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Abstract—Consider a (multiple-access) wireless communication sys-
tem where users are connected to a unique base station over a
shared-spectrum radio links. Each user has a fixed number k of
bits to send to the base station, and his signal gets attenuated
by a random channel gain (quasi-static fading). In this paper we
consider the many-user asymptotics of Chen-Chen-Guo’2017, where
the number of users grows linearly with the blocklength. In addition,
we adopt a per-user probability of error criterion of Polyanskiy’2017
(as opposed to classical joint-error probability criterion). Under these
two settings we derive bounds on the optimal required energy-per-
bit for reliable multi-access communication. We confirm the curious
behaviour (previously observed for non-fading MAC) of the possibility
of perfect multi-user interference cancellation for user densities below
a critical threshold. Further we demonstrate the suboptimality of
standard solutions such as orthogonalization (i.e., TDMA/FDMA) and
treating interference as noise (i.e. pseudo-random CDMA without
multi-user detection).

I. INTRODUCTION

We clearly witness two recent trends in the wireless com-

munication technology: the increasing deployment density and

miniaturization of radio-equipped sensors. The first trend results in

progressively worsening interference environment, while the second

trend puts ever more stringent demands on communication energy

efficiency. This suggests a bleak picture for the future networks,

where a chaos of packet collisions and interference contamination

prevents reliable connectivity.

This paper is part of a series aimed at elucidating the fundamental

tradeoffs in this new “dense-networks” regime of communication,

and on rigorously demonstrating suboptimality of state-of-the-art

radio-access solutions (ALOHA, orthogonalization, or FDMA, and

treating interference as noise, or TIN).

Specifically, in this paper we consider a problem of K nodes

communicating over a frame-synchronized multiple-access channel.

When K is fixed and the frame size n (which we will also call

“blocklength” or the “number of degrees of freedom”) is taken to

infinity we get the classical regime [1], in which the fundamental

limits are given by well-known mutual information expressions.

A new regime, deemed many-access, was put forward by Chen,

Chen and Guo [2] (see also [3] for a related massive MIMO

MAC analysis). In this regime the number of nodes K grows with

blocklength n. It is clear that the most natural scaling is linear:

K = µn, n → ∞, corresponding to the fact that in time n there

are linearly many users that will have updates/traffic to send [4].

That is, if each device wakes up once in every T seconds and
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transmits over a frame of length t, then in time (proportional to)

t there are Ktot ≈ t/T users where t is large enough for this

approximation to hold but small that no device wakes up twice.

Further, this linear scaling explains the non-asymptotic plots for

n = 30000 and K ≤ 300 [4, 5]. The analysis of [2] focused on

the regime of infinitely large payloads. In contrast [4] proposed

to focus on a model where each of the K = µn nodes has only

finitely many bits to send. In this regime, it turned out, one gets

the relevant engineering tradeoffs. Namely, the communication with

finite energy-per-bit is possible as n → ∞ and the optimal energy-

per-bit depends on the user density µ. For this to happen, however,

a second crucial departure from the classical MAC model was

needed: the per-user probability of error, PUPE, criterion [4].

These two modifications (the scaling K = µn and the PUPE)

were investigated in the case of the AWGN channel in [4–6]. We

next describe the main discovery of that work. The channel model

is:

Y n =

K
∑

i=1

Xi + Zn , Zn ∼ CN (0, In) , (1)

and Xi = fi(Wi) ∈ C
n is the codeword of i-th user corresponding

to Wi ∈ [2k] chosen uniformly at random. The system is said to

have PUPE ǫ if there exist decoders Ŵi = Ŵi(Y
n) such that

Pe,u =
1

K

K
∑

i=1

P

[

Wi 6= Ŵi

]

≤ ǫ . (2)

The energy-per-bit is defined as Eb

N0
= 1

K supi∈[K],w∈[2k] ‖fi(w)‖2.

The goal in [4, 6] was to characterize the asymptotic limit

E∗(µ, k, ǫ) , lim sup
n→∞

inf
Eb

N0
(3)

where infimum is taken over all possible encoders {fi} and

decoders {Ŵi} achieving the PUPE ǫ for K = µn users.

To predict how E∗(µ, ǫ) behaves, first consider a naive Shannon-

theoretic calculation [7]: if K users want to send k bits in n degrees

of freedom, then their sum-power Ptot should satisfy n log(1 +
Ptot) = kK . In turn, the sum-power Ptot = kK

n
Eb

N0
. Overall, we

get E∗ ≈ 2µk−1
kµ . This turns out to be a correct prediction, but only

in the large-µ regime. The true behavior of the fundamental limit

is roughly given by

E∗(µ, k, ǫ) ≈ max

(

2µk − 1

kµ
, Es.u.

)

,

where Es.u. = Es.u.(k, ǫ) does not depend on µ and corresponds to

the single-user minimal energy-per-bit for sending k bits with error

ǫ, for which a very tight characterization is given in [8].

In all, results of [4–6] suggest that the minimal energy-per-bit has

a certain “inertia”: as the user density µ starts to climb from zero up,



initially the energy-per-bit should stay the same as in the single-user

µ = 0 limit. In other words, optimal multiple-access architectures

should be able to perfectly cancel all multi-user interference (MUI),

achieving an essentially single-user performance for each user,

provided the user density is below a critical threshold. Note that

this is much better than orthogonalization, which achieves the

same effect at the expense of shortening the available (to each

user) blocklength by a factor of 1
K . Quite surprisingly, standard

approaches to multiple-access such as TDMA and TIN1, while

having an optimal performance at µ → 0 demonstrated a significant

suboptimality for µ > 0 regime. In particular, no “inertia” was

observed and the energy-per-bit for those suboptimal architectures

is always a monotonically increasing function of the user density µ.

This opens the (so far open) quest for finding a future-proof MAC

architecture that would achieve Es.u. energy-per-bit for a strictly-

positive µ > 0.

(In this short summary we omitted another important part of [4]:

the issue of random-access – i.e. when the identities/codebooks

of active users are apriori unknown. We just mention here that

for random access problem, there are a number of low-complexity

algorithms that are available [9–15].)

The contribution of this paper is in demonstrating the same

perfect MUI cancellation effect in a much more practically relevant

communication model, in which the ideal unit power-gains of (1)

are replaced by random (but static) fading gain coefficients. We

consider two cases of the channel state information: known at the

receiver (CSIR) and no channel state information (noCSI).

Key technical ideas: For handling the noCSI case we employ the

subspace projection decoder similar to the one proposed in [16],

which can be seen as a version of the maximum-likelihood decoding

(without prior on fading coefficients) – an idea often used in support

recovery literature [17–19]. Another key idea is to decode only a

subset of users corresponding to the strongest channel gains – a

principle originating from Shamai-Bettesh [20]. While the random-

ness of power-gains increases the energy-per-bit requirements, we

also mention that [9] finds an unexpected advantage: the inherent

randomization helps the decoder disambiguate different users and

improves performance of the belief propagation decoder.

The paper is organized as follows. In Section II we formally

define the problem and the fundamental limits. In Section III as

a warm-up we discuss the classical regime (K–fixed, n → ∞)

under the PUPE criterion. We show that our projection decoder

achieves the best known achievability bound in this setting [20].

(We also note that for the quasi-static fading channel model the idea

of PUPE is very natural, and implicitly appears in earlier works,

e.g. [20, 21], where it is conflated with the outage probability.)

After this short warm-up we go to our main Section IV, which

contains rigorous achievability and converse bounds for the K =
µn, n → ∞ scaling regime. Finally, we conclude with numerical

evaluations and discussions in Section V, where we also compare

our bounds with the TDMA and TIN.

All proofs have been omitted due to space constraints and can

be found in [22].

A. Notations

Let N denote the set of natural numbers. For n ∈ N, let Cn denote

the n–dimensional complex Euclidean space. We also let [n] denote

1Note that pseudo-random CDMA systems without multi-user detection and
large load factor provide an efficient implementation of TIN. So throughout our
discussions, conclusions about TIN also pertain to CDMA systems of this kind.

the set {1, 2, ..., n}. Let S ⊂ C
n. We denote the projection operator

or matrix on to the subspace spanned by S as PS and its orthogonal

complement as P⊥
S . For 0 ≤ p ≤ 1, let h2(p) = −p log2(p)− (1−

p) log2(1− p) and h(p) = −p ln(p)− (1− p) ln(1− p), with 0 ln 0
defined to be 0. We denote by N (0, 1) and CN (0, 1) the standard

normal and the standard circularly symmetric complex normal

distributions, respectively. P and E denote probability measure and

expectation operator respectively. Q is the complementary CDF

function of the standard normal distribution. Lastly, ‖·‖ represents

the standard euclidean norm.

II. DEFINITIONS AND SYSTEM MODEL

In this work, we consider the following quasi-static Rayleigh

fading MAC:

Y n =

K
∑

i=1

HiX
n
i + Zn (4)

where Zn ∼ CN (0, In), and Hi
iid∼ CN (0, 1) are the fading co-

efficients which are independent of {Xn
i } and Zn. Naturally, we

assume that there is a maximum power constraint:

‖Xn
i ‖2 ≤ nP. (5)

We consider two cases: 1) no channel state information (no-CSI):

neither the transmitters nor the receiver knows the realizations of

channel fading coefficients, but they both know the law; 2) channel

state information only at the receiver (CSIR): only the receiver

knows the realization of channel fading coefficients. The special

case of (4) where Hi = 1, ∀i is called the Gaussian MAC (GMAC).

Next, we define a subspace projection based decoder, inspired

from [16]. The idea is that in the absence of additive noise

the received vector will lie in the subspace spanned by the sent

codewords. Formally, let Ci, i ∈ [K] and fi : [Mi] → Ci, i ∈ [K]
denote the codebook and encoding function of the user i with

message set [Mi]. Then upon receiving Y from the channel the

decoder outputs g(Y ) which is given by

g(Y ) =
(

f−1
1 (ĉ1), ..., f

−1
K (ĉK)

)

(ĉ1, ...ĉK) = arg max
(ci∈Ci)Ki=1

∥

∥P{ci:i∈[K]}Y
∥

∥

2
. (6)

III. CLASSICAL REGIME: K FIXED, n → ∞
In this section, we focus on the channel under classical asymp-

totics where K is fixed (and large) and n → ∞. We show that

subspace projection decoder achieves a) ǫ–capacity region (Cǫ,J )

for the joint error and b) the best known bound for ǫ–capacity

region Cǫ,PU under per-user error. This motivates using projection

decoder in the many-user regime.

A. Joint error

A rate tuple (R1, ..., RK) is said to be ǫ–achievable [23] for the

MAC if there is a sequence of codes whose rates are asymptotically

at least Ri such that joint error is asymptotically smaller than ǫ.
Then the ǫ–capacity region Cǫ,J is the closure of the set of ǫ–
achievable rates. It can be shown using [23, Theorem 5] that for

our channel (4), Cǫ is given by

Cǫ,J = {R = (R1, ..., RK) : ∀i, Ri ≥ 0 and P0(R) ≤ ǫ} (7)

where the outage probability P0(R) is given by

P0(R) =

P





⋃

S⊂[K],S 6=∅

{

log

(

1 + P
∑

i∈S

|Hi|2
)

≤
∑

i∈S

Ri

}



 (8)



Next we claim that projection decoder achieves Cǫ,J .

Theorem III.1 (Projection decoding achieves Cǫ,J ). Let R ∈ Cǫ,J

of (4). Then R is ǫ–achievable through a sequence of codes with

the decoder being the projection decoder.

B. Per-user error

The ǫ–capacity region for the channel under per-user error, Cǫ,PU

is defined similarly as Cǫ,J but with per-user error instead of joint

error. Cǫ,PU is unknown, but the best lower bound is given by

the Shamai-Bettesh capacity bound [20]: given a rate tuple R =
(R1, ..., RK), an upper bound on the per-user probability of error

under the channel (4), as n → ∞, is given by

Pe,u ≤ PS
e (R)

= 1− 1

K
E sup

{

|D| : D ⊂ [K], ∀S ⊂ D,S 6= ∅,

∑

i∈S

Ri < log

(

1 +
P
∑

i∈S |Hi|2
1 + P

∑

i∈Dc |Hi|2
)

}

(9)

where the maximizing set, among all those that achieve the maxi-

mum, is chosen to contain the users with largest fading coefficients.

The corresponding achievability region is

CS.B
ǫ,PU =

{

R : PS
e (R) ≤ ǫ

}

(10)

and hence it is an inner bound on Cǫ,PU .

We note that, in [20], only the symmetric rate case i.e, Ri =
Rj ∀i, j is considered. So (9) is the extension of that result to the

general non-symmetric case.

Suitable modifying the projection decoder to use CSIR to drop

weak users such that the rate tuple of the remaining users is

inside the corresponding capacity region (considering dropped users

as noise), we can show that the (modified) projection decoding

achieves the same asymptotics as (9) for per-user probability of

error.

Theorem III.2. For any R ∈ CS.B
ǫ,PU there exists a sequence of

codes with projection decoder with asymptotic rate R such that

the per-user probability of error is asymptotically smaller than ǫ

In the case of symmetric rate, an outer bound on Cǫ,PU can be

given as follows.

Proposition 1. If the symmetric rate R is such that Pe,u ≤ ǫ, then

R ≤ min







1

K(1− ǫ)
E



log2



1 + P
∑

i∈[K]

|Hi|2






 ,

log2 (1− P ln(1− ǫ))} (11)

We refer the readers to [22] for numerical evaluations and

discussions in the classical regime. But we just note here that Cǫ,J

(under joint error) tends to {0} as K → ∞ because, it can be

seen, for the symmetric rate, by considering that order statistics of

the fading coefficients that P0(R) → 1 for Ri = O(1/K). Hence

PUPE is more suitable error metric since by virtue of its definition,

a constant fraction of users with worst channel gains can be dropped

by the decoder.

IV. MANY USER MAC: K = µn, n → ∞
This is our main section. We consider the linear scaling regime

K = µn, n → ∞. We are interested in the trade-off of minimum

Eb/N0 required for the PUPE to be smaller than ǫ, with the user

density µ (µ < 1). So, we fix the message size k. Let S = kµ be

the spectral efficiency.

We focus on the case of different codebooks, but under sym-

metric rate. So if M denotes the size of the codebooks, then

S = K logM
n = µ logM . Hence, given S and µ, M is fixed. Let

Ptot = KP denote the total power. Therefore denoting by E the

energy-per-bit, E = Eb/N0 = nP
log2 M = Ptot

S . For finite Eb/N0,

we need finite Ptot, hence we consider the power P decaying as

O(1/n).

Let Cj = {cj1, ..., cjM} be the codebook of user j, of size M .

The power constraint is given by

∥

∥

∥c
j
i

∥

∥

∥

2

≤ nP = E log2 M, ∀j ∈
[K], i ∈ [M ]. The collection of codebooks {Cj} is called an

(n,M, ǫ, E ,K)–code if it satisfies the power constraint described

before, and the per-user probability of error is smaller than ǫ. Then,

we can define the following fundamental limit for the channel

E∗(M,µ, ǫ) = lim
n→∞

inf {E : ∃(n,M, ǫ, E ,K = µn)− code} .

A. No-CSI

In this subsection, we focus on the no-CSI case. The difficulty

here is that, apriori, we do not know which subset of the users to

decode. We have the following theorem.

Theorem IV.1. Consider the channel (4) (no-CSI) with K = µn
where µ < 1. Fix the spectral efficiency S and target PUPE ǫ. Let

M = 2S/µ denote the size of the codebooks and Ptot = KP
be the total power. Fix ν ∈ (1 − ǫ, 1]. Let ǫ′ = ǫ − (1 − ν).

Then if E > E∗
no−CSI = sup ǫ′

ν
<θ≤1 supξ∈[0,ν(1−θ)]

Ptot,ν(θ,ξ)
S ,

there exists a sequence of (n,M, ǫn, E ,K = µn) codes such that

lim supn→∞ ǫn ≤ ǫ, where, for ǫ′

ν < θ ≤ 1 and ξ ∈ [0, ν(1− θ)],

Ptot,ν(θ, ξ) =
f̂(θ, ξ)

1− f̂(θ, ξ)α (ξ + νθ, ξ + 1− ν(1− θ))
(12)

f̂(θ, ξ) =
f(θ)

α(ξ, ξ + νθ)
(13)

f(θ) =

1+δ∗1 (1−Vθ)
Vθ

− 1

1− δ∗2
(14)

Vθ = e−Ṽθ (15)

Ṽθ = δ∗ +
θµν lnM

1− µν
+

1− µν(1− θ)

1− µν
h

(

θµν

1− µν(1− θ)

)

+

µ(1− ν(1− θ))

1− µν
h

(

θν

1− ν(1− θ)

)

(16)

δ∗ =
µh(1− ν(1− θ))

1− µν
(17)

cθ =
2Vθ

1− Vθ
(18)

qθ =
µh(1− ν(1− θ))

1− µν(1− θ)
(19)

δ∗1 = qθ(1 + cθ) +
√

q2θ(c
2
θ + 2cθ) + 2qθ(1 + cθ) (20)

δ∗2 = inf {x : 0 < x < 1,

− ln(1− x)− x >
µh(1− ν(1− θ))

1− µν(1− θ)

}

(21)

α(a, b) = a ln(a)− b ln(b) + b− a. (22)

Hence E∗ ≤ E∗
no−CSI .



The proof of the above theorem uses a suitably modified pro-

jection decoding where only ν fraction of the users are decoded

by searching for over all νK tuple of codebooks to find the best

projection. In retrospect, our analysis bears similarity to the one

in [19], which can be seen (as argued in [4]) as a version of the

many-MAC problem with random-access."

B. CSIR

In this subsection, we focus on the CSIR scenario. We could use

projection decoding to decode a fraction of users where decoding

set is a function of CSIR. But a better bound is obtained by directly

using euclidean metric to decode, similar to [4]. Then have the

following theorem.

Theorem IV.2. Consider the channel (4) (with CSIR) with K = µn
where µ < 1. Fix the spectral efficiency S and target PUPE ǫ. Let

M = 2S/µ denote the size of the codebooks and Ptot = KP be

the total power. Fix ν ∈ (1−ǫ, 1]. Let ǫ′ = ǫ− (1−ν). Then if E >

E∗
CSIR = sup ǫ′

ν
<θ≤1 inf0≤ρ≤1

Ptot,ν(θ,ρ)
S , there exists a sequence of

(n,M, ǫn, E ,K = µn) codes such that lim supn→∞ ǫn ≤ ǫ, where,

for ǫ′

ν < θ ≤ 1,

Ptot,ν(θ, ρ)

=
(1 + ρ)

(

eµν(
h(θ)
ρ

+θ lnM) − 1
)

α(ν(1− θ), ν)−
(

eµν(
h(θ)
ρ

+θ lnM) − 1
)

α(ν, 1)(1 + ρ)
(23)

and α(·) is given by (22). Hence E∗ ≤ E∗
CSIR.

The analysis uses the Gallager’s rho trick employed in [4].

C. Converse

In this section we present a converse for E∗, based on the Fano

inequality and the results from [24]. Let {Hi} be the iid fading

coefficients – distribution denoted by random variable H .

Theorem IV.3. Let M be the codebook size. Given ǫ ≤ 1 − 1
M

and µ, let S = µ logM . Then, assuming that E
[

|H|4
]

< ∞ and

E
[

|H|2
]

= 1, we have

E∗(M,µ, ǫ) ≥ inf
Ptot

S
(24)

where infimum is taken over all Ptot > 0 that satisfies both

θS − ǫµ log
(

2S/µ − 1
)

− µh2(ǫ) ≤ log (1 + Ptotα (1− θ, 1)) , ∀θ ∈ [0, 1] (25)

ǫ ≥ 1− E

[

Q

(

Q−1

(

1

M

)

−
√

2Ptot

µ
|H|2

)]

(26)

where α(·) is given by (22).

Bounds tighter than (25) can be obtained if further assumptions

are made on the codebook. For instance, if we assume that each

codebook consists of iid entries of the form C
K where C is sampled

from a distribution with zero mean and finite variance (Ptot), then

using ideas similar to [25, Theorem 3] we have that in order for

the iid codebook to achieve PUPE ǫ the energy-per-bit E should

satisfy E ≥ inf Ptot

µ logM where infimum is taken over all Ptot > 0
that satisfies

lnM − ǫ ln(M − 1)− h(ǫ)

≤ MV
(

1

µM
,Ptot

)

− V
(

1

µ
, Ptot

)

(27)

where V is given by [25]

V(r, γ) = r ln (1 + γ −F(r, γ)) + ln (1 + rγ −F(r, γ))

− F(r, γ)

γ
(28)

F(r, γ) =
1

4

(
√

γ
(√

r + 1
)2

+ 1−
√

γ
(√

r − 1
)2

+ 1

)2

.(29)

V. NUMERICAL EVALUATION AND DISCUSSION

In this section, we provide the results of numerical evaluation of

the bounds in the paper. We focus on the trade-off of user density

µ with the minimum energy-per-bit E∗ for a given message size k
and target probability of error Pe.

For k = 100 bits, we evaluate the trade-off from the bounds

in this paper for Pe = 10−3 and Pe = 10−1 in figures 1 and 2

respectively. For TDMA, we split the frame of length n equally

among K users, and compute the smallest Ptot the ensures the

existence of a single user quasi-static AWGN code of rate S,

blocklength 1
µ and probability of error ǫ using the bound from

[16]. TIN is computed using a method similar to theorem IV.2.

From these figures, we clearly observe the perfect MUI cancel-

lation effect mentioned in the introduction. As µ increases from 0,

the E∗ is almost a constant (slightly increasing for the achievability

bounds) but then undergoes a “phase transition” where E∗ increases

sharply. Hence this suggests there is a certain Es.u. = Es.u.(k, ǫ) and

µs.u. > 0 such that E∗ = Es.u. for all µ < µs.u.. Further, standard

schemes for multiple-access like TDMA and TIN do not have this

behavior. Moreover, although these suboptimal schemes have an

optimal trade-off at µ → 0 they show a significant suboptimality at

higher µ. We note again that this perfect MUI cancellation which

was observed in standard GMAC [4, 5] is also present in the more

practically relevant quasi-static fading model. So, we suspect that

this effect is a characteristic of the many-user MAC.

The fact that orthogonalization is not optimal is one of the key

practical implications of our work. It was observed before in the

GMAC [4, 5] and here we again witness it in the more relevant QS-

MAC. To give another intuition for this suboptimality we consider a

K = µn user binary adder MAC Y =
∑K

i=1 Xi where Xi ∈ {0, 1}
and addition is over Z. It can be shown that using TDMA or TIN

the message size is bounded by a constant. But there exist explicit

codes that achieve a message size of around log µn
2µ → ∞ with low

complexity [26–28]. (See [22] for more elaborate discussion).Hence

we see that TDMA and TIN are severely suboptimal for the many-

user adder MAC as well.

We remark here the no-CSI bound on E∗ increases sharply in the

neighborhood as µ → 0. In fact, it can be seen from expressions in

theorem IV.1 that E∗ = O(
√− lnµ) as µ → 0. Hence the bound

is not optimal for small µ.

There are interesting directions for future work. A natural one

is to extend the results to massive MIMO. Another direction is to

come up with better achievability bounds using either a different

decoding technique or performing better analysis, for example,

using results on Gaussian processes (see [6] where it has been

employed for the GMAC). From a practical standpoint, there is

also a question of finding MAC architectures that would achieve

Es.u. for µ > 0.
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