

1
2
3
4 **Contrasting transition complexity between El Niño and La Niña:**
5 **Observations and CMIP5/6 models**
6
7
8

9 Shih-Wei Fang and Jin-Yi Yu^{*}
10

11 Department of Earth System Science, University of California, Irvine, CA, USA
12
13
14
15
16
17

18 Revised, June 2020

19 Submit to *Geophysical Research Letters*
20
21
22

23 Key points:

24 • El Niño transitions are dominated by, in order, episodic, cyclic, and multi-year
25 patterns, but the reversed order is found for La Niña.
26 • This asymmetry is caused by a subtropical Pacific mechanism that produces more
27 episodic (multi-year) transitions for El Niño (La Niña).
28 • CMIP5 models fail to simulate the asymmetry due to a cold bias in their tropical
29 mean states and an overly weak subtropical mechanism.

30
31 ^{*}Corresponding Author: Dr. Jin-Yi Yu, Department of Earth System Science,
32 University of California, Irvine, CA, USA. Email: jyyu@uci.edu

33

Abstract

34 The observed El Niño and La Niña exhibit different complexities in their
35 event-to-event transition patterns. The El Niño is dominated in order by episodic,
36 cyclic, and multi-year transitions, but the reversed order is found in the La Niña. A
37 subtropical Pacific onset mechanism is used to explain this difference. This
38 mechanism triggers El Niño/La Niña events via subtropical processes and is
39 responsible for producing multi-year and episodic transitions. Its nonlinear responses
40 to the tropical Pacific mean state result in more multi-year transitions for La Niña
41 than El Niño and more episodic transitions for El Niño than La Niña. The CMIP5/6
42 models realistically simulate the observed transition complexity of El Niño but fail to
43 simulate the transition complexity of La Niña. This deficiency in CMIP5 models
44 arises from a weaker than observed subtropical onset mechanism and a cold bias in
45 the tropical Pacific mean sea surface temperatures in the models.

46

47

Plain Language Summary

48 A new asymmetry is found between the warm (i.e., El Niño) and cold (i.e., La Niña)
49 phases of El Niño-Southern Oscillation (ENSO) in their event-to-event transition
50 patterns. The observed El Niño transitions is dominated in order by the episodic,
51 cyclic, and multi-year patterns, but the reversed order is found in the La Niña
52 transitions. This difference in the transitions arises from a subtropical Pacific forcing
53 mechanism that triggers ENSO events. The subtropical onset mechanism is found to
54 generate more episodic transitions for El Niño than La Niña and more multi-year
55 transitions for La Niña than El Niño. This asymmetry is due to nonlinear responses of
56 the subtropical mechanism to the tropical mean sea surface temperatures (SSTs).
57 State-of-art global climate models realistically simulate the observed transition
58 complexity of El Niño but fail to reproduce the transition complexity of La Niña. This
59 deficiency arises from a weak subtropical onset mechanism and a cold bias in the
60 tropical Pacific mean SSTs in the models.

61

62 **1. Introduction**

63 El Niño-Southern Oscillation (ENSO) is a complex phenomenon that involves
64 wide ranges of different patterns, amplitudes and temporal evolutions (Kao and Yu
65 2009; Capotondi et al. 2015; Wang et al. 2017; Yu et al. 2017; Timmermann et al.
66 2018; Yu & Fang 2018). One important part of the complexity appears in the way that
67 one ENSO event transitions to another. An El Niño (La Niña) event can be preceded
68 by a La Niña (El Niño) event to result in a cyclic transition, by another El Niño (La
69 Niña) event to become a multi-year transition, or by a neutral (non-ENSO) condition
70 to become an episodic transition (Yu & Fang 2018). ENSO onset mechanisms control
71 how anomalies in sea surface temperature (SST) are established in the equatorial
72 Pacific and play critical roles in controlling transition patterns (Yu & Fang 2018;
73 Wang et al. 2019).

74 Two primary onset mechanisms of ENSO have been identified: a tropical
75 Pacific onset (TP-onset) mechanism and a subtropical Pacific onset (SP-onset)
76 mechanism (Wang et al. 2017; Yu et al. 2017; Yu & Fang 2018). The TP-onset
77 mechanism invokes equatorial thermocline variations to initiate the sea surface
78 temperature (SST) anomalies associated with ENSO, such as those described by the
79 recharged oscillator (Wyrki 1975; Jin 1997) and delayed oscillator theories (Battisti
80 & Hirst 1989; Suarez & Schopf 1988; Zebiak & Cane 1987). This mechanism
81 typically produces ENSO SST anomalies first in the eastern equatorial Pacific, where
82 the thermocline is the shallowest and SSTs are most sensitive to thermocline
83 variations. Yu & Fang (2018) find that the TP-onset mechanism generates mostly the
84 cyclic transition and contributes to reduce ENSO transition complexity, although

85 some complexity may arise from its asymmetric responses to El Niño and La Niña
86 (Hu et al. 2017).

87 On the other hand, the SP-onset mechanism invokes subtropical Pacific
88 processes to trigger ENSO events (Yu et al. 2010; Yu & Kim 2011). The subtropical
89 processes include those described by the seasonal footprinting mechanism (Vimont et
90 al. 2003; Kao & Yu 2009; Alexander et al. 2010), trade wind charging (Anderson et al.
91 2013; Anderson & Perez 2015), wind-evaporation-SST feedback (Xie & Philander
92 1994) and Pacific meridional mode (PMM; Chiang & Vimont 2004). This mechanism
93 typically results in ENSO SST anomalies that first appear in the central equatorial
94 Pacific, where the northeastern Pacific trade winds approach the equator (Yu et al.
95 2010). Yu & Fang (2018) find that the SP-onset mechanism can result in all three
96 transition patterns and is a key source of ENSO transition complexity.

97 Recent studies (Yu & Fang 2018; Fang & Yu 2020) reveal that the SP-onset
98 mechanism can be activated by both the warm (i.e., El Niño) and cold (i.e., La Niña)
99 phases of the ENSO. However, the way that the SP-onset mechanism responds to the
100 El Niño is not symmetric to its response to the La Niña. For example, it is relatively
101 easy for a La Niña event to activate the negative phase of SP-onset mechanism and
102 result in another La Niña, but it is not easy for an El Niño event to activate the
103 positive phase of SP-onset mechanism and result in another El Niño. Therefore, it is
104 possible that transition complexity can be different between these two ENSO phases.
105 The goals of this study are to compare the transition complexity between El Niño and
106 La Niña in the observations, and to examine whether the CMIP5/6 models can
107 reproduce the observed complexities, and, if not, to identify model deficiencies and

108 their causes.

109

110 **2. Datasets and methods**

111 Monthly mean values of SST, surface wind, and sea surface heights (SSH)
112 were regredded to a common grid of 1.5°-longitude by 1°-latitude for analysis. The
113 anomalies were defined as the deviations from the seasonal cycles (calculated from
114 the analysis period 1948-2016) with their linear trends removed. The SST, surface
115 wind, and SSH data are downloaded respectively from the Hadley Center Sea Ice and
116 Sea Surface Temperature data set (HadISST) (Rayner et al. 2003), the National
117 Centers for Environmental Prediction–National Center for Atmospheric Research
118 (NCEP–NCAR) reanalysis (Kalnay et al. 1996), and the German contribution of the
119 Estimating the Circulation and Climate of the Ocean project (□ □ □2015). The same
120 procedures were applied to the last one hundred years of the pre-industrial simulations
121 produced by 34 CMIP5 models (Taylor et al. 2012; see Table S1 for the details of the
122 models) and 20 CMIP6 models (see Table S2). A TP-onset index and a SP-onset
123 index were constructed from the combined SST, surface wind, and SSH anomalies
124 using a multivariate empirical orthogonal function analysis (Xue et al. 2000; Yu &
125 Fang 2018; see Text S1 for details).

126 Using only the SST information, we identify the transition pattern (i.e., cyclic,
127 multi-year, or episodic) for every El Niño and La Niña event based on the ENSO
128 condition during the previous year (Fig. S1; see Text S2 for detailed descriptions). For
129 example, if an El Niño event is preceded by a La Niña condition during its previous
130 year, we consider that El Niño event to be a cyclic transition event. Table 1 lists the

131 transition pattern and onset calendar month of all El Niño and La Niña events during
132 the analysis period. The same classification methodology is also applied to the
133 CMIP5/6 model simulations.

134

135 **3. Results**

136 Figure 1a shows that, during the analysis period of 1948-2016, El Niño events
137 are dominated by episodic transitions (52.9%; 9 events), followed by cyclic
138 transitions (35.3%; 6 events), and the least by multi-year transitions (11.8%; 2 events).
139 However, La Niña events have a distinct dominance, where the percentages of
140 multi-year (42.1%; 8 events) and cyclic (42.1%; 8 events) transitions are the most,
141 and episodic transitions become the least (15.8%; 3 events). The El Niño has the most
142 percentage for episodic transitions and the least for multi-year transitions; whereas,
143 the La Niña has, reversely, the most percentage for multi-year transitions and the least
144 for episodic transitions. The transition complexity is thus asymmetric between the El
145 Niño and La Niña phases of the ENSO. The asymmetry comes from the very distinct
146 dominances of the episodic and multi-year transitions, while the cyclic transition
147 accounts for similar percentages in El Niño and La Niña.

148 To understand the cause of the asymmetry, we contrast the evolutions of
149 equatorial (5°S-5°N) SST anomalies composited for the three transition patterns of El
150 Niño and La Niña (Figs. 2a-f). As expected, ENSO SST anomalies in the cyclic,
151 episodic, and multi-year transitions were preceded by opposite-signed, near-neutral,
152 and same-signed anomalies in the previous year, respectively. It is important to note
153 that the onset locations (during months -3 to 0) of the ENSO SST anomalies are

154 different. The anomalies first appear in the eastern equatorial Pacific for both the
155 cyclic El Niño and La Niña and in the central equatorial Pacific for both the
156 multi-year El Niño and La Niña; whereas the SST anomalies show up in the central
157 equatorial Pacific for the episodic El Niño but in the eastern equatorial Pacific for the
158 episodic La Niña.

159 As mentioned, the TP-onset mechanism triggers ENSO events in which
160 anomalies appear first in the eastern equatorial Pacific; whereas the SP-onset
161 mechanism triggers ENSO events in which anomalies appear first in the central
162 equatorial Pacific. The locations of SST anomalies in Figs. 2a-f suggest that the onset
163 mechanisms are the same for the cyclic transition (the TP-onset mechanism) and
164 multi-year transition (the SP-onset mechanism) of El Niño and La Niña, but are
165 different for the episodic El Niño and La Niña. While the SP-onset mechanism is
166 more associated with the episodic El Niño, the TP-onset mechanism is more
167 associated with the episodic La Niña. The values of the TP-onset and SP-onset indices
168 during the onset period of each transition (see months -3 to month 0 in Figs. S1a-f)
169 confirm this. Therefore, the causes of the asymmetric transition complexity are related
170 to how these different mechanisms result in more frequent episodic El Niños than
171 episodic La Niñas and how the SP-onset mechanism results in more multi-year La
172 Niñas than El Niños.

173 Figure 2e shows that the episodic La Niña is preceded by weak warming. This
174 evolution pattern is similar to that of the cyclic La Niña, except that in the episodic La
175 Niña the warming is not strong enough to be classified as an El Niño. Their associated
176 thermocline evolutions (represented by the SSH anomalies; Figs. S4d and e) are both

177 characterized by a graduate shallowing of the thermocline depth during the preceding
178 year. This indicates that the weak SST warming in the previous year discharges the
179 equatorial Pacific to onset the La Niña. This confirms the contribution of the TP-onset
180 mechanism to the episodic La Niña. On the other hand, one-third of episodic El Niño
181 events are also more associated with the TP-onset mechanism (Fig. S5e-f), even
182 though the majority of episodic El Niños are associated with the SP-onset mechanism.
183 These results indicate that the TP-onset mechanism can generate both episodic El
184 Niños and La Niñas, but the episodic El Niño can also be additionally produced by
185 the SP-onset mechanism. The fact that the SP-onset mechanism favors to produce
186 episodic El Niños but not La Niñas can explain why episodic events account for a
187 larger percentage of El Niños (52.9%) than La Niñas (15.8%).

188 Previous studies have shown that the SP-onset mechanism is more capable of
189 producing episodic El Niño events than episodic La Niña events (e.g., Larson &
190 Kirtman 2013). One explanation for this is that an anomalous warming in the central
191 equatorial Pacific can excite a stronger atmospheric feedback and more westerly
192 winds than an anomalous cooling that induces easterly winds in the same region
193 (Chen & Majda 2016; Chen et al. 2019). Therefore, the initial warming triggered by
194 the SP-onset mechanism in the central equatorial Pacific has a larger chance to
195 develop into an episodic El Niño, but the initial equatorial cooling triggered by the
196 SP-onset mechanism has a smaller chance to develop into an episodic La Niña.

197 As for the reason why the SP-onset mechanism produces more multi-year La
198 Niñas than multi-year El Niños, Fang & Yu (2020) have offered an explanation. They
199 find the occurrence frequencies of the multi-year El Niño and La Niña are controlled

200 by the mean SSTs in the central equatorial Pacific. With a mean SST there that is
201 slightly higher than the threshold temperature (28°C) for deep convection, a La Niña
202 cooling in the region can abruptly turn off the deep convection. This generates a
203 strong heating anomaly that excites a stronger wavetrain response than a comparable
204 El Niño warming in this region (Lyu et al. 2017; Stuecker 2018; Fang & Yu 2020).
205 The stronger (weaker) wavetrain response is more (less) capable of activating the
206 SP-onset mechanism and to onset another La Niña (El Niño) in the following year.
207 Therefore, present-day mean SSTs in the equatorial Pacific favor more multi-year La
208 Niña transitions than multi-year El Niño transitions.

209 We next examine whether CMIP5 models can simulate the differences in
210 transition frequencies between El Niño and La Niña described above. Pre-industrial
211 simulations produced by thirty-four CMIP5 models were analyzed (Table S1). Their
212 multi-model means (MMM) (Fig. 1b) show that the simulated El Niño has a similar
213 transition complexity as in the observations. Episodic El Niño transitions account for
214 the highest percentage (49.93%), followed by cyclic El Niño transition (32.27%), with
215 multi-year El Niño transitions least frequent (17.80%). However, the CMIP5 models
216 cannot reproduce the observed frequency of occurrence of the La Niña transition
217 patterns. While the multi-year La Niña transition accounts for the highest observed
218 percentage, it accounts for the least of the simulated La Niña transitions (22.3%). The
219 leading transition pattern for the simulated La Niña is the cyclic transition (43.18%)
220 followed by the episodic transition (34.5%).

221 We further examine the transition complexity in each individual CMIP5
222 model and present the results using an ENSO Transition Complexity (ETC) diagram

223 (Fig. 3). In the diagram, the x- and y-axis values are, respectively, the percentages of
224 episodic and multi-year transitions in each model. The percentage of cyclic transitions,
225 which can be calculated as “100 - (x-axis value + y-axis values)”, is represented by
226 the circle size (larger dots for higher percentages). Based on all possible values on the
227 x-axis and y-axis, we can divide the ETC diagram into regions where cyclic, episodic,
228 or multi-year transition has the largest percentage and dominates the transitions.
229 Figure 3a shows that all but two CMIP5 models realistically produce more episodic El
230 Niños than multi-year El Niños (i.e., below the dashed line of $x=y$), and that all but
231 seven models have El Niño transitions that are dominated by the episodic type. The
232 observed transition complexity of El Niños is realistically reproduced in most of the
233 CMIP5 models.

234 The ETC diagram for La Niña (Fig. 3b) reveals which transitions are
235 responsible for the model deficiency. Only five CMIP5 models produce more
236 multi-year La Niñas than episodic La Niñas (i.e., above the dashed line of $x=y$), and
237 no model has La Niña transitions that are dominated by multi-year transitions. The
238 CMIP5 models have a tendency to simulate too many episodic La Niñas and too few
239 multi-year La Niñas, failing to reproduce the observed transition complexity of La
240 Niña.

241 To identify the sources of these model deficiencies, we examine the MMM
242 evolutions of the equatorial SST anomalies during the three transitions (Figs. 2g-l).
243 Overall, all three transitions for the simulated El Niño and La Niña have onset
244 locations similar to those in the observations. This similarity implies that the
245 underlying transition dynamics in the models are similar to those in the observations.

246 The relative strengths of the TP-onset and the SP-onset indices in the models also
247 confirm this assertion (Fig. S2). The SP-onset index is relatively stronger than the
248 TP-onset index in the episodic El Niño, multi-year El Niño, and multi-year La Niña.
249 In contrast, the TP-onset index is relatively stronger than the SP-onset index in the
250 episodic La Niña, cyclic El Niño, and cyclic La Niña. However, we notice that the
251 episodic El Niños in the models also show an onset signature in the eastern equatorial
252 Pacific which is absent in the observations. This difference suggests that the models
253 have an overly strong TP-onset mechanism. We find that in about half of the CMIP5
254 models (16/34) the episodic El Niño is more associated with the TP-onset mechanism
255 (Fig. S6e-f). This is consistent with Yu & Fang (2018) who find most CMIP5 models
256 have stronger than observed TP-onset mechanisms and weaker than observed
257 SP-onset mechanisms. Since the episodic El Niño can be generated by both
258 mechanisms, the frequency of occurrence of the episodic El Niño in the models may
259 not be much different from observations in spite of the weaknesses noted in the
260 simulations of the two onset mechanisms. In contrast, the episodic La Niña is
261 produced primarily by the TP-onset mechanism, leading to an overestimation of
262 episodic La Niña events in the models (34.5% vs 15.8% in the observations).

263 The recent study of Fang and Yu (2020) has suggested that the slightly above
264 28°C mean SST in the central equatorial Pacific is a reason why the SP-onset
265 mechanism produces more multi-year La Niñas than multi-year El Niños in the
266 observations. Our finding that the CMIP5 models produce a smaller asymmetry
267 between the numbers of multi-year El Niños and La Niñas (22.3% vs. 17.8%; see Fig.
268 1b) implies that the mean SSTs in the models are different from the observations. To

269 examine this possibility, we contrast in Figure 4 the mean SSTs in the tropical Pacific
270 between the five models that produce the most multi-year La Niñas and the five
271 models that produce most multi-year El Niños (see Fig. S7 for the models). The group
272 with more multi-year La Niñas (Fig. 4b) has mean SSTs that are similar to the
273 observations (Fig. 4a), slightly warmer than the 28°C in the central equatorial Pacific
274 (red boxes in Fig. 4). In contrast, the group with more multi-year El Niños (Fig. 4c)
275 shows much colder mean SSTs in the central equatorial Pacific (27.3°C). This is
276 consistent with the suggestion of Fang & Yu (2020) that a warmer (colder) mean SST
277 in the equatorial central Pacific favors more multi-year La Niña (El Niño) events.

278 Contemporary models are known to have a tendency to produce a lower than
279 observed mean SSTs in the central equatorial Pacific associated with a cold tongue
280 that extends further westward than observed (Davey et al. 2001; Misra et al. 2008;
281 Vannière et al. 2012; Li et al. 2016). We therefore examine in Figure 4d the
282 relationship between the model differences in multi-year transitions and the model
283 mean SSTs across the equatorial Pacific (5°S-5°N and 140°E-120°W; black boxes in
284 Fig. 4). A significant (at 99% level) linear relationship exists between these two
285 quantities. The colder the mean equatorial SSTs in the model, the stronger tendency to
286 have more multi-year El Niños. The MMM value of the mean SST (26.5 °C) is colder
287 than the observed value (27.3 °C), leading to the weaker tendency for more multi-year
288 La Niñas in the models. The well-known cold bias in the equatorial Pacific is a key
289 reason why the CMIP5 models cannot reproduce the observed El Niño-La Niña
290 asymmetry in multi-year transitions.

291 We repeated the analyses with 20 CMIP6 models (Figs. S3) and obtained
292 similar results (Fig. 1c). The CMIP6 models does not show any significant
293 improvement over CMIP5 models in the simulation of ENSO transition complexity.
294 Similar to the CMIP5 models, the CMIP6 models also reproduce the observed
295 transitions for El Niño but fail to reproduce the La Niña transitions (Fig. 1c and S8).
296 The three transition patterns and their associated onset mechanisms are also similar to
297 the CMIP5 models (Fig. S9). The TP-onset mechanism is overestimated in the CMIP6
298 models, while the SP-onset mechanism is underestimated (Fig. S10). A similar but
299 weaker relation exists between the cold tongue bias and the multi-year La Niña
300 tendency in the CMIP6 models (Fig. S11 and S12). This weaker tendency reveals that
301 differences exist in the simulated ENSO transition complexity between the CMIP5
302 and CMIP6 models (e.g. distinct atmospheric responses in CMIP models), even
303 though both sets of models fail to reproduce the observed transition complexity for La
304 Niña.

305

306 **4. Summary and Discussion**

307 In this study, we find that there are more episodic El Niños than La Niñas and
308 more multi-year La Niñas than El Niños in the observations. This difference is the
309 result of the nonlinear characteristics of the SP-onset mechanism. Our findings further
310 confirm the critical roles of the SP-onset mechanism in determining the ENSO
311 transition complexity and the transition asymmetry between the El Niño and La Niña.
312 We find that the CMIP5 and CMIP6 models can reproduce the transition complexity
313 for El Niño but not for La Niña. The models tend to produce too many episodic La

314 Niña events and too few multi-year La Niña events. We are able to link the former
315 deficiency to a weaker than observed SP-onset mechanism in the CMIP5/6 models
316 and the latter to a cold bias in mean state SSTs in the equatorial Pacific in the CMIP5
317 models. To achieve better simulations of ENSO transition complexity, further efforts
318 are to improve the model deficiencies in simulating the SP-onset mechanism and
319 mean SSTs in the equatorial Pacific.

320

321 ***Acknowledgments:***

322 We thank two anonymous reviewers for their valuable comments. This research is
323 supported by NSF's Climate & Large-scale Dynamics Program under Grants
324 AGS-1833075. The HadISST SST data were downloaded from their site
325 (<http://www.metoffice.gov.uk/hadobs/hadisst/data/download.html>). The wind fields of
326 NCEP/NCAR were obtained from NOAA (<https://www.esrl.noaa.gov/psd/>). The
327 GECCO2 SSH data sets were downloaded from the Integrated Climate Data Center
328 (<https://icdc.cen.uni-hamburg.de/en/gecco2.html>). We acknowledge the World
329 Climate Research Programme's Working Group on Coupled Modelling, which is
330 responsible for CMIP, and we thank the climate modeling groups (listed in Table S1
331 and S2 of this paper) for producing and making available their model output. For
332 CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and
333 Intercomparison provides coordinating support and led the development of the
334 software infrastructure in partnership with the Global Organization for Earth System
335 Science Portals.

336

337

References

338 Alexander, M. A., Vimont, D. J., Chang, P., & Scott, J. D. (2010). The impact of
339 extratropical atmospheric variability on ENSO: Testing the seasonal
340 footprinting mechanism using coupled model experiments. *Journal of*
341 *Climate*, 23(11), 2885-2901.

342 Anderson, B. T., Perez, R.C. & Karspeck, A.. (2013). Triggering of El Niño onset
343 through trade wind-induced charging of the equatorial Pacific. *Geophysical*
344 *Research Letters*, 40.6, 1212-1216.

345 Anderson, B. T., & Perez, R. C. (2015). ENSO and non-ENSO induced charging and
346 discharging of the equatorial Pacific. *Climate Dynamics*, 45(9-10), 2309-2327.

347 Battisti, D. S. & Anthony C. H. (1989) Interannual variability in a tropical
348 atmosphere–ocean model: Influence of the basic state, ocean geometry and
349 nonlinearity. *Journal of the atmospheric sciences*, 46.12, 1687-1712.

350 Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J. Y., Braconnot,
351 P., ... & Jin, F. F. (2015). Understanding ENSO diversity. *Bulletin of the*
352 *American Meteorological Society*, 96(6), 921-938.

353 Chen, N., & Majda, A. J. (2016). Simple dynamical models capturing the key features
354 of the Central Pacific El Niño. *Proceedings of the National Academy of*
355 *Sciences*, 113(42), 11732-11737.

356 Chen, N., Thual, S., & Stuecker, M. F. (2019). El Niño and the Southern Oscillation:
357 Theory. Book Chapter in *Reference Module in Earth Systems and*
358 *Environmental Sciences*.

359 Chiang, J. C., & Vimont, D. J. (2004). Analogous Pacific and Atlantic meridional
360 modes of tropical atmosphere–ocean variability. *Journal of Climate*, 17(21),
361 4143-4158.

362 Davey, M. et al. (2002) STOIC: a study of coupled model climatology and variability
363 in tropical ocean regions. *Climate Dynamics*, 18.5, 403-420.

364 Fang, S.-W., & Yu, J.-Y. (2020). A Control of ENSO Transition Complexity by
365 Tropical Pacific Mean SSTs through Tropical-Subtropical
366 Interaction. *Geophysical Research Letters*, 47,
367 e2020GL087933. <https://doi.org/10.1029/2020GL087933>

368 Jin, F. F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual
369 model. *Journal of the Atmospheric Sciences*, 54(7), 811-829.

370 Hu, Z. Z., Kumar, A., Huang, B., Zhu, J., Zhang, R. H., & Jin, F. F. (2017).
371 Asymmetric evolution of El Niño and La Niña: the recharge/discharge
372 processes and role of the off-equatorial sea surface height anomaly. *Climate
373 Dynamics*, 49(7-8), 2737-2748.

374 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., ... & Zhu,
375 Y. (1996). The NCEP/NCAR 40-year reanalysis project. *Bulletin of the
376 American meteorological Society*, 77(3), 437-471.

377 Kao, H. Y., & Yu, J. Y. (2009). Contrasting eastern-Pacific and central-Pacific types
378 of ENSO. *Journal of Climate*, 22(3), 615-632.

379 Köhl, A. (2015). Evaluation of the GECCO2 ocean synthesis: transports of volume,
380 heat and freshwater in the Atlantic. *Quarterly Journal of the Royal
381 Meteorological Society*, 141(686), 166-181.

382 Larson, S., & Kirtman, B. (2013). The Pacific Meridional Mode as a trigger for
383 ENSO in a high-resolution coupled model. *Geophysical Research
384 Letters*, 40(12), 3189-3194.

385 Li, G., Xie, S. P., Du, Y., & Luo, Y. (2016). Effects of excessive equatorial cold
386 tongue bias on the projections of tropical Pacific climate change. Part I: The
387 warming pattern in CMIP5 multi-model ensemble. *Climate dynamics*, 47(12),
388 3817-3831.

389 Lyu, K., Yu, J. Y., & Paek, H. (2017). The influences of the Atlantic multidecadal
390 oscillation on the mean strength of the North Pacific subtropical high during
391 boreal winter. *Journal of Climate*, 30(1), 411-426.

392 Misra, V., Marx, L., Brunke, M., & Zeng, X. (2008). The equatorial Pacific cold
393 tongue bias in a coupled climate model. *Journal of climate*, 21(22), 5852-5869.

394 Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell,
395 D. P., ... & Kaplan, A. (2003). Global analyses of sea surface temperature, sea
396 ice, and night marine air temperature since the late nineteenth century. *Journal
397 of Geophysical Research: Atmospheres*, 108(D14).

398 Stuecker, M. F. (2018). Revisiting the Pacific meridional mode. *Scientific
399 reports*, 8(1), 1-9.

400 Suarez, M. J., & Schopf, P. S. (1988). A delayed action oscillator for ENSO. *Journal
401 of the atmospheric Sciences*, 45(21), 3283-3287.

402 Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the
403 experiment design. *Bulletin of the American Meteorological Society*, 93(4),
404 485-498.

405 Timmermann, A., An, S. I., Kug, J. S., Jin, F. F., Cai, W., Capotondi, A., ... & Stein,
406 K. (2018). El Niño–southern oscillation complexity. *Nature*, 559(7715),
407 535-545.

408 Vannière, B., Guilyardi, E., Madec, G., Doblas-Reyes, F. J., & Woolnough, S. (2013).
409 Using seasonal hindcasts to understand the origin of the equatorial cold tongue
410 bias in CGCMs and its impact on ENSO. *Climate dynamics*, 40(3-4), 963-981.

411 Vimont, D. J., Wallace, J. M., & Battisti, D. S. (2003). The seasonal footprinting
412 mechanism in the Pacific: Implications for ENSO. *Journal of Climate*, 16(16),
413 2668-2675.

414 Wang, C., Deser, C., Yu, J. Y., DiNezio, P., & Clement, A. (2017). El Niño and
415 Southern Oscillation (ENSO): A Review. In *Coral Reefs of the Eastern Tropical
416 Pacific* (pp. 85-106). Springer Netherlands.

417 Wang, B. et al. (2019). Historical change of El Niño properties sheds light on future
418 changes of extreme El Niño.. *Proceedings of the National Academy of
419 Sciences*, 116.45, 22512-22517.

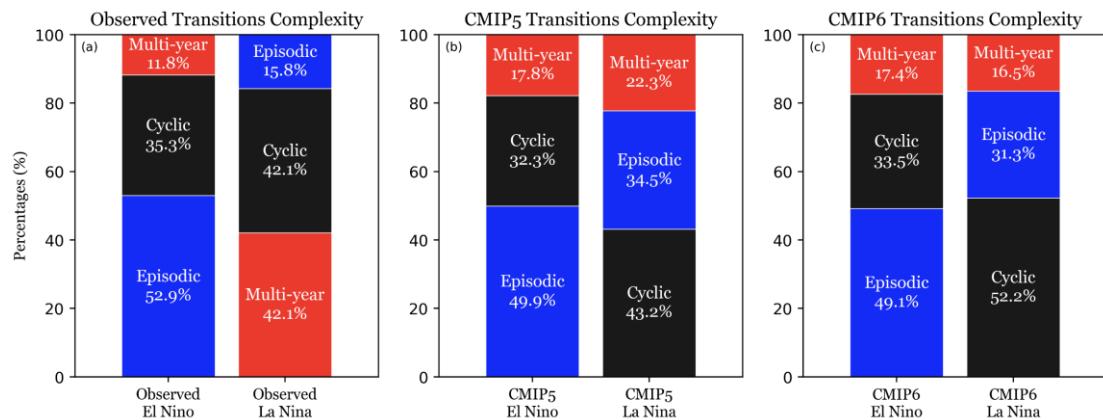
420 Wyrtki, K. (1975). El Niño—the dynamic response of the equatorial Pacific Oceanto
421 atmospheric forcing. *Journal of Physical Oceanography*, 5(4), 572-584.

422 Xie, S. P., & Philander, S. G. H. (1994). A coupled ocean-atmosphere model of
423 relevance to the ITCZ in the eastern Pacific. *Tellus A*, 46(4), 340-350.

424 Xue, Y., Leetmaa, A., & Ji, M. (2000). ENSO prediction with Markov models: The
425 impact of sea level. *Journal of Climate*, 13(4), 849-871.

426 Yu, J-Y, & Fang S-W. (2018). The Distinct Contributions of the Seasonal
427 Footprinting and Charged-Discharged Mechanisms to ENSO
428 Complexity. *Geophysical Research Letters*, 45.13, 6611-6618.

429 Yu, J. Y., Kao, H. Y., & Lee, T. (2010). Subtropics-related interannual sea surface
430 temperature variability in the central equatorial Pacific. *Journal of*
431 *Climate*, 23(11), 2869-2884.

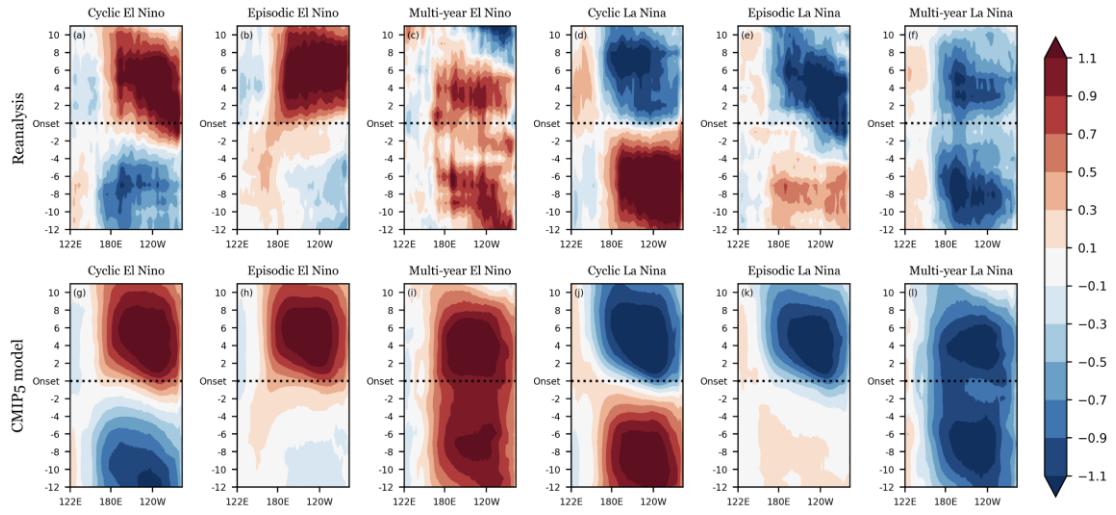

432 Yu, J.-Y., X. Wang, S. Yang, H. Paek, and M. Chen (2017). Changing El
433 Niño-Southern Oscillation and Associated Climate Extremes, Book Chapter
434 in *Climate Extremes: Patterns and Mechanisms*, Wang, S.-Y., Jin-Ho Yoon,
435 Chris Funk, and R. R. Gillies (Ed.), AGU Geophysical Monograph Series, Vol.
436 226, Pages 3-38.

437 Zebiak, S. E., & Cane, M. A. (1987). A model El Niño–southern oscillation. *Monthly*
438 *Weather Review*, 115(10), 2262-2278.

439

440

441

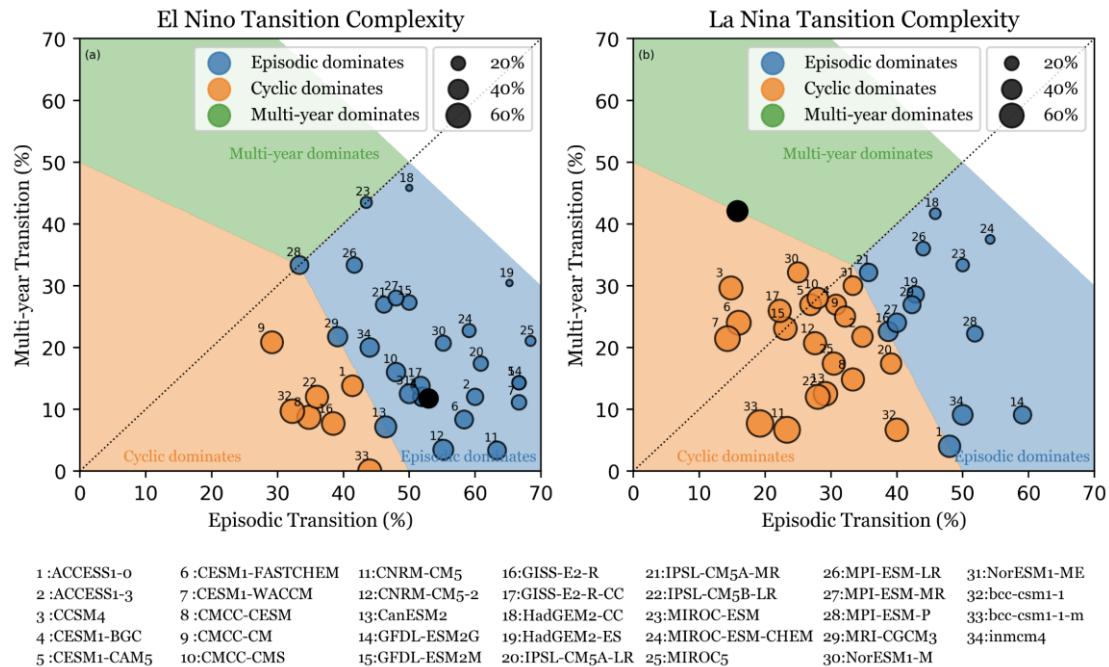


442

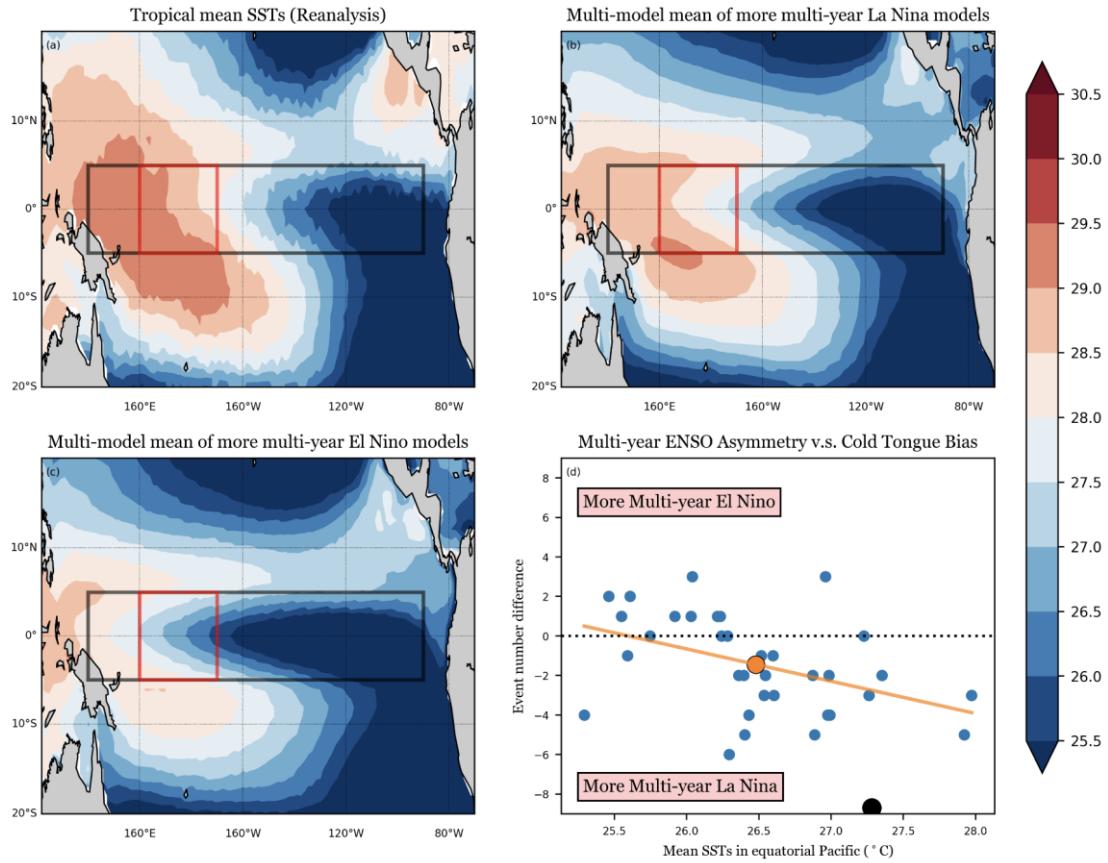
443 **Figure 1.** The transition complexity of El Niño (left bars) and La Niña (right bars) in
444 (a) the observations, (b) the multi-model mean from thirty-four CMIP5 models, and (c)
445 the multi-model mean from twenty CMIP6 models. The percentages of the transitions
446 are ordered from highest (bottom) to lowest (top).

447

448



449


450 **Figure 2.** Evolutions of equatorial (5°S-5°N) Pacific SST anomalies composed for
 451 the cyclic, episodic, and multi-year transitions of (a)-(c) El Niño and (d)-(f) La Niña
 452 in the reanalysis and (g)-(i) for the simulated El Niños and (j)-(l) La Niñas in the
 453 multi-model mean of CMIP5 simulations. The events are composited based on their
 454 onset time. Shadings are SST anomalies from 12 months before the ENSO onset
 455 month to 12 months after.

456

457

460 **Figure 3.** ENSO transition complexity (ETC) diagrams for (a) the simulated El Niño
 461 and (b) the La Niña in CMIP5 models in CMIP5 models. The x-axis and y-axis are,
 462 respectively, the percentage of episodic transitions and multi-year transitions in each
 463 model. The size of the circles is proportional to the percentage of cyclic transitions.
 464 The color of the circle indicates the highest percentage of transitions: orange for
 465 cyclic, blue for episodic, and green for multi-year transition. The same color scheme
 466 is used in the background shadings to indicate the regions of the diagram where each
 467 of the three transitions is most frequent. The black dot is the observations and the
 468 CMIP5 models are labeled with their corresponding numbers.

472 **Figure 4.** (a) Mean SSTs in the tropical Pacific calculated from (a) the observations
 473 during 1948-2016, (b) the five CMIP5 models with the most multi-year El Niños in
 474 Fig. S7, and (c) the five CMIP5 models with the most multi-year La Niñas. The red
 475 box denotes the equatorial central Pacific region (5°S - 5°N and 160°E - 170°W). Panel
 476 (d) displays the relationship between the event number difference and the mean SST
 477 across the equatorial Pacific (5°S - 5°N and 140°E - 120°W ; the black box). The black
 478 dot is the reanalysis value (scaled to event numbers in 100 years as in model
 479 simulation), and the orange dot is the multi-model mean value with the orange line
 480 representing the linear regression (passing 99% significance test).

El Niño	Transition	Onset (Mon)	La Niña	Transition	Onset (Mon)
1951	Cyclic	6	1949	Episodic	9
1957	Cyclic	4	1954	Episodic	5
1963	Episodic	6	1955	Multi-year	2
1965	Cyclic	5	1956	Multi-year	6
1968	Episodic	10	1964	Cyclic	4
1969	Multi-year	8	1970	Cyclic	6
1972	Cyclic	5	1973	Cyclic	5
1976	Cyclic	8	1975	Multi-year	3
1977	Multi-year	8	1983	Cyclic	9
1982	Episodic	4	1984	Multi-year	9
1986	Episodic	8	1988	Cyclic	4
1991	Episodic	9	1995	Cyclic	8
1994	Episodic	8	1998	Cyclic	6
1997	Episodic	4	1999	Multi-year	8
2002	Episodic	6	2000	Multi-year	9
2009	Cyclic	7	2007	Episodic	7
2015	Episodic	3	2008	Multi-year	10
			2010	Cyclic	5
			2011	Multi-year	7

483 **Table 1.** Classification of ENSO transitions and their calendar onset months during

484 the analysis period (1948-2016).

485