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Strassen’s Algorithm Reloaded on GPUs
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Conventional Graphics Processing Unit (GPU) implementations of Strassen’s algorithm (Strassen) rely on

the existing high-performance matrix multiplication (gemm), trading space for time. As a result, such ap-

proaches can only achieve practical speedup for relatively large, “squarish” matrices due to the extra memory

overhead, and their usages are limited due to the considerable workspace. We present novel Strassen prim-

itives for GPUs that can be composed to generate a family of Strassen algorithms. Our algorithms utilize

both the memory and thread hierarchies on GPUs, reusing shared memory and register files inherited from

gemm, fusing additional operations, and avoiding extra workspace. We further exploit intra- and inter-kernel

parallelism by batching, streaming, and employing atomic operations. We develop a performance model for

NVIDIA Volta GPUs to select the appropriate blocking parameters and predict the performance for gemm

and Strassen. Overall, our 1-level Strassen can achieve up to 1.11× speedup with a crossover point as

small as 1,536 compared to cublasSgemm on a NVIDIA Tesla V100 GPU. With additional workspace, our

2-level Strassen can achieve 1.19× speedup with a crossover point at 7,680.
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1 INTRODUCTION

Given matrices A ∈ Rm×k , B ∈ Rk×n , and C ∈ Rm×n , Strassen’s algorithm (Strassen) [Strassen
1969] computes matrix multiplication (general matrix-matrix multiplication, or gemm defined in
Basic Linear Algebra Subprograms (BLAS) [Dongarra et al. 1990] and cuBLAS [NVIDIA 2018c])

C = αA × B + βC (1)
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Fig. 1. Break-even point of our Strassen implementation and the state-of-the-art [Lai et al. 2013]: the x-

axis denotes the problem size (m = n = k), and the y-axis denotes the floating point operation efficiency in

TFLOPS. For a square matrix-multiplication, this work can achieve speedup over cublasSgemm for problem

size as small as 1,536 while the state-of-the-art requires at least 7,168 to break even (10k is required to obtain

a stable speedup).

with less than O (n3) work. The algorithm partitions the matrices into 2 × 2 submatrices such that[
C0 C1

C2 C3

]
= α

[
A0 A1

A2 A3

] [
B0 B1

B2 B3

]
+ β

[
C0 C1

C2 C3

]
, (2)

and rearrange the arithmetic operations to reduce the number of submatrix multiplications from
8 to 7 (see Section 3 for details). By recursively applying this scheme, it can be shown [Strassen
1969] that Equation (1) only requires O (n2.81) work.
Although it is easy to observe the saving from the complexity analysis, the achievable practi-

cal speedup is typically disappointing due to the extra memory overhead and space requirement
[Benson and Ballard 2015; D’Alberto et al. 2011; D’Alberto and Nicolau 2007, 2009] (see Figure 1).
Two recent papers [Huang et al. 2017, 2016] address these issues and provide a good review on the
related work on modern CPU architectures. We extend the idea in Huang et al. [2016] and present
a new Strassen algorithm on GPUs.
Challenges: A practical Strassen implementation on GPUs must overcome several challenges.1

First, the GPU architecture and programming model are different from their counterparts for a
CPU. In order to achieve high performance, a practical implementation of Strassen needs to lever-
age the memory and thread hierarchies on GPUs. Second, a GPU has a limited physical memory
capacity. The conventional Strassen implementations require some extra temporary memory for
storing intermediate submatrices, which limit the maximum problem size that can be computed
compared to gemm because of the GPU memory capacity. Third, a GPU is a highly parallel, multi-
threaded, many-core processor. Strassen needs to be parallelized at multiple granularities to fully
utilize the computational horsepower of GPUs. There is thus a tension between reducing the

1The previous article [Huang et al. 2016] only focused on the CPU implementations, and it didn’t address the challenges

on GPUs.
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memory and exploiting more parallelism with the conventional implementation of Strassen. Fi-
nally, the ratio between the theoretical peak performance and memory bandwidth of a GPU is
even higher (less favorable) than that of a CPU. Strassen has a lower ratio of arithmetic opera-
tions to memory operations compared to gemm, which means Strassen only becomes advanta-
geous when the problem sizes are sufficiently large. As a result, the practical implementation of
Strassen needs to reduce the extra data movement to save the bandwidth and outperform gemm
for small or moderate problem sizes.
Contributions: Inspired by Huang et al. [2016] and the recent development of CUTLASS2 [Kerr
et al. 2017] (reviewed in Section 2.3), we introduce new algorithms for the practical implementation
of Strassen on GPUs. To be specific,

—We develop new GPU Strassen kernels (Section 3.1), which fuse additional memory and
arithmetic operations with the gemm pipeline. As a result, no additional workspace (GPU
global memory and shared memory) is required.

—We present and discuss different optimization schemes and generate different kernels that
effectively reduce the number of required registers (Section 3.2).

—Our algorithms exploit both intra- and inter-kernel task-based parallelism. This allows us
to maintain the parallelism without increasing the kernel launching and context switching
overhead (Section 3.3).

—We derive a performance model on NVIDIA Volta GPUs, which can help us to choose the
right blocking parameters and predict the performance for gemm and Strassen (Section 5).

—We conduct experiments on different matrix shapes (Section 4). For square cases, our 1-level
Strassen has a break-even point (faster than cublasSgemm) as small as 1,536, while the
state-of-the-art requires at least 7,168. Our hybrid 2-level Strassen has a break-even point
as small as 7,680, while the state-of-the-art requires at least 13,312. Our implementations
are also more efficient for non-square cases.

Limitation: While the proposed approach does not require extra workspace (in the global mem-
ory), it still trades memory operations (mops) for floating point operations (flops). As a result, it
may not always be the optimal Strassen algorithm. For example, while applying Strassen algo-
rithms in multiple levels, extra space is preferred to offload the increasing register requirement
and the global memory latency. This tradeoff is discussed in Section 5. Furthermore, Strassen is
known to experience degradation in numerical stability, especially when more than two levels of
recursions are incorporated [Badin et al. 2011, 2013; Ballard et al. 2016; Demmel et al. 2007; Higham
2002]. For this reason, only a few levels of recursions are leveraged.
Related work: The literature on the theory and practice of Strassen is vast. For a review,
see Huang [2018]. To our knowledge, there are no Strassen implementations on GPUs that can
be free from extra workspace and have a break-even point as small as 1,536. The only algorithm and
software that comes close is Lai et al. [2013], which adopted the Winograd’s variant of Strassen3

and still requires additional O (mk + kn +mn) space. In Section 4, we also provide empirical results
with this algorithm as a reference. The idea of operation-fusing has also been generalized to other
domains to effectively reduce slow memory operations (improve temporal locality of the cache
hierarchy) and extra space requirement in tensor contraction and other N -body operations. For

2This work relies on CUTLASS v0.1.0, which has non-coalesced accesses to matrix C when not using tensor cores. This has

been fixed in later versions. Using a newer version of CUTLASS may help to achieve a slightly better performance.
3With the conventional GPU implementation, the Winograd’s variant is generally considered faster than the classical

Strassen with the extra memory and at an increased cost to accuracy. Note that the extra memory is usually associated

with storing the partial results for matrix additions so as to avoid re-computations.
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Fig. 2. The memory and thread hierarchies in the CUDA programming model.

a review, see Huang et al. [2018], Matthews [2018], Springer and Bientinesi [2018], and Yu et al.
[2015]. High-performance gemm implementations on GPUs are discussed in Gray [2017], Lai and
Seznec [2013], Nath et al. [2010], Tan et al. [2011], Volkov and Demmel [2008], and Zhang et al.
[2017].

2 BACKGROUND

In this section, we first briefly review the GPU programming model (Compute Unified Device Ar-
chitecture) and the GPU architecture (Volta) we target in this article. We then review the CUTLASS
framework for implementing gemm on GPUs.

2.1 GPU Programming Model

The CUDA programming model [NVIDIA 2018a] assumes that the CUDA program (kernel) is exe-
cuted on physically independent devices (GPUs) as coprocessors to the host (CPU). Figure 2 shows
the memory and thread hierarchies on the GPU device.
Memory hierarchy: Thememory hierarchy on the GPU device includes three levels: global mem-
ory, shared memory (co-located with L1 and texture caches [NVIDIA 2018d]), and register files.
The latency decreases while the bandwidth increases through the memory hierarchy from global
memory to registers.

ACM Transactions on Mathematical Software, Vol. 46, No. 1, Article 1. Publication date: March 2020.
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Fig. 3. CUTLASS provides six preset strategies, which correspond to different block sizes at each level in

Figure 4 (left). These strategies are named according to different recommended matrix shapes and sizes.

Note that the number of threads in each thread block, tx × ty =mS /mR × nS /nR .

Thread hierarchy: A thread is the smallest execution unit in a CUDA program. A thread block is
a group of threads that run on the same core and shares a partition of resources such as shared
memory. Threads in the same thread block communicate through barrier synchronization. Mul-
tiple blocks are combined to form a grid, which corresponds to an active CUDA kernel on the
device. At runtime, a thread block is divided into a number of warps for execution on the cores. A
warp is a set of 32 threads to execute the same instructions while operating on different data in
lockstep.

2.2 NVIDIA Volta GPUs

We review the hardware specification of the NVIDIA Tesla V100 [Durant et al. 2017], which fea-
tures a GV100 (Volta) microarchitecture. Tesla V100 is comprised of 80 streaming multiprocessors
(SMs). Each SM is partitioned into four processing blocks. Each processing block consists of 2 Ten-
sor Cores, 8 FP64 (double precision) cores, 16 FP32 (single precision) cores, and 16 INT32 cores.
The tested Tesla V100 SXM2 GPU accelerator has the base clock frequency 1.3 GHz and boosted
clock frequency 1.53 GHz. As a result, the theoretical peak performance can reach 15.67 TFLOPS4

with single precision and 7.83 TFLOPS5 with double precision, while Tensor Cores can deliver 125
TFLOPS6 for FP16/FP32 mixed precision. The tested Tesla V100 GPU is built using 16 GB HBM2
memory with 900 GB/s of bandwidth.

2.3 Matrix Multiplication on GPUs

We review the high-performance implementation of gemm on NVIDIA GPUs, based on NVIDIA’s
CUDA Templates for Linear Algebra Subroutines (CUTLASS) [CUTLASS 2018; Kerr et al. 2017], a
collection of CUDA C++ templates and abstractions to instantiate high-performance gemm oper-
ations. CUTLASS incorporates strategies for hierarchical partitioning and data movement similar
to cuBLAS [NVIDIA 2018c], the state-of-the-art implementation of the BLAS implementation on
NVIDIA GPUs. As a result, CUTLASS can reach more than 90% of cuBLAS performance on V100.
Without loss of generality, we will focus on single precision arithmetic and α = β = 1 in Equa-
tion (1), henceforth.

2.3.1 Blocking Strategies. Figure 4 (left) illustrates the gemm implementation in CUTLASS. It
organizes the computation by partitioning the operands into blocks in the different levels of the
device, thread block, warp, and thread. In the following, we usemS , nS , and kS to denote the block

41 FMA/cycle × 2 flop/FMA × 1.53G (boost clock frequency) × 16 (# FP32 core) × 4 (# processing block/SM) × 80 (# SM).
51 FMA/cycle × 2 flop/FMA × 1.53G (boost clock frequency) × 8 (# FP64 core) × 4 (# processing block/SM) × 80 (# SM).
664 FMA/cycle × 2 flop/FMA × 1.53G (boost clock frequency) × 2 (# Tensor Core) × 4 (# processing block/SM) × 80 (# SM).
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Fig. 4. A side-by-side comparison of the gemm implementation in CUTLASS and our modifications for imple-

menting the representive computationM = (X + Y ) (V +W );D+= M ;E+= M . Left: Illustration of the GEMM

implementation in CUTLASS [Kerr et al. 2017]. CUTLASS partitions the operand matrices into blocks in the

different levels of the device, thread block, warp, and thread. Here, we show block sizes typical for the large

SGEMM:mS = 128, nS = 128, kS = 8;mW = 4 ×mR = 32, nW = 8 × nR = 64; nR = 8, nR = 8. Right: Special-

ized kernel that implements the representative computation M = (X + Y ) (V +W );D+= M ;E+= M of each

row of computations in Equation (3). X , Y are submatrices of A;V ,W are submatrices of B; D, E are subma-

trices of C ;M is the intermediate matrix product.

sizes of a thread block. These blocks are chosen to better utilize and reuse the shared memory,
hence, with subscript “S”.mW and nW denote the block sizes for a warp in a thread block.mR and
nR denote the block sizes for a single thread.mR and nR are chosen to better utilize and reuse the
register files, hence, with subscript “R”.
Device Level: The three operand matrices, A, B, andC , are partitioned intomS × kS , kS × nS , and
mS × nS blocks. Each thread block computes anmS × nS block ofC by accumulating the results of
matrix products of anmS × kS block of A and a kS × nS block of B. Therefore, themS × nS block
of C (the output of the thread block) is referred to the C Accumulator. Since it is updated many
times, it needs to be reused in the fastest memory in the SM: the register files. The global memory
corresponding to the C Accumulator only needs to be updated once after the C Accumulator has
the final summation of all matrix products along with the k dimension. Furthermore, to improve
data locality, blocks of A and B are “packed” (copied and reordered) from global memory into
shared memory (the A Tile and B Tile) for data reuse, accessible by all threads in the same thread
block.

ACM Transactions on Mathematical Software, Vol. 46, No. 1, Article 1. Publication date: March 2020.
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Thread Block Level:After theA Tile and B Tile are stored in sharedmemory, each warp computes
a sequence of accumulated outer products by iteratively loading an A Fragment (a subcolumn of
the A Tile with height mW ) and a B Fragment (a subrow of the B Tile with width nW ) from the
corresponding shared memory into register files along the k dimension and performing a rank-1
update. The C Accumulator is spatially partitioned across all the warps within the same thread
block, with each warp storing a non-overlapping 2-D block in the register files.
Warp Level: Each thread in a warp computes anmR × nR outer product with subvectors of the
A Fragment and subvectors of the B Fragment in a “strip-mined” (cyclic) pattern. Each piece has
a size of 4, because the largest granularity of vector load is 128 bits (4 single precision floating
point numbers), and this helps to maximize the effective bandwidth. The total length of all pieces
for an individual thread inm dimension ismR , while the total length in n dimension is nR . Since
each warp has 32 threads, CUTLASS organizes the threads within the same warp in a 4 × 8 or 8 × 4
fashion such thatmW /mR = 4, nW /nR = 8, ormW /mR = 8, nW /nR = 4.
Thread Level: executing on the CUDA cores. Each thread issues a sequence of independent FMA
instructions to the CUDA cores and accumulates anmR × nR outer product.

2.3.2 Choices of Block Sizes. CUTLASS customizes six different strategies of block sizes at each
level {mS , nS , kS ,mR , nR ,mW , nW } Figure 4 (left) for different matrix shapes and sizes, as shown in
Figure 3. Details about how to choose these blocking parameters for large problem sizes are given
in Section 5.2. Note that each thread block hasmS/mR × nS/nR threads.

2.3.3 Software Prefetching. As shown in Algorithm 1 (left), to keep the SM busy, CUTLASS uses
global and local software prefetching to hide the data movement latency. The computations on the
CUDA cores are overlapped with the data preloading from the global memory (lines 12 and 14 in
Algorithm 1 (left)) and the shared memory (line 17 and 18). A synchronization (line 22) is required
to ensure that all shared memory writes to tileA and tileB between lines 20 and 21 have completed
before reading their values between lines 12 and 14 in the next iteration.7

3 METHOD

If the three operands A, B, andC in Equation (1) are evenly partitioned into quadrants as in Equa-
tion (2), then

©0 M0 = (A0 +A3) (B0 + B3); C0+= M0;C3+= M0;
©1 M1 = (A2 +A3)B0; C2+= M1;C3−= M1;
©2 M2 = A0 (B1 − B3); C1+= M2;C3+= M2;
©3 M3 = A3 (B2 − B0); C0+= M3;C2+= M3;
©4 M4 = (A0 +A1)B3; C1+= M4;C0−= M4;
©5 M5 = (A2 −A0) (B0 + B1); C3+= M5;
©6 M6 = (A1 −A3) (B2 + B3); C0+= M6;

(3)

compute C += AB, with seven instead of eight (sub)matrix multiplications, decreasing the total
number of arithmetic operations by a factor of 7/8 (ignoring total number of extra additions, a
lower order term). If all matrices are square and of size N × N ; theoretically, this single step of
Strassen [Strassen 1969] can be applied recursively, resulting in the classical Strassen with a
cost of O (N 2.81).

7CUTLASS also provides the option of double buffering on the thread block level to enable concurrent reading for the current
iteration andwriting for the next iteration. It eliminates the synchronization but also doubles the cost of the sharedmemory

and the number of registers to hold the global memory fetches. On the Tesla V100 GPUs, the option of double buffering on

the thread block level is disabled.
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Following Huang et al. [2016], the operations above in Equation (3) are all instances of the
following general Strassen primitive8

M = (X + δY ) (V + ϵW );D+= γ0M ;E+= γ1M ; (4)

with γ0,γ1,δ , ϵ ∈ {−1, 0, 1}. Here, X and Y are submatrices of A, V andW are submatrices of B,
and D and E are submatrices ofC . This primitive can be further extended and derived to represent
multiple levels of Strassen [Huang et al. 2017, 2016]. For example, the computations for two-level
Strassen (Figure 5) can be composed of 49 generalized Strassen primitives

M = (X0 + δ1X1 + δ2X2 + δ3X3) × (V0 + ϵ1V1 + ϵ2V2 + ϵ3V3);
D0+= γ0M ;D1+= γ1M ;D2+= γ2M ;D3+= γ3M

(5)

with γi ,δi , ϵi ∈ {−1, 0, 1}. Here, Xi , Vi , and Di are submatrices of A, B, and C , respectively.
We present a new GPU kernel that computes Equation (4) in Section 3.1. We discuss how to ef-

fectively reduce the register requirement and generate different kernel variants in Section 3.2. Task
parallelism is discussed in Section 3.3. Two-level Strassen algorithms and fringe case handling
are discussed in Sections 3.4 and 3.5.

3.1 Strassen’s Algorithm on NVIDIA GPUs

We extend the gemm implementation for GPUs illustrated in Figure 4 (left) to accommodate the
Strassen primitive

M = PQ = (X + Y ) (V +W );D+= M ;E+= M . (6)

The conventional approach performs pre-processing on the inputs P = (X + Y ), Q = (V +W ),
and post-processing on its outputs D+= M and E+= M . In other words, the conventional approach
must introduce extra workspace (in the global memory) and memory operations for intermediate

matrices P , Q , and M to cast Equation (6) in terms of calls to gemm.
Instead of casting the primitive in terms of gemm, we develop a specialized kernel utilizing the

memory and thread hierarchies on GPUs and show how these pre-processing and post-processing
phases can be efficiently incorporated without introducing extra workspace. We illustrate how
these extra memory operations (and a few floating point operations) are fused in Figure 4 (right)
without affecting the implementations in the warp and thread level:
Packing theA andB Tiles:The summation ofmatricesX + Y can be incorporated into the packed
A Tile during the packing process (from the Device Level to the Thread Block Level in Figure 4
(right)), avoiding the extra workspace requirement and reducing the additional memorymovement
since the A Tile is reused for the temporary matrix sum, which is held in the shared memory.
Similarly, the summation of matricesV +W can be also incorporated into the packed B Tile during
the packing process.
Writing back the C Accumulator: After the C Accumulator has accumulated its result of
(X + Y ) (V +W ) along the k dimension, it can update the appropriate parts of D and E in the
global memory once (from the Thread Block Level to the Device Level). This optimization
avoids the required workspace for intermediate matrices Mi and reduces the additional memory
movement since the C Accumulator is kept in the register files: it is fetched from the global mem-
ory into the register once in the beginning, and it is written to D and E only after its computation
completes.

8For Winograd’s variant of Strassen, there are more instruction dependencies and temporary buffers in that variant,

which makes it hard to decompose into the combinations of general operations adapted to GEMM and to use the packing

A/B Tiles in GEMM.
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Fig. 5. Computations for two-level Strassen (adapted from Huang et al. [2016]). The 4 × 4 submatrices of

A, B, and C are indexed with row-major ordering.
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Fig. 6. Operand and InstanceCounts of gemm, 1-level, and 2-level Strassen Primitives. The starred (*) column

denotes the base case gemm, which only has one operand permatrix. 1-level Strassen primitives have at most

two operands per matrix; overall, there are seven instances with four different variants. 2-level Strassen

primitives have at most four operands per matrix; overall, there are 49 instances with 10 different variants.

3.2 Register Allocation

We give the implementation of the Strassen primitive in Algorithm 1 (right) and put it side-by-
side with CUTLASS’s gemm algorithm in Algorithm 1 (left). Recall that the primitive incorporates
pre-processing and post-processing steps to create a new kernel that avoids additional workspace.
As a result, we must (for the current NVIDIA GPU architecture) introduce extra registers at line 3;
extra mops at lines 13, 15, and 24; and extra flops at lines 20 and 21.
The algorithm presented in Algorithm 1 (right) is the general form of the seven instances in

Equation (3). Depending on the value of scalars δ , ϵ and γ1 (represented as statement predicates
in Algorithm 1), we can generate specialized kernels at compile time (using C++ non-type template
parameters) that optimize out these extra registers, mops and flops. Overall, there are 4 different
variants (Var#0–Var#3) for the one-level Strassen and 10 different variants for the two-level
Strassen. These variants have different operand countsW{A,B,C } , as shown in Figure 6.
Var#0 and Var#1: Instance ©0 in Equation (3), whose predicates are all true (non-zero), forms
Var#0. That is, the instance in Var#0, with the operand countsWA =WB =WC = 2, contains addi-
tional register allocation at line 3, additional mops at lines 13, 15, and 24, as well as additional flops
at lines 20 and 21. Var#1 (with scalar γ1 = 0) contains Instances ©5 and ©6 . As a result, instances in
Var#1, with the operand countsWA =WB = 2 andWC = 1, do not perform extra post-processing on
the output, hence, with fewer mops. Both variants allocate registers next1A[mR] and next1B[nR],
consuming the most registers out of the four variants.
Var#2 and Var#3: Instances ©2 and ©3 , whose predicate δ is false, form Var#2, with the operand
countsWA = 1 andWB =WC = 2. Because scalarδ = 0, only registersnext0A[mR] will be allocated.
Registers next1A[mR] will be optimized out (through dead code elimination), since they will never
be used. Similarly, Instances ©1 and ©4 form Var#3, which has the operand counts WB = 1 and
WA =WC = 2 and only allocates registers next1B[nR]. These two variants have smaller register
pressure, typically performing slightly better (with higher FLOPS) than Var#0 and Var#1 when the
problem sizes are large. See Section 5 for a quantitative analysis on how these variants affect the
performance.

3.3 Task Parallelism

A straightforward implementation of Strassen based on our specialized kernel (Section 3.1) invokes
a sequence of GPU kernels sequentially (7 kernels for 1-level, 49 kernels for 2-level). This approach
achieves intra-kernel parallelism across the thread blocks, warps, and threads, which is utilized in
the gemm implementation on a GPU. However, it is further possible to improve concurrency by
exploiting more inter-kernel parallelism.
A careful look at Equation (3) reveals that (i) the ordering of these operations can be arbitrary;

(ii) the dependencies between the kernels for these operations only occur for the concurrent writes

ACM Transactions on Mathematical Software, Vol. 46, No. 1, Article 1. Publication date: March 2020.



1:12 J. Huang et al.

Fig. 7. Reordered operations based on Equation (3) with multi-kernel streaming.

to different submatrices of C . That is, as long as race conditions are resolved, we can compute
several instances in Equation (3) simultaneously. Inter-kernel parallelism is especially important
for small problem sizes when there is limited intra-kernel parallelism such that each kernel cannot
saturate the workload on the GPU device and for multi-level Strassen when the partitioned block
sizes are small. We next present three schemes to achieve this goal.
Streaming with dependencies: By invoking multiple independent kernels without write depen-
dencies to different parts of C , we can achieve inter-kernel parallelism. To be specific, the seven
instances in Equation (3) can be rearranged into three synchronous stages (Stages 0–2) according
to the dependency analysis, where kernels in the same stage can be executed asynchronously with
two CUDA streams9 (stream[0] and stream[1]).
In Figure 7, Stage 0 contains four instances. Instances ©1 and ©4 can be executed concurrently

with stream[0] and stream[1]. Instance ©5 can be executed right after ©1 using stream[0] to
avoid the possible race condition, and ©6 can be executed using stream[1] in the same way. In-
stances©2 and©3 are executed concurrently in Stage 2, and Stage 3 only contains Instance©0 . Both
streams must be synchronized at the end of each stage to enforce the order.
Element-wise atomic update: Although the first scheme works reasonably well for large prob-
lem sizes (where inter-kernel parallelism is less crucial), two streams do not expose enough paral-
lelism for small and medium problem sizes (saym = n = k ≤ 6,000). Instead of resolving the race
condition in the granularity of kernels, we exploit out-of-order parallelism at a finer granularity
using atomic operations to resolve the possible concurrent write conflicts onmatrixC . This is done
by replacing the normal Add in the Accumulator with a global atomicAdd instruction. As a result,
the seven instances can all be executed concurrently with up to seven CUDA streams.
Batching: With atomicAdd, 1-level Strassen launches 7 kernels concurrently, and 2-level
Strassen may launch up to 49 kernels simultaneously. Although multiple streams can introduce
more parallelism, the performance can easily be compromised by the kernel launching and con-
text switch overhead, which is proportional to the number of streams and kernels. The overhead
can even slow down the overall runtime when the problem size is small. As a result, we seek to
launch the minimum number of kernels and streams by batching instances according to their vari-
ants. Instances in the same variant can be realized as a sequence (batch) of independent Strassen
primitives (given the race condition on C is resolved by atomicAdd).

To be specific, we use four streams to launch four GPU kernels concurrently. For example, the
two instances in Var#1 are grouped as a batch of two, and the kernel is launched with 3D-grid,

9CUDAprograms canmanage the concurrency across kernels through streams [NVIDIA 2018a], each of which is a sequence

of commands that execute in order. While the kernels launched within the same stream must be scheduled in sequential

order, the commands from different streams may run concurrently out of order. To ensure every command in a particular

stream has finished execution, cudaDeviceSynchronize can be used to enforce synchronization points.
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where the z-dimension equals the batch size. blockIdx.x and blockIdx.y are used to create the
2D-thread-block as usual to exploit parallelism within each Strassen instance. The additional
blockIdx.z is used as an offset to exploit task-based parallelism between Strassen instances and
access the proper pointers and scalars toward X , Y , V ,W , D, E, δ , ϵ , γ0, and γ1.

3.4 Two-Level Strassen’s Algorithm

Direct 2-level Strassen: Following Huang et al. [2016], we can derive 49 instances (10 variants)
in Figure 5 from the general 2-level Strassen primitive, Equation (5), which resembles Equation (4)
but with up to four submatrix operations in each operand. In the hierarchical view of Figure 4
(right), we need to load four submatrices while packing the A and B Tiles from the Device Level.
We also need to write the output back to four submatrices from the Thread Block Level. In Algo-
rithm 1 (right), we need to allocate extra register blocks next2A[mR], next2B[nR], next3A[mR], and
next3B[nR] at line 3. Additional mops are introduced at lines 13, 15, and 24. There are also additional
flops introduced at lines 20 and 21. As we can observe, although implementing a 2-level Strassen
primitive can get rid of extra space requirement, the tradeoff (regarding the current NVIDIA GPU
architecture) is to increase the register pressure and the required memory bandwidth. As a re-
sult, the occupancy and floating point operation efficiency may be compromised. Due to the issue,
we will focus the experiments on the following hybrid 2-level Strassen implementation in Sec-
tion 4, and the direct 2-level algorithm won’t be considered again until the performance analysis
in Section 5. We will further discuss how the issue can be resolved in the future in Section 5.4.
Hybrid 2-level Strassen: Alternatively, we combine the reference approach [Lai et al. 2013]
with our specialized kernel to relieve the register pressure and the required memory bandwidth.
The idea is to first apply the reference approach in Lai et al. [2013], which requires O (mk + kn +
mn) workspace. Then, we apply our 1-level Strassen primitive to each of the seven submatrix
multiplications. Together, we have a hybrid 2-level Strassen algorithm that consumes the same
amount of workspace as the 1-level Strassen reference implementation in Lai et al. [2013], but
ramps up much faster with smaller problem sizes. We empirically compare our hybrid approach
with Lai et al. [2013] in Section 4.

3.5 Handling the Fringes

Traditionally, for matrices with odd dimensions, we need to handle the remaining fringes before
applying Strassen. There are some well-known approaches such as padding (i.e., adding rows or
columns with zeros to get matrices of even dimensions) and peeling (i.e., deleting rows or columns
to obtain even dimensionedmatrices) [Huss-Lederman et al. 1996; Thottethodi et al. 1998] followed
by post-processing. In our approach, fringes can be internally handled by padding the A Tile and
B Tile with zeros, and aligning themC × nC C Accumulator along the fringes. This trick avoids the
handling of the fringes with extra memory or computations because the packing and accumulation
processes always occur for the high-performance implementation of gemm on GPUs, and we reuse
the same buffers.

4 EXPERIMENT

We conduct three sets of experiments in Figure 8, providing an overview of our 1-level and 2-
level Strassen. We discuss and analyze the performance of our algorithms through modeling
in Section 5.
Setup: We perform our experiments on a Tesla V100 SXM2 accelerator that is connected to an
Intel Xeon Gold 6132 Skylake server. The Operating System is CentOS Linux version 7.4.1708. The
GNU compiler version for compiling the host code is 6.4.0. We use CUDA Toolkit 9.1 and compile
the code with flags -O3 -Xptxas -v -std=c++11 -gencode arch=compute_70,code=sm_70.
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Fig. 8. Performance of various Strassen implementations on V100 with single precision: the x-axis denotes

the matrix size, and the y-axis denotes the floating point efficiency in TFLOPS. Our 1-level and hybrid 2-level

implementations are built on CUTLASS, while the reference implementations are linked with cuBLAS.
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As presented in Section 2.2, the tested Tesla V100 SXM2 accelerator has a theoretical peak perfor-
mance of 15.67 TFLOPS in single precision.
Measurement:We report the single precision floating point efficiency with three different config-
urations in Figure 8. We fix the ratio ofm, n, and k dimension in the first configuration such that all
matrices are square. In the second configuration, we fix k = 4,096 and varym, n, resulting in tall-
and-skinny matrix-multiplication (rank-k update). In the last configuration, we fixm = n = 8,192
and vary k , resulting in short-and-fat matrix-multiplication (panel dot-product).
To measure the execution time of GPU kernels running, we use CUDA events that have a resolu-

tion of approximately half a microsecond. We take Effective TFLOPS as the main metric to compare
the performance of various implementations. To be specific,

Effective TFLOPS =
2 ·m · n · k

time (in seconds)
· 10−12. (7)

CUTLASS and our methods are tested with different strategies and block sizes to select the highest
performing setup.
Result: In Figure 8, we report the single precision floating point efficiency of cuBLAS, CUTLASS,
and various Strassen implementations on a V100 GPU. The 1-level and 2-level reference imple-
mentations [Lai et al. 2013] are linked with cuBLAS 9.1. For the 2-level hybrid implementation, we
use reference implementation at the top level and our 1-level implementation at the bottom level.
By comparing the performance of various implementations, we make the following

observations:

—For 1-level, our Strassen implementation outperforms CUTLASS and cuBLASwhen the prob-
lem sizes m = n = k are as small as 1,536.10 The reference implementation cannot get the
comparable performance with our implementation until the problem sizes are larger than
10,000. For 2-level, our hybrid implementation outperforms the reference implementation.

—Our implementation has the same memory consumption as CUTLASS, while the 1-level ref-
erence implementation consumes muchmore memory.With V100 GPU (16 GB global mem-
ory), our 1-level Strassen can compute matrix multiplication for square problem sizes as
large as 36,000, while the reference implementation runs out of memory after reaching
22,500.

—Our 1-level and hybrid 2-level Strassen implementations achieve the best performance
over the entire spectrum of problem sizes compared to the reference implementations, with
no or less additional memory consumption. Our hybrid 2-level implementation can get up
to 1.22× (ideally 1.3×) speedup compared to CUTLASS and 1.19× speedup11 compared to
cuBLAS whenm = n = k = 20,480.

In summary, our 1-level Strassen algorithm can achieve practical speedup even for small (say
<3,000) and non-square matrices without using any extra workspace. As a result, our methods can
easily benefit differentmatrix shapes and be applied to different applications such asmatrix decom-
position and tensor contraction. For large problem sizes (>9,000), our hybrid 2-level Strassen al-
gorithm can further provide speedup over our 1-level algorithm with additional O (mk + kn +mn)
workspace.

10Theoretically, 1-level Strassen can grant 14% speedup, ignoring lower order terms since the total number of submatrix

multiplication is reduced from 8 to 7. Our 1-level Strassen can achieve up to 1.11× speedup compared to cublasSgemm.
11Theoretically, 2-level Strassen can grant 30% speedup ignoring lower order terms since the total number of submatrix

multiplication is reduced from 64 to 49. Our 2-level Strassen can achieve up to 1.19× speedup compared to cublasSgemm.

ACM Transactions on Mathematical Software, Vol. 46, No. 1, Article 1. Publication date: March 2020.



1:16 J. Huang et al.

Fig. 9. Notation table for performance analysis.

5 ANALYSIS

In this section, we analyze our performance results by deriving a performance model for gemm
and different variants (Section 3.2) from Strassen. Performance modeling helps us select the right
blocking parameters, predict the performance, and understand the computation and memory foot-
print of gemm and different Strassen implementations.

5.1 Notation and Assumptions

We summarize the notation in Figure 9 and assume the same three-level memory hierarchy as
discussed in Section 2.1. For a thread block, the data movement through the memory hierarchy
includes the following primitives:
(i) loading the A and B Tile for k/kS times from global memory to shared memory, which is fur-
ther decomposed into two steps: prefetching from global memory to register files (lines 12–15
in Algorithm 1) and storing back from register files to shared memory (lines 20–21):

Ngmop (Agr) = Nsmop (Ars) =mSkS (k/kS ),

Ngmop (Bgr) = Nsmop (Brs) = nSkS (k/kS ).
(8)

(ii) loading the A and B Fragment from shared memory to register files (lines 17–18):

Nsmop (Asr) = tx tymRkS (k/kS ),

Nsmop (Bsr) = tx tynRkS (k/kS ).
(9)

(iii) writing back the C Accumulator from register files to global memory (line 23):

Ngmop (Crg) =mSnS . (10)
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The total number of arithmetic operations for one thread block, Nflop, can be decomposed into
matrix multiplications N×flop and extra matrix additions

Nflop = N ×flop + N
+
flop (A) + N

+
flop (B) + N

+
flop (C ). (11)

Due to the prefetching pipeline, memory operations (handled by memory units) are overlapped
with the arithmetic operations (handled by CUDA cores). We do not consider L1/L2 hardware
cache effect, but we do take the read-only cache (texture memory) effect into account. We also do
not consider the impacts of the task parallelism.

5.2 Blocking Parameter Selection

Similar to Tan et al. [2011] and Zhang et al. [2017], we select the blocking parameters for gemm
and different Strassen variants (Section 3.2) by analyzing the hardware constraints such as the
maximum number of registers per thread and the memory bandwidth. Note that the following
analysis mainly applies to large problem sizes when all SMs on V100 are fully utilized. We assume
τflop = 15.67 TFLOPS (Section 2.2), τgmop = 1.08 TMOPS12, τsmop = 15.67 TMOPS13,mS = nS , andmR =

nR for square matrix cases. The bounds for the blocking sizes are loose.
Global memory bandwidth upper bound: Each thread block computes Nflop arithmetic oper-
ations and reads

Ngmop = Ngmop (Agr)WA + Ngmop (Bgr)WB + Ngmop (Crg)WC (12)

words. We can derive the bounds ofmS and nS as

(Nflop/Ngmop) ≥ sizeof(float)(τflop/τgmop). (13)

It can be shown thatmS = nS ≥ 58.2, which results in the “Large” and “Huge” strategies for gemm.
For 1-level Strassen where the total reads may double (e.g., Var#0 and Var#1), we need to choose
the “Huge” strategy wheremS = nS = 128. For direct 2-level Strassen (Section 3.4), the required
block sizes can be up to four times large. As a result, no strategy is suitable.
Shared memory bandwidth upper bound: Similarly, each thread block reads and writes

Nsmop = Nsmop (Asr) + Nsmop (Ars) + Nsmop (Bsr) + Nsmop (Brs). (14)

We can derive the bounds of block sizesmR and nR as

(Nflop/Nsmop) ≥ sizeof(float)(τflop/τsmop). (15)

As a result, we can getmR = nR ≥ 4.1.
Register number per thread constraint: In Algorithm 1, each thread requiresmR × nR registers
for the accumulator, (WAmR +WBnR ) for fetching and prefetching operands A and B, and 2(mR +

nR ) for double buffering operands between sharedmemory and register files.14 Since themaximum

12Depending on the swizzling (the visiting order of submatrices in GEMM) of A, B , and C , the L2 cache reusing effect can

slightly reduce the amount of memory that is required to be loaded/stored from the global memory. For simplicity, instead

of estimating the effect on cache reusing, we use a modified global memory bandwidth to capture our optimistic estimation

of the L2 cache effect. That is, we calculate the modified global memory bandwidth as 900 (GB/s) × (1+ λ), where λ is the

adjusted multiplier to match the GEMM performance. In our performance model validation experiment, λ is set to 0.2.
1380 (# SM) × 32 (# banks/SM) × 4 (# bank width: Bytes) × 1530 MHz [Jia et al. 2018].
14At leastWA +WB + 5 additional registers are needed:WA +WB registers to track A, B in the global memory during

prefetching (lines 12–15); 1 register to store the loop end condition; 2 registers to track A, B in the shared memory when

prefetching (lines 17–18); 2 registers to track A, B in the shared memory for storing back (lines 20–21). Note that dealing

with large matrices requires 64-bit pointers, in which case, twice as many registers, i.e., 2WA + 2WB instead ofWA +WB ,

are needed to track A and B in the global memory.
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number of registers per thread is 255,mR and nR are bounded by

mRnR + (2 +WA)mR + (2 +WB )nR < 255. (16)

We can getmR = nR < 12.
Shared memory size per SM constraint: Each thread block keeps the {A, B} Tile in the shared
memory, which requires

sizeof(float)(mSkS + nSkS ) < 96K , (17)

since the shared memory capacity per SM is 96 KB.
Global memory prefetching precondition: Each thread prefetches one subcolumn of A with
heightmR (line 12) and one subrow of B with width nR (line 14); all tx × ty threads in one thread
block need to store back to themSkS A Tile (line 20) and the nSkS B Tile (line 21), so it requires

mRtx ty ≥ mSkS ,nRtx ty ≥ nSkS . (18)

We can therefore get kS ≤ mS/mR , kS ≤ nS/nR .
Basically, the Huge strategy in CUTLASS (Section 2.3) meets the bound requirement to maximize

the performance for both gemm and different variants from 1-level Strassen (Var#0-Var#3) on
large problem sizes.

5.3 Performance Prediction

The total execution time T can be estimated as the maximum of the time of arithmetic operations
Tflop, the shared memory operations Tsmop, and the global memory operations Tgmop. That is, T =
max(Tflop,Tgmop,Tsmop).
Arithmetic operations:We assume that the computation power of a GPU is split evenly among
all active thread blocks, i.e., each active thread block can get a portion of the peak throughput τflop
of the whole GPU device: τflop/#blocks . Here #blocks is the maximum number of active thread
blocks on one V100 device, which is computed by

#blocks = #SM × #max_active_blocks_per_SM15. (19)

As a result, for � m
mS
� � n

nS
� submatrix blocks, the total arithmetic operation time is

Tflop =
⎡⎢⎢⎢⎢⎢
� m
mS
� � n

nS
�

#blocks

⎤⎥⎥⎥⎥⎥
(
#blocks × Nflop

τflop

)
(20)

for #blocks active thread blocks.
Shared memory operations: Similarly, we assume that the bandwidth of shared memory is al-
located evenly to each active thread block. Given that the number of shared memory operations
per thread block in Equation (14), the total time spent on shared memory operations is

Tsmop =
⎡⎢⎢⎢⎢⎢
� m
mS
� � n

nS
�

#blocks

⎤⎥⎥⎥⎥⎥
(
sizeof(float)#blocks × Nsmop

τsmop

)
. (21)

Global memory operations: The global memory is accessible by all threads on all SMs and
resides on the device level, so the bandwidth is not necessarily divided evenly by all thread blocks.16

15#max_active_blocks_per_SM denotes the maximum number of active thread blocks per SM, which can be returned

from function cudaOccupancyMaxActiveBlocksPerMultiprocessor, or calculated with the CUDAOccupancy Calculator

provided by NVIDIA [2018b]. For Huge, gemm and all variants: 2; For Small, gemm: 24, 1-level Var#0: 20, 2-level Var#0: 18.
16On the hardware layer, the HBM2 memory is connected to the chips through eight memory controllers in four memory

stacks [NVIDIA 2018d], not coupled with individual SMs.
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Fig. 10. Actual (solid line) and modeled (dashed line) performance of CUTLASS and Strassen with Huge and

Small strategies of block sizes. Left: Huge strategy; Right: Small strategy.

Given the number of global memory operations per thread block in Equation (12), the total time
spent on global memory operations is

Tgmop =

⌈
m

mS

⌉ ⌈
n

nS

⌉ (
sizeof(float)Ngmop

τgmop

)
. (22)

We can predict the runtime performance of various implementations based on this performance
model. In Figure 10, we present the modeled and actual performance of gemm and direct 1/2-level
Strassen (Sections 3.1 and 3.4) for square matrices with Huge and Small strategies of block sizes
(Figure 3). The direct 1- and 2-level Strassen are implemented using 7/49 instances of different
variants sequentially without inter-kernel task parallelism (Section 3.3).

5.4 Discussion and Analysis

Impacts of the variants in Strassen: From our model, the performance differences between
the variants (Section 3.2) are determined by the operand countsW{A,B,C } , which mainly affects
the number of global memory operations, Equation (13), andTgmop; the total number of arithmetic
operations Nflop; and the register number, Equation (16). For example, comparing Var#0 in 1-level
Strassen with gemm, we can find that the global memory operation number doubles, and the
required register number increases bymR + nR .
Limitations and possible solutions: Our direct 2-level Strassen primitives may increase
operands countWA,WB , andWC up to four times. These primitives may require up to 160 reg-
isters per thread by Equation (16), and up to 1,900 GB/s global and texture memory throughput by
Equation (13). Regarding the current architecture, memory operations cannot be fully overlapped
with the computations, and registers might need to be spilled to maintain two active thread blocks
per SM. These two limitation factors suggest possible hardware improvements on future genera-
tion GPUs to make the direct 2-level primitives practical.
Extra registersnext1A andnext1B in Algorithm 1 are used to prefetch extra operands at lines 12–

15, which are handled solely by the memory units thus overlapped with rank-kS update during
lines 17–19. For direct 2-level Strassen, the extra registers required for prefetching will exceed
the constraint. Moving arithmetic operations at lines 20–21 to lines 12–15 can reduce the register
requirement by reusing next1A and next1B but result in CUDA cores waiting for the memory
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access, thus decrease the number of overlapped memory operations. Given that the direct 2-level
Strassen primitives already require much higher memory bandwidth, it is not practical to trade
overlapped memory operations with more registers.
To alleviate the register pressure and memory traffic, our Strassen primitives are good exam-

ples that could benefit from Processing-In-Memory (PIM) [Ahn et al. 2015; Bennett et al. 2012; Loh
et al. 2013]. With extended memory instructions that directly compute the arithmetic operations
at lines 20–21 during the fetching process at lines 12–15, it is possible to remove all extra registers
for prefetching. The computation is done in-transit of the loading process, which may also relieve
the memory traffic in the memory hierarchy and reduce the required memory throughput.
Cache effects: For the Small strategy, the actual performance is better than the modeled perfor-
mance during the ramp-up stage. This shows the L1/L2 cache effects as there are two performance
“falling edges” for the actual performance, which are not captured by our performance model.

6 CONCLUSION

We have presented a practical implementation of Strassen’s algorithm on GPUs, which outper-
forms the state-of-the-art implementation on small problem sizes and consumes no additional
memory compared to gemm. By developing a specialized kernel, we utilized the memory and
thread hierarchies on GPUs. By reusing the shared memory to store the temporary matrix sum
during the packing process and the register files to hold the temporary matrix product during
the accumulation process, we avoided the extra workspace requirement and reduced the addi-
tionalmemorymovement. Besides the intra-kernel parallelism across the thread blocks, warps, and
threads similar to gemm implementation on GPUs, we also exploited the inter-kernel parallelism
and batched parallelism and overlapped the bandwidth limited operations with the computation
bound operations. We demonstrated performance benefits for small and non-square matrices on
a most recent Volta GPU, and verified the performance results by building a performance model
to choose the appropriate block sizes and predict the runtime performance. Together, we achieved
both less memory and more parallelism with our customized kernels. In the future, we will ex-
tend this work to various applications on GPUs, such as other fast matrix multiplication algo-
rithms [Benson and Ballard 2015; Huang et al. 2017; Karstadt and Schwartz 2017], high-dimensional
tensor contractions [Matthews 2018], and convolution neural network [Krizhevsky et al. 2012;
Simonyan and Zisserman 2014].
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