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Abstract

A number of integrable nonlocal discrete nonlinear Schrodinger (NLS) type
systems have been recently proposed. They arise from integrable symmetry
reductions of the well-known Ablowitz—Ladik scattering problem. The equations
include: the classical integrable discrete NLS equation, integrable nonlocal: PT
symmetric, reverse space time (RST), and the reverse time (RT) discrete NLS
equations. Their mathematical structure is particularly rich. The inverse scattering
transforms (IST) for the nonlocal discrete PT symmetric NLS corresponding to
decaying boundary conditions was outlined earlier. In this paper, a detailed study
of the IST applied to the PT symmetric, RST and RT integrable discrete NLS
equations is carried out for rapidly decaying boundary conditions. This includes
the direct and inverse scattering problem, symmetries of the eigenfunctions and
scattering data. The general linearization method is based on a discrete nonlocal
Riemann-Hilbert approach. For each discrete nonlocal NLS equation, an explicit
one soliton solution is provided. Interestingly, certain one soliton solutions of
the discrete PT symmetric NLS equation satisfy nonlocal discrete analogs of
discrete elliptic function/Painlevé-type equations.
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1. Introduction

The nonlinear Schrodinger (NLS) equation

i = g —204°q", 0 =FI, (1.1)
where ¢ is the complex conjugate of ¢, is a prototypical dispersive nonlinear partial differ-
ential equation that has been derived in many areas of physics and analyzed in detail for over
50 years. The NLS equation arises in electromagnetics, fluid dynamics/water waves, magnetic
spin systems, Bose—FEinstein condensation amongst many others [1-6]. When o = —1 the
NLS equation exhibits modulational instability and contains localized solitary waves/solitons.
On the other hand, for ¢ = 41, the NLS equation is modulationally stable; it has dark solitary
waves/solitons which have nonzero boundary values at infinity [6]. Mathematically speaking,
the NLS equation attains even broader significance since, in one plus one dimension, it is
integrable via the inverse scattering transform (IST) [7-12].

While for the past few decades much attention have been directed at the mathematical
structure and physical applications of the continuous NLS equation (1.1), in recent years,
a relatively new research area devoted to discrete photonics has emerged [13—18]. Progress
in the mathematics and physics of complex discrete systems was possible due to advances
in technology along side the successful asymptotic derivation of reduced discrete models.
Among such a discrete equation is the well known discrete nonlinear Schrodinger

gy
IE =qn+1 T Ggn—1+ |qn|2qn’ (1.2)

where ¢,(f) describes a time-dependent discrete envelope function, dot stands for time deriva-
tive and n is an integer. This model successfully predicts numerous important phenomena
in the physical and biological sciences. Examples include wave propagation in coupled
waveguide arrays [19-25], biophysical system [26], molecular crystals [27], atomic chains
[27, 28] as well as many recent observations related to PT symmetric arrays of linearly and/or
nonlinearly coupled optical waveguide.

Although the discrete NLS (1.2) is commonly used in modeling wave propagation in pho-
tonic systems and optical waveguide arrays, to date, it is widely believed to not be integrable.
In a series of papers published in 1975/76, Ablowitz and Ladik (AL) [29, 30] discovered an
integrable discretization of the continuous NLS equation (1.1) given by

dQ,(1)
dt

i

= Qur1 (1) = 20u(1) + Qu1 (1) = 01Qu(1) P[Qu1 (1) + Qo1 (1)),
(1.3)

also frequently called the integrable AL model. If one let Q,(f) = hq,(f) with constant A,
then in the limit of 4 — 0, the integrable discrete NLS equation (1.3) tends to the continuous
NLS equation (1.1), recovering all the underlying integrable properties of the NLS plus new
mathematical features.

Importantly, the AL model arises from a compatibility condition applied to the following
system:

idQ(;t(t) = 0ui1(£) = 20,(1) + Op_1 (1) — On(t)Ru(1)[Ons1 (£) + Ou_1(1)],
(1.4)
_ingt(r) = Ry 1 (1) = 2R, (1) + Ry 1 (1) — Qu(t)R(1)[Ruy1 (1) + R (1)].

(1.5)
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Indeed, one recovers equation (1.3) from the symmetry reduction

R,(t) =00Q,(1), o=l (1.6)

The integrable discrete AL model has been studied in various mathematical settings (see [31—
34] and references therein). Among them is the quantization of the AL model and its solution
method using the so-called quantum inverse scattering transform [35-37]; local Darboux-
Bicklund transformations for the AL model with general discretizations and solutions via
dressing methods [38, 39]. In 2014, Ablowitz and Musslimani [40] discovered a new, PT
symmetric reduction of the AL scattering problem (see equation (2.1) below). It is given by

Ry(1) = 0 Q" (1), (1.7)
giving rise to the so-called integrable discrete nonlocal PT symmetric NLS equation:

. dQﬂ(t) _ *

1=y = Qut1(1) = 204(1) + On1(1) = 0Qu(1)QZ,, (1) [Qut1 (1) + Qo (1))

(1.8)

Subsequently, two new integrable symmetry reductions were identified [41]. These are

Ry(1) = 0Q_n(—1), (1.9)

Ry (1) = 0Qu(—1), (1.10)

giving rise to the so-called integrable discrete reverse space time (RST) and reverse time (RT)
NLS equations respectively

dQ,
98 6,10 20,0) + Qur(1) — 0004 (D[ Quir(1) + Cues (1),
(1.11)
dg,
i%m = Qn+l(t) - 2Qn(t) + anl(t) - O'Qn(t)Qn(*t)[QnJrl (t) + an] (t)]
(1.12)
Notice that one can recover the PT symmetric, RST and RT continuous NLS limits
igr = que — 204q(x, t)zq*(—x, 1), (1.13)
ig: = qoe = 20q(x,1)*q(—x, 1), (1.14)
g, = qu — 20q(x,1)%q(x, —1), (1.15)

by letting Q,(¢) = hq,(t) and take the & — 0 limit. Equations (1.13)—(1.15) were found in
[41-43] as a nonlocal in space and/or in time integrable symmetry reductions of the well-
known AKNS scattering problem [44]. Furthermore, equations (1.13)—(1.15) were recently
shown to arise from an integrable nonlocal asymptotic reductions of physically significant
nonlinear equations such as the cubic nonlinear Klein—Gordon, the Korteweg—de Vries and
water wave equations [45].

The new results and organization of the paper are summarized as follows:

e The inverse scattering transforms are developed for the integrable discrete PT, RST and
RT nonlinear Schrodinger equations with rapidly decaying boundary conditions:

lim Q,=0, ngrinooRn =0. (1.16)

n—+oo
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More general integrable boundary conditions, such as lim, 4., Qp = Q4+ # 0 and
lim, s 40 Ry = R4oo # 01is still an open problem and will be studied in the future. Some
recent relevant results for the AL model and the behavior of its solitons (with non-zero
boundary conditions) are presented in [46—49].

e This includes a detailed study of the discrete direct and inverse scattering theory for
general potentials Q,, R,. In particular we derive all symmetries satisfied by the eigen-
functions, scattering data and norming constants for all three reduction cases. We note
that all relevant symmetry conditions are very different than the classical integrable AL
model in the sense that they are nonlocal and their derivation requires a forward and a
backward scattering problems. This paper also formulates the IST in order to also solve
the discrete RST and RT symmetric nonlocal systems.

e Soliton solutions for all three nonlocal integrable discrete NLS equations are obtained.
Their properties are discussed particularly the issue of singularity formation in finite time.
We note that physical systems can exhibit finite-time blow up singularities as evidenced
by the physically significant two dimensional nonlinear Schrodinger equation [50]. As
shown in this paper, interesting blow up solutions can occur in these nonlocal discrete
systems.

e Novel reconstruction formulae for the potentials are found. This in turn enables one to
observe the integrable symmetry on the inverse side simply by looking at the functional
form of both potentials R, and Q,,.

e Trace formulae are developed for the RST and PT symmetric cases and used to find an
explicit expressions for the norming constants in terms of scattering data.

e Discrete and continuous RT and RST nonlocal Painlevé equations are introduced.

e Sections 2—-6 discuss the direct scattering associated with the above integrable discrete
PT, RST and RT nonlinear Schrodinger equations: (1.8), (1.11) and (1.12), and their asso-
ciated scattering space symmetry relations. Sections 8—10 details the inverse scattering,
time dependence and reconstruction formulae. Sections 11 and 12 discuss norming con-
stants, trace formulae and symmetries needed to compute soliton solutions. Section 13
provides one soliton solutions for all cases. In section 14 remarks about nonlocal Painlevé
equations are provided and section 15 is the conclusion.

2. Linear pairs and integrability

We start by considering the Ablowiz—Ladik scattering problem

o) = (5, %0 ) ten @
doa(r) _ (iQn(t)Rnfl(t) =) —i(2Qa(r) — 2 Oni (1)) ) on(1)
dr i(z7'Ry (1) — ZRu—1 (1)) iR, () Q1 (1) +3(z—27 1)) "7

(2.2)
where v,(t) = (U,(ll)(t), UEP([))T is a complex valued function of r > 0 and n € Z; Q,() and
R,(1) are complex valued potentials that rapidly decay to zero as n — +o0. Here, zis a spectral
parameter taken to be (in general) complex and independent of ¢, n. The discrete compatibility
condition %vnH = (%vm)m:nﬂ yields the system of equations (1.4) and (1.5). As mentioned
earlier, all of the above integrable discrete equations, i.e. (1.3), (1.8), (1.11) and (1.12) are
obtained from the symmetry reductions between R,(¢) and Q,(f) given by equations (1.6),
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(1.7), (1.9) and (1.10). As such, they all form integrable infinite-dimensional Hamiltonian
dynamical systems; their conserved quantities are given in [34, 40].

Due to the nonlocal (in space) nature of the symmetry reductions (1.7) and (1.9), it proves
crucial in the analysis of the direct scattering problem (particularly for obtaining the sym-
metries in scattering space) to supplement the AL system (2.1) with a ‘backward’ scattering
problem (obtained by inverting equation (2.1)) defined by

W1 (1) = (_;ﬂ‘m —Qn<r>>

Importantly, any solution v,(z,#) of (2.1) can be related to a solution of (2.3) via the
transformation

Wn (2, 7). (2.3)

n

Wa(z,1) = fu(t)Vnp1(z.1), fult) = H

k=—o0

1
1 — Ok(0)R (1)

Since both scattering problems (2.1) and (2.3) are linear, the presence of the factor f,(¢) in
equation (2.4) suggests that the solution set {v,(¢), w,(7)} need to be ‘chosen’ in such a way
that the correct boundary conditions are satisfied (see section 3). For the rest of the paper, and
to avoid any confusion, we shall explicitly highlight the time-dependence of the eigenfunc-
tions, scattering data, all symmetry relations, and potentials for the RST and RT nonlocal
NLS cases. Furthermore, we shall suppress the time dependence of any equation that depend
locally on time.

2.4)

3. Direct scattering problem: general consideration

In this section, we provide the main ingredients necessary to solve the AL scattering problem
for generic potentials. Since the discrete potentials Q,, R, vanish rapidly as n — +oo, the
scattering problem (2.1) is defined by the following boundary conditions [34]:

o= (). im a0 (1)
y (O e T (1
PR )

where each ¢,(z), ¢,(z) and v,(z), 1, (z) individually satisfy equation (2.1). Furthermore, the
scattering problem (2.3) is subject to the same boundary conditions. In essence, transforma-
tion (2.4) implies that each eigenfunction need to be properly ‘normalized’ such that the corre-
sponding boundary conditions between v,, and w, match. Throughout the rest of the paper,
star is used to indicate complex conjugation (and not bar). Clearly, the eigenfunction pair
{¢n(2), $,(2)} are linearly independent (similarly for {v,(z),%,(z)}). Thus, since the scat-
tering problem (2.1) is second order, the two eigenfunctions sets are related. Mathematically
speaking, this fact is expressed as

$n(2) = b(2)9hn(2) + a(2)¥,(2), (3.3)

6a(2) = a(2)¥n(2) + ()1, (2), (3.4)
where a(z),a(z), b(z), b(z) are the scattering data given by the relations

a(z) = caW (¢u(2), ¥n(2)), (3.5)
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a(z) = W (¥,(2), 6,(2)) (3.6)
b(z) = caW (1,(2), ¢n(2)). (3.7)
b(z) = W (6,(2)s ¥a(2)) - (3.8)
Here, W is the Wronskian defined by
W (0, w,) = 00w — @y (3.9)
where v, = (01", o) and w, = (Wi, w7 and
“+o0
o= (10— QR (3.10)
k=n

The above scattering data also satisfies the unitarity condition (see [34])

a(z)a(z) — b(2)b(z) = ¢—oo. (3.11)

As we shall see later, the scattering data a(z),ad(z) and the product b(z)b(z) turn out to be
time-independent (see [34] for further details.) This fact implies ¢_o be time-independent
as well, thus making it a constant of motion. In the following analysis, it is convenient to
consider functions with constant boundary conditions. We define the bounded eigenfunctions
as follows:

My(2) =2 "Pu(z), My(2) = 29, (2), (3.12)

Nu(2) = 2Pu(2), Nalz) = 27", (2). (3.13)

For the convenience of the reader, we write down the boundary conditions associated with
these eigenfunctions:

S o= (o) m 1= (7). G19
: _ (0 =1
S ) = (7).t W) = o) G139

In [34] it was shown that if ||Q; =>"% [0, <oc and |R|; =37 |R,| < oo,
then M,(z),N,(z),a(z) are analytic for |z| > 1 and continuous for |z| > 1. Furthermore,
M,(z),N,(z),a(z) are analytic for |z| < 1 and continuous for |z| < 1. The scattering data
a(z),a(z) are even functions of z while b(z), b(z) are odd functions of z. The eigenfunctions
admit the following asymptotic expansions as z — oo,z — 0 (which will be used when solv-
ing the inverse problem)

M,(z) = (

1 + O(z72), even powers of z only

z7'R,_1 + O(z™%), odd powers of z only) 8[| = 00, (3.16)

Nal2) = (—z_lc;lQn + 0(z7?%), odd powers of z only

— 00,
¢, '+ 0(z7%), even powers of z only > as [ = oo

(3.17)
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<

M, (z) — (ZQn—l + 0(z%), odd powers of z only

1 + O(z?), even powers of z only > as 20, (3.18)

_ ~1 1 0(z%), f z onl
No(2) = < ¢!+ O(z%), even powers of z only

— 0. .
ze; 'R, + 0(z*), odd powers of z 0nly> oz (3.19)

The scattering data have the following asymptotic behavior for large and small z:

a(z) = 14+ 0(z7%),even powers of zonly as |z| — oo, (3.20)
a(z) = 1+ 0(z%),even powers of zonly  as |z| — 0, (3.21)
where, as mentioned above, ¢, = ,j::(l — ORy). Notice that the factor ¢, explicitly

depends on the unknown potentials Q,, R,. This fact makes the Riemann-Hilbert (RH)
inverse problem a more difficult task. To remedy this issue, it proves convenient to modify the
eigenfunctions M,(z), N,(z); M,(z), N,(z) and introduce instead a new set of eigenfunctions,
M (2),N!(2); M, (z),N,(z), whose definition and asymptotic behavior (for large and small z)
are given by [34]

S
N, = AN, = ( ¢ ;" n) +0(z7%) asz— oo, (3.22)
1

M;L =AM, = (ZICanl) + 0(1_2) as z — 0o, (3.23)

~ 4w o 2

N, = AN, = R +0(z°) asz—0, (3.24)
T

M, = AM, = (ZQ" ‘) +0(z%) asz—0, (3.25)

(10
A_(O Cn). (3.26)

When solving the inverse problem from the left, the auxiliary functions p,, 7i,, 12, and f, will
be used with their asymptotic behavior (in z):

tin(2) = ek fin(2) = ) (3.27)
no =0 g < T, 329)
(2) = <Z_1 ,len+10+(Z02_3)>, as Jz| = oo, (3.29)
A, (2) = (ZQ'IZI g(?z()Z3)> . as z—0, (3.30)



Nonlinearity 33 (2020) 3653 M J Ablowitz et al

/ 1 —
)= (g ) HOEH s 631)
— _ 2001 2
fn(z) = . +0(z°) as |zl = 0. (3.32)

So far we have presented generic basic properties of the eigenfunctions and scattering data
needed in the analysis of the inverse scattering problem. No symmetry assumption was made
on the potentials O, and R,,.

4. Ablowitz-Ladik reduction R, = o Q;;
For completeness and to make the comparison between all four different integrable symmetry
reductions of the AL scattering problem easier, in this section we provide the reader with a

brief summary of the major symmetry results between the eigenfunctions, scattering data and
norming constants, see [34].

4.1. Symmetries between eigenfunction

@\ _ (oM )\  (W@) (M)
1) \ M) W) \en /)

4.1)
4.2. Symmetries between scattering data
a(z) =a*(1/7"),  b(z) = ob™(1/2"), 4.2)
5=1/7, C=—0(z)7°C, pz) =0op™(1/2"), 4.3)
where here and below z;,7; mean:
a(z) =0, a(z;) = 0. (4.4)

Due to analyticity properties, z; and 7, are finite in number. We will assume that z;,7; are
simple zero’s, termed proper zero’s, and have same total number outside/inside the unit circle
|zl = 1: j = 1,2,...J. These are also the eigenvalues giving rise bound states.

The norming constants are defined by

On(z) = bin(3),  6a(Z) = bjh,(3),

- 4.5)
Cj :bj/a/(Zj), Cj zbj/a’(zj).
4.3. Symmetries of the modified eigenfunctions
—(1)/ P 1% %
M, (z) =o(c]) IM,(lZ) (1/7%), (4.6)
M (2) = o M (17, 4.7)
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N (@) = (cg) N (1/27), 4.8)

N (2) = ocf NV (1/27), 49)

where we have defined

o =TT =0lal). (4.10)
k=

5. Reverse-time symmetry reduction R,(t) = ocQu(—t), o = F1

In this section, we shall establish a crucial integrable symmetry relation that holds between
sets of eigenfunctions solutions to the AL scattering problem. This in turn induces an impor-
tant symmetry restriction between the scattering data.

5.1. Symmetries between the eigenfunctions

To that purpose we write ¢,(z,1) = ( (1)( 1), 2 (z,1))T (note that we have now included
the variable ¢ in the eigenfunctions), where superscript 7 denotes matrix transpose, as a solu-
tion to system (2.1) with R,(¢) = 0 Q,(—1):

o112 0) = 20 (2.1) + Qu(1)8 2 (z.1), 5.1)
Oz 1) = 00 ()90 (1) + 27 6D (2, 1), (5.2)
Lett — —t, z — 1/z in the above equations; rearrange terms to find
O (1/2~1) = 26 (12 —1) + Qu(1) |06V (1/2,~1)] (5.3)
oo (1/2—1) = 00u(=06P (1 /2, —0) + 27" o6 (1 /20| . (5.4
Now, define the quantities:
P (1)z,—1) = 2 (z,1), 0¢i)(1/z,—1) = D (z.1). (5.5)
Then equations (5.3) and (5.4) read
o (2.1) = 200 (2, 1) + 0u ()2 (2.1), (5.6)
o1z 1) = 00 (0@ (2. 1) + 7B (2.1), (5.7)

which is exactly the scattering problem (2.1) under the symmetry reduction R,(t) = cQ,(—1).
Therefore, from (5.6) and (5.7) we have the following symmetry relation

(1) (2)
If (ngz)gz, 2) solves equation (2.1) with R,(¢) = 0Q,(—t) so does ( (')((11//2’_ ))> .

il

3661



Nonlinearity 33 (2020) 3653 M J Ablowitz et al

Similar symmetry arguments hold for ¢, (z,) = (5,(,1) (z,1), 6,(12) (z.0)T.

Next we discuss how the above symmetry and the corresponding boundary conditions
(3.1) induce certain symmetry conditions on the eigenfunctions pair and (as we shall se in
the next section) on the scattering data. Again let ¢,(z, ) be a solution to system (2.1) with
R, (1) = 0Q,(—1) obeying the boundary condition given on the left part of equation (3.1).
Now, let z — 1/z, t — —t in (3.1) to obtain

)
. opn ' (1/z,—t . (0
lim ¢1 (1/ ) =z . (5.8)
o\ o (1/2, 1) !
Next, let ¢,(z,¢) be another solution to system (2.1) with R,(t) = 0Q,(—t) satisfying the
boundary condition given on the right part of equation (3.1). Therefore, we have the important

result:
—(1) 2
<¢n = r)) _ <o¢£ (12, —t>> 59
—(2 = 1 : :
37 (1) oa (1/z,—1)
This symmetry relation induces an important symmetry between the eigenfunctions M, (z, 1)
and M,,(z,f) which reads

1, @0\ _ (oMP (1/2,-1)
+(2) - (1) . (5.10)
M, (z,1) My’ (1/z,—t)

Similarly, we assume that ¢, (z,t) = (w,(,l) (z,1), @ (z,1))T is a solution to system (2.1) with

R, (1) = 0Q,(—1) that satisfies the boundary condition (3.2). By letting z — 1/z, t — —t in
(3.2) we obtain

D (1/z,—1) 1
1- 9 — n .
oo (qur(ll)(]/z’ —1) < (O> .11

Clearly, if 9,,(z, ) is a solution to system (2.1), with R, (t) = ¢Q,(—t), satisfying the bound-
ary condition (3.2) we have the result:

—(1)
by @)\ (P12 1) i
—(2) = M ~ (5.12)
P, (z.1) on’(1/z,—1)
To obtain a symmetry relation between the corresponding eigenfunctions N,(z,¢) and N,(z, 1)
we use the result obtained in (5.12) and find

Nr(zl)(z»t) _ r(LZ)(l/Z,—t)
(Mﬂ”(z,z)) - <UN,$1>(1 Jo—1)) (5.13)

5.2. Symmetries between the modified eigenfunctions

Recall the relation between the two sets of eigenfunctions {M,(z),N,(z); M,(z),N.(z)}
and {M!(z),N!(z);:M,(z),N,(z)} given by equations (3.22)~(3.25). Use the symmetry
relation between the ‘unprimed’ eigenfunctions established in (5.10) and (5.13), we find,
componentwise
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M (1) = o(eg () M (1/2, 1), (5.14)
M (z.1) = (1) MV (12, 1), (5.15)
N (20 = (@ (0) NO' (1/2, 1), (5.16)
N (2,1) = 0c? (1) NV (1/2, —1). (5.17)

Note that, by definition, ¢, (r) = ¢,(Qk(1), Re(2)) = [ 1=, (1 — Qk(t)Ri(2)) . At the symmetry
point where R, (1) = 0Q,(—t) we have

o)

cr (1) = ea(Qu(0),0Qu(—1)) = [ (1 =0 () Qu(=0)) = T (—1).  (5.18)

k=n

5.3. Symmetry of scattering data

To establish the symmetry relation between the scattering data a(z) and a(z) we start from
(3.5), (3.6) and the assumption that R, () = 0Q,(—t). Now we have

a(z.0) =g (1) (P(1/2-08,” 1) — vV (1/2-08," 1) (5.19)

= (1) (¥ (1/2 =060 (1/2,—1) = ¢V (1 /2 =082 (1 /2. =1)) . (5.20)
However, from (3.5) we get
a(l/z,—t) = ¢ (—1) (¢£2)(1/z, —0)¢5) (1/2,—1) = ¥V (1/2, =)0 (1/z, ,,)) -

(5.21)
Since ¢Z(t) = ¢7(—t), as s a result we have

a(z,t) = a(l/z,—1). (5.22)

As we shall see later, it turns out that the scattering data d(z, r) and a(z, t) are rime-indepen-
dent giving rise to the following symmetry between the zeros of a(z, t) and @(z, t) (see equa-
tion (4.4); these zeros are also termed soliton eigenvalues:

If z;,Z; € C are eigenvalues then z; = 1/z;. (5.23)

To find the symmetry relation between the scattering data b(z, t) and b(z, t) we start from equa-
tion (3.8), the symmetry relation (5.9) and the assumption that R, () = 00, (—t). We have

b(at) = eo(0) (8, @0 0 = 3, 0w )
= (1) (002 (12, —0D (1) = 60 (1/2, )6 (2.1))
Next, from (3.7) we let z — 1/z, t — —t and make use of the symmetry relation (5.12) to find
b(1/2.~0) = (=) (8, (1/2. =08 (1 2.0 =5, (1/2. )04 (1/z. 1))
=7 (1) (VP @0oP (1/2.-1) - ov Dz NofD(1/2. 1))

(5.24)

(5.25)
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Since ¢ (—t) = ¢Z(r) we have
b(z,t) = ob(1/z,—1). (5.26)

Finally, we derive the symmetry relation between the norming constants, C;(t), Cj(t) and
reflection coefficients p(z, t), 5(z, t). By definition, we have

_ b(z,t ob(1/z,—t
ey = et _ b1z

a(z,t) a(l/z,—t)
where, in obtaining the last result, we used the symmetry relations (5.22) and (7.27).

To derive a relation between the norming constants, define a new variable w = 1/z. Then
d/dz = —w?*d/dw. With this at hand, we next take the derivative of equation (5.22) and find

=op(1/z,—1), (5.27)

@ (z.1) = —gd (3. —1), (5.28)
where @’ (£) = da/d¢. Now, from the definition of the norming constants (see (4.5)), we get
— b;(t) ab;(t) _
Ci(t) = =~ = J = —072Ci(—1),
=360 = Ga—n 79 9 529

where z; and Z; are the zeros of the scattering data a(z,r) and a(z, 1)) (see equation (4.4)), i.e.
a(zj,0) = 0; a(z;,0) = 0. Furthermore, z; and Z; are related throughout the symmetry condi-
tion (5.23).

6. Reverse space-time reduction R,(t) = 0 Q_p(—1t),0 = F1

In this section we obtain all symmetries between the scattering eigenfunctions, reflection coef-
ficients and norming constants for the reverse space-time reduction R,(t) = cQ_,(—1).

6.1. Symmetries between the eigenfunctions

To that purpose assume that ¢,(z) = (65" (z), ¢\ (z))7, where T denotes matrix transpose, is
a solution to system (2.1) with R,(t) = 0 Q_,(—1):

o) (0) = 260 (1) + Qu(1)9 P (1), ©6.1)

(1) = 0 0-n(=1)90 (1) + 2 ¢ (1), 6.2)
Letn — —n, t — —t in (6.1) and (6.2); rearrange the result to find

¢(—22n—1)(*t) = Zilqb(—zt?l(it) + UQn(t)d)g,),(—t), (6.3)

Oy (1) = Qn(=0)085 (=) + 20U (=), (6.4
Define the quantities

&N (1) = 62 (—1), B (1) = —oo)(—1). 6.5)

These auxiliary eigenfunctions satisfy a ‘backward’ scattering problem

oV (1) =720 (1) — Q. (2P (1), (6.6)
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2 (1) = =00, (~) D (1) + 202 (1), ©.7)

which is exactly the scattering problem (2.3) under the symmetry reduction R, (t) = 0Q_,(—1).
Thus, we have the following symmetry relation:

oM (z,1)

solves (2.3).
z,t @22)(z,t)> (23)

(1)
If ( (2)Ez’t;> solves (2.1) with R,(t) = 0Q_,(—t) then (

Note that if (13" (z, 1), ¥ (z,1))T solves (2.1) so does v(¥" (z. 1), ¥ (z,1))T for any non
zero constant . Thus, using relation (2.4) we have

oV () =y f20Y @), Pzt =200, (1) (6.8)
with
o — ‘ 1
o _1:110 1—0Q;(1)Q(—1)’ (63)
In terms of the eigrnfunction ®,,(7) defined in equation (6.5), we find
o000 =17 O, ool ) =187 o).
(6.10)

Next, we determine the value of « so that the proper boundary conditions are satisfied. First
note that lim,_, 1 o /7 (f) = 1/c¢_ (time-independent). From the boundary conditions (3.1)
and (3.2) we find

lim [—J(bg,),(z,—t)] — oz = lim {’yff(t)z/)r(li)l(z’t) ZCLZ*("“X

n——+o00 n——+oo
(6.11)
giving rise to ¥ = —0ZC—_oo. To this end, we have the following relations between the
eigenfunctions:
2, 1 -0 z,—t
1/1n+1( ) — R . (¢15 ( ) . (612)
v (1)) 27\ 60 -0

To establish the symmetry relation between the corresponding eigenfunctions N,(z,f) and
M,(z,f) we use the definition N, (z,t) = 7"¢n(z,7) and M, (z,t) = 27" ¢w(z, ). Multiply
(6.12) by Z"t! and, after some algebra, one concludes that

NAEO) 1 (oMZen) (6.13)
N (@) Caff @\ MY (e 1)
Note that this is a relation between both analytic eigenfunctions outside the unit circle in the

complex z plane. Next, we derive the symmetry relations between the ‘bar’ eigenfunctions.
Following similar steps as before, we have:

—(1) =(1)

&y (z1) . ®, (z.1)
i 7 Ives (2.1) with R,(f) = 0Q_,(—1) then |
((b,(lz) . t)) solves (2.1) wi (H)=o0 (—t) then (q)(z)(

where E(_zi(t) = 5,(,])(—t) and 6(_1,)1(1‘) = o3 (—1). To make sure the boundary conditions

n

) solves (2.3),

Z,1)

are correctly incorporated, we introduce an ‘arbitrary’ non zero constant 7 so that i), (z, t) is
a solution to system (2.1). With the help of the transformation (2.4) one has
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B e—t) =T OB @), 08 A —1) =TT (20).

(6.14)
From the boundary conditions (3.1) and (3.2) we have
. —(2) - _on _ (1) _ 7 n+1
nggloo [¢_n(Z, t):| =7 = hIJP |:’an ( )¢n+l(z’t):| - CZOOZ ’ (615)

leading to ¥ = ==

o )
Copr@0)) 2 [ 95 —)
<¢i2+)1(z, t)> Z ool (1) <_g¢<‘)(z, _t)> (6.16)

To find the corresponding symmetry between the eigenfunctions M,(z,1) and N,(z,1), we
multiply (6.16) by z~*V; use the definition N,(z,¢) = 27", (z,t) and M,(z,t) = z

to find
N (@) 1 M)z 1)
s ol S . (6.17)
Noii(zn))  Zoli —oM" ) (z,—1)

This is a relation between both analytic eigenfunctions inside |z| < 1.

, the ‘bar’ eigenfunctions satisfy the following symmetry:

6.2. Symmetries between the modified eigenfunctions

Since the inverse problem is formulated in terms of the modified eigenfunctions
M. (z,1),N'(z,1); M,,(z.1), N, (z. 1), it proves convenient to derive the corresponding symmetry
relations that these ‘primed’ eigenfunctions satisfy . In fact this symmetry is later used in order
to determine the relations between the norming constants and scattering data from the left
and right scattering problems. Furthermore, they are needed in order to obtain an alternative
reconstruction formula for the potentials that allows one to observe the integrable symmetry

at the inverse side. To do so, first note that, by definition, ¢, (1) = [];2, (1 — OxRy) . Thus, at
the symmetry point Ry () = 0Q_,(—t) one can show
1
CZ[ = 2 7 Cz; t :Ci no-t 6.18
() ffn(_t) +1() oof () ( )

These results are later used to obtain a simplified form for the symmetry relations between the
eigenfunctions. With this at hand, we start from the definition of the ‘primed’ and the stan-
dard eigenfunctions given in equations (3.22)—(3.25). Apply the symmetry condition between
them, established in (6.13) and (6.17), one finds

Nr(z-li-)l( t) = —o(c” )" MY (z,—1), (6.19)
N () =M (z 1), (6.20)
NG t) = (700) " ME) (2, —1), 6.21)
Nf,ﬁl(Z, 1) = —oM") (z,~1). (6.22)
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6.3. Symmetry of scattering data

In this section we obtain all symmetry relations between the scattering data and norming con-
stants. Contrary to the RT NLS case, where the scattering data sets, {a(z, 1), b(z, 1), C(t)} and
{a(z,1),b(z,1), C(t)} are connected through a symmetry condition, here (RST case) the two
sets are actually not related. Rather, as we shall see, each scattering data (except b(z, ), b(z, 1))
satisfy its own symmetry requirement.

We start from the definition given in (3.5). Use the symmetry relation between the eigen-
functions obtained in (6.12) to find

a(.0) = e (1) (1, G ) = 02 G )
= mjigéﬁﬁ)(¢iﬂl@,o¢9>< —0)+ 06 @0e%@ 1) (623
where using (3.10) we define

+oo

en(t) = en(Qu(1).0Q-k(=1)) = T (1 - 0Qu()Q-4(~1)). (6.24)

k=m
By lettingn — —n — 1, — —¢ in (6.23) one arrives at
Z,(=1)

o e el +osG -0 @)
B (6.25)

Recall the definitions of ¢,, f, from (3.10) and (6.9); make use of the identities listed in (6.18)
to obtain

a(z,—t) =

eg(t) (=1
o) f (=) (6.26)

This last result together with (6.23) and (6.25) imply the symmetry condition
a(z,t) = a(z, —1). (6.27)

The derivation of the symmetry relation for the scattering data a(z, ¢) follows similar line of
arguments as discussed above (hence we omit details). Thus, we have

a(z,t) = a(z, —1). (6.28)

Thus a(z, 7) and a(z, ), which are analytic in different regions of the complex z plane, satisfy
their own symmetry relationships. Since, as we shall later see, the scattering data a(z, ) and
a(z, 1) are time-independent, equations (6.27) and (6.28) impose no restriction on the soliton
eigenvalue z; and Z;. As such, they are counted as free parameters (complex in general). Next,
we proceed with the derivation of the symmetry between b(z, t) and b(z, t). For that purpose,
we start from equation (3.8); use the symmetry conditions between the eigenfunctions given
in (6.13) and (6.17)

b(a.t) = cunt(0) (G @03 (20) = B2 0wl ()

)
+
- B (B @000+ 0B @065 ) . )
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Next, from (3.7) it follows that
b(at) = cun (1) (B @002 (2 0) = B, @06 ()

oz () =@ @) (1
- m <¢,n(Z, t)¢n+1(z’ )+ J(b ( )¢n+1(z’ t)) . (630)

Letn - —n—1,t — —tin (6.30) we find

72c? ,(—t — —(1)
ba 1) = s (A w000 ) + 08 2o )
ozc?,(—t —(2) —(1)
P (el ).
(6.31)
Again use the result established in (6.26) to find
b(z,1) = %b(z, —1). (6.32)

Since the scattering data a and @ are analytic in different regions of the complex z plane, they
are not related through any symmetry (see equations (6.27) and (5.22)), as a result, the corre-
sponding norming constants C; and C; do not satisfy a symmetry relation by themselves. One
needs to go back to the original definitions, see formula (4.5), and find separate symmetry
conditions on b;, b; and derive a trace-type formula to separately determine a’(z;), @ (Z;).

7. PT symmetric reduction R, = 0 Q* ,, 0 = F1

In 2014, Ablowitz and Musslimani [40] discovered a new nonlocal reduction to the AL scat-
tering problem (2.1) that preserves a discrete type of PT symmetry, i.e. invariance under the
combined transformation of n — —n,t — —t and complex conjugation. However, due to size
limitation, many significant details pertaining to the direct and inverse problems, particularly
the derivation of all implied symmetries were omitted. In this section, we provide detailed
analysis of all symmetries that the eigenfunctions, scattering data and norming constants sat-
isfy. We note that the inverse scattering transform for the AL model with PT symmetry has
been extended by Grahovski, Mohammed and Susanto; one and two-soliton solutions for
the nonlocal Ablowitz—Ladik equation were also obtained [51]. This paper goes further by
formulating and solving the RST and RT discrete symmetric nonlocal systems and obtains all
necessary scattering space symmetries for these and the PT symmetric case.

Importantly, as we shall see later, the PT symmetric case is fundamentally different from
the RST one in the sense that complex conjugation need not commute with time reversal sym-
metry. This means, one cannot simply replace complex conjugation by —*.

71. Symmetries between the eigenfunctions

Here, we will write down all symmetries of the scattering problem under the reduction
R, = 0Q* ,.Sincethisreductionis local in time, we shall omit the explicit time dependence from

all dependent variables. To that purpose assume (as before) that ¢,(z) = ( ,S])(Z), 2 ()"

is a solution to system (2.1) with R, = ¢Q* . After complex conjugation is taken combined
with the transformation n — —n, z — z* one obtains

6% @) =7716% () +00u!) (@), (7.1)
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o) @) =0",0% ) +20") (@) (7.2)
Now, define the quantities <I>,(11)( )= ¢(2) (z), @ ,(lz) (2) = —a¢(_1,)1* (z*). It can been shown

—n

that these new functions satisfy the ‘reverse’ scattering problem (2.3). Therefore, we arrive at
the following conclusion

(1) (1)
If '(12)(Z) solves (2.1) with R, = 0Q*, then @?2)(z) solves (2.3).
(ZS’! (Z) o, (Z)

In view of the transformation (2.4) we have
)% & o * ok o
o0 (@) =vfreihi@. 6N @) = —ov s, (73)
with a nonzero constant v (to be determined) and
=11 S — 4
S o 0Q;0%; (74)

Next, we check boundary conditions (recall that lim,,_, , o 7 () = 1/¢? ). From the bound-
ary conditions (3.1) and (3.2) we have

lim ¢!) () =z" = —oy lim [f"lﬁﬁ)l( )] —;—Vz‘(”“). (7.5)

n——4o00 n——+oo -
In order for equation (6.11) to hold true we require v = —g¢? __z. Thus, we have the follow-
ing relations between the eigenfunctions:
1 2%, .
(w,Sﬁl( )) _ (—aas&i (2 >> 76
Gh@) Tl \ o (@)

To establish the symmetry relation between the corresponding eigenfunctions N,(z) and M,(z)
we multiply (7.6) by z*"!; use the definition N,,(z) = 2" (z) and M,,(z) = 2 " ¢m(z) to

obtain
N(l) 1 _ M(Z)* *
0 = (). @)
Nn+l(z) C*OOf” an (Z )

‘We next establish the symmetry relations between the ‘bar’ eigenfunctions. Following similar
steps as before, we conclude:

—(1) —=(1)
If <¢,(,2)(z)> solves (2.1) with R, (1) = ¢Q*, then (q);‘z)(z)) solves (2.3),

b (2) e, (2)
where @@l (z") = 5,(11)(5) 1and —0@2)*(2*) = 5,(,2) (z). Note that if (@,(,1)( Z, 1), 1/Jn ( z1)"
solves (2.1), so does 7(1/},(1 (z.1), ¥, (z,1))T for any nonzero constant 7. Thus, using the
transformation (2.4) we find

e () =300, —edl) () =T (). (7.8)

To determine the value of the constant %y we examine the boundary conditions (3.1) and (3.2).
In this case, one sets
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tim [6%) @] =2 = 1m_[77@)] = (79)

n——4o0o oo

that leads to y = —=. Thus we have the following relations between the eigenfunctions:

*(1) —(2)"

1/Jn+1(z)> _ < ( ¢7n (Z*) )

o = —— A . (7.10)
Qﬁ@) ool \ =o'y ()

The symmetry between the corresponding eigenfunctions M, (z) and N,(z) are obtained fol-
lowing similar steps as before. One has

() — )
Nn+1(Z) . 1 M=, (z)
<Nr(12+)1(2) > TS < 1) D () ) (7.1

72. Symmetry between the modified eigenfunctions

Having determined the symmetries between all eigenfunctions, we turn our attention next to
compute the symmetries between the modified eigenfunctions defined by equations (3.22)—
(3.30). Since all dependent variables are local in time, we shall suppress the explicit time
dependence. In this section, we shall make a frequent use of the identity ¢7 =1/ ff; valid
whenever R, = cQ* .

We have shown that under the reduction R, = ¢Q* , the set of eigenfunctions {M,,N,}
and {M,, N, } satisfy the symmetry relation given in (7.7) and (7.11). These symmetries, in
turn, induce another symmetries between the ‘primed’ eigenfunctions given by

N = —é M) (), (7.12)
N @) =M (@), (7.13)
v = C% M%) (), (7.14)

7 o
N () = o) (). (7.15)

73. Symmetry between scattering data

To establish the symmetry relation between the scattering data we start from (3.5) combined
with the symmetries between the eigenfunctions given in (7.6). We have

a(2) = vt (A @63 — 62 @i )

. (7.16)
—M££(¢&m¢ (@) + oo (68 ()
where using (3.10) we have defined
o0
= (@00 ) = ] (1-0Q0%)). 7.17)
k=m
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Next, let z — z*, n — —nin (3.5) to find

a(@) =ty (60 @Y @) - 0% @l @)
o (7.18)
—— (00 ()00 + 00 (e ().

o*
- —n—1

With the definitions of f7 and c7, we conclude

"H = H H 1-00:0%] [1 —0Q;0% ] = 7. (7.19)

k=n+1j=—o00
On the other hand we have

+oo —n—1

=11 I 1-e@@ ] [1-000" )" =c7. (7.20)

k=—nj=—o00

n 1
where ¢7 OO = (¢? ,)*. Comparing equations (7.16) with (7.18) gives the symmetry result
a(z) = a*(2%). (7.21)
Equation (6.27) implies that if z; is an eigenvalue, i.e. a simple zero of the scattering data a(z)
with Izl > 1 then z is a simple zero of a(z).
The derivation of the symmetry relation for the scattering data @(z) follows similar steps

as for a(z). Indeed, if one starts from the definition (3.6); utilize the symmetry between the
eigenfunctions given in (7.10), one arrives at the result

a(z) =a"(z"). (7.22)

The above equation implies that if Z; is a zero of @(z) with|z;| < 1 then Z} is a zero of @(z) as
well, in which case, they are all counted as a (complex) free parameters. It is interesting to note
that for the PT symmetric case (in fact also for the RST) , all ‘bar’ quantities (eigenfunctions,
scattering data and norming constants) do not ‘mix’ with their respective ‘unbar’ quantities.
This is in sharp contrast to the RT and AL cases where all eigenfunctions and scattering data
in the upper half complex z plane are related throughout a symmetry to their corresponding
‘partners’ in the lower half complex z plane. In summary, we have the following conclusion:

If {z;.z;} € C are zeros of a(z),d(z), i.e. eigenvalues, satisfying
|zj| > 1 and [3j| < 1, sodo {z,7 }.

Finally, we next determine the symmetry of scattering data b(z) and b(z). As before, we start
from equation (3.8); use the symmetry between the eigenfunctions (7.6) and the identity
(7.19) to find

_ 1 /— .

b@) = - (B @0l () + 08,2162 (). (123)
With this at hand, it follows from (3.7) that

b(2) = enit (D680 = 5L @6 (@)

=£E%(ﬁf@ﬂ%ﬁ(%%¢m( V@)

(7.24)

3671



Nonlinearity 33 (2020) 3653 M J Ablowitz et al

Let z — z"and —n — n + 1 in (7.24) and complex conjugate the result to find

P = ot (3@ () AL @0 ). 329
c? of 7y
Again use the result established in (7.20), i.e. f;ijl = ¢? ., in which case we get
b(2") = 0z (08,10 (&) + B0 (@e!) (). (7.26)
From equations (7.23) and (7.26) it follows
b(z) = %b*(z*). (7.27)

A summary and highlights of the key symmetry results related to all three nonlocal integrable
reductions, including the AL, is given in table 1 (explicit time dependence is indicated only
for the RT and RST cases).

8. Inverse problem: Riemann—Hilbert approach

8.1. Preliminaries

In this section we apply the inverse scattering transform to construct an explicit formula for the
potentials Q,(7) and R, (7). This is accomplished by reformulating the AL scattering problem
as a Riemann—Hilbert problem and use projection operators (defined below) to solve for the
potentials. Within the framework of AKNS theory, all is needed to solve an integrable evolution
equation are symmetries between the eigenfunctions, scattering data and a reconstruction form-
ula for both potentials. While this approach is sufficient to obtain any soliton solution, in this
paper (and due to nonlocality), we solve two inverse problems: one from the left and the other
from the right, then ‘glue’ them using the nonlocal symmetries obtained above.

The scattering problem (2.1) can possess discrete eigenvalues (bound states). These occur
whenever a(z) has J simple zeros at {z; s.t. |z;| > l}le, i.e. a(z) = 0 and a(z) has J = J sim-
ple zeros at {Z; s.t. |zj] > 1}/_,, i.e. @(;) = 0. Indeed, for such values of the spectral param-

eters W(u(z;), ¥u(z;)) = 0 and W(¢,(z;), 1,(z;)) = 0. Therefore, from (3.3) and (3.4) we find
Pu(z) = bjtu(3)), (8.1)
$u(3) = b (3)- (8.2)

In terms of the eigenfunctions {M,, N, M,,N,} and {M’,N!, M., N.}, equations (8.1) and
(8.2) imply

M,(3) = bz "Nu(z), M, () = bz "Ny(3), (8.3)

M, (Z¢) = bizy"Nu(Ze), M:, (Ze) = EeZ%"N:, (o), (8.4)
where, b;, Ej is a short notation for b(z;), B(Zj) respectively. Furthermore, one can show that the
residue of the functions p,(z), i, (z) at eigenvalues z;,Z; can be computed using the definition
(3.29) and (3.30). Thus we have

M,(z) bz " Na(g)

Res(pn; zj) = 7 () = @) = Zl‘ianan(Zj)’ (8.5)
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Mn (Ze) o EZZ%nNn (ZZ)

=220/ AT (=
a/(Zg) = EI(ZZ) =2y CéNn(Ze)’ (86)

Res(7,:2¢) =

where, we remind the reader, that the norming constants C; = C(Z;), C¢ = C(z¢) (see also
(4.5)) are defined by

G = al(zj)’ 8.7
.
C = —_—\ .

J4 a/(ZZ> (3.8)

Note that the poles of y/,(z) and 7, (z) (see equations (3.23) and (3.25)) are the same as the
poles of 1,(z) and T, (z) respectively. Moreover, the residues of these poles are determined
by the relations Res(u;,; zj) = zj—Z"ch,;(zj), Res(mi):z¢) = Z%”Egﬁ; (Z¢). As pointed out ear-
lier, the projection operators P and P~ will be frequently used to solve a Riemann—Hilbert
problems. They are defined as follows: Let f(w),w € C be analytic inside the unit circle in
the complex z plane. Then

| fw)
P<(f)@) = lim 5= g (8.9)
1Z1<1 [w|=1
Similarly, for any f(w),w € C analytic outside the unit circle in the z plane one have
1 fw)
P = lim — L .
>(f)(z) élg 27 S w¢ w (8.10)

Below we list some important properties of the projection operators that we shall use in the
formulation of a RH problem. Let £(w) (f°"!(w)) be an analytic function inside (outside) the
unit circle. Then we have

() P<(f")(2) =f"(2),
(i) P<(f*)(z) =/,
(iii) P~ (f")(z) =0,
(iv) P> (f*")(2) =f3" =/ (2).

Next, we apply the inverse scattering transform on the scattering problem from the left.

8.2. Left jump condition

To set up the RH problem from the left, we divide equation (3.3) by a(z), equation (3.4) by
a(z); use the definition of the eigenfunctions in section 3, then one can show that the new func-
tions p;, (z) and 7z,,(z) satisfy the jump conditions on |z| = 1

1n(2) = N,(2) + 2 p(2)N}(2), (8.11)

Tiy(z) = Ny(2) + 2"B(2)N,(2). (8.12)

We subtract from both sides of equation (8.11) the vector (1 0)7 and the non analytic parts of
1 (2); apply the projection operator P on both sides of the resulting equation to get
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N, (=z)
P ’ C; —2n +"7/
<yt < > 2 G |:Z_Z] 2ty

j=1
— —2n Nl Z]) N,/,(—Zj)] —2n /
=P N, ( Ciz —_ N
M- (g ) - Z Tl | R O
(8.13)
The function on the left hand side of equation (8.13) is analytic outside the unit circle and

approach zero as |z| — oo hence, using the properties of the projection operators, we have that
the left hand side of equation (8.13) is zero (note: f&' = 0.)

P ( > Zc, o {N/ G, M} + P {z"p(2)N,(2)} =0. (8.14)

=3 Z+ 3
Since lzjl > 1 and N, ,(2) is analytic inside the unit circle, the function
— Zon [Ni(3) | Na(=3)
N Ciz 2n J n 7] ,
< ) Z 7 [z—z, 2+ 8.15)

is analytic inside the unit circle and constitute an ‘in’ function. Using the projections proper-
ties, after some algebra, one finds

o [Na(z)  N(=5)] 1 w2 p(w)N; (w)
(>+ZCJ { +TZ,] i 27r17|§w‘:1 P, (8.16)

72—z

Similarly, we subtract from both sides of equation (8.12) all the non analytic parts; identify
all functions that are analytic inside and outside the unit circle, one finds (after applying the
projection operator)

o= () g :

/ -/

Z N, (—z 1

@) Lf’) lim —— WP . (8.17)
z—z, 247 ) 27 Jj=1 w—(

8.3. Closing the system from the left

To close the system, we evaluate equation (8.16) at the eigenvalues £7; and equation (8.17) at
=£z;. This results in a linear algebraic-integral system in the form

N ( ) +ZC e { w@) M} _ ;ﬂ?{wzl de, (8.18)

— Zi+ 2 w—Z
~ —on [ Na(zk) ’(ka)} 1 f{ w2 p(w)N,, (w)
N/ Ciz 2n n - A o i/ AN ) .
(7% < ) Z K [,+zk + Z— % 27 Jjw =i w43z W @.19)
J -,
No@) | Nu(=%) 1 f W B(w)N,, (w)
Nl (z) = 1 — 7d .
(@) ( ) ; [ 7 — % + 7+ % t o W=l W—% " (8.20)
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Table 1. Symmetry relations between scattering data, norming constants and eigenfunctions for the classical integrable Ablowitz—Ladik model, RT, RST and PT
symmetric nonlocal integrable discrete NLS equations. Here o = F1.

Symmetry property

AL model R, = 0Q;,

RT reduction

R, (1) = 0Qu(—1)

RST reduction R,(f) = 0Q_,(—1)

PT symmetric R, = aQin

Scattering data

a(z) = a*(1/z%)
b(z) = ob*(1/7")

a(z,t) = a(1l/z,—t)
b(z,t) = ab(1/z, 1)

a(z) = a*(z*)
a(z) =a*(z")
b(z) = b (")

Eigenvalues 7= 1/ij‘ Zi=1/z 7,71 €C 4,232 %
free z; € C free 7 € C free parameters free parameters
N i tant C — — -2 ral _ -2 . C. . C:
orming constants Cj=—o(z))2C; Ci(t) = —07; Gi(—1) C,CeC G C;
free C; € C free C; € C depend on zj, Zj depend on z;, 7

Reflection coefficients

p(z) = ap*(1/z")

pz1) = op(l/z,—1)

No relation

between p and p

No relation

between p and p

(=]

Eigenfunctions M,(2) M,(z,1) Nus1(z,0) Nut1(2)
* (1 1 * *
=AM; () =AM, (3,~1) = ﬁan(z, —1) = ﬁM—n(Z )
N,,(Z) n(Z’ t) N,,.H(Z, t) Nn-!—l(z)
- * — 1 - — -1 —x
=ATIN () = AN (2. -1) = M-z —1) = M, (@)
Modified eigenfunctions 7;(z) M:; (z,1) Nr’H—l (z.1) Nr,H—l (2)
= AL-M;: (ZL*) = ACM;; (l’ _t) - ACM/—n(z’ _t) = ACM/:n(Z*)
v / — —
n(2) N,(z.1) Ny (z1) Ny (2)
_ % _oA—l 1 1 1=
=A'N, (zi*) = AN, (E’ 7t) = LA{ IM,_n(Z’ —1) = cAfilM—n(Z*)
A 0 o 0 o 0 —o 0 —0o
1 0 1 0 1 0 1 0
Ac 0 —aci;
1 0

—aci;
1 0

£59¢ (0202) €€ AueaulUON

[e 38 Zymojqy r Il
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% -1— Zk Zj— % 2mi Wz

) . N,,(—Zk)} " ij{ de (8.21)
[w|=1

8.4. Time-evolution: left scattering problem

In this section, we provide the time evolution of all scattering data and norming constants.
Following similar lines of derivation as detailed in [34] one finds the time-evolution of the
scattering data to be

O0ra(z,7) =0, 0:b(z,7) = 2iwb(z, 7), (8.22)
in which case, the explicit time-dependence is give by

a(z,7) = a(z,0), b(z,7) = e*“Th(z,0). (8.23)
Similarly, the other set of scattering data satisfy the evolution equations

Ora(z,7) =0, 0.b(k) = —2iwb(z, 7). (8.24)
Thus, we have

a(z,7) =a(z,0), b(z,7) =e 2*7b(z,0). (8.25)

The evolution of the norming constants C; and fj defined in equations (8.7) and (8.8) is given
by

i be(0)
_ 2iweT — 4

Cr = Cy(0)e™7,  C,(0) @ (20, 0)’ (8.26)
F e 2@ = b(0)
Co = Co(0)e™ 27, Cy(0) = , ,

¢ (0)e ¢(0) 7G0.0) (8.27)

where
1 N2 7 1 2

we=5(=-%"), w=5@E-%")" (8.28)

8.5. Reconstruction of the potentials: left scattering problem

To reconstruct the potential we subtract from both sides of (8.12) all the non analytic parts of
11, (z) and apply P to both sides of equation (8.12) to find

—/
_ Z N,(-7))
C 2n Y n\ %)
< { Z [z—zj z+7

=P_{N/(2)} + P<{ 25(z)N, (2) } P {ZCZ"

— ~/ —
J Nn(izj)
zfg z+7z

(8.29)
The function inside the brackets, on the right hand side of equation (8.29), is an analytic func-
tion inside the unit circle therefore, using properties of projection operators, we find
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Ev4 —
ZJ N”(*Zj)
zfg z+7

/ —
Nn(zj ( Zj)
Zj z+7

{un (2) - ZC’Z”

|onia-Soe [

Moreover, the function N’(z) is analytic outside the unite circle and approach (0 1)7
|z| = oo hence P. {N/(z)} = (0 1)7. Similarly, the function Z Cz" [ Z"(i’) + %} is
analytic outside the unit circle and tend to zero as |z| — oo, thus,

et l A

=0. (8.30)
Z—7 Z+7

Putting all things together we obtain

o= (1) + e 1 2

2437

1 w2 B(w)N,, (w)
lim fw T v 83D

IC\<1

Note that the elgenfunctlons N, and N, satisfy the parity relation [34]

NV (=) = =N @), N (=) = NP (), (8.32)
N =80, M) =-N"). (8:33)
From equations (8.16), (8.32) and the expansio A % + 5 +---as z— 0 we find

— lim —
¢z 2l w—(

[¢<1

J —2n77(2) _on
O () = 2 ZCZ Nu ( D L ?{ w2 p(w)NL® (w) .
lwl=1

—2(n+1 < —2(n
~ 23 G N ) — ]{MZI w20 ()N (o)

, 27i
J=1
1

~ 5= e w™ D ) (WIN'@ (wydw + -+, as 7z — 0. (8.34)

Comparing (8.34) with the asymptotic form (z — 0) of the eigenfunction N;(Z) (z) given by
equation (3.24) one finds

J
o 1 -
R,(t) = Z 2( +1)N/(z)( Zj,t) + 27“%“ 1w 2000 o (w, NI (w, 1) dw.
- (8.35)
Remark. In deriving the expression for R, we used the fact that
]{w_l w™ D p(w)N) (w)dw = 0, (8.36)

which can be proved using the symmetry property between the eigenfunctions given in (8.32)
and the fact that p(w) is an odd function. To obtain the expression for the potential Q,, start

from (8.31); use (8.33) and the expansion Wl + > +---as z — 0 to find
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ral 2}1N (1) =. 1 dn— —/(1)
—ZZZ CzZi"N, (3 )+ j{ wB(w)N,, (w)dw
lw=1

72 —z 2mi

—= 2(n—1)3/(1) — Z neD—, /(1)
- x YT NG) + f w2000 ()

j=1 [wl=1

1
w1 5(w)N (1)( Ydw+---, as z—0.

27 lw|=1

(8.37)
Comparing (8.37) with its asymptotic (in z) expansion given in (3.25) one finds

_ 1 &'
1 =2 2(” l)N (M 7% 2(n 1) d
0. ;c @)+ o O OO ()i

1 2n—1— /(1)
+ FZZ |W‘:l w p(W)Nn (W)dW + .- N as 7 — 0 (838)

Use the result
m—1—r v/ (D) _
o pW)N, (w)dw = 0, (8.39)

which can be proved using the symmetry property between the eigenfunctions given in (8.32)
and the fact that p(w) is an odd function, gives

in

I|M&.
2

,Z(n I)Nl(l)(ijl) + Zif 2(n l)p(W [) /(1 )(W, l)dW (840)

8.6. Right scattering problem

One could instead work out the entire inverse problem using a ‘right’ scattering problem:

Un(z) = (2)9,(2) + B(2)dn(2), (8.41)
¥, (z) = @(2)dn(2) + B(2) 9, (2). (8.42)

Clearly, the left and right scattering problems are related by Sg(z) = SL_1 (z), where Sg, S
are the scattering matrices from the right and left respectively. Component-wise, we have

<a(1) 5(Z)> _ 1 ( alz) —b(Z)> _ 8.43)
Bz) alz)) c-w \~b(x) al2)
To setup a jump condition for a RH problem, divide equation (8.42) by @(z); use the definition
of the eigenfunctions M, (z), M, (z), Nu(z), Nu(z) to get

Ta(2) = M, (2) + R(2)z72"M,(2), (8.44)

where 7,(z) = N”(( )) and R(z) = 5 ﬁzg Next, divide equation (8.41) by «(z) and make use of

the modified eigenfunctions to find

Vn(2) = My(2) + R(2)2"M,,(2), (8.45)
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where, v,(z) = 12,((;))_ The eigenfunctions have the following definitions and asymptotic
behavior
—1 —1 -3
Nn —Z C—Cy Qn + O(Z )
vn(z) = @ _ |z| — oo, (8.46)
a(z) ool +0(z72)
— -1 2
N C—ooCy 4 0(z%)
Uu(2) = f(z) = , as z— 0. (8.47)
a(z) —20_ooCy 'Ry + O(2%)

The scattering problem from the right can possess discrete eigenvalues (bound states). These
occur whenever a(z) has J simple zeros at {z s.t. [z;] > 1}/_}, i.e. a(z) = 0 and @(z) has
J simple zeros at {; s.t. [zj| > 1}, i.e. @(Z;) = 0. Indeed, for such values of the spectral
parameters W(¢,(zj),¥n(z)) =0 and W(¢,(z;),¥,(z;)) = 0. Therefore, from (8.41) and
(8.42) we find

Un(z) = Bitn(z), = Nalg) = Bi5"Ma(z)), (8.48)
Uaze) = Bedu(@)s = Na@) =Bz Ma(Z). (8.49)
The residues of the functions v,(z) and 7,(z) at the eigenvalues are given by
Biz?"M,, (z;
Res(vy; 7)) = ”,7"(’) = z"B;M,(z;). (8.50)
a'(z) ‘

— _—2n—
Bézé M,,(Ze) T

Res(7,:2¢) = 7 =7z, BM,(Z), (8.51)
where we have defined 8; = 8(z;); 8, = B(z;) and
B
B= iy (8.52)
B = —t (8.53)
@' ()

8.7 Right jump condlition

As was done with the left scattering problem, here we shall use the modified eigenfunction
to formulate and solve a right Riemann—Hilbert problem. First, define the functions v (z) and

7,(2)

N;(2) _ N,(2)
(7)) = 2222, '(z) = 222, 8.54
whose asymptotic behavior in z is given by
i —1
v (z) = < < CC_OOC" Qn) +0(z7%)  as |z = oo, (8.55)
—oo
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—1
—/ _ C—ooCy 2
v (z) = <_ZcooRn ) +0(z") as |zl —0. (8.56)
Note that the functions v/,(z) and 7/,(z) also satisfy the jump conditions on |z| = 1
vi(2) = M, (2) + R M, (2), (8.57)
7,(2) = M, (2) + R(2)z "M, (2). (8.58)

Remark. The poles of v/(z) and 7)(z) are the same as the poles of v,(z) and 7,(z)
respectively. Moreover, the residues of these poles are determined by the relations
Res(v);2j) = 7"BiM,(z;), Res(7,:2¢) = z, BuM., (). We subtract from both sides of equa-
tion (8.57) the value of v/(z) at infinity, i.e. (0 c_o,)" and all the non analytic parts of v/ (z);
apply the projection operator P on both sides of the resulting system; one gets

J

pedu - (0) - Tomg [ MCD]

= Z+73z

_ i 2n M/(ZJ Mr/z(izj):| 2n /
= Py ( ) ZB [Z*z iy | TR (8.59)

The function inside the brackets on the left hand side of equation (8.59) is analytic outside
the unit circle and approach zero as |z| — oo hence, by properties of the projectors, the left
hand side of equation (8.59) vanishes. Since Izjl > 1 and M:Z (z) is analytic inside the unit cir-
cle, the function

M, (z) — ( ) ZB 2"[ +(5) +MZ’/’EF;’)}, (8.60)

Z_Zj

is analytic inside the unit circle and constitute an ‘in’ function. Now use the definition of the
projection P from (8.9) to find

'(—o. 2n !
M, (z) = ( ) ZB 2n [M n(@) | Mol Z’)] — lim L WIRGML W) o,
: Z+Zj |(|<1 2mi lw|=1 W_C
(8.61)
Similarly, we subtract from both sides of equation (8.58) all the non analytic parts; apply

the projection operator P-. on both sides of the resulting equation; identify parts of the equa-
tion that are analytic inside and/or outside the unite circle to finally find

7 _ —, _

2:* - M,(-%) o1 w2 R(w)M,,(w)
M/ B. (Z]) n J 1 % —nd .
2) = ( ) = [Zz, + 2+ 7z + <Hﬁnz1 27i [w|=1 w—_ v

1<1>
(8.62)

8.8. Closing the system from right

To close the system, we evaluate equation (8.61) at the eigenvalues £7; and (8.62) at &z;. This
results in a linear algebraic-integral system composed of
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M,(z) = ( ) ) +ZB 2n { () | W(_Z")} - 1'7% %de, (8.63)

Zj— Zi+ =1 w—7z

M,(-3) = (CO ) - zj:Bkz,%" {%(Zk) + A{:‘(*Z")} - L 7{W| de, (8.64)

Zi+ % i — % =1 w3

—2np Vi
4 i f{ de’ (8.65)
[w|=1

2mi w—z

(8.66)

M;(zk)+M:,(—zk)} s 7{ W RO )
|lw|=1

Zi+ % Zj — Zk 27 w+z;

8.9. Reconstruction of the potentials: right scattering problem

To reconstruct the potential we subtract from both sides of (8.58) all the non analytic parts of
7,(z) and apply P~ to both sides of equation (8.58) to find

L [ | M(-7)
{"(Z ng [z—z, * Z+7 }

7 o
=P {M,(2)} + P< { “"R(2)M,, } {Z Bz [ (Z) N Mn(—fj)

-7 z+7

} : (8.67)

The function inside the brackets in the right hand side of equation (8.67) is an analytic func-
tion inside the unit circle. Moreover, the function M} (z) is analytic outside the unite cir-
cle and approach (10)7 as |z| — oo hence P {M)(z)} = (1 0)”. Similarly, the function

Zle Ejzjfz" [”if(?) + %} is analytic outside the unit circle and tend to zero as |z| — 0.
J
Using properties of the projectors, we obtain

o= (o )+ o 131

/

—20R (W \M
o ?{ WRMOM, (W) g,
[wl=1

—: 2mi w—(
&%
(8.68)
Note that the elgenfunctlons M and M, satlsfy the parity relation M, iS )( —z) = M,’l(l)(z),
Wi (=) = (0.5, (=2) = 30, (). 71, ?(=0) = B, (2). From (8.1 thepar
ity symmetries and the expansion .- L ~ - + % +---as z— 0 one finds
7/(1 J BZZnM/(l)( ) 1 Wan(W)Myll(l)(W)
R T
27Tl |w|:1 w—2Z
0N B2 () L]{ 20-D R ()M D ()d
z}zj 2 @2 f, ()M ()
1
o IRWM! D) (wydw + -+, as z—0

(8.69)
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Since R and M,'" are respectively odd and even functions of their argument, we have
2n—lR( )M/(])( )d -0
” w w)M, (w)dw . (8.70)
w|=1

Comparing (8.69) with the asymptotic expansion M,, AS )( ) = 20,1 + O0(z?),as |z| — 0 one
finds

- Z(n Dap(1 1 2(n—1 1
On_1(1) = —ZZB M (z,1) — 3 ]{w v =DR(w, )MV (w, 1)dw. 8.71)
To obtain the expression for the potential R, we start from equation (8.68); use the parity in z
of the eigenfunctions and the expansion L ~ % + 5 +---as z— 0 to find
7 p=—2n772 o, 5 (2)
Bz, "M, ( 7)1 wR(W)M,,” (w)
/(2) =2 ] ] - n d
(2) = ZZ +2mfjwl | Wz "

~_2 Bz, 2(n+1)M (2) ]{ “20+) R Y
Y @)+ 5 w2 RO o)

=1 [w]=1

1 w2 1R 12) (8.72)
— R .. .
+ i S WM, (wydw +---, as z—0
To that end, use the result
—(2ntD s e (2)
¢ ORI ) = 0 679

along with the asymptotic expression 7% (z) = —z2c_ooR, + O(?)  as |z] — Oto get

—1

—_—2(n+1 /(2) c
R =26 3 B0, G1) = 5
j=1

}{ w2 DR, )M (w, H)dw.  (8.74)
[w]=1

Remark. To solve for R, one of course needs to find ¢~ which formally depends on both
0O, and R,, (which are formally unknown.) However, since ¢_ is constant in time (see equa-
tion (3.11)), it is therefore determined by the initial conditions.

8.10.Time-evolution: right scattering problem

In this section we give the time evolution of the scattering problem from the right side.
Following the ideas presented in [34] one gets

Ora(z,7) =0,  0;f(z.7) = —2iwB(z.7), (8.75)

O;a(z,7) =0, 0,B8(k) = 2iwp(z, 7). (8.76)
The explicit time-dependence is found to be

a(z,7) = a(z,0), Blz ) = e 2T5(z,0), (8.77)

a(z,7) =a(z,0), Bz7)= eZi‘”B(z, 0). (8.78)
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With this at hand, the evolution of the norming constants B, and B, define by equations (8.52)
and (8.53) is readily obtained from

; 0
By = By(0)e 7, By(0) = fé(g L), (8.79)
_ _ _ _ B,(0
By = By(0)e*™7,  By(0) = a,ﬂé(z 2)), (8.80)

with wy and @, defined by equation (8.28).

9. Relation between the reflection coefficients

In this section we establish the symmetry relation between the left and right reflections coef-
ficients. The connection is possible only for the PT symmetric and RST cases where symme-
tries in scattering space do not mix the ‘bar’ quantities with their respective ‘unbar’ ones. This
is in sharp contrast to the AL and RT cases where scattering data outside and inside the unit
circle are related. By definition, we have

Bl blm) 4. Bl bk

R(z) = @~ " ak)’ R(z) = a0 = 2@ 9.1)
_blm) (D)

p(z) = @)’ p(z) = Q) 9.2)

9.1. AL reduction Ry(t) = o Q}i(t)

For the Ablowitz—Ladik case (and RT), the symmetries given in section 4 (for AL) and sec-
tion 5 (for RT) were obtained from the left scattering problem and relate the reflection coef-
ficient p(z) (defined outside the unit circle) to p(z) (defined inside the unit circle). For the AL
model, they are given by

a(z) =a"(1/2"),  b(z) =ob*(1/z"),  p(z) =op"(1/"). 9.3)

Thus, it is expected that the symmetry between the reflection coefficients R(z) and R(z)
(defined for the right scattering problem) to be related. Indeed, from (9.1)—(9.3) we find

R(z) = oR*(1/7"). 94

9.2. RT reduction R,(t) = cQn(—t)

Here, a similar situation happens as for the AL case. The ‘left’ symmetries in scattering space
were derived in section 5 and are given by

a(z,t) =a(l/z,~1),  blz1) =ob(1/z,~1), plzt)=op(1/z,—1). (9.5)
Using the definitions (9.1) and (9.2) we find, after some algebra,

R(z,t) = oR(1/z, —1). 9.6)
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9.83. RST reduction R,(t) = cQ_p(—t)

In this case we have

— o
a(z,t) = a(z,—1), da(zt) =a(z,—t), b(z1) = Z—zb(z, —1). 9.7)
Using the definition of the reflection coefficients (given above), one finds

R(z,t) = —%p(z, —1),  R(z.t) = —02°p(z, —1). (9.8)

9.4. PT symmetric reduction R, = cQ* ,

For the PT symmetric case, the scattering data satisfy the following symmetries
* [ _%x - —% [ _%x g X [ _%
a@)=a"("), al)=a (). ble) = 7b"(). 9.9)

Now from the definition of the reflection coefficients we have

R(z) = —%p*(z*), R(z) = —02’p*(2"). (9.10)

10. Norming constants: symmetries and time evolution

In this section, we connect the norming constants pair {C;(f), C;(¢)} (defined in the left scat-
tering problem) to their respective one {B;(t), B;(¢) } (defined in the right scattering) for the PT
symmetric and RST cases only. For the AL and RT cases (where Cj(7) and C;(t) already related
via a symmetry), we derive the symmetry condition between Bj(r) and B;(t). Furthermore, we
give the time evolution of each norming constant, which later, is used in determining the time
evolution of the potentials.

10.1.AL reduction R, = o Q;;

Since the AL case is local in time, we shall omit all explicit time-dependence. Our starting
point is equation (8.63), which together with the fact that M,(ll) (zx) is an even function of z;
takes the form

(1) 2n (1)

(1)’ wMn” () 1 }{ wR(w)My” (w)

M z)=2 B 2 W dw. (10.1)
J J; ZJZ Z% 2mi lw|=1 w =23

Now use the symmetries between the corresponding eigenfunctions as well as scattering data
established in section 4, i.e. Mil) (z) = o(cg)™! mMP" (1/z%), M,(f) (z) =c9 o m” (1/z%)
together with (9.4) to rewrite equation (10.1):

Vi)
M,” (1/z
MP" (1/z)) _2az,§ Bkz2”77 /30)
k=1 ;— %

2mi -3

1 W' R" (1/W " (1w,
jl{d 1 dw. (10.2)
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Upon using the symmetry between the eigenvalues, z; = 1/z}, in (10.2) together with complex
conjugation we find

J —(2)’
/ M 1/z;
M (5) = ~205 3 _(a0) B G P L
k=1
s <w*>2nk<1/w*>M,§” /w4
2mi lw|=1 w* — ZA_I ' (103)

7

Next, we consider the integral term in equation (10.3). With the change of variables { = 1/w*,
we have

(W*)znﬁ(l/w*)ﬁiz),(l/w*) _— ZjC_ZnE(C)MiZ)/ (C)
jl{wl : Wy . jI{C 1 ((z =) a
_ CHROME (©)
- 7I{C 1 C—z de
- Y{CII C_(Z"H)ﬁ(C)M,(f),(()dC. (10.4)

The last term in equation (10.4) vanishes by the residue theorem since R(¢) and M,(,z) (¢) are
odd and even functions of ¢ respectively. On the other hand, from equation (8.65) which, after

’

using M,(lz) (—z) = M,(,2) (Zx), reduces to

J 77(2) T v el
oY an (l/z ) f wR(W)M,” (w)
M z_: 2= (@) 2w J wegy o "
a (10.5)

When equation (10.5) is compared with the result of (10.4) and (10.3), we arrive at the sym-
metry condition:

By = —o(z}) *B;. (10.6)

Alternatively, one could reach the same conclusion by directly working with the definitions of
the norming constants given by (8.52) and (8.53) and the symmetry properties of the scatter-
ing data By, B, &’ (z¢) and @ (Z) in a manner similar to what was done for the left scattering
problem. Our approach we adopted in this section, shows the ‘stability and robustness’ of the
symmetries of the AL model.

10.2.RT reduction R,(t) = cQn(—t)

Next, we derive the symmetry relation between the norming constants B;(f) and B;(t). Notice
that since the RT reduction is nonlocal in time, one has to keep explicit time dependence for
all variables. The symmetries between the eigenvalues and reflection coefficients are given
by (5.23) and (9.6) respectively, i.e. Z; = 1/z; (complex z;) and R(z,t) = oR(1/z, —t). From
(8.63) we have

J (' 2n (1)
7(1) = 2nM" (Zk,[) 1 f w R(W, t) n (W’ t)
Zj,t) =27 By () ———— — = - dw.
M~ G0 = jkz_; 1) ZJZ*Z% 27 Jy=1 w—73;
(10.7)
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The symmetries between the modified eigenfunctions for the RT case, has been estab-
lished in section 5.2 and are given by M( Y (z,1) = o(c (1)1 M,(,z),(l/z, —1) and
M(Z) (z,1) = c2(1) MY (1/z,—t). Substituting these relations together with z; = 1/z; and
R(z,t) = oR(1/z,—t) back into (10.7) gives

M (1))

M’ ( (zj,1) = —20’ij (z) "2Bi(—1)(zx)™ Z;_ )2
L RO oM (1w
) oo W, (10.8)

To simplify the integral in equation (10.8), we make the change of variables ( = 1/w and get

/ WR(w OM, (1wr) / GCRGOM, ()
lw=1 I¢l=1

—— (-0 ¢
—2np *(2)/
:*f CUROM, ()
Ic|=1 C—3
+ 7{ e ROE (¢)dc.
[¢]=1
(10.9)

As with the AL case the last term in equation (10.9) vanishes by the residue theorem since

R(¢)and M(z) (¢) are odd and even functions of ¢ respectively. On the other hand, from equa-

@’

tion (8.65) which, after using M( 2 (=zx) = M, (%), reduces to

J

2;;7 1 —ZnE M(Z)/
MO (1) — Z MjLi}{ wRMOMY (004 (10.10)
fwl=1

(Zk) 27 w — Zj

To this end, contrast equations (10.9) and (10.8) with (10.10) to find the symmetry result

Bi(t) = —o(z) *Bi(—1). (10.11)

Again, we can obtain this symmetry by directly working with the definitions of the norm-
ing constants (defined for the right scattering problem) and all necessary symmetries that
Be, By &' (z¢) and @ (Zy) satisfy.

10.3.RST reduction Ry(t) = cQ_p(—t)

To do so, start from equation (8.20); use the parity property ]V,(ll) (—z) = N,(ll) (Z) and by
letting n — n + 1 in the resulting equation, we find

J *( ) 2nt1)—= (D'
) / — n+1(Zk,t) 1 ]{ w pw,t)N, £ (w,1)
N, 1) = Ci( —— t 5= dw. 10.12
n+1 Z] Z _ Zk i et — w ( )
Now substitute the symmetry relations,
1 o 2)/ (1) 1 )’
Noli(@) = == M =0, Nyli(an) = o= M5, (e -0),
o - (10.13)
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(found in (5.14) and (5.16)), into (10.12); make the change of variables n — —n, t — —t
and find

=2
—2/1M (Zk,t)
( ) Z], = _ZUZJ ch Z%Zk ﬁ
<j e
1% w22 p(w —I)M(z)/(w 1)
-5 . 1 ~~dw. (10.14)
2mi |w|=1 w—=3

On the other hand, substituting M,(lz) (—zx) = M,(ZZ) (Zx) into equation (8.65) [which was
obtained from solving the right scattering problem], we find

J 7 = —onp, a2
, — M N 1 R(w,t)M, N
MP (z.1) =25 Y Buln)z, M, @) | %7{| 1W (e )M~ (0.1 g, (10.15)
k=1 w

-7 w—z
Comparing equations (10.15) to (10.14) and use the relation between the reflection coeffi-
cients R(z,t) = —0z?p(z, —t) established in equation (9.8) to find the following results
—0(z)*Ci(—1) = B;(1). (10.16)
The derivation of symmetry relation between the norming constants C;(7) and Bj(f) follows
similar step. Start from equation (8.18); make the change of variables n — n + 1 and use the
fact that N* (zx) is an even function of z to find

J ) —2n,,—2

2y N, 7 (2t 1 w~ w, )N, (w, t

N0 =25 Gl g e @l L 74 PO DN 0%1) g, 10.17)
k=1 Zj Zk 2mi [w]=1

Next, we use the symmetry conditions (5.15) and (5.17), i.e. N (z.1) = M(,l,),: (z,—t) and

m+1
N,Sfll(z, 1) = —O’M( ) (2, —t) in equation (10.17); letn — —n, t — —r in the resulting equa-
tion to find
(0’
J— M b
(1) (Z.1) = 72%211( Cil(— #
Z] - Zk
(10.18)
o w?w=2p(w, t)M,(l y (w, t)d
— - w.
2mi |w|=1 w—=3

On the other hand, we have from equation (8.63) together with the fact that M,(,l)/(zk) is an
even function of z;

(1) 2n (1
—(1)/ M,, (2, 1) 1 W' R(w, )My (w, 1)
M, 1) =27 E BNz ———— — — 74 dw.
o0 U5 v F-g 2= w=3 "

(10.19)
Comparing equations (10.19) to (10.18); use the relation between the reflection coefficients
R(z,t) = —%p(z, —t) given in equation (9.8) we find

0z, 2Ci(—1) = Bi(1). (10.20)
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10.4.PT symmetric reduction R,(t) = o Q* (1)

In this section we derive the symmetry between the norming constants pairs {C;, C;}
and {B;,B;} when R, = ¢Q* . To do so, we start from equation (8.20); use the fact that

Nr(Ll)’(_Zk) _ N(l) (Zx) along with n — n + 1 to get

7 (1 (1)
Z Z n+1)Nn+1<Zk) +L7{ w2 5w WIN, 1 (w )dw
n+l ] — _Zk i W=t —ZJ .
(10.21)
Now use the symmetry Ny (c) = —2= M%) (). 8)1() = 2= M7 ("), given in
(5.14) and (5.16) to find
—(2)"" w22 @,
@y — =M, (F) 17{ w p( M, (w*)
MP" () ZUz,szckzk 7Z 2 bl . dw.  (10.22)

On the other hand, start from equation (8.65) derived from the right scattering problem apply
the parity symmetry M,(lz) (—zx) = M,(,z) (Zx) combined with complex conjugation to get

Yy O
o 1 w TR (w)M,” (w)
MP" (z) =2z} § Bz 27&") —?f " dw*.
© R A (10.23)

Let w* = u. Then dw* = du and the orientation on the unit circle is the opposite of what we
had before. Substituting the result (9.10), i.e. R(z) = —0z°p*(z*); make the transformation
Zj — Z}k,zk — Z; to get

)*/ —2n,,2— 7(2)*/ *
M, (u)
MO () =2 7M. (@) (Zk) o % u""up(u)M, du
Zj Z]Z ka k i it u—z u
(10.24)
Comparing equations (10.24) to (10.22) we have
—07,C; = B;. (10.25)

To find the relation between the norming constants C; and B; we start from equation (8.18);
use the fact that N,E ) (zx) is an even function of z;; use the symmetry conditions (5.15) and
.17, ie. Ni(2) = MY (), N2 (2) = oM™ (), to get

i 711% 27 w—7z

ay* 20 (1) ()
7(1) z) = _ZUZJZZ]( Gzt 27(21() + ij{ e )dw. (10.26)
= [w|=1

Alternatively, equation (8.63) combined with the parity property of M,(,I)/(zk) as well as

R(z) = —0z72p*(z*) to find (after making the transformation z; — Z; and i = z)
(1)’ 2n,,—2 (D"«
M, My
M(l )—ZZ]ZB* 2n = (Zk) +if u-u p( ) (M )du
k 27'['1 |w| 1 u — Zj
(10.27)
From equations (10.27) and (10.26) we conclude
~07;°C; = B}. (10.28)
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10.5.Evolution of norming constants

The time evolution of the eigenfunctions given by equation (2.2) determines the evolution
of the scattering data, and hence, the norming constants. Following similar line of derivation
detailed in [34] applied to the right and left scattering problems, one find the following time-
evolution of the norming constants Cy(t), C;(t), B;(¢) and B(t) defined in equations (8.7),
(8.8), (8.52) and (8.53):

Ci(r) = GO, Ti(r) = Ti(0)e ™7, (10.29)

Bl (’7‘) = 31 (0)6_2iw1T, E] (7’) = El (O)CﬁUIT, '
where

1
-z @=5@-7")" (10.30)

11. Alternative reconstruction formula for Q,, and R,

One of the corner stones of the AL theory is the integrable symmetry reduction between
the two potentials R, and @, which in turn leads to an integrable equation for one potential:
0, or R,. Examples include the AL reduction (1.6), PT symmetric reduction (1.7) and the
RST, RT reductions, respectively given in (1.9) and (1.10). As such, it is desirable to have a
reconstruction formula for the potentials that preserves this kind of reduction symmetries in
a straightforward way, i.e. one should be able to observe the symmetry on the inverse side
simply by looking at the functional form of both potentials. However, this is not the case with
the potentials R, and Q,_; derived in equations (8.35), (8.40), (8.71) and (8.74). To remedy
this issue, we derive in this section an alternative formula for the potentials by inserting the
symmetries between the eigenfunction in such a way that one can ‘see’ the integrable sym-
metry reduction in an obvious way.

11.1. RST reduction Ry(t) = cQ_n(—t)

In this section we obtain an alternative reconstruction formula for the potential O, under the
assumption that R, (t) = 0Q_,(—t). We start from the symmetry relation (5.15), i.e.

N2 (1) :M(_',),,(z,ft), (11.1)

and the potential Q,_(¢) given by equation (8.71) (after making the transformationn — n + 1)

n 1 1 n 1
= —ZZB 2 M:lg_)l (zj, 1) — Zmﬁl 1w2 R(w, t)M;(_i_)l(w, t)dw.

(11.2)
Substituting equation (11.1) into equation (11.2); use the symmetry relation between
the reflection coefficients given in equation (9.8), i.e. R(z,1) = —%p(z,—1) as well as

—07; *Cj(—t) = B;(t) obtained in (10.20), we find

J
0.(1) =20 Y (=05 IND G- + 74 WD plw, NG (v —t)dw. (11.3)

[w]=1
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Scrutinizing the expression for the potential R,(f) given by equation (8.35) shows that the
symmetry condition R, (t) = 0Q_,(—1)is indeed obvious.

11.2. PT symmetric case R, = cQ* ,

Here, we provide a different expression for the potential O, that preserves the PT symmetry.
Since this symmetry is local in time, we omit the explicit time dependence. We start from
the symmetry relation (5.15), i.e. N,Ei)l( ) = M(_l,)l (z*), and the potential Q,_(r) given by
equation (8.71)

n— 1 .
On—1 = —ZZB 2 1)M’(1 (zj) — f- w2 =D R(w)M!D) (w)dw.
lwl=1

27
(11.4)
Substitute the above symmetry between the eigenfunctions, reflection coefficients and norm-
ing constants R(z) = —%p*(z"), fazj_ij = B} (respectively obtained in equation (9.10)
and (10.28)), back into (11.4), we find

_2O_ZC* 2(n I)N(Z)'*( ) 5 1% (u*)Z(n—l)p*(u)N(_zn)/* (u)du*
0 Ju|=1

(11.5)

For the convenience of the reader and to make the comparison with R, easier, we again write
down the formula for the potential R, given in equation (8.35):

1
R, =2 C n+1)N/(2) 7% —2(n+1) N'@ (w)dw.
Z @)+ 5 T RN (v (116)

As expected, comparing equations (11.5) and (11.6), we see that the PT symmetry, R, = cQ* ,
is indeed preserved.

11.3. RT reduction R,(t) = cQn(—1t)

To obtain an alternative expression for the potential Q,(f) we start from equation (8.17) for
the function N,/,(l) (z,t) whose large z asymptotics is given by (use the parity property, (8.33))

~I

27i

N (z1) = [ Z (2N (7,1) - I.?f . W B(w, DN, (w, 1)dw | +0(1/2).

(11.7)
Substituting the symmetry relation N,(ql),(z, )= (¢, (1)™! N,Sz)’(l /z,—t) established in

(5.16) into equation (11.7) gives
1(1) _2( ( =2n (2) _
N'D(z,1) = Zc N (1/7, 1)
j=1

O N (1w 0w+ 001/2)
w|=1

2miz (11.8)
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Comparing (11.8) with (3.22) we find

] ’
0,(1) = —220 0Z'NP (1/7, 1) + 5— f w2 B(w, )N®' (1/w, —t)dw.
[w]=1

27i
(11.9)
We have already established the symmetry relation between the eigenvalues, norming con-
stants and the reflection coefficients:

5 =1/z, Ci(t) = -0z, °C(—1), p(z.1) = op(1/z,—1).

Substituting these quantities into equation (11.9) along with the change of variable { = 1/w
we find

J

0u(1) =203 (1) 2 "IN (g1, —1) + o f ‘ ¢ (¢, =N (¢, —1)dC. (11.10)
j=1 cI=t

Scrutinizing the expression for the potential R,(f) obtained in equation (8.35) shows that the

RT symmetry R,(f) = 0Q,(—1) is indeed preserved.

11.4. AL reduction R,(t) = o Qi (t)

To obtain the alternative expression for the potential Q, we again start from equa-
tion (8.17) with its large z asymptotics equation (11.7). Substituting the symmetry relation

N(l),(z, )= (c)7! N,Ez)/*(l/z*,t) established in (5.16) into equation (11.7); compare the

n n

result with the asymptotic formula given in (3.22) we find

J

1 /%
}: OZN" (/251 + o ]{ WS (w, OND” (1w, ).
= 2mi Jjwj=1

(11.11)
Next, insert all symmetries between the eigenvalues, norming constants and the reflection
coefficients z; = l/z , Ci=—o(z)” 2C* p(2) = op*(1/z*) back in (11.9); use the change
of variable { = 1/w™* in the contour 1ntegral (note that the orientation on ( space is the same
as on w) to finally obtain

g

0u(1) =203 €1 (0)() 2HIN) (1) — 7{<|_1(C*)_2(n+l)p*(c’ DN (¢, 1)dC .

2mi
(11.12)

Comparing the above expression for Q,(#) with the one we have already derived for R, (f) (see
equation (8.35)) shows that the symmetry condition R,(t) = o Q} () is indeed satisfied.

12. Trace formulae and symmetries for bj, b;

For both integrable discrete Ablowitz—Ladik and the reverse-time reduction case (RT NLS)
the symmetries connect the scattering data and norming constants in the upper half complex
z plane to their corresponding quantities defined in the lower half z plane. For example, the
eigenvalues and norming constants are related through equations (5.23) and (5.29), for the RT
NLS, and equation (4.3) for the AL lattice. This implies that the eigenvalues z; and norming
constants C; are counted as free parameters and the values of Z; and C; are uniquely deter-
mined by the underlying up-down symmetries. As discovered in [41, 43] the situation with
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the RST and PT symmetric cases is very different. Firstly, the symmetries of the scattering
data and norming constants do not relate their respective values in the upper half complex
z plane to those in the lower half plane. This can be seen as follows. In the RST case, see
equations (6.27) and (6.28) where now the eigenvalues z; and z; are counted as free param-
eters. In the PT case see equations (7.21) and (7.22) where again the eigenvalues z; and z;
are counted as free parameters. Secondly, in order to understand the underlying symmetries
of the norming constants C; and C; we need to separate their numerators/denominators, i.e.
Cj,= bj/d'(zj), C; = b;/d (z;). For the denominators a’(z;),a@ (z;) we resort to trace formulas
for discrete systems (see section 12) see [34] which were used to show that the data a(z),a(z)
can be calculated in terms of eigenvalues and data p(z), p(z) (or b(z), b(z)). From @' (z;),d@ (z;)
we find that C; and C; depend on the eigenvalues z;, Z;. For the numerator we need to find sym-
metries involving bj,Ej. In the RST case, see equations (12.31) and (12.33) from section 12.2;
for the PT case see equations (12.38) and (12.42). In both cases the coefficients b, Ej count as
additional parameters. Using these symmetries is critical when finding soliton solutions—e.g.
see section 13. It turns out that whenever eigenfunctions in the same plane are related, such as
occurs with the PT and RST NLS equations this leads to symmetry conditions on b;, b;.

12.1. Trace formulae and computing & and @

12.11. RST reduction R,(t) = cQ_p(—t). In this section we develop a trace formula for
the RST case and use it to compute the norming constants as a function of the eigenval-
ues. To that purpose, we assume that a(z) and @(z) have simple zeros {+z; : |z;| > 1}/, and
{£7: 7| < 1},!:1 respectively. Define the following quantities:

J 2 _ 52 _ J 2_ 2
a)=]] <ZZ]2> a(z). az)=]] <ZZ_Z’2> a(z). (12.1)

2— - .
=A\E T =1\S T

According to these definitions and the analytic properties of the scattering data we have: (i)
a(z) is analytic outside the unit circle (where it has no zeros) and a(z) — 1 as |z| — oo, (ii)
a(z) is analytic inside the unit circle and has no zeros. Taking into account that both a(z)
and @(z) are even functions of z, we find

N ¢loga(¢) ¢loga(¢) .. _
loga(z) = —>— L B2 d¢, i{;l—l 2 d¢=0, |z >1,
(12.2)
~ 1 ¢loga(¢) Cloga(¢) .
089 = 2 NS € fj(l_l gog =0 H<t
(12.3)

Taking the logarithm of @(z) and @(z); use their properties outlined in equations (12.2) and
(12.3) to find

N -3\ 1 ¢ logla(¢)a(¢)]
loga(z) = ngog <22 —z}) — 5= ficu A 7 >,

27 -2
(12.4)
el =Sl (275 ) L L QloglaQaQ)] 1
ga(z) = Z S e +a= e IR
- -
' (12.5)
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As mentioned earlier, the scattering data satisfy a unitarity condition given in equation (3.11),
which in our case, is given by

o0

a(2)az) - b()b(z) = 7y = [ (1 — 0Qu(—1)Qx(1)). (12.6)

k=—oc0

Equation (12.6) together with the identity @(z)a(z) = a(z)a(z) and the symmetry (9.7) give

-z
loga(z) Zlog( )

1 CIOg[C‘Zoo + O-C_zb(c? t)b(c’ _t)]
"l a2 ¢,z > 1, (12.7)
(z - z})
loga(z) Z log >
J
1 (logle? ,, +a¢b(C, 1)b((, —1)]
2 fo, a_a ¢,  fe <L (12.8)

Equations (12.7) and (12.8) imply that one can reconstruct the scattering data @ and a only
from knowledge of their own simple zeros z;,Z; and one function b (recall that b is related
to b.). While one can develop a general formula for the norming constants, we shall restrict
the discussion to reflectionless potentials for which b = b = 0. The second term in equa-
tion (12.7) vanishes since the function ¢/(¢? — z%) is analytic inside the unite circle (|z] > 1).
Taking the derivative of equation (12.7) with respect to z gives

ol E)E L )

22-3Z

Following similar steps as above, we find

! 1 1
dlz= a2 (12.10)
At a single eigenvalue z = z;,Z; € C we have

2¢7 7

2Z1 -
d(z1) = —=—=, dz - 12.11
(z1) -2 (z1) = Z_2 (12.11)

12.1.2. PT symmetric reduction R,(t) = o Q;(t). Next, we repeat the calculations outlines
above, but now for the PT symmetric case where R, = ¢Q;:. The main difference here, is the
existence of more zeros of the scattering data a(z) and @(z), i.e. they appear in quartets (see see
equations (7.21) and (7.22)). Denote by {+z;, +z} : |z > 1}, and {£7;, 7} : [gj| < 1}/,
the (simple) zeros of a(z) and a(z) respectively. Furthermore, as before, it is assumed that
all eigenvalues are complex and simple. The case of real eigenvalues is considered later. As
before, define

J 2 F2\(,2 _ %2 _ J 22\ (2 o x2
-l - =

(12.12)
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According to these definitions, @(z) is analytic outside the unit circle, where it has no zeros,
while @(z) is analytic inside the unit circle, and it has no zeros. Moreover, a(z) — 1 as
|z] = oo. Taking into account that both a(z) and @(z) are even functions of z, we have

1 ¢ loga(¢) ¢loga(¢) .
1082 = ~7m =1 22 € %C—l gog =% K>1
(12.13)
- Cloga(¢) Cloga(¢) ,.
loga(z) = 2 L ﬁd@ j{C 1 wdc =0, [z <L
(12.14)

After some algebra, we find

_ ) ~ =
loga Zlog |:ZZ(ZZ>:| _ if Mdc’ |Z| > 1, (12.15)
I<|=1

-7 -7 2mi -2

loga(z) ZIOg [Z—ZJ;EZ—ZJ»&” + — 7 j{q lwdg 2| < 1. (12.16)

From the unitarity relation (3.11) with R, = 0Q* , we have

o0

a(2)az) - b(2)b(z) = 7o = [ (1 - 0Q0*)). (12.17)

k=—00

Using the symmetry between the scattering data b(z) = Zb*(z") (see equation (7.27)) the
evenness of a(z),a(z) and the identity @(z)a(z) = a(z)a ( ) we arrive at the general trace
formulae

N2 w2
Z?—2)(F -2
log a(z) E log [ 7’2)(2 1*2)]

(2 -7)(-77)

1 Clog(c? ., 4+ ¢ ?b(C)b*(C¥))
N MA | oz ¢, 2 > 1, (12.18)

2 2 _ %2
loga(2) Zlog[ z’fig;—i}z;]

! Clog(c? o +0¢2b(()b"(C*))
T om =1 a2 ¢, o < L. (12.19)

For simplicity, we consider the reflectionless potentials case again and find
*2

(=2 [EPE-T)

(@ - -7?)

o 1 1 1
x Z 2 — 72 T3 2 2 _ =2 2 _ 2| (12.20)
i

—Z =g
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The computation of @' (z) follows analogous lines of derivation. The result is

) =2¢% ZH Z_Z )

o z—z)

.

ZJ: 1 1 1
[ ) 2 2 %2 |
=1 LTy Ty (12.2D

Ata single (J = 1) complex eigenvalue z = z;,7; we find

2z1(zf — 7°)

=@ G- (1222
d(z) = (Zfzzi(%z;f;f_%)zfz), (12.23)
7(z) = é;afg)(fj{_f;)), (12.24)
a(z) = 26771 (@ —70) (12.25)

@ -D)E - )
A reconstruction formula for the scattering data a,a in terms of their simple zeros when all
eigenvalues are real and different is nearly identical to what we have done for the RST case
with the only exception being in the integral terms appearing in equations (12.7) and (12.8)
where ¢? 4+ o¢2b(¢,1)b(¢, —t) is replaced by ¢?  + o 72b((, 1)b* (C*,1). Since we are
interested in the case where the scattering data b, b identically vanish (reflectionless poten-
tials), the formula for @’ and @’ given in (12.11) thus still hold whenever the eigenvalues are
real.

12.2. Computing symmetries of b; and b;

In this section we obtain the symmetries that b; and b; satisfy at discrete eigenvalues z; and Z;.
This in turn will be later used to determine the dependence of the norming constants C; and
C; on these eigenvalues. We shall distinguish between two cases: RST and PT symmetric.
Note that the (time-independent) quantity ¢?  frequently appears (directly or implicitly) in
the eigenfunctions, scattering data, norming constants and potentials. Thus, we first need to
find its value. The computation of ¢ _ for the general soliton case (arbitrary J, assuming
reflectionless potentials) is cumbersome. Since in this paper, we explicitly compute only one
soliton solutions, we set J = 1 and assume p = p = 0; in the general reconstruction formula
for ¢, (cf. [34]):

o =1-202""N ). (12.26)

Solving for ﬁ,(f), (Z1) from equations (8.18) and (8.20) to find
27 (f% —z3) Ciz; ™"
(2 —2)’ +4C,C2 2

—2) ,_
Ni) (1) = (12.27)
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Substituting equation (12.27) into (12.26); use the fact that Izl > 1 and |z;| < 1 we find
c? Zl/ Z7. Note that the dependence of ¢? _ on o is ‘hidden’ in the choice of the

—c0 —

eigenvalues.

12.2.1. RST reduction R,(t) = cQ_,(—t). Here, we assume that R,(t) = cQ_,(—t) holds
together with all implied symmetries. At an eigenvalue, equation (8.3) give

M (.0 = 5N (@0, MY (z.0) = ()N (z,0). (12.28)

Using the symmetry relation N,(n_zl(zj, 1)=—0(c") " M(_Z,),: (zj, —t) between the eigen-
functions (see equation (6.19)) together with the left part of equation (12.28) results in

N (@) = =0 (¢70) " bi(=0Z"ND) (3, —1). (12.29)

On the other hand, the eigenfunctions NIEZ)/(Z]', t) and M,(,l)/(zj, t) are connected via the sym-
metry relation (6.20), i.e. N,(jr)l( =M (_1,), (z, —t). This symmetry, when combined with the
right equation from (12.28), gives rise to

NO) (g, —1) = by(1)z 22 N, (1): (12.30)

Substituting equation (12.30) into (12.29) one obtains the symmetry recall that ¢ __ is time
independent)

bi(—1) bj(t) = —0c? oz, = b (0) = —0c? 7. (12.31)

where we used the time evolution of b(z) given by equation (8.23). For a one soliton solution
we find

2 .
bi(0) = —0z1/7, o=F1 = b(0)= %e“”‘””/“, s ==+1. (12.32)

To determine the value of b;(t), one follows similar steps: start from equation (8.4); apply the
symmetries (6.21) and (6.22) and end up with

bi(—0bi(1) = =07 o (3) 2 = B(0) = —0c% . (2) > (12.33)

In obtaining the expression for b;(0) we made use of the evolution of the scattering data b;(f)
given by equation (8.25). For the one soliton case we find

_ S21
b,(0) = Z—;e“‘*”)“/“, 2,21 €C, o=7FI1, 5=+l (12.34)
1

With the help of equation (12.11) we are now ready to compute the norming constants C; and
C1. We thus have (0 = F1l and s = *+1)
2 =2y o 22y
1 (0) = 521 (217 zy) el+or/4 ¢ (0) = 5(z3 721) d+o)m/d - = <.
221 22171
(12.35)
12.2.2. PT symmetric reduction R, = cQ* ,. Here, we obtain the symmetries that bj,Ej sat-
isfy at discrete eigenvalues z; and Z; for the PT symmetric case. Since this symmetry is local

in time, we shall not explicitly indicate any time dependence of the eigenfunctions and scat-
tering data. Our starting point is again equation (12.28). Substituting the symmetry condition

3696



Nonlinearity 33 (2020) 3653 M J Ablowitz et al

N,(,Brl(zj) =—0(c7) " M(f,)n*(zj*), given by equation (7.12), into the left part of equa-
tion (12.28) one finds

/% « —1 ’
N @) =0 (c" ) b2"'NC) (z), (12.36)

n+1 J —00
where ¢ = (c? . )*. Next, we use the symmetry (7.13), i.e. N,EJF)I( )= Mg)ll*(zf) to

rewrite the right part of equation (12.28) in the form

2 " (1) 2 g —2nar(1
N,EJF)I () = jzf N(,,z (z), = N()(zj)—z 2b 2N,E+)1 (7).
(12.37)
Substituting equation (12.37) back into (12.36) gives
bj* = —07} (7o) (12.38)

Since for the PT symmetric case the eigenvalues z; and Z; are not related through any sym-
metry we find, for a one soliton solution (recall ¢ = z% /Zf)

4 2
b=l ST oo 1 nzeR (1239)
(11) 21

with arbitrary and real constant ¢;. Similar expression can be obtained for b;. Indeed, starting
from equation (8.4) we have

M) (z e):Ee(z@)*z"N(_l,),'(z ), M2 (@) = be(z) N (7). (12.40)

Now use the symmetries M(_ZBL, () = Ni 421 (zf) and M(_,), (z)) = *O'Nfl -31 (z;) respec-
tively obtained in (7.14) and (7.15) to rewrite equation (12.40) in the form
Noh @) = —obe() N @), N @) = (7o) ' @B @) PNy ). (12.41)
In order for the system of equations in (12.41) to be consistent one finds

be|* = —0(20) 7 . (12.42)
For a one soliton solution with ¢7 __ = 73 / zZ7 (with real z1,7;) we find that solution exists only
when o = —1, in which case we have

- 21 ig _

by = Z%e O 2,721 €R, (12.43)

1

with arbitrary and real constant ;. To write down a closed form expression for the norming
constants C; and Cy, we use the above formulae, the definition of norming constants equa-
tions (4.5) and (12.11) with o = —1:

i0,

=2
- 7] —Z* _
C1(0) = % 2.7 ER. (12.44)

21(22 —73)el?

C1(0) = 7 ,

13. One soliton solution

In this section we compute the one soliton solution for the AL, RT, RST, PT NLS equa-
tions given in (1.3), (1.12), (1.11), (1.8) respectively, as well as the AL model (1.3). They
all correspond to the case where J =1 with eigenvalues z;,Z; (|z1] > 1,]z1] < 1) being (in
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general) complex and different (depending on the symmetries at hand). Moreover we will
assume that the potentials are reflectionlessi.e. p = 0,7 =0, R = 0,R = 0.

In order to write down a closed form formula for the soliton we need: (i) all symmetries
(which we already obtained) and (ii) a reconstruction formula for the potential R, and/or Q,
which can be chosen either from equations (8.35), (8.40), (8.71) or (8.74). We shall provide
those eigenfunctions that are necessary for the construction of the potentials.

13.1. Computing eigenfunctions and potentials: left scattering problem

Starting from equation (8.20) we find (after some algebra) that the relevant eigenfunctions
N,(ll) (z1) and N\? (z) are given by

2 _2\2
—(1) 4
Ny @) =— 722( r) . 13.1)
(2 =) +44C Gz

N® (7)) = ( —a) (13.2)
(2 -3) +4C, 022

From equations (8.35) and (8.40) with J = 1, = 0, the potentials R,(7) and Q, () are given
by

Ru(7) = 2C(7)z; "IN (2) = R, (1) =

20,(r)g, 2" (B -3’ (13.3)
- .

@) HaCmama

26,(NF (B -3)
(2 fz%) +4C,(1)Cy (T)7" 22"
(13.4)

0ri(r) = —2C (M2 NV @) = 0u(r) = -

where
C[ (T) = C] (0)62iw][, 6] (T) = 61 (0)672iw][, w; =

‘We use these formulae below.

13.2. Ablowitz—Ladik solitons

The classical integrable AL model 1is characterized by soliton eigenval-
ues and norming constants obeying the relation given in (4.3), ie. Z; = 1/z] and
Ci(1) = —0o(z})72C (1) = —0(z}) 2C;(0)e =217 with with z;, C;(0) being arbitrary com-
plex parameters. Substituting these parameters in (13.3) gives the well-known AL NLS one-
soliton solution

) (|Zl |4 . 1)2 C (O)eZiwlTZrz(n+l)
. )
(lz1]* = 1)7 — 4 |C1(0) 2|z | ~* (13.5)

To compute the potential Q,(7), we substitute the eigenvalues and norming constants in equa-
tion (13.4) to find

R,(T) =
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20 (|an]* = 1)° €5 (0)e =217 (z7) 20+

(J1l* = 1)* = 4o]|CL O Pl
Clearly, the symmetry R,(7) = cQ}(7) is preserved. To avoid singularity, one chooses
o = —1. To put this soliton in a more ‘familiar’ form, we let z; = exp(§ + in), with £ > 0
(since Izl > 1) and constant real 7). Furthermore, we represent the norming constant C;(0) in
the form C(0) = 3(|z1* — 1) exp(x1 + ix2). With this we have

On(1) = (13.6)

0,(7) = —sinh(2¢)e ™ 2e?" (" Dgech(2¢n — y; )e 217, (13.7)

This one-soliton solution contains four free real parameters: £, 7, x; and xa.

13.3. RT NLS solitons

From (5.23), (5.29) and (826) we have 7 =1/z7 with 7z €C and
Ci(1) = —0z,°Ci(—7) = —0z; *Cy(0)e~ 3“7, To this end, the RT NLS one-soliton solution
is given by

. _2(n N2
26 (0)eX ez (B - 27?)

R, (7) 5 .
(@ —2%) —40C}0)z

(13.8)

This is a four parameter family solution for which z; and C,(0) are arbitrary complex con-
stants. The potential Q,(7) can be found from equation (13.4):

. _ 2
200y (0)e om0 (2 577)

On (7)
(2 —2%)" — 40C3(0)z Y

(13.9)
Clearly, the symmetry R,(7) = 0Q,(—7) is preserved. Define the complex parameter C; by
4C3(0)z;* = (23 — z;2)C3. Then equation (13.9) is rewritten as

B 20C, (O)efﬁwl'rzl_z(”‘*‘l)
1- 06%2(4" .

O (1) (13.10)

Notice that this soliton can be singular, even at time zero. Indeed, consider an arbitrary point
on the integers n = ny. Then singularity occurs whenever the initial condition satisfies

C? = o™, (13.11)

Thus, we exclude this from the initial data. As we stated below equation (3.14), the AL
scattering theory is mathematically well grounded for potentials that satisfy the conditions
Ol = >3- |0n| < oo and ||R||y = 37 |R,| < oo As such, choosing initial conditions
satisfying equation (13.11) would not be consistent with the analysis presented in this paper.

We next examine the time evolution of the soliton. Recall that w; = % (21 — zl_l) 2 With
the definition z; = e+ we get w; = sinh(¢ + in) = sinh & cos ) + i cosh & sinn. Thus, as
far as the time-evolution is concerned, we have

Qn(T) ~ e—2iw|'r — eZi[l—cosh(Z&) cos(2n)]T eZsinh(Z{) sin(Zn)T. (1312)

The first exponent on the right hand side of equation (13.12) is bounded in time, whereas the
other one, exp[27 sinh 2¢ sin 27}, either grows or decays in time.
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13.4. RST NLS solitons

Recall in this case that the eigenvalues z;,Z; are (in general) complex and counted as free
parameters. Substituting the norming constants (and their respecting time-dependent) given
by equation (12.35) and (10.29) into (13.3) to find

_ S(lel)_l (Z% _ Z%)ei(]+0)ﬂ/4eziwlTZ;2n

R, (T - S
( ) 1— el(l+(r)7r/2621(w1—wl)q—z%nZIZn

(13.13)

On the other hand, from equation (13.4) we obtain the formula for the potential Q,(7) given
by
S(lel)—l (Z% _ Z%)e—i(l+o)7r/4e—2iwm—z%n

1 — e—i(l+a)7r/26—2i(w1 —EI)TZI*ZnZ%n

Ou(7) = (13.14)
Note that when ¢ = F1 we have the two identities: e i(1+o)m/2 — (l(l+0)7/2 4pq
e~ i(+o)m/4 — _ 5ei(1+9)m/4 With this at hand, equation (13.14) is rewritten as

O'S(Z]Z])il(z% _ Z%)el(1+a)7r/46721w17'z%n
- . 2
1 — ei(1+0)7/2p—2i(wi wl)‘rzl nz%n

On(T) = (13.15)
Since 73,7 are free complex constants defined outside/inside the unit circle|z| = 1respectively,
this is a four parameter family of solutions. And as expected, the two potentials R,(7) and
0,(7) do satisfy the RST symmetry R,(7) = 0Q_,(—7). It is evident from equation (13.15)
that Q7 (7) # 0,(—7); thus clearly demonstrating the non commutativity between time rever-
sal and complex conjugation. Finally, we remark that the RST soliton can develop a singular-
ity in finite time. This can happen when the eigenvalues z; and z; are real (the general complex
case does not develop singularity due to the dependence of w; and w on the eigenvalues). As
an example, at a grid point n = 0, the denominator in (13.15) vanish when

(1+o)r—4n

71 € R.
door—my) o wEE (13.16)

Ts =

13.5. PTNLS solitons

The PT symmetric one soliton is characterized by two arbitrary real eigenval-
ues zy,z; with norming constants (and their time evolution) given by equa-

2 2410 . — =2 2\ .if —
tions (12.44) and (10.29) ie. Cy(r) = LAl elor € (r) = B =207 ang

wi = (z1—z;")?/2; @1 = (z1 — ') 2/2. With this at hand, the PT NLS one-soliton solu-
tion is given by (o = —1)

(221)~ (3 = B)elteorz >

Ru(7) = — . 13.17
( ) 1 — 61(91+01)e21(w17w1)7'z%’lz1—2" ( )
Next, we compute Q, (7). After some algebra, we find
= \—1/.2 2\ a—i0] o —2iw T 20
212 1 —z77)e Ve z

On(1) = — = 1L(91(+1§1) JZ)i(wlfwl)‘r**ZH 12n' (13.18)

I—e e 217
Clearly, the PT symmetry R,(7) = —Q* , is preserved. Since z1,71, 61, 6, are all free real con-

stants, the soliton constitute a four parameter family of solutions. Equations (13.18) or (13.17)
reproduces the one-soliton result first reported in [40] under the transformation 6; — 6; + .
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The soliton given in (13.18) also develops a singularity in finite time. Indeed, when n = 0 (as
an example), we find the blow-up time to be

2r — (91 +§1)
2(0)1 —-EU]) ’

Ty =

(13.19)

13.6. Computing eigenfunctions and potentials: right scattering problem

As was mentioned in section 6, all one needs to compute a soliton solution for an integra-
ble system (that originates from the AKNS scattering problem) are symmetries between the
eigenfunctions, scattering data and a reconstruction formula for R, or Q,. However, due to
nonlocality (in space), we extended the analysis by studying a ‘right’ scattering problem and
connected it with the left one using proper symmetry relations. For completeness of presenta-
tion, we use the results from the right scattering problem to compute a one soliton solution and
show that they coincide with the one we obtained in section 13.1. Solving equations (8.63) and
(8.65) for the eigenfunctions gives
2 _=2\2
MY (z) = (5 —30) S (13.20)
(2 -2) +4B.Bi7, "2

, 2 =2\2
mY (@) = > (@ Z‘)2 =
(22 - zl) +4B1Bi7/"7

The potentials are recovered from equations (8.71) and (8.74):

(13.21)

2Bz, "V (@ )
(23— Zl) +4BB, 2", ’
(13.22)

R,=2c"' Bz X" Pz) = R,=

28,2 (2 -2)°
2 —
(z% — Z%) +4B1B1Z; zf"“
(13.23)

With this at hand, we can write down the one-soliton solution for the RST and PT symmetric
NLS equations.

Qv =282 MV (z) = Q,=-

13.6.1. RST NLS soliton. 1In this case, we have two complex eigenvalues z;,Zz; that are not
related, i.e. they are counted as free parameters and o = F1. From equations (10.16), (10.20),
(10.29) and (10.30) we find

Bi(1) = —0(z1)*Ci(—7) = —0(z1)*C1(0)e*™'7, (13.24)

Bi(7) = —0z; 2Ci(—T) = —0z; 2C1(0)e 3417, (13.25)

(
where w; = % (zl — zfl) 2w = % (Zl —2;1) 2 Thus we have

20C,(0)eX@ (7))~
422C1 (0)C1(0)

(ZI*Z%)

Ry(1) = o (13.26)

1 + exp [2i(w1 — wi)7]2]"Z
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Note that from (12.35) M _eil+o)7/2  Substituting the norming constants (12.35)

1

back into (13.26) results in the one-soliton solution for the RST NLS equation (1.11)

SO’(ZlZ]) (Zl —z ) (1+U)7T/4 2iw T (21)7271

1 — ell+)7/2 oxp 2i(@) — wi)7|22"Z;

R,(T) = ) (13.27)
where 0 = F1 and s = £1. After some algebra, one can put equation (13.27) in a form that
precisely matches the one-soliton solution given in (13.13), showing a consistency between
the left and right scattering problems. Next we compute the potential Q,, (7). From (13.23) we
find

2n
S(lel) (Z1 —7 ) i(l40)m /4o —2iw T (Zl)
ont

1 — ell+o)™/2 exp [—2i(w) — wl)T]sz"zl

Ou(7) =

(13.28)

Comparing the two potentials from (13.27) and (13.28) clearly shows that the integrable sym-
metry R,(t) = 0Q_,(—1t)is indeed satisfied.

13.6.2. PT NLS soliton. In this case, we have two real eigenvalues zj,7; that are not related
with ¢ = —1. From equations (10.25), (10.28), (10.29) and (10.30) we find

Bi(7) = —0(21)?C (1) = —0(z1)?C, (0)e¥™7, (13.29)
Bi(r) = —0z; °C; (1) = =02 *C} (0)e™ 7, (13.30)
where w; = % (z] — zl_l) 2w = % (21 -7 ) , giving rise to

20C; (0)eX™ (zlrz"

Rn(T) = Syam . 13.31
1+ 422Cr (0)C; (0) exp [2i(@1 — wi)T ]Z1 Z;z,, (13.31)
(Zl Zl)
Note that from (12.35), HAOCO) _ _o—i(048) Substituting the norming constants (12.44)

( 2 22)2

into (13.31) results in the one-soliton solution for the PT symmetric NLS equation (1.8)

(2121) N2 — e i dnr (21)_2n

R,(T) = — AR —. 13.32
™) 1 — e~ (0401 exp [2i(w; — wl)T]Z%"EI ’ ( )
To this end, the potential Q,(7) is found from (13.23) as
= i0) o —2i01T (= n
Qn — (lel) (Zl Z ) € (Zl) (13'33)

1 — ei0+00) exp [<2i(w) — wi)7le; 2z

Comparing the two potentials from (13.32) and (13.28) clearly shows that the integrable sym-
metry R, = —Q* , is indeed satisfied. By letting ¢y — 61 + 7 we recover the PT symmetric
one-soliton solution first reported in [40].

14. Remarks on nonlocal Painlevé equations
The Painlevé equations are special nonlinear ordinary differential equations which have no

moveable branch points in the complex plane see [52]. Remarkably, they frequently arise
from a self-similar reductions of integrable nonlinear evolution equations see [7, 53]. They
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are particularly interesting due to their rich structure in the complex plane as well as their
deep connections to integrable systems. While originally developed in the context of continu-
ous integrable evolution equations, discrete Painlevé equations have also been proposed and
extensively studied see [54].

Until recently, most of the work on the subject has focused on the mathematical properties
of local ‘classical’ continuous and discrete Painlevé equations [55-63]. Recently however,
Ablowitz and Musslimani proposed new nonlocal Painlevé-type equations that arise from a
self similar reductions of the PT, RST and RT nonlocal integrable evolution equations, see
[40—42]. Below we summarize some of the those already mentioned and add some new ones.

PT Painlevé A1 [42]:  f..(z) + M(z) — 20f*(2) f*(—2) = 0, (14.1)

PT Painlevé A2 [42]:  f.,(2) +izfi(z) + (vo + i) f(z) — 20/ (2) f* (—2) :((1)2‘ ”

RST Painlevé [41]:  f..(z) +izfi(2) +if(2) — 20kf*(2) f(kz) =0,  (14.3)

RT Painlevé [41]:  f..(z) +izfi(2) + if (z) — 20kf>(2) f(—Kz) =0, (14.4)

PT discrete Painlevé [40]: Upi1 + Up—1 + 1_‘_?7%1 =0, (14.5)
where 0 = F1,\, 19,6 € R,k = (—1)~"/? and f(z),u, are (in general) complex valued func-
tions of the real variables z and n. We note that equation (14.1) is a nonlocal generalization of
an elliptic function and equation (14.5) is a nonlocal generalization of an addition formula of
an elliptic function.

In this paper, we propose some new continuous and discrete nonlocal Painlevé equations.
First note that the above PT discrete Painlevé equation can be modified. Looking for a solution
of the form Q,(f) = €*u,, A € R in the RST discrete NLS equation (1.11) we find

Up1 + Un—1 + _ o 0, 81 =\ —2, (14.6)

14+ ouu_,
where §; € R. Writing out first few terms, it appears that numerically, we can find nontrivial
solutions/ non even solutions to equation (14.6). That is to say, given uy and «;, we can find all
other u, for all n > 2. An interesting class of similarity reductions are accelerated waves see
[53]. For example for the standard NLS equation (1.1) the similarity reduction

. 2
q(x.1) = f(2)e P00 2 = v — Bor?, q0 = _%’ Fas (147

leads to the following Painlevé-type equation

foo — Bozf +20f%f* = 0. (14.8)
This is the second Painlevé equation when f* is replaced by f.
Motivated by Galilean invariance of the nonlocal PTNLS equation we can look for accel-
erated type similarity reductions of nonlocal equations. In the PTNLS equation (1.13) we
introduce the following reduction

2
qlx, 1) = f(2)e )|z = x ik, p = f%, & € R, (14.9)
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which leads to the nonlocal Painlevé-type equation

fe(2) — i&02f (2) + 20f*(2) f*(—2) = 0. (14.10)

This is a nonlocal generalization of the second Painlevé equation. In [41] the following nonlo-
cal reverse space-time generalization of the modified KdV (RST mKdV) equation was found

wi(x, 1) + 60w (x, )w(—x, —t)wy (X, ) + Wy (x, 1) = 0. (14.11)

The traveling wave similarity reduction u(x,t) = f(z),z = x — ct,c¢ € R leads to the fol-
lowing nonlocal differential equation

fee(2) + 60f(2) f(—2) f(2) — ¢fz(z) = 0. (14.12)

It should be noted that the one-soliton solution for the nonlocal RST mKdV equation does not
satisfy equation (14.12), unless taken to be even (in which case it reduces back to the classical
mKdV equation). It is left for a future research to understand the behavior of the solutions to
this equation.

We also remark that looking for a self-similar solution to the nonlocal mKdV equa-
tion (14.11) of the form

1
wit) = oisf(@) 2= 35—/3 (14.13)
we find
for = @f): —60f°f. =0, = fo—zf—20f =aq, (14.14)

where « is constant. Interestingly enough, even though we began with a nonlocal equa-
tion (14.11), the result is still local; it is the second Painlevé transcendent. It is likely that
this equation, i.e. (14.14), plays an important role in the long time asymptotic solution to the
nonlocal mKdV equation (14.11).

We believe that it is important to study the behavior of these nonlocal Painlevé type equa-
tions. It is an important topic for future study.

15. Conclusion

In 1975/76 Ablowitz and Ladik formulated a theory for discrete integrable systems whose
core idea is a discrete compatibility condition between two linear problems: the first being a
second order discrete Schrodinger-type scattering problem while the other is a time-evolution
system. The outcome of this theory is a nonlinear evolution equation in time (continuous or
discrete) and second order discrete in space that is guaranteed to be (i) integrable, in the sense
of existence of an infinite number of conservation laws and (ii) solvable by the inverse scat-
tering transform. For the specific case given by (2.1) and (2.2) this compatibility condition
results in a coupled evolution equations for the ‘potentials’ R, and Q,,, equations (1.4) and
(1.5). Ablowitz and Ladik found that this system is compatible under the integrable symmetry
reduction (¢ = F1)

R, =00,, (15.1)

and leads to the well-known Ablowitz—Ladik model equation (1.3).

More than four decades have passed before new integrable symmetry reductions of the
Ablowitz-Ladik scattering problem (2.1) were discovered. Indeed, in 2014, Ablowitz and
Musslimani noted (for the first time) that the coupled system of evolution equations (1.4) and
(1.5) admit the so-called PT symmetric reduction

3704



Nonlinearity 33 (2020) 3653 M J Ablowitz et al

R, (1) = 0 QL (1), (15.2)

giving rise to the PT symmetric nonlinear Schrodinger equation (1.8). Notably, that equa-
tion preserves the ‘discrete’ PT symmetry, i.e. invariance of the evolution equation under the
combined transformation of n — —n,t — —¢ and complex conjugation. In recent years, there
has been an intense research interest in the physics and mathematics of linear and nonlinear
systems that admits PT symmetry, with the main focus being in quantum physics and optics
see [64-92].

In 2016, Ablowitz and Musslimani discovered two new integrable symmetry reductions for
the AL scattering problem. Those are the reverse space-time and reverse time only reduction
respectively given by

R,(1) = 0Q_,(—1), (15.3)

R, (1) = 00u(—1), (15.4)

giving rise to the so-called RST and RT NLS equations (1.11) and (1.12).

The inverse scattering theory and soliton solution for the PT symmetric NLS (1.8) has been
briefly outlined (due to page limitation) in [40] whereas in [41] the RST and RT NLS equa-
tions were proposed and shown to be integrable discrete system (few conserved quantities
were also given).

In this paper, we provide a full account of the scattering and inverse scattering transform for
all three cases: PT symmetric, RST and RT NLS equations. In particular, we derived all sym-
metries between the eigenfunctions, scattering data as well as for the modified eigenfunctions.
The inverse scattering problem is solved using a left-right Riemann—Hilbert formulation. A
trace formula is obtained for the RST and PT symmetric cases that is later used to express
the norming constants as a function of the eigenvalues (zeros of the scattering data a and a.)
An alternative reconstruction formula for the potentials that allows one to easily ‘observe’
the integrable symmetry reduction at hand is derived. Soliton solutions for all three cases are
obtained and their properties are discussed. New Painlevé type equations are also proposed.

Finally, we outline a number of interesting research directions pertaining to integrable
nonlocal RT, RST and PT symmetric discrete NLS systems:

e In earlier papers, we have extended the IST with rapidly decaying data for the continuous
nonlocal NLS, sine/sinh-Gordon equations to the IST with nonzero constant amplitude
background [82-84]. This analysis should be carried out for the discrete nonlocal equa-
tions discussed in this paper. We remark that IST with nonzero background for the
classical integrable AL model has been studied [47, 93].

e Solutions and properties of the above mentioned continuous and discrete nonlocal
Painleve-type equations should be investigated.

e Explicit multi-soliton, multi-pole (i.e. non simple pole) solutions for the RT, RST and PT
symmetric NLS equations should be obtained.

e The theory associated with periodic/quasi-periodic solutions of the RT, RST and PT sym-
metric NLS equations should be developed.
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