

= +

∮

|ζ|=1

ζ−2nR(ζ)M
(2)′

n (ζ)

ζ − zj
dζ

−
∮

|ζ|=1
ζ−(2n+1)R(ζ)M

(2)′

n (ζ)dζ.

�

(10.4)

The last term in equation (10.4) vanishes by the residue theorem since R(ζ) and M
(2)′

n (ζ) are 

odd and even functions of ζ respectively. On the other hand, from equation (8.65) which, after 

using M
(2)′

n (−zk) = M
(2)′

n (zk), reduces to

M(2)′
n (zj) = 2zj

J∑
k=1

Bk(z∗k )
2n M

(2)′

n (1/z∗k )
z2

j − (z∗k )−2
+

1
2πi

∮

|w|=1

w−2nR(w)M
(2)′

n (w)
w − zj

dw.

� (10.5)
When equation (10.5) is compared with the result of (10.4) and (10.3), we arrive at the sym-
metry condition:

Bk = −σ(z∗k )
−2B∗

k .� (10.6)

Alternatively, one could reach the same conclusion by directly working with the definitions of 
the norming constants given by (8.52) and (8.53) and the symmetry properties of the scatter-
ing data β�,β�,α

′(z�) and α′(z�) in a manner similar to what was done for the left scattering 
problem. Our approach we adopted in this section, shows the ‘stability and robustness’ of the 
symmetries of the AL model.

10.2.RT reduction Rn(t) = σQn(−t)

Next, we derive the symmetry relation between the norming constants Bj (t) and Bj(t). Notice 
that since the RT reduction is nonlocal in time, one has to keep explicit time dependence for 
all variables. The symmetries between the eigenvalues and reflection coefficients are given 
by (5.23) and (9.6) respectively, i.e. zj = 1/zj (complex zj ) and R(z, t) = σR(1/z,−t). From 
(8.63) we have

M
(1)′

n (zj, t) = 2zj

J∑
k=1

Bk(t)z2n
k

M(1)′
n (zk, t)
z2

j − z2
k

− 1
2πi

∮

|w|=1

w2nR(w, t)M(1)′
n (w, t)

w − zj
dw.

� (10.7)
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The symmetries between the modified eigenfunctions, for the RT case, has been estab-

lished in section  5.2 and are given by M
(1)′

n (z, t) = σ(cσn (t))
−1 M(2)′

n (1/z,−t) and 
M

(2)′

n (z, t) = cσn (t) M(1)′
n (1/z,−t). Substituting these relations together with zj = 1/zj and 

R(z, t) = σR(1/z,−t) back into (10.7) gives

M(2)′
n (zj, t) = −2σzj

J∑
k=1

(zk)
−2Bk(−t)(zk)

2n M
(2)′

n (1/zk, t)
z2

j − (zk)−2

− 1
2πi

∮

|w|=1

w2nR(1/w, t)M
(2)′

n (1/w, t)
w − z−1

j

dw.

�

(10.8)

To simplify the integral in equation (10.8), we make the change of variables ζ = 1/w and get

∮

|w|=1

w2nR(1/w, t)M
(2)′

n (1/w, t)
w − z−1

j

dw =

∮

|ζ|=1

zjζ
−2nR(ζ, t)M

(2)′

n (ζ, t)
ζ(zj − ζ)

dζ

= −
∮

|ζ|=1

ζ−2nR(ζ)M
(2)′

n (ζ)

ζ − zj
dζ

+

∮

|ζ|=1
ζ−(2n+1)R(ζ)M

(2)′

n (ζ)dζ.

� (10.9)
As with the AL case the last term in equation (10.9) vanishes by the residue theorem since 

R(ζ) and M
(2)′

n (ζ) are odd and even functions of ζ respectively. On the other hand, from equa-

tion (8.65) which, after using M
(2)′

n (−zk) = M
(2)′

n (zk), reduces to

M(2)′
n (zj, t) = 2zj

J∑
k=1

Bk(zk)
2n M

(2)′

n (1/zk, t)
z2

j − (zk)−2
+

1
2πi

∮

|w|=1

w−2nR(w, t)M
(2)′

n (w, t)
w − zj

dw.� (10.10)

To this end, contrast equations (10.9) and (10.8) with (10.10) to find the symmetry result

Bk(t) = −σ(zk)
−2Bk(−t).� (10.11)

Again, we can obtain this symmetry by directly working with the definitions of the norm-
ing constants (defined for the right scattering problem) and all necessary symmetries that 
β�,β�,α

′(z�) and α′(z�) satisfy.

10.3.RST reduction Rn(t) = σQ−n(−t)

To do so, start from equation (8.20); use the parity property N
(1)′

n (−zk) = N
(1)′

n (zk) and by 

letting n → n + 1 in the resulting equation, we find

N(1)′

n+1(zj, t) = 2zj

J∑
k=1

Ck(t)z2
kz2n

k
N

(1)′

n+1(zk, t)
z2

j − z2
k

+
1

2πi

∮

|w|=1

w2(n+1)ρ(w, t)N
(1)′

n+1(w, t)
w − zj

dw.� (10.12)

Now substitute the symmetry relations,

N(1)′

m+1(z, t) = − σ

cσ−∞
M(2)′

−m (z,−t), N
(1)′

m+1(z, t) =
1

cσ−∞
M

(2)′

−m (z,−t),

� (10.13)
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(found in (5.14) and (5.16)), into (10.12); make the change of variables n → −n, t → −t 
and find

M(2)′
n (zj, t) = −2σzj

J∑
k=1

Ck(−t)z2
kz

−2n

k
M

(2)′

n (zk, t)
z2

j − z2
k

− σ

2πi

∮

|w|=1

w−2nw2ρ(w,−t)M
(2)′

n (w, t)
w − zj

dw.

�

(10.14)

On the other hand, substituting M
(2)′

n (−zk) = M
(2)′

n (zk) into equation  (8.65) [which was 

obtained from solving the right scattering problem], we find

M(2)′
n (zj, t) = 2zj

J∑
k=1

Bk(t)z
−2n

k
M

(2)′

n (zk, t)
z2

j − z2
k

+
1

2πi

∮

|w|=1

w−2nR(w, t)M
(2)′

n (w, t)
w − zj

dw.� (10.15)

Comparing equations  (10.15) to (10.14) and use the relation between the reflection coeffi-
cients R(z, t) = −σz2ρ(z,−t) established in equation (9.8) to find the following results

−σ(zj)
2Cj(−t) = Bj(t).� (10.16)

The derivation of symmetry relation between the norming constants Cj (t) and Bj (t) follows 
similar step. Start from equation (8.18); make the change of variables n → n + 1 and use the 

fact that N(2)′
n (zk) is an even function of zk to find

N
(2)′

n+1(zj, t) = 2zj

J∑
k=1

Ck(t)z−2
k z−2n

k

N(2)′

n+1(zk, t)

z2
j − z2

k

− 1
2πi

∮

|w|=1

w−2nw−2ρ(w, t)N(2)′

n+1(w, t)
w − zj

dw.� (10.17)

Next, we use the symmetry conditions (5.15) and (5.17), i.e. N(2)′

m+1(z, t) = M(1)′

−m (z,−t) and 

N
(2)′

m+1(z, t) = −σM
(1)′

−m (z,−t) in equation (10.17); let n → −n, t → −t  in the resulting equa-

tion to find

M
(1)′

n (zj, t) = −2σzj

J∑
k=1

z−2
k Ck(−t)z2n

k
M(1)′

n (zk, t)
z2

j − z2
k

+
σ

2πi

∮

|w|=1

w2nw−2ρ(w,−t)M(1)′
n (w, t)

w − zj
dw.

� (10.18)

On the other hand, we have from equation (8.63) together with the fact that M(1)′
n (zk) is an 

even function of zk

M
(1)′

n (zj, t) = 2zj

J∑
k=1

Bk(t)z2n
k

M(1)′
n (zk, t)
z2

j − z2
k

− 1
2πi

∮

|w|=1

w2nR(w, t)M(1)′
n (w, t)

w − zj
dw.

� (10.19)
Comparing equations (10.19) to (10.18); use the relation between the reflection coefficients 
R(z, t) = − σ

z2 ρ(z,−t) given in equation (9.8) we find

−σz−2
j Cj(−t) = Bj(t).� (10.20)
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10.4.PT symmetric reduction Rn(t) = σQ∗
−n(t)

In this section  we derive the symmetry between the norming constants pairs {Cj, Cj} 
and {Bj, Bj} when Rn = σQ∗

−n. To do so, we start from equation  (8.20); use the fact that 

N
(1)′

n (−zk) = N
(1)′

n (zk) along with n → n + 1 to get

N(1)′

n+1(zj) = 2zj

J∑
k=1

Ckz2(n+1)
k

N
(1)′

n+1(zk)

z2
j − z2

k
+

1
2πi

∮

|w|=1

w2(n+1)ρ(w)N
(1)′

n+1(w)
w − zj

dw.

� (10.21)

Now use the symmetry N(1)′

n+1(z) = − σ
cσ−∞

M(2)′∗

−n (z∗), N
(1)′

n+1(z) =
1

c−∞
M

(2)′∗

−n (z∗), given in 

(5.14) and (5.16) to find

M(2)′∗
n (z∗j ) = −2σzj

J∑
k=1

z2
kCkz

−2n

k
M

(2)′∗

n (z∗k )
z2

j − z2
k

− σ

2πi

∮

|w|=1

w−2nw2ρ(w)M
(2)′∗

n (w∗)

w − zj
dw.� (10.22)

On the other hand, start from equation (8.65) derived from the right scattering problem apply 

the parity symmetry M
(2)′

n (−zk) = M
(2)′

n (zk) combined with complex conjugation to get

M(2)∗
′

n (zj) = 2z∗j

J∑
k=1

B
∗
k z∗

−2n

k
M

(2)∗
′

n (zk)

z∗2
j − z∗2

k
− 1

2πi

∮

|w|=1

w∗−2nR
∗
(w)M

(2)∗
′

n (w)
w∗ − z∗j

dw∗.

� (10.23)
Let w*  =  u. Then dw∗ = du and the orientation on the unit circle is the opposite of what we 
had before. Substituting the result (9.10), i.e. R(z) = −σz2ρ∗(z∗); make the transformation 
zj → z∗j , zk → z∗k to get

M(2)∗
′

n (z∗j ) = 2zj

J∑
k=1

B
∗
k z

−2n

k
M

(2)∗
′

n (z∗k )
z2

j − z2
k

− σ

2πi

∮

|u|=1

u−2nu2ρ(u)M
(2)∗

′

n (u∗)
u − zj

du.

� (10.24)
Comparing equations (10.24) to (10.22) we have

−σz2
j Cj = B

∗
j .� (10.25)

To find the relation between the norming constants Cj  and Bj  we start from equation (8.18); 

use the fact that N(2)′
n (zk) is an even function of zk; use the symmetry conditions (5.15) and 

(5.17), i.e. N(2)′

n+1(z) = M(1)′∗

−n (z∗), N
(2)′

n−1(z) = −σM
(1)′∗

−n (z∗), to get

M
(1)′∗

n (z∗j ) = −2σzj

J∑
k=1

z−2
k Ckz2n

k
M(1)′∗

n (z∗k )
z2

j − z2
k

+
σ

2πi

∮

|w|=1

w2nw−2ρ(w)M(1)′∗
n (w∗)

w − zj
dw.� (10.26)

Alternatively, equation  (8.63) combined with the parity property of M(1)′
n (zk) as well as 

R(z) = −σz−2ρ∗(z∗) to find (after making the transformation zj → z∗j  and z∗j → zj)

M
(1)∗′

n (z∗j ) = 2zj

J∑
k=1

B∗
k zk

2n M(1)∗′

n (z∗k )
z2

j − z2
k

+
σ

2πi

∮

|w|=1

u2nu−2ρ(u)M(1)∗′

n (u∗)
u − zj

du.

� (10.27)
From equations (10.27) and (10.26) we conclude

−σz−2
j Cj = B∗

j .� (10.28)
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10.5.Evolution of norming constants

The time evolution of the eigenfunctions given by equation  (2.2) determines the evolution 
of the scattering data, and hence, the norming constants. Following similar line of derivation 
detailed in [34] applied to the right and left scattering problems, one find the following time-
evolution of the norming constants C1(t), C1(t), B1(t) and B1(t) defined in equations  (8.7), 
(8.8), (8.52) and (8.53):

C1(τ) = C1(0)e2iω1τ , C1(τ) = C1(0)e−2iω1τ ,

B1(τ) = B1(0)e−2iω1τ , B1(τ) = B1(0)e2iω1τ ,
� (10.29)

where

ω1 =
1
2
(
z1 − z−1

1

)2
, ω1 =

1
2
(
z1 − z−1

1

)2
.� (10.30)

11.  Alternative reconstruction formula for Qn and Rn

One of the corner stones of the AL theory is the integrable symmetry reduction between 
the two potentials Rn and Qn which in turn leads to an integrable equation for one potential: 
Qn or Rn. Examples include the AL reduction (1.6), PT symmetric reduction (1.7) and the 
RST, RT reductions, respectively given in (1.9) and (1.10). As such, it is desirable to have a 
reconstruction formula for the potentials that preserves this kind of reduction symmetries in 
a straightforward way, i.e. one should be able to observe the symmetry on the inverse side 
simply by looking at the functional form of both potentials. However, this is not the case with 
the potentials Rn and Qn−1 derived in equations (8.35), (8.40), (8.71) and (8.74). To remedy 
this issue, we derive in this section an alternative formula for the potentials by inserting the 
symmetries between the eigenfunction in such a way that one can ‘see’ the integrable sym-
metry reduction in an obvious way.

11.1.  RST reduction Rn(t) = σQ−n(−t)

In this section we obtain an alternative reconstruction formula for the potential Qn under the 
assumption that Rn(t) = σQ−n(−t). We start from the symmetry relation (5.15), i.e.

N(2)′

n+1(z, t) = M(1)′

−n (z,−t),� (11.1)

and the potential Qn−1(t) given by equation (8.71) (after making the transformation n → n + 1)

Qn(t) = −2
J∑

j=1

Bj(t)z2n
j M′(1)

n+1(zj, t)− 1
2πi

∮

|w|=1
w2nR(w, t)M′(1)

n+1(w, t)dw.

� (11.2)
Substituting equation  (11.1) into equation  (11.2); use the symmetry relation between 
the reflection coefficients given in equation  (9.8), i.e. R(z, t) = − σ

z2 ρ(z,−t) as well as 

−σz−2
j Cj(−t) = Bj(t) obtained in (10.20), we find

Qn(t) = 2σ
J∑

j=1

Cj(−t)z2(n−1)
j N′(2)

−n (zj,−t) +
σ

2πi

∮

|w|=1
w2(n−1)ρ(w,−t)N′(2)

−n (w,−t)dw.� (11.3)
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Scrutinizing the expression for the potential Rn(t) given by equation  (8.35) shows that the 
symmetry condition Rn(t) = σQ−n(−t) is indeed obvious.

11.2.  PT symmetric case Rn = σQ∗
−n

Here, we provide a different expression for the potential Qn that preserves the PT symmetry. 
Since this symmetry is local in time, we omit the explicit time dependence. We start from 

the symmetry relation (5.15), i.e. N(2)′

n+1(z) = M(1)′∗

−n (z∗), and the potential Qn−1(t) given by 

equation (8.71)

Qn−1 = −2
J∑

j=1

Bjz
2(n−1)
j M′(1)

n (zj)−
1

2πi

∮

|w|=1
w2(n−1)R(w)M′(1)

n (w)dw.

� (11.4)
Substitute the above symmetry between the eigenfunctions, reflection coefficients and norm-

ing constants R(z) = − σ
z2 ρ

∗(z∗), −σz−2
j Cj = B∗

j  (respectively obtained in equation  (9.10) 
and (10.28)), back into (11.4), we find

Qn = 2σ
J∑

j=1

C∗
j (z

∗
j )

2(n−1)N(2)′∗

−n (zj)−
σ

2πi

∮

|u|=1
(u∗)2(n−1)ρ∗(u)N(2)′∗

−n (u)du∗.

� (11.5)
For the convenience of the reader and to make the comparison with Rn easier, we again write 
down the formula for the potential Rn given in equation (8.35):

Rn = 2
J∑

j=1

Cjz
−2(n+1)
j N′(2)

n (zj) +
1

2πi

∮

|w|=1
w−2(n+1)ρ(w)N′(2)

n (w)dw.� (11.6)

As expected, comparing equations (11.5) and (11.6), we see that the PT symmetry, Rn = σQ∗
−n 

is indeed preserved.

11.3.  RT reduction Rn(t) = σQn(−t)

To obtain an alternative expression for the potential Qn(t) we start from equation (8.17) for 

the function N′(1)
n (z, t) whose large z asymptotics is given by (use the parity property, (8.33))

N′(1)
n (z, t) =

1
z


2

J∑
j=1

Cj(t)z2n
j N

′(1)
n (zj, t)− 1

2πi

∮

|w|=1
w2nρ(w, t)N

′(1)
n (w, t)dw


+ O(1/z2).

� (11.7)

Substituting the symmetry relation N
(1)′

n (z, t) = (c−n (t))−1 N(2)′
n (1/z,−t) established in 

(5.16) into equation (11.7) gives

N′(1)
n (z, t) =

2(c−n (t))−1

z

J∑
j=1

Cjz2n
j N(2)′

n (1/zj,−t)

− (c−n (t))−1

2πiz

∮

|w|=1
w2nρ(w, t)N(2)′

n (1/w,−t)dw + O(1/z2).

�

(11.8)
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Comparing (11.8) with (3.22) we find

Qn(t) = −2
J∑

j=1

Cj(t)z2n
j N(2)′

n (1/zj,−t) +
1

2πi

∮

|w|=1
w2nρ(w, t)N(2)′

n (1/w,−t)dw.

� (11.9)
We have already established the symmetry relation between the eigenvalues, norming con-
stants and the reflection coefficients:

zj = 1/zj, Cj(t) = −σz−2
j Cj(−t), ρ(z, t) = σρ(1/z,−t).

Substituting these quantities into equation (11.9) along with the change of variable ζ = 1/w 
we find

Qn(t) = 2σ
J∑

j=1

Cj(−t)z−2(n+1)
j N′(2)

n (zj,−t) +
σ

2πi

∮

|ζ|=1
ζ−2(n+1)ρ(ζ,−t)N′(2)

n (ζ,−t)dζ.� (11.10)

Scrutinizing the expression for the potential Rn(t) obtained in equation (8.35) shows that the 
RT symmetry Rn(t) = σQn(−t) is indeed preserved.

11.4.  AL reduction Rn(t) = σQ∗
n (t)

To obtain the alternative expression for the potential Qn we again start from equa-
tion (8.17) with its large z asymptotics equation (11.7). Substituting the symmetry relation 

N
(1)′

n (z, t) = (cσn )
−1 N(2)′∗

n (1/z∗, t) established in (5.16) into equation  (11.7); compare the 

result with the asymptotic formula given in (3.22) we find

Qn(t) = −2
J∑

j=1

Cj(t)z2n
j N(2)′∗

n (1/z∗j , t) +
1

2πi

∮

|w|=1
w2nρ(w, t)N(2)′∗

n (1/w∗, t)dw.

� (11.11)
Next, insert all symmetries between the eigenvalues, norming constants and the reflection 
coefficients zj = 1/z∗j , Cj = −σ(z∗j )

−2C∗
j , ρ(z) = σρ∗(1/z∗) back in (11.9); use the change 

of variable ζ = 1/w∗ in the contour integral (note that the orientation on ζ space is the same 
as on w) to finally obtain

Qn(t) = 2σ
J∑

j=1

C∗
j (t)(z

∗
j )

−2(n+1)N′(2)∗
n (zj, t)− σ

2πi

∮

|ζ|=1
(ζ∗)−2(n+1)ρ∗(ζ, t)N′(2)∗

n (ζ, t)dζ∗.

� (11.12)
Comparing the above expression for Qn(t) with the one we have already derived for Rn(t) (see 
equation (8.35)) shows that the symmetry condition Rn(t) = σQ∗

n(t) is indeed satisfied.

12. Trace formulae and symmetries for bj , bj

For both integrable discrete Ablowitz–Ladik and the reverse-time reduction case (RT NLS) 
the symmetries connect the scattering data and norming constants in the upper half complex 
z plane to their corresponding quantities defined in the lower half z plane. For example, the 
eigenvalues and norming constants are related through equations (5.23) and (5.29), for the RT 
NLS, and equation (4.3) for the AL lattice. This implies that the eigenvalues zj  and norming 
constants Cj  are counted as free parameters and the values of zj and Cj are uniquely deter-
mined by the underlying up-down symmetries. As discovered in [41, 43] the situation with 
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the RST and PT symmetric cases is very different. Firstly, the symmetries of the scattering 
data and norming constants do not relate their respective values in the upper half complex 
z plane to those in the lower half plane. This can be seen as follows. In the RST case, see 
equations (6.27) and (6.28) where now the eigenvalues zj  and zj are counted as free param
eters. In the PT case see equations (7.21) and (7.22) where again the eigenvalues zj  and zj 
are counted as free parameters. Secondly, in order to understand the underlying symmetries 
of the norming constants Cj  and Cj we need to separate their numerators/denominators, i.e. 
Cj,= bj/a′(zj), Cj = bj/a′(zj). For the denominators a′(zj), a′(zj) we resort to trace formulas 
for discrete systems (see section 12) see [34] which were used to show that the data a(z), a(z) 
can be calculated in terms of eigenvalues and data ρ(z), ρ(z) (or b(z), b(z)). From a′(zj), a′(zj) 
we find that Cj  and Cj depend on the eigenvalues zj, zj. For the numerator we need to find sym-
metries involving bj, bj. In the RST case, see equations (12.31) and (12.33) from section 12.2; 
for the PT case see equations (12.38) and (12.42). In both cases the coefficients bj, bj count as 
additional parameters. Using these symmetries is critical when finding soliton solutions–e.g. 
see section 13. It turns out that whenever eigenfunctions in the same plane are related, such as 
occurs with the PT and RST NLS equations this leads to symmetry conditions on bj, bj.

12.1. Trace formulae and computing a′ and a′

12.1.1.  RST reduction Rn(t) = σQ−n(−t).  In this section  we develop a trace formula for 
the RST case and use it to compute the norming constants as a function of the eigenval-

ues. To that purpose, we assume that a(z) and a(z) have simple zeros {±zj : |zj| > 1}J
j=1 and 

{±zj : |zj| < 1}J
j=1 respectively. Define the following quantities:

ã(z) =
J∏

j=1

(
z2 − z2

j

z2 − z2
j

)
a(z), ã(z) =

J∏
j=1

(
z2 − z2

j

z2 − z2
j

)
a(z).� (12.1)

According to these definitions and the analytic properties of the scattering data we have: (i) 
ã(z) is analytic outside the unit circle (where it has no zeros) and ã(z) → 1 as |z| → ∞, (ii) 
ã(z) is analytic inside the unit circle and has no zeros. Taking into account that both a(z)  
and a(z) are even functions of z, we find

log ã(z) = − 1
2πi

∮

|ζ|=1

ζ log ã(ζ)
ζ2 − z2 dζ,

∮

|ζ|=1

ζ log ã(ζ)
ζ2 − z2 dζ = 0, |z| > 1,

� (12.2)

log ã(z) =
1

2πi

∮

|ζ|=1

ζ log ã(ζ)
ζ2 − z2 dζ,

∮

|ζ|=1

ζ log ã(ζ)
ζ2 − z2 dζ = 0, |z| < 1.

� (12.3)

Taking the logarithm of ã(z) and ã(z); use their properties outlined in equations (12.2) and 
(12.3) to find

log a(z) =
J∑

j=1

log

(
z2 − z2

j

z2 − z2
j

)
− 1

2πi

∮

|ζ|=1

ζ log[ã(ζ)ã(ζ)]
ζ2 − z2 dζ, |z| > 1,

� (12.4)

log a(z) =
J∑

j=1

log

(
z2 − z2

j

z2 − z2
j

)
+

1
2πi

∮

|ζ|=1

ζ log[ã(ζ)ã(ζ)]
ζ2 − z2 dζ, |z| < 1.

� (12.5)
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As mentioned earlier, the scattering data satisfy a unitarity condition given in equation (3.11), 
which in our case, is given by

a(z)a(z)− b(z)b(z) = cσ−∞ ≡
∞∏

k=−∞

(1 − σQk(−t)Qk(t)).� (12.6)

Equation (12.6) together with the identity ã(z)ã(z) = a(z)a(z) and the symmetry (9.7) give

log a(z) =
J∑

j=1

log

(
z2 − z2

j

z2 − z2
j

)

− 1
2πi

∮

|ζ|=1

ζ log[cσ−∞ + σζ−2b(ζ, t)b(ζ,−t)]
ζ2 − z2 dζ, |z| > 1,

�

(12.7)

log a(z) =
J∑

j=1

log

(
z2 − z2

j

z2 − z2
j

)

+
1

2πi

∮

|ζ|=1

ζ log[cσ−∞ + σζ−2b(ζ, t)b(ζ,−t)]
ζ2 − z2 dζ, |z| < 1.

�

(12.8)

Equations (12.7) and (12.8) imply that one can reconstruct the scattering data a and a  only 
from knowledge of their own simple zeros zj, zj and one function b (recall that b  is related 
to b.). While one can develop a general formula for the norming constants, we shall restrict 
the discussion to reflectionless potentials for which b = b = 0. The second term in equa-
tion (12.7) vanishes since the function ζ/(ζ2 − z2) is analytic inside the unite circle (|z| > 1). 
Taking the derivative of equation (12.7) with respect to z gives

a′(z) = 2z
J∏

j=1

(
z2 − z2

j

z2 − z2
j

)
J∑

j=1

[
1

z2 − z2
j
− 1

z2 − z2
j

]
.� (12.9)

Following similar steps as above, we find

a′(z) = 2cσ−∞z
J∏

j=1

(
z2 − z2

j

z2 − z2
j

)
J∑

j=1

[
1

z2 − z2
j
− 1

z2 − z2
j

]
.� (12.10)

At a single eigenvalue z = z1, z1 ∈ C we have

a′(z1) =
2z1

z2
1 − z2

1
, a′(z1) =

2cσ−∞z1

z2
1 − z2

1
.� (12.11)

12.1.2.  PT symmetric reduction Rn(t) = σQ∗
n (t).  Next, we repeat the calculations outlines 

above, but now for the PT symmetric case where Rn = σQ∗
n . The main difference here, is the 

existence of more zeros of the scattering data a(z) and a(z), i.e. they appear in quartets (see see 

equations (7.21) and (7.22)). Denote by {±zj,±z∗j : |zj| > 1}J
j=1 and {±zj,±z∗j : |zj| < 1}J

j=1, 
the (simple) zeros of a(z) and a(z) respectively. Furthermore, as before, it is assumed that 
all eigenvalues are complex and simple. The case of real eigenvalues is considered later. As 
before, define

ã(z) =
J∏

j=1

(z2 − z2
j )(z

2 − z∗2
j )

(z2 − z2
j )(z2 − z∗2

j )
a(z), ã(z) =

J∏
j=1

(z2 − z2
j )(z

2 − z∗2
j )

(z2 − z2
j )(z2 − z∗2

j )
a(z).

� (12.12)
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According to these definitions, ã(z) is analytic outside the unit circle, where it has no zeros, 
while ã(z) is analytic inside the unit circle, and it has no zeros. Moreover, ã(z) → 1 as 
|z| → ∞. Taking into account that both a(z) and a(z) are even functions of z, we have

log ã(z) = − 1
2πi

∮

|ζ|=1

ζ log ã(ζ)
ζ2 − z2 dζ,

∮

|ζ|=1

ζ log ã(ζ)
ζ2 − z2 dζ = 0, |z| > 1,

� (12.13)

log ã(z) =
1

2πi

∮

|ζ|=1

ζ log ã(ζ)
ζ2 − z2 dζ,

∮

|ζ|=1

ζ log ã(ζ)
ζ2 − z2 dζ = 0, |z| < 1.

� (12.14)
After some algebra, we find

log a(z) =
J∑

j=1

log

[
(z2 − z2

j )(z
2 − z∗2

j )

(z2 − z2
j )(z2 − z∗2

j )

]
− 1

2πi

∮

|ζ|=1

ζ log(ã(ζ)ã(ζ))
ζ2 − z2 dζ, |z| > 1,� (12.15)

log a(z) =
J∑

j=1

log

[
(z2 − z2

j )(z
2 − z∗2

j )

(z2 − z2
j )(z2 − z∗2

j )

]
+

1
2πi

∮

|ζ|=1

ζ log(ã(ζ)ã(ζ))
ζ2 − z2 dζ, |z| < 1.� (12.16)

From the unitarity relation (3.11) with Rk = σQ∗
−k we have

a(z)a(z)− b(z)b(z) = cσ−∞ ≡
∞∏

k=−∞

(1 − σQkQ∗
−k).� (12.17)

Using the symmetry between the scattering data b(z) = σ
z2 b∗(z∗) (see equation  (7.27)) the 

evenness of a(z), a(z) and the identity ã(z)ã(z) = a(z)a(z) we arrive at the general trace 
formulae

log a(z) =
J∑

j=1

log

[
(z2 − z2

j )(z
2 − z∗2

j )

(z2 − z2
j )(z2 − z∗2

j )

]

− 1
2πi

∮

|ζ|=1

ζ log(cσ−∞ + σζ−2b(ζ)b∗(ζ∗))

ζ2 − z2 dζ, |z| > 1,

�

(12.18)

log a(z) =
J∑

j=1

log

[
(z2 − z2

j )(z
2 − z∗2

j )

(z2 − z2
j )(z2 − z∗2

j )

]

+
1

2πi

∮

|ζ|=1

ζ log(cσ−∞ + σζ−2b(ζ)b∗(ζ∗))

ζ2 − z2 dζ, |z| < 1.

�

(12.19)

For simplicity, we consider the reflectionless potentials case again and find

a′(z) = 2z
J∏

j=1

(z2 − z2
j )(z

2 − z∗2
j )

(z2 − z2
j )(z2 − z∗2

j )

×
J∑

j=1

[
1

z2 − z2
j
+

1
z2 − z∗2

j
− 1

z2 − z2
j
− 1

z2 − z∗2
j

]
.

�

(12.20)
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The computation of a′(z) follows analogous lines of derivation. The result is

a′(z) = 2cσ−∞z
J∏

j=1

(z2 − z2
j )(z

2 − z∗2
j )

(z2 − z2
j )(z2 − z∗2

j )

J∑
j=1

[
1

z2 − z2
j
+

1
z2 − z∗2

j
− 1

z2 − z2
j
− 1

z2 − z∗2
j

]
.

�

(12.21)

At a single (J = 1) complex eigenvalue z = z1, z1 we find

a′(z1) =
2z1(z2

1 − z∗2
1 )

(z2
1 − z2

1)(z2
1 − z∗2

1 )
,� (12.22)

a′(z∗1) =
2z∗1(z

∗2
1 − z2

1)

(z∗2
1 − z2

1)(z∗2
1 − z∗2

1 )
,� (12.23)

a′(z1) =
2cσ−∞z1(z2

1 − z∗2
1 )

(z2
1 − z2

1)(z
2
1 − z∗2

1 )
,� (12.24)

a′(z∗1) =
2cσ−∞z∗1(z

∗2
1 − z2

1)

(z∗2
1 − z2

1)(z
∗2
1 − z∗2

1 )
.� (12.25)

A reconstruction formula for the scattering data a, a  in terms of their simple zeros when all 
eigenvalues are real and different is nearly identical to what we have done for the RST case 
with the only exception being in the integral terms appearing in equations (12.7) and (12.8) 
where cσ−∞ + σζ−2b(ζ, t)b(ζ,−t) is replaced by cσ−∞ + σζ−2b(ζ, t)b∗(ζ∗, t). Since we are 
interested in the case where the scattering data b, b  identically vanish (reflectionless poten-
tials), the formula for a′ and a′ given in (12.11) thus still hold whenever the eigenvalues are 
real.

12.2.  Computing symmetries of bj  and bj

In this section we obtain the symmetries that bj  and bj satisfy at discrete eigenvalues zj  and zj. 
This in turn will be later used to determine the dependence of the norming constants Cj  and 
Cj on these eigenvalues. We shall distinguish between two cases: RST and PT symmetric. 
Note that the (time-independent) quantity cσ−∞ frequently appears (directly or implicitly) in 
the eigenfunctions, scattering data, norming constants and potentials. Thus, we first need to 
find its value. The computation of cσ−∞ for the general soliton case (arbitrary J, assuming 
reflectionless potentials) is cumbersome. Since in this paper, we explicitly compute only one 
soliton solutions, we set J  =  1 and assume ρ = ρ = 0; in the general reconstruction formula 
for cn (cf. [34]):

cn = 1 − 2C1z2n−1
1 N

′(2)
n (z1).� (12.26)

Solving for N
(2)′

n (z1) from equations (8.18) and (8.20) to find

N
(2)′

n (z1) =
2z1

(
z2

1 − z2
1

)
C1z−2n

1(
z2

1 − z2
1

)2
+ 4C1C1z2n+2

1 z−2n
1

.� (12.27)
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Substituting equation  (12.27) into (12.26); use the fact that |z1|  >  1 and |z1| < 1 we find 
cσ−∞ = z2

1/z2
1. Note that the dependence of cσ−∞ on σ is ‘hidden’ in the choice of the 

eigenvalues.

12.2.1.  RST reduction Rn(t) = σQ−n(−t).  Here, we assume that Rn(t) = σQ−n(−t) holds 
together with all implied symmetries. At an eigenvalue, equation (8.3) give

M(2)′

−n (zj, t) = bj(t)z2n
j N(2)′

−n (zj, t), M(1)′

−n (zj, t) = bj(t)z2n
j N(1)′

−n (zj, t).� (12.28)

Using the symmetry relation N(1)′

m+1(zj, t) = −σ
(
cσ−∞

)−1 M(2)′

−m (zj,−t) between the eigen-

functions (see equation (6.19)) together with the left part of equation (12.28) results in

N(1)′

n+1(zj, t) = −σ
(
cσ−∞

)−1
bj(−t)z2n

j N(2)′

−n (zj,−t).� (12.29)

On the other hand, the eigenfunctions N(2)′
n (zj, t) and M(1)′

n (zj, t) are connected via the sym-
metry relation (6.20), i.e. N(2)′

n+1(z, t) = M(1)′

−n (z,−t). This symmetry, when combined with the 

right equation from (12.28), gives rise to

N(2)′

−n (zj,−t) = bj(t)z−2
j z−2n

j N(1)′

n+1(zj, t).� (12.30)

Substituting equation (12.30) into (12.29) one obtains the symmetry recall that cσ−∞ is time 
independent)

bj(−t) bj(t) = −σcσ−∞z2
j , =⇒ b2

j (0) = −σcσ−∞z2
j ,� (12.31)

where we used the time evolution of b(t) given by equation (8.23). For a one soliton solution 
we find

b2
1(0) = −σz4

1/z2
1, σ = ∓1 =⇒ b1(0) =

sz2
1

z1
ei(1+σ)π/4, s = ±1.� (12.32)

To determine the value of bj(t), one follows similar steps: start from equation (8.4); apply the 
symmetries (6.21) and (6.22) and end up with

bj(−t)bj(t) = −σcσ−∞(zj)
−2 =⇒ b

2
j (0) = −σcσ−∞(zj)

−2.� (12.33)

In obtaining the expression for bj(0) we made use of the evolution of the scattering data bj(t) 
given by equation (8.25). For the one soliton case we find

b1(0) =
sz1

z2
1

ei(1+σ)π/4, z1, z1 ∈ C, σ = ∓1, s = ±1.� (12.34)

With the help of equation (12.11) we are now ready to compute the norming constants C1 and 
C1. We thus have (σ = ∓1 and s = ±1)

C1(0) =
sz1(z2

1 − z2
1)

2z1
ei(1+σ)π/4, C1(0) =

s(z2
1 − z2

1)

2z1z1
ei(1+σ)π/4, z1, z1 ∈ C.

� (12.35)

12.2.2.  PT symmetric reduction Rn = σQ∗
−n .  Here, we obtain the symmetries that bj, bj sat-

isfy at discrete eigenvalues zj  and zj for the PT symmetric case. Since this symmetry is local 
in time, we shall not explicitly indicate any time dependence of the eigenfunctions and scat-
tering data. Our starting point is again equation (12.28). Substituting the symmetry condition 
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N(1)′

m+1(zj) = −σ
(
cσ−∞

)−1 M(2)
′∗

−m (z∗j ), given by equation  (7.12), into the left part of equa-

tion (12.28) one finds

N(1)′∗

n+1 (z∗j ) = −σ
(

cσ
∗

−∞

)−1
bjz2n

j N(2)′

−n (zj),� (12.36)

where cσ
∗

−∞ ≡ (cσ−∞)∗. Next, we use the symmetry (7.13), i.e. N(2)′

n+1(zj) = M(1)′∗

−n (z∗j ) to 

rewrite the right part of equation (12.28) in the form

N(2)′∗

n+1 (z∗j ) = bjz2n
j N(1)′

−n (zj), =⇒ N(2)′

−n (zj) = z−2
j b∗

j z−2n
j N(1)

′∗

n+1 (z∗j ).
� (12.37)

Substituting equation (12.37) back into (12.36) gives

|bj|2 = −σz2
j (c

σ
−∞)∗.� (12.38)

Since for the PT symmetric case the eigenvalues zj  and zj are not related through any sym-
metry we find, for a one soliton solution (recall cσ−∞ = z2

1/z2
1)

|b1|2 = −σ|z1|4

(z∗1)2 =⇒ b1 =
z2

1

z1
eiθ1 , σ = −1, z1, z1 ∈ R,� (12.39)

with arbitrary and real constant θ1. Similar expression can be obtained for bj. Indeed, starting 
from equation (8.4) we have

M
(1)′

−n (z�) = b�(z�)−2nN
(1)′

−n (z�), M
(2)′

−n (z�) = b�(z�)−2nN
(2)′

−n (z�).� (12.40)

Now use the symmetries M
(2)′

−n (zj) = cσ
∗

−∞N
(1)′∗

n+1 (z∗j ) and M
(1)′

−n (zj) = −σN
(2)′∗

n+1 (z∗j ) respec-

tively obtained in (7.14) and (7.15) to rewrite equation (12.40) in the form

N
(2)′∗

n+1 (z∗� ) = −σb�(z�)−2nN
(1)′

−n (z�), N
(1)′

−n (z�) = (cσ−∞)−1(z�)2b
∗
� (z�)

2nN
(2)′∗

n+1 (z∗� ).� (12.41)

In order for the system of equations in (12.41) to be consistent one finds

|b�|2 = −σ(z�)−2cσ−∞.� (12.42)

For a one soliton solution with cσ−∞ = z2
1/z2

1 (with real z1, z1) we find that solution exists only 
when σ = −1, in which case we have

b1 =
z1

z2
1

eiθ1 , z1, z1 ∈ R,� (12.43)

with arbitrary and real constant θ1. To write down a closed form expression for the norming 
constants C1 and C1, we use the above formulae, the definition of norming constants equa-
tions (4.5) and (12.11) with σ = −1:

C1(0) =
z1(z2

1 − z2
1)e

iθ1

2z1
, C1(0) =

(z2
1 − z2

1)e
iθ1

2z1z1
, z1, z1 ∈ R.� (12.44)

13.  One soliton solution

In this section  we compute the one soliton solution for the AL, RT, RST, PT NLS equa-
tions given in (1.3), (1.12), (1.11), (1.8) respectively, as well as the AL model (1.3). They 
all correspond to the case where J  =  1 with eigenvalues z1, z1 (|z1| > 1, |z1| < 1) being (in 
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general) complex and different (depending on the symmetries at hand). Moreover we will 
assume that the potentials are reflectionless i.e. ρ = 0, ρ = 0, R = 0, R = 0.

In order to write down a closed form formula for the soliton we need: (i) all symmetries 
(which we already obtained) and (ii) a reconstruction formula for the potential Rn and/or Qn 
which can be chosen either from equations (8.35), (8.40), (8.71) or (8.74). We shall provide 
those eigenfunctions that are necessary for the construction of the potentials.

13.1.  Computing eigenfunctions and potentials: left scattering problem

Starting from equation (8.20) we find (after some algebra) that the relevant eigenfunctions 

N
(1)′

n (z1) and N(2)′
n (z1) are given by

N
(1)′

n (z1) =

(
z2

1 − z2
1

)2

(
z2

1 − z2
1

)2
+ 4z2

1C1C1z2n
1 z−2n

1

,� (13.1)

N(2)′
n (z1) =

(
z2

1 − z2
1

)2

(
z2

1 − z2
1

)2
+ 4C1C1z2n+2

1 z−2n
1

.� (13.2)

From equations (8.35) and (8.40) with J = 1, ρ = 0, the potentials Rn(τ) and Qn(τ) are given 
by

Rn(τ) = 2C1(τ)z
−2(n+1)
1 N′(2)

n (z1) =⇒ Rn(τ) =
2C1(τ)z

−2(n+1)
1

(
z2

1 − z2
1

)2

(
z2

1 − z2
1

)2
+ 4C1(τ)C1(τ)z2n+2

1 z−2n
1

.� (13.3)

Qn−1(τ) = −2C1(τ)z
2(n−1)
1 N

′(1)
n (z1) =⇒ Qn(τ) = −

2C1(τ)z2n
1

(
z2

1 − z2
1

)2

(
z2

1 − z2
1

)2
+ 4C1(τ)C1(τ)z2n+2

1 z−2n
1

�

(13.4)where

C1(τ) = C1(0)e2iω1t, C1(τ) = C1(0)e−2iω1t, ω1 =
1
2
(
z1 − z−1

1

)2
, ω1 =

1
2
(
z1 − z−1

1

)2
.

We use these formulae below.

13.2.  Ablowitz–Ladik solitons

The classical integrable AL model is characterized by soliton eigenval-
ues and norming constants obeying the relation given in (4.3), i.e. z1 = 1/z∗1 and 
C1(τ) = −σ(z∗1)

−2C∗
1 (τ) = −σ(z∗1)

−2C∗
1 (0)e

−2iω1τ  with with z1, C1(0) being arbitrary com-
plex parameters. Substituting these parameters in (13.3) gives the well-known AL NLS one-
soliton solution

Rn(τ) =
2
(
|z1|4 − 1

)2
C1(0)e2iω1τ z−2(n+1)

1

(|z1|4 − 1)2 − 4σ|C1(0)|2|z1|−4n
.

� (13.5)
To compute the potential Qn(τ), we substitute the eigenvalues and norming constants in equa-
tion (13.4) to find
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Qn(τ) =
2σ

(
|z1|4 − 1

)2
C∗

1 (0)e
−2iω1τ (z∗1)

−2(n+1)

(|z1|4 − 1)2 − 4σ|C1(0)|2|z1|−4n
.� (13.6)

Clearly, the symmetry Rn(τ) = σQ∗
n(τ) is preserved. To avoid singularity, one chooses 

σ = −1. To put this soliton in a more ‘familiar’ form, we let z1 = exp(ξ + iη), with ξ > 0 
(since |z1|  >  1) and constant real η. Furthermore, we represent the norming constant C1(0) in 
the form C1(0) = 1

2 (|z1|4 − 1) exp(χ1 + iχ2). With this we have

Qn(τ) = − sinh(2ξ)e−iχ2 e2iη(n+1)sech(2ξn − χ1)e−2iω1τ .� (13.7)

This one-soliton solution contains four free real parameters: ξ, η,χ1 and χ2.

13.3.  RT NLS solitons

From (5.23), (5.29) and (8.26) we have z1 = 1/z1 with z1 ∈ C and 
C1(τ) = −σz−2

1 C1(−τ) = −σz−2
1 C1(0)e−2iω1τ . To this end, the RT NLS one-soliton solution 

is given by

Rn(τ) =
2C1(0)e2iω1τ z−2(n+1)

1

(
z2

1 − z−2
1

)2

(
z2

1 − z−2
1

)2 − 4σC2
1(0)z

−4(n+1)
1

.� (13.8)

This is a four parameter family solution for which z1 and C1(0) are arbitrary complex con-
stants. The potential Qn(τ) can be found from equation (13.4):

Qn(τ) =
2σC1(0)e−2iω1τ z−2(n+1)

1

(
z2

1 − z−2
1

)2

(
z2

1 − z−2
1

)2 − 4σC2
1(0)z

−4(n+1)
1

.� (13.9)

Clearly, the symmetry Rn(τ) = σQn(−τ) is preserved. Define the complex parameter C̃1 by 
4C2

1(0)z
−4
1 ≡ (z2

1 − z−2
1 )2C̃2

1. Then equation (13.9) is rewritten as

Qn(τ) =
2σC1(0)e−2iω1τ z−2(n+1)

1

1 − σC̃2
1z−4n

1

.� (13.10)

Notice that this soliton can be singular, even at time zero. Indeed, consider an arbitrary point 
on the integers n  =  n0. Then singularity occurs whenever the initial condition satisfies

C̃2
1 = σz4n0

1 .� (13.11)

Thus, we exclude this from the initial data. As we stated below equation  (3.14), the AL 
scattering theory is mathematically well grounded for potentials that satisfy the conditions 
‖Q‖1 =

∑∞
−∞ |Qn| < ∞ and ‖R‖1 =

∑∞
−∞ |Rn| < ∞. As such, choosing initial conditions 

satisfying equation (13.11) would not be consistent with the analysis presented in this paper.
We next examine the time evolution of the soliton. Recall that ω1 = 1

2

(
z1 − z−1

1

)
2. With 

the definition z1 = eξ+iη we get ω1 = sinh(ξ + iη) = sinh ξ cos η + i cosh ξ sin η. Thus, as 
far as the time-evolution is concerned, we have

Qn(τ) ∼ e−2iω1τ = e2i[1−cosh(2ξ) cos(2η)]τ e2 sinh(2ξ) sin(2η)τ .� (13.12)

The first exponent on the right hand side of equation (13.12) is bounded in time, whereas the 
other one, exp[2τ sinh 2ξ sin 2η], either grows or decays in time.
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13.4.  RST NLS solitons

Recall in this case that the eigenvalues z1, z1 are (in general) complex and counted as free 
parameters. Substituting the norming constants (and their respecting time-dependent) given 
by equation (12.35) and (10.29) into (13.3) to find

Rn(τ) =
s(z1z1)

−1(z2
1 − z2

1)e
i(1+σ)π/4e2iω1τ z−2n

1

1 − ei(1+σ)π/2e2i(ω1−ω1)τ z2n
1 z−2n

1

.� (13.13)

On the other hand, from equation (13.4) we obtain the formula for the potential Qn(τ) given 
by

Qn(τ) = − s(z1z1)
−1(z2

1 − z2
1)e

−i(1+σ)π/4e−2iω1τ z2n
1

1 − e−i(1+σ)π/2e−2i(ω1−ω1)τ z−2n
1 z2n

1

.� (13.14)

Note that when σ = ∓1 we have the two identities: e−i(1+σ)π/2 = ei(1+σ)π/2 and 
e−i(1+σ)π/4 = −σei(1+σ)π/4. With this at hand, equation (13.14) is rewritten as

Qn(τ) =
σs(z1z1)

−1(z2
1 − z2

1)e
i(1+σ)π/4e−2iω1τ z2n

1

1 − ei(1+σ)π/2e−2i(ω1−ω1)τ z−2n
1 z2n

1

.� (13.15)

Since z1, z1 are free complex constants defined outside/inside the unit circle |z| = 1 respectively, 
this is a four parameter family of solutions. And as expected, the two potentials Rn(τ) and 
Qn(τ) do satisfy the RST symmetry Rn(τ) = σQ−n(−τ). It is evident from equation (13.15) 
that Q∗

n(τ) �= Qn(−τ); thus clearly demonstrating the non commutativity between time rever-
sal and complex conjugation. Finally, we remark that the RST soliton can develop a singular-
ity in finite time. This can happen when the eigenvalues z1 and z1 are real (the general complex 
case does not develop singularity due to the dependence of ω1 and w1 on the eigenvalues). As 
an example, at a grid point n  =  0, the denominator in (13.15) vanish when

τs =
(1 + σ)π − 4π

4(ω1 − ω1)
, z1, z1 ∈ R.� (13.16)

13.5.  PTNLS solitons

The PT symmetric one soliton is characterized by two arbitrary real eigenval-
ues z1, z1 with norming constants (and their time evolution) given by equa-

tions  (12.44) and (10.29) i.e. C1(τ) =
z1(z2

1−z2
1)eiθ1

2z1
e2iω1τ , C1(τ) =

(z2
1−z2

1)eiθ1

2z1z1
e−2iω1τ and 

ω1 =
(
z1 − z−1

1

)
2/2; ω1 =

(
z1 − z−1

1

)
2/2. With this at hand, the PT NLS one-soliton solu-

tion is given by (σ = −1)

Rn(τ) =
(z1z1)

−1(z2
1 − z2

1)e
iθ1 e2iω1τ z−2n

1

1 − ei(θ1+θ1)e2i(ω1−ω1)τ z2n
1 z−2n

1

.� (13.17)

Next, we compute Qn(τ). After some algebra, we find

Qn(τ) = − (z1z1)
−1(z2

1 − z2
1)e

−iθ1 e−2iω1τ z2n
1

1 − e−i(θ1+θ1)e−2i(ω1−ω1)τ z−2n
1 z2n

1

.� (13.18)

Clearly, the PT symmetry Rn(τ) = −Q∗
−n is preserved. Since z1, z1, θ1, θ1 are all free real con-

stants, the soliton constitute a four parameter family of solutions. Equations (13.18) or (13.17) 
reproduces the one-soliton result first reported in [40] under the transformation θ1 → θ1 + π. 
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The soliton given in (13.18) also develops a singularity in finite time. Indeed, when n  =  0 (as 
an example), we find the blow-up time to be

τs =
2π − (θ1 + θ1)

2(ω1 − ω1)
.� (13.19)

13.6.  Computing eigenfunctions and potentials: right scattering problem

As was mentioned in section 6, all one needs to compute a soliton solution for an integra-
ble system (that originates from the AKNS scattering problem) are symmetries between the 
eigenfunctions, scattering data and a reconstruction formula for Rn or Qn. However, due to 
nonlocality (in space), we extended the analysis by studying a ‘right’ scattering problem and 
connected it with the left one using proper symmetry relations. For completeness of presenta-
tion, we use the results from the right scattering problem to compute a one soliton solution and 
show that they coincide with the one we obtained in section 13.1. Solving equations (8.63) and 
(8.65) for the eigenfunctions gives

M(1)′
n (z1) =

(
z2

1 − z2
1

)2

(
z2

1 − z2
1

)2
+ 4B1B1z2−2n

1 z2n
1

,� (13.20)

M
(2)′

n (z1) =
c−∞

(
z2

1 − z2
1

)2

(
z2

1 − z2
1

)2
+ 4B1B1z2n+2

1 z−2n

1

.� (13.21)

The potentials are recovered from equations (8.71) and (8.74):

Rn = 2c−1
−∞B1z−2(n+1)

1 M
′(2)
n (z1) =⇒ Rn =

2B1z−2(n+1)
1

(
z2

1 − z2
1

)2

(
z2

1 − z2
1

)2
+ 4B1B1z2n+2

1 z−2n

1

,

� (13.22)

Qn−1 = −2B1z2(n−1)
1 M′(1)

n (z1) =⇒ Qn = −
2B1z2n

1

(
z2

1 − z2
1

)2

(
z2

1 − z2
1

)2
+ 4B1B1z−2n

1 z2n+2
1

.

� (13.23)
With this at hand, we can write down the one-soliton solution for the RST and PT symmetric 
NLS equations.

13.6.1.  RST NLS soliton.  In this case, we have two complex eigenvalues z1, z1 that are not 
related, i.e. they are counted as free parameters and σ = ∓1. From equations (10.16), (10.20), 
(10.29) and (10.30) we find

B1(τ) = −σ(z1)
2C1(−τ) = −σ(z1)

2C1(0)e2iω1τ ,� (13.24)

B1(τ) = −σz−2
1 C1(−τ) = −σz−2

1 C1(0)e−2iω1τ ,� (13.25)

where ω1 = 1
2

(
z1 − z−1

1

)
2,ω1 = 1

2

(
z1 − z−1

1

)
2. Thus we have

Rn(τ) = − 2σC1(0)e2iω1τ (z1)
−2n

1 +
4z2

1C1(0)C1(0)

(z2
1−z2

1)
2 exp [2i(ω1 − ω1)τ ]z2n

1 z−2n

1

.� (13.26)
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Note that from (12.35) 4z2
1C1(0)C1(0)

(z2
1−z2

1)2 = −ei(1+σ)π/2. Substituting the norming constants (12.35) 

back into (13.26) results in the one-soliton solution for the RST NLS equation (1.11)

Rn(τ) =
sσ(z1z1)

−1(z2
1 − z2

1)e
i(1+σ)π/4e2iω1τ (z1)

−2n

1 − ei(1+σ)π/2 exp [2i(ω1 − ω1)τ ]z2n
1 z−2n

1

,� (13.27)

where σ = ∓1 and s = ±1. After some algebra, one can put equation (13.27) in a form that 
precisely matches the one-soliton solution given in (13.13), showing a consistency between 
the left and right scattering problems. Next we compute the potential Qn(τ). From (13.23) we 
find

Qn(τ) =
s(z1z1)

−1(z2
1 − z2

1)e
i(1+σ)π/4e−2iω1τ (z1)

2n

1 − ei(1+σ)π/2 exp [−2i(ω1 − ω1)τ ]z−2n
1 z2n

1

.� (13.28)

Comparing the two potentials from (13.27) and (13.28) clearly shows that the integrable sym-
metry Rn(t) = σQ−n(−t) is indeed satisfied.

13.6.2.  PT NLS soliton.  In this case, we have two real eigenvalues z1, z1 that are not related 
with σ = −1. From equations (10.25), (10.28), (10.29) and (10.30) we find

B1(τ) = −σ(z1)
2C

∗
1(τ) = −σ(z1)

2C
∗
1(0)e

2iω1τ ,� (13.29)

B1(τ) = −σz−2
1 C∗

1 (τ) = −σz−2
1 C∗

1 (0)e
−2iω1τ ,� (13.30)

where ω1 = 1
2

(
z1 − z−1

1

)
2,ω1 = 1

2

(
z1 − z−1

1

)
2, giving rise to

Rn(τ) = − 2σC
∗
1(0)e

2iω1τ (z1)
−2n

1 +
4z2

1C∗
1 (0)C∗

1 (0)

(z2
1−z2

1)
2 exp [2i(ω1 − ω1)τ ]z2n

1 z−2n

1

.� (13.31)

Note that from (12.35), 4z2
1C∗

1 (0)C∗
1 (0)

(z2
1−z2

1)2 = −e−i(θ+θ1). Substituting the norming constants (12.44) 

into (13.31) results in the one-soliton solution for the PT symmetric NLS equation (1.8)

Rn(τ) = − (z1z1)
−1(z2

1 − z2
1)e

−iθ1 e2iω1τ (z1)
−2n

1 − e−i(θ+θ1) exp [2i(ω1 − ω1)τ ]z2n
1 z−2n

1

.� (13.32)

To this end, the potential Qn(τ) is found from (13.23) as

Qn =
(z1z1)

−1(z2
1 − z2

1)e
iθ1 e−2iω1τ (z1)

2n

1 − ei(θ+θ1) exp [−2i(ω1 − ω1)τ ]z−2n
1 z2n

1

.� (13.33)

Comparing the two potentials from (13.32) and (13.28) clearly shows that the integrable sym-
metry Rn = −Q∗

−n is indeed satisfied. By letting θ1 → θ1 + π we recover the PT symmetric 
one-soliton solution first reported in [40].

14.  Remarks on nonlocal Painlevé equations

The Painlevé equations are special nonlinear ordinary differential equations which have no 
moveable branch points in the complex plane see [52]. Remarkably, they frequently arise 
from a self-similar reductions of integrable nonlinear evolution equations see [7, 53]. They 
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are particularly interesting due to their rich structure in the complex plane as well as their 
deep connections to integrable systems. While originally developed in the context of continu-
ous integrable evolution equations, discrete Painlevé equations have also been proposed and 
extensively studied see [54].

Until recently, most of the work on the subject has focused on the mathematical properties 
of local ‘classical’ continuous and discrete Painlevé equations  [55–63]. Recently however, 
Ablowitz and Musslimani proposed new nonlocal Painlevé-type equations that arise from a 
self similar reductions of the PT, RST and RT nonlocal integrable evolution equations, see 
[40–42]. Below we summarize some of the those already mentioned and add some new ones.

PT Painlevé A1 [42]: fzz(z) + λf (z)− 2σf 2(z) f ∗(−z) = 0,� (14.1)

PT Painlevé A2 [42]: fzz(z) + izfz(z) + (ν0 + i) f (z)− 2σf 2(z) f ∗(−z) = 0,
� (14.2)

RST Painlevé [41]: fzz(z) + izfz(z) + if (z)− 2σκf 2(z) f (κz) = 0,� (14.3)

RT Painlevé [41]: fzz(z) + izfz(z) + if (z)− 2σκf 2(z) f (−κz) = 0,� (14.4)

PT discrete Painlevé [40]: un+1 + un−1 +
δun

1 + σunu∗
−n

= 0,� (14.5)

where σ = ∓1,λ, ν0, δ ∈ R,κ = (−1)−1/2 and f (z),un are (in general) complex valued func-
tions of the real variables z and n. We note that equation (14.1) is a nonlocal generalization of 
an elliptic function and equation (14.5) is a nonlocal generalization of an addition formula of 
an elliptic function.

In this paper, we propose some new continuous and discrete nonlocal Painlevé equations. 
First note that the above PT discrete Painlevé equation can be modified. Looking for a solution 
of the form Qn(t) = eiλtun, λ ∈ R in the RST discrete NLS equation (1.11) we find

un+1 + un−1 +
δ1un

1 + σunu−n
= 0, δ1 = λ− 2,� (14.6)

where δ1 ∈ R. Writing out first few terms, it appears that numerically, we can find nontrivial 
solutions/ non even solutions to equation (14.6). That is to say, given u0 and u1, we can find all 
other un for all n � 2. An interesting class of similarity reductions are accelerated waves see 
[53]. For example for the standard NLS equation (1.1) the similarity reduction

q(x, t) = f (z)e−iβ0t(x−γ0t2), z = x − β0t2, γ0 = −2β0

3
, β0 ∈ R,� (14.7)

leads to the following Painlevé-type equation

fzz − β0zf + 2σf 2f ∗ = 0.� (14.8)

This is the second Painlevé equation when f * is replaced by f .
Motivated by Galilean invariance of the nonlocal PTNLS equation we can look for accel-

erated type similarity reductions of nonlocal equations. In the PTNLS equation  (1.13) we 
introduce the following reduction

q(x, t) = f (z)e−ξ0t(x−µt2), z = x + iξ0t2, µ = −2ξ0

3
, ξ0 ∈ R,� (14.9)
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which leads to the nonlocal Painlevé-type equation

fzz(z)− iξ0zf (z) + 2σf 2(z) f ∗(−z) = 0.� (14.10)

This is a nonlocal generalization of the second Painlevé equation. In [41] the following nonlo-
cal reverse space-time generalization of the modified KdV (RST mKdV) equation was found

wt(x, t) + 6σw(x, t)w(−x,−t)wx(x, t) + wxxx(x, t) = 0.� (14.11)

The traveling wave similarity reduction u(x, t) = f (z), z = x − ct, c ∈ R leads to the fol-
lowing nonlocal differential equation

fzzz(z) + 6σf (z) f (−z) fz(z)− cfz(z) = 0.� (14.12)

It should be noted that the one-soliton solution for the nonlocal RST mKdV equation does not 
satisfy equation (14.12), unless taken to be even (in which case it reduces back to the classical 
mKdV equation). It is left for a future research to understand the behavior of the solutions to 
this equation.

We also remark that looking for a self-similar solution to the nonlocal mKdV equa-
tion (14.11) of the form

w(x, t) =
1

3t1/3 f (z), z =
x

3t1/3 ,� (14.13)

we find

fzzz − (zf )z − 6σf 2fz = 0, =⇒ fzz − zf − 2σf 3 = α,� (14.14)

where α is constant. Interestingly enough, even though we began with a nonlocal equa-
tion (14.11), the result is still local; it is the second Painlevé transcendent. It is likely that 
this equation, i.e. (14.14), plays an important role in the long time asymptotic solution to the 
nonlocal mKdV equation (14.11).

We believe that it is important to study the behavior of these nonlocal Painlevé type equa-
tions. It is an important topic for future study.

15.  Conclusion

In 1975/76 Ablowitz and Ladik formulated a theory for discrete integrable systems whose 
core idea is a discrete compatibility condition between two linear problems: the first being a 
second order discrete Schrödinger-type scattering problem while the other is a time-evolution 
system. The outcome of this theory is a nonlinear evolution equation in time (continuous or 
discrete) and second order discrete in space that is guaranteed to be (i) integrable, in the sense 
of existence of an infinite number of conservation laws and (ii) solvable by the inverse scat-
tering transform. For the specific case given by (2.1) and (2.2) this compatibility condition 
results in a coupled evolution equations for the ‘potentials’ Rn and Qn, equations (1.4) and 
(1.5). Ablowitz and Ladik found that this system is compatible under the integrable symmetry 
reduction (σ = ∓1)

Rn = σQ∗
n ,� (15.1)

and leads to the well-known Ablowitz–Ladik model equation (1.3).
More than four decades have passed before new integrable symmetry reductions of the 

Ablowitz–Ladik scattering problem (2.1) were discovered. Indeed, in 2014, Ablowitz and 
Musslimani noted (for the first time) that the coupled system of evolution equations (1.4) and 
(1.5) admit the so-called PT symmetric reduction
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Rn(t) = σQ∗
−n(t),� (15.2)

giving rise to the PT symmetric nonlinear Schrödinger equation  (1.8). Notably, that equa-
tion preserves the ‘discrete’ PT symmetry, i.e. invariance of the evolution equation under the 
combined transformation of n → −n, t → −t and complex conjugation. In recent years, there 
has been an intense research interest in the physics and mathematics of linear and nonlinear 
systems that admits PT symmetry, with the main focus being in quantum physics and optics 
see [64–92].

In 2016, Ablowitz and Musslimani discovered two new integrable symmetry reductions for 
the AL scattering problem. Those are the reverse space-time and reverse time only reduction 
respectively given by

Rn(t) = σQ−n(−t),� (15.3)

Rn(t) = σQn(−t),� (15.4)

giving rise to the so-called RST and RT NLS equations (1.11) and (1.12).
The inverse scattering theory and soliton solution for the PT symmetric NLS (1.8) has been 

briefly outlined (due to page limitation) in [40] whereas in [41] the RST and RT NLS equa-
tions were proposed and shown to be integrable discrete system (few conserved quantities 
were also given).

In this paper, we provide a full account of the scattering and inverse scattering transform for 
all three cases: PT symmetric, RST and RT NLS equations. In particular, we derived all sym-
metries between the eigenfunctions, scattering data as well as for the modified eigenfunctions. 
The inverse scattering problem is solved using a left-right Riemann–Hilbert formulation. A 
trace formula is obtained for the RST and PT symmetric cases that is later used to express 
the norming constants as a function of the eigenvalues (zeros of the scattering data a and a.) 
An alternative reconstruction formula for the potentials that allows one to easily ‘observe’ 
the integrable symmetry reduction at hand is derived. Soliton solutions for all three cases are 
obtained and their properties are discussed. New Painlevé type equations are also proposed.

Finally, we outline a number of interesting research directions pertaining to integrable 
nonlocal RT, RST and PT symmetric discrete NLS systems:

	 •	�In earlier papers, we have extended the IST with rapidly decaying data for the continuous 
nonlocal NLS, sine/sinh-Gordon equations to the IST with nonzero constant amplitude 
background [82–84]. This analysis should be carried out for the discrete nonlocal equa-
tions  discussed in this paper. We remark that IST with nonzero background for the 
classical integrable AL model has been studied [47, 93].

	 •	�Solutions and properties of the above mentioned continuous and discrete nonlocal 
Painleve-type equations should be investigated.

	 •	�Explicit multi-soliton, multi-pole (i.e. non simple pole) solutions for the RT, RST and PT 
symmetric NLS equations should be obtained.

	 •	�The theory associated with periodic/quasi-periodic solutions of the RT, RST and PT sym-
metric NLS equations should be developed.
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