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Abstract The standard period-index conjecture for Brauer groups of p-adic
surfaces S predicts that ind(α)| per(α)3 for every α ∈ Br(Qp(S)). Using
Gabber’s theory of prime-to-� alterations and the deformation theory of twisted
sheaves, we prove that ind(α)| per(α)4 for α of period prime to 6p, giving the
first uniform period-index bounds over such fields.
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302 B. Antieau et al.

1 Introduction

The purpose of this paper is to prove the following result concerning the
period-index problem for the Brauer group.

Theorem 1.1 Let R be an excellent henselian discrete valuation ring with
residue field k of characteristic p ≥ 0 and with fraction field K . Suppose k is
semi-finite or separably closed. Let L be an extension of K of transcendence
degree 2, and let α ∈ Br(L) be a Brauer class. If α has period prime to p,
then

ind(α) | per(α)5.

If α has period prime to 6p, then

ind(α) | per(α)4.

Recall from [38] that k is a semi-finite field if it is perfect and if for every
prime �, the maximal prime-to-� extension of k is pseudo-algebraically closed
with Galois group Z�. Finite fields and pseudo-finite fields are semi-finite. As
a special case, we obtain the following result.

Corollary 1.2 Let S be a geometrically integral surface over a p-adic field K .
If α ∈ Br(K (S)) has period relatively prime to 6p, then

ind(α) | per(α)4.

The period of a Brauer class α is its order in the Brauer group and its index
is the degree of a division algebra in the Brauer class. The period divides the
index and both numbers have the same prime factors. Results bounding the
index in terms of the period have motivated many of the developments in the
theory of the Brauer group since the beginning of the twentieth century. See
[4, Section 4] for a survey of results of this type.

For local and global fields, the index equals the period by Albert, Brauer,
Hasse, and Noether (see [20, Remark 6.5.6]). For a finitely generated field of

1 Department of Mathematics, Statistics, and Computer Science, University of Illinois
at Chicago, Chicago, Illinois, USA

2 Department of Mathematics, Yale University, New Haven, Connecticut, USA

3 School of Mathematics and Statistics, Carlton University, Ottawa, Ontario, Canada

4 Department of Mathematics, Rutgers, The State University of New Jersey, Newark,
New Jersey, USA

5 Department of Mathematics, University of Washington, Seattle, Washington, USA

123



Period-index bounds 303

transcendence degree 2 over an algebraically closed field, the index equals the
period by de Jong [16] (see also [36]). More generally, Artin conjectured that
the index equals the period for every C2 field, and he proved this for Brauer
classes of period a power of 2 or 3, see [3]. For a field of transcendence degree 1
over a local field, the index divides the square of the period by Saltman [44] for
Brauer classes of period prime to the characteristic and Parimala and Suresh
[41] in general. Analogous results for fields of transcendence degree 1 over
higher local fields are established in [37] and subsequently in [25] by other
methods. For fields of transcendence degree 2 over a finite field, the index
divides the square of the period by [38].

Such results support the following conjecture (see [10, Section 2.4]).

Conjecture 1.3 (Period-index conjecture) Let k be an algebraically closed,C1,
or p-adic field, and set e = 0, 1, 2 accordingly. Let K be a field of transcen-
dence degree n over k. For every α ∈ Br(K ), we have

ind(α)| per(α)n−1+e.

Based on this conjecture, we do not expect the period-index bound we
achieve in Theorem 1.1 to be optimal. However, this is the first proof of a
general period-index bound that is uniform in the period for fields of transcen-
dence degree 2 over a local field. For classes of period a power of 2, bounds on
the u-invariant are known to imply uniform bounds for the index in terms of
the period; our bounds are still better than what can be attained using known
u-invariant results for function fields over p-adic fields [34]. There are also
nonuniform period-index bounds for Ci fields due to Matzri [39].

Our approach follows a strategy inspired by Saltman [44]: split the ramifi-
cation of the Brauer class by a field extension of controlled degree and then
use geometry to study the unramified Brauer class on a regular proper model.
For the former, we draw on, and expand upon, a development due to Pirutka
[43] (see Sect. 2). After splitting the ramification and using Gabber’s refined
theory of �′-alterations to reduce to a regular (quasi-semistable) model, we
reduce the proof of Theorem 1.1 to the following general result. Given an inte-
gral scheme X , we write κ(X) for its function field; given α ∈ H2(κ(X),µn),
we write per(α) and ind(α) for the period and index of the associated class in
Br(κ(X)).

Theorem 1.4 Let R be an excellent henselian discrete valuation ring with
residue field k of characteristic p ≥ 0 and with fraction field K . Suppose
that X is a connected regular 3-dimensional scheme, flat and proper over
Spec R. Let α ∈ H2(X,µn) where n is prime to p. Assume that the Brauer
class of α is trivial on all proper closed subschemes of the reduced special fiber
X0,red of dimension at most 1. If ind(α|κ(Xi )) = per(α|κ(Xi )) for all irreducible
components Xi of X0,red, then ind(ακ(X)) = per(ακ(X)).
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304 B. Antieau et al.

Note that the hypothesis, that the Brauer class of α is trivial on all proper
subschemes of X0,red of dimension at most 1, is automatically satisfied if k is
semi-finite or separably closed (see Lemma 4.1).

The proof of Theorem 1.4 uses the deformation theory of twisted sheaves to
reduce the computation of the index of a Brauer class on a regular model to the
existence of twisted sheaves of a certain rankon the reduced special fiber,which
we can assume is a strict normal crossings surface. In the case when the special
fiber is smooth, this approach was carried out in [36, Proposition 4.3.3.1]. In
the general case, we must prove a version of de Jong and Lieblich’s period-
index results for strict normal crossings surfaces over separably closed and
semi-finite fields, respectively.

It is known that Saltman’s theorem is the best possible for p-adic curves.
Indeed, examples were given by Jacob and Tignol in an appendix to [44]
to this effect. Conjecture 1.3 predicts that for a surface over C((t)) one has
ind(α)| per(α)2, while for a surface over a p-adic field one has ind(α)| per(α)3.
The nonoptimality of our results is undoubtedly due to our overly generous
splitting of ramification. The approach in [38] improves these kinds of bounds
at the expense of a layer of stacky complexity.
Outline. In Sect. 2, we generalize work of Pirutka [43] on splitting the ram-
ification of Brauer classes. Section 3 considers Gabber’s refined theory of
�′-alterations in the context of splitting ramification. Sections 4 and 5 discuss
the existence and deformation theory of twisted sheaves on proper models of
the function field we consider. Theorems 1.1 and 1.4 are proved in Sect. 6.
Starting in Sect. 4, we freely use the theory of twisted sheaves. An introduction
to the use of twisted sheaves to study questions about the Brauer group can be
found in [35] and [36].
Notation. If X is a scheme and R is a commutative ring, we denote by
Hi (X,µn), H

i (R,Gm), and so on the corresponding étale cohomology groups,
and by Br(X) and Br(R) the respective Brauer groups of Azumaya algebras.
Given a locally noetherian scheme X and a G-gerbe π : 𝒳 → X for some
closed subgroupG ↪→ Gm , wewill write Coh(1)(𝒳) for the category of coher-
ent𝒳-twisted sheaves. Similarly, given a locally noetherian scheme X , wewill
write Coh(X) for the usual categories of coherent sheaves on X . When F is
an 𝒳-twisted sheaf and M is an 𝒪X -module, for simplicity we write F ⊗ M
for the𝒳-twisted sheaf F ⊗𝒪𝒳 π∗M .

2 Splitting ramification

The results of this section are, for the most part, a generalization and rework-
ing of the results of Pirutka [43] (which themselves live in a tradition of
ramification-splitting results due to Saltman [44]). We follow Pirutka’s strat-
egy with minor modifications so that it works in mixed characteristic, and
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we give a somewhat different argument on the existence of rational functions
whose roots split ramification.

Our ultimate goal in this section is to show that we can split all of the
ramification occurring in the Brauer classes of interest to us with relatively
small extensions.

Let X be a regular noetherian integral schemewith function field F . Restric-
tion to the generic point induces an injectivemapH2(X,Gm) → H2(F,Gm) ∼=
Br(F), see [23, Proposition 1.8]. For A a commutative ring, the canoni-
cal map Br(A) → H2(A,Gm)tors is an isomorphism; see Hoobler [26].
More generally, if X is a scheme admitting an ample invertible sheaf, then
Br(X) → H2(X,Gm)tors is an isomorphism; see [15].

2.1 Ramification

In this section we fix a ring R and a field F containing R.

Definition 2.1.1 Fix a class α ∈ Br(F).

1. The class α is unramified at a discrete valuation ring A of F if α is in the
image of the restriction map Br(A) → Br(F). Otherwise, we say that α is
ramified at A.

2. The class α is unramified over R if α is unramified at every discrete valu-
ation ring A of F such that R ⊂ A.

3. If X is a regular noetherian integral schemewith function field F and x ∈ X
a point of codimension 1, we say that α is unramified at x if α is unramified
at the discrete valuation ring 𝒪X,x of F . When additionally X = Spec R
and x ∈ R is a nonzero divisor, we say that α is unramified at x if it is
unramified at the prime ideal (x). In this circumstance, the Weil divisor
consisting of the sum of all codimension 1 points of X over which α is
ramified is called the (reduced) ramification divisor of α.

Remark 2.1.2 Similarly, for a positive integer � invertible in F ,we can consider
the ramification of classes in Hi (F,µ

⊗ j
� ) at any discrete valuation ring A of

F whose residue field κ has characteristic prime to �. In this case, we say that
α ∈ Hi (F,µ

⊗ j
n ) is unramified at A if and only if α is contained in the kernel

of the residue map Hi (F,µ
⊗ j
n ) → Hi−1(κ,µ

⊗ j−1
n ) defined in terms of Galois

cohomology, see [9, §3.6]. Important cases are H2(F,µ�) and Hi (F,µ⊗i
� ),

which correspond to Brauer classes of period � and symbols of length i in
Galois cohomology.

Lemma 2.1.3 Suppose L/F is a finite field extension. If α ∈ Br(F) is unram-
ified over R then the restriction αL ∈ Br(L) is unramified over R.
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Proof For any discrete valuation ring A with fraction field L , the intersection
A ∩ F is a discrete valuation ring with fraction field F , and if α is unramified
at A ∩ F , then the restriction αL ∈ Br(L) is unramified at A. ��
Example 2.1.4 If X is a regular integral scheme with function field F , which
admits a proper surjective morphism X → Spec R, and α ∈ Br(X), then
by the valuative criterion, the image of α under the map Br(X) → Br(F) is
unramified over R. Conversely, by purity for regular local rings ([19, Theo-
rem 2’] for schemes of dimension at most 3 and [8] in general), any α ∈ Br(F)

that is unramified over R is in the image of the map H2(X,Gm) → Br(F).

The following gives a useful criterion for checking that Brauer classes
become unramified after a finite extension.

Lemma 2.1.5 Let R be a commutative ring and X a regular integral scheme
with a proper surjective morphism X → Spec R. Let F be the function field
of X and L/F a finite extension. Let α ∈ Br(F). If for every point x ∈ X with
R ⊂ 𝒪X,x , there exists a regular ring S ⊂ L that is an integral extension of
𝒪X,x , such that the image of α in L is unramified over S, then the image of α
in Br(L) is unramified over R.

Proof Let A be a discrete valuation ring with fraction field L containing R.
Then the intersection A ∩ F is a discrete valuation ring with fraction field F
containing R. By the valuative criterion for properness, there exists an R-
morphism Spec A ∩ F → X . Then the image x ∈ X of the closed point is
regular with R ⊂ 𝒪X,x . By our hypothesis, there exists a regular ring S ⊂ L
that is an integral extension of the regular local ring 𝒪X,x on which the image
of α in Br(L) is unramified over S. Since A is integral over A∩ F and we have
𝒪X,x ⊂ A∩ F , it follows that the integral closure of 𝒪X,x in L is contained in
A. Hence S, being integral over𝒪X,x , is contained in A. Since αL is unramified
over S, it is unramified at A by definition. ��

2.2 Local description of ramification

Recall that a regular system of parameters in a regular local ring is a minimal
generating set of the maximal ideal. A subsequence of a regular system of
parameters is called a partial regular system of parameters. Not every regular
sequence is a partial regular system of parameters. We fix a positive integer �.

Definition 2.2.1 Let R be a regular local ring with fraction field F and assume
that � is invertible in R. We say that α ∈ H2(F,µ⊗2

� ) is nicely ramified if α

is ramified only along a partial regular system of parameters x1, . . . , xh of R
and we can write

123



Period-index bounds 307

α = α0 +
h∑

i=1

(ui , xi ) +
∑

1≤i< j≤h

mi, j (xi , x j )

for an unramified class α0 and some ui ∈ R× and mi, j ∈ Z.
More generally, if X is a regular noetherian integral scheme with function

field F with � invertible on X , and α ∈ H2(F,µ⊗2
� ), then we say that α is

nicely ramified on X if it is nicely ramified at every local ring of X .

We will need the following result, proved in the two-dimensional case in
[44] and in the equicharacteristic case in [43, Section 3, Lemma 2].

Lemma 2.2.2 Let X be a regular noetherian integral scheme with function
field F and let α ∈ H2(F,µ⊗2

� ) where � is invertible on X. If α is ramified
only along a strict normal crossings divisor, then α is nicely ramified on X.

Proof Let R be a local ring of X . By hypothesis, α is ramified only along
a partial regular system of parameters x1, . . . , xh . We proceed by induction
on h. For h = 1, let F1 be the fraction field of R/(x1) and let β = (b) in
F×
1 /F×�

1 = H1(F1,µ�) be the residue of α, where (b) denotes the class (or
symbol) of b in F×

1 /F×�
1 . Then it follows that β is unramified by considering

the Gersten complex

H2(F,µ⊗2
� ) →

⊕

p∈Spec(R)(1)

H1(k(p),µ�) →
⊕

q∈Spec(R)(2)

H0(k(q),Z/�Z).

For the construction of the complex in this generality, see [30, Section 1]. Since
R/(x1) is a regular local ring, it is a UFD, and we may write b = u1

∏
π
ei
i for

irreducible elements πi and a unit u1 of R/(x1). Since the residue of b at πi
is the class of ei modulo �, it follows that each ei is a multiple of �, and thus
β = (u1) ∈ F×

1 /F×�
1 .

Lifting u1 to a unit u1 of R, it follows that the classα−(u1, x1) is unramified
on R. In particular, we may write α = α0 + (u1, x1) for α0 unramified as
claimed. For h > 1, let β ∈ F×

1 /F×�
1 be the residue of α at x1, as before.

Considering the Gersten complex, the residue of β must be canceled by the
residues ofα along primes in R/(x1). In particular, it follows that β can only be
ramified along the primes x2, . . . , xh in R/(x1). Since R/(x1) is a regular local
ring, it is a UFD, and we may represent β by an element b = u1

∏h
i=2 x

mi,1
i

with u1 a unit in R/(x1). In particular, we can lift b to b = u1
∏h

i=2 x
mi,1
i ,

where u1 ∈ R×. It follows that

α − (b, x1) = α − (u1, x1) −
h∑

i=2

mi,1(xi , x1)
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is unramified along x1 and only ramified along xi for i = 2, . . . , h. By induc-
tion, we may write

α − (b, x1) = α0 +
h∑

j=2

(u j , x j ) +
∑

j,k �=1

m j,k(x j , xk),

yielding α = α0 + ∑
(ui , xi ) + ∑

mi, j (x j , xk) as desired. ��

2.3 Putting ramification in nice position

We will need the following generalization of [43, Lemma 3], which from the
toroidal geometry perspective, is related to the process of barycentric subdi-
vision. The standard reference for toroidal geometry is [31], which is written
over an algebraically closed base field. However, all the constructions work
over an arbitrary base scheme as outlined in [18, IV Remark 2.6].

Definition 2.3.1 Let D ⊂ X be a strict normal crossings divisor in a regular
noetherian scheme. We define a presentation of D to be a finite collection
{Di }i∈I of distinct regular, but not necessarily connected, divisors such that
D = ∪i∈I Di . We call |I | the length of the presentation.
For example, we may choose our presentation to simply consist of the irre-

ducible components of D. On the other hand, the next lemma shows that after
possibly blowing up, we may find a presentation whose length is bounded by
the dimension of X .

Lemma 2.3.2 Let X be a regular noetherian scheme of dimension d and
D ⊂ X a strict normal crossings divisor. There exists a sequence of blowups
along regular subschemes f : X ′ → X such that f −1(D) admits a presenta-
tion of length at most d.

Before giving the proof, we recall some combinatorial notions related to
inverse images of strict normal crossings divisors under certain blowups.

Definition 2.3.3 An (abstract) simplicial complex Σ is a collection of
nonempty finite sets, called simplices, closed under inclusion. The union of
all simplices is the vertex set of Σ .

1. The elements σ ∈ Σ of cardinality i + 1 are called i -simplices. We write
Σi for the subset of all i-simplices in Σ . By abuse of notation, we also use
the term vertex for a 0-simplex and the symbol Σ0 for the vertex set.

2. The dimension of Σ is defined to be the maximal i ≥ 0 such that Σi �= ∅,
assuming that this maximum exists.
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3. Given a simplicial complex and a non-empty simplex σ ⊂ Σ , we define
the star subdivision Σ 
 σ with respect to σ to be the simplicial complex
whose vertex set is the vertex set of Σ together with a new vertex eσ , and
whose simplices are

{τ ∈ Σ : σ � τ } ⋃ {(τ � J ) ∪ {eσ } : ∅ �= J ⊆ σ ⊆ τ ∈ Σ}
= {τ ∈ Σ : σ � τ } ⋃ {(τ ′ ∪ {eσ } :
∅ �= J ⊆ σ ⊆ τ ′ ∪ J ∈ Σ , some J ⊆ Σ0 \ τ ′}.

4. We formally define Σ 
 ∅ = Σ .

Remark 2.3.4 Let Σ be a simplicial complex.

(i) If σ is a 0-simplex, then Σ 
 σ is isomorphic to Σ by sending eσ to σ .
(ii) If σ and τ are simplices such that neither σ ⊆ τ nor τ ⊆ σ , then we have

that (Σ 
 σ) 
 τ = (Σ 
 τ) 
 σ . In particular, for any subset Σ ′ ⊆ Σ

consisting of simplices none of which contain any other, we can define
the iterated star subdivision Σ 
 Σ ′ with respect to all simplices in Σ ′.

Definition 2.3.5 Let Σ be a simplicial complex.

(a) The barycentric subdivision Sd(Σ) of Σ is the iterated star subdivision

(((Σ 
 Σd) 
 Σd−1) 
 · · · ) 
 Σ1,

see [31, III, §2A].
(b) The order complex Fl(Σ) of Σ is the simplicial complex with a vertex

for each simplex of Σ and whose i-simplices are all length i + 1 flags of
inclusions of simplices of Σ .

We will need the following combinatorial lemma.

Lemma 2.3.6 There is a natural isomorphism Sd(Σ) ∼= Fl(Σ) of simplicial
complexes.

Proof See [33, §2.1.5]. ��
Now, we apply these definitions to a simplicial complex associated to a

presentation of a strict normal crossings divisor.

Definition 2.3.7 Let D ⊂ X be a strict normal crossings divisor in a regular
noetherian scheme and let {Di }i∈I be a presentation of D. We define a sim-
plicial complex Σ(D) = Σ(D, {Di }i∈I ) with vertex set I such that a subset
J ⊂ I is in Σ(D) whenever ∩ j∈J D j �= ∅. We call Σ(D) the naive dual
complex associated to the presentation.
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Remark 2.3.8 The usual dual complex, which includes distinct i-simplices for
each irreducible component of each intersection of i + 1 components of D,
has better homotopical properties (e.g., see [42]); the naive version will suffice
for our purposes.

Following standard conventions, for J ⊂ I , we will let DJ denote the
intersection ∩ j∈J D j . By hypothesis, DJ is nonempty whenever J ∈ Σ(D)

and since D is snc is a regular subscheme of X of codimension |J |.
Remark 2.3.9 The dimension of Σ(D) is bounded above by the dimension
of X .

An important fact relating the geometry of the pair (X, D) to the combina-
torics of the dual complex Σ(D) is the following.

Lemma 2.3.10 Let {Di }i∈I be a presentation of a snc divisor D in a regular
noetherian scheme X. Let σ be an i-simplex ofΣ(D) and let f : BlDσ X → X
be the blowup of X along Dσ . We let

– D̃ = f −1(D) denote the inverse image of D,
– D̃i = f st(Di ) denote the strict transform of Di for i ∈ I ,
– and E denote the exceptional divisor of f .

The naive dual complexΣ(D̃)with respect to the presentation {E}�{D̃i }i∈I of
D̃ is naturally isomorphic to Σ(D) 
 σ , where the new vertex eσ corresponds
to E.

Note that an analogous statement is made in [13, Proposition 3.3.15] in the
case of the usual dual complex.

Proof Weuse the natural bijection of vertex sets {Σ(D)
σ }0 ∼= Σ(D̃)0 which
is equality on I = Σ(D)0 and sends eσ to E . To prove the lemma, we need
to show that the incidence of the divisors E and D̃i satisfy the same incidence
relations as the 0-simplices of the complex Σ(D) 
 σ , namely that

1. for J ⊆ I , we have that D̃J �= ∅ if and only if DJ �= ∅ and σ � J ;
2. for J = J ′ � {eσ } where J ′ ⊂ I , we have that D̃J �= ∅ if and only if

DJ ′�J ′′ �= ∅ for some J ′′ ⊆ σ ⊆ J ′ ∪ J ′′ with ∅ �= J ′′ ⊆ I \ J ′.
Geometrically, the first condition says that ∩i∈J D̃i will be nonempty if and
only if∩i∈J Di is nonempty and is not contained in Dσ . The only nontrivial part
of the statement then is the assertion that if the intersection DJ is nonempty
and is contained in Dσ , then D̃J is empty. To see this, note that D̃J ⊂ D̃σ , so it
suffices to assume that J = σ . Looking étale locally near Dσ , we can replace
X with Spec R for a regular local ring R, and where Di , i ∈ σ is cut out by
x1, . . . xm , which form part of a regular system of parameters. The blowup is
then given as the relative proj of the graded ring R[t1, . . . , tm]/(xi t j − x j ti )
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for pairs of indices i �= j , with the strict transform D̃i cut out by the ideal
(ti , xi ). It follows that the stratum D̃σ is defined by an ideal which contains
the irrelevant ideal, and is therefore empty.

The content of the second part is the statement that a stratum D̃J ′ , where
J ′

� σ (this condition is ensured by J ′′ ⊂ σ \ J ′) should have a nonempty
intersection with the exceptional divisor E exactly when the stratum DJ ′ has
a nontrivial intersection with a stratum DJ ′′ with mutual intersection DJ ′�J ′′
contained in the blowup locus Dσ .

Suppose that J ′ and J ′′ are chosen as above. As σ � J ′ (since the elements
of J ′′ are contained in σ but not in J ′), DJ ′ � Dσ . On the other hand, we
have that Dσ ∩ DJ ′ ⊇ DJ ′′ ∩ DJ ′ = DJ ′′�J ′ �= ∅, and hence D′

J nontrivially
intersects the locus Dσ that is being blown up. But therefore D̃J ′ , whichmay be
identified with the strict transform of DJ ′ nontrivially intersects E , as desired.

In the other direction, if for some J ′
� σ , all such intersections were trivial,

then it would follow that DJ ′�σ is also trivial, showing that DJ ′ is disjoint
from Dσ . But in this case, it is easy to see that DJ ′ will be disjoint from E as
claimed. ��

Now, we can use Lemma 2.3.10 to prove Lemma 2.3.2.

Proof (Proof of Lemma 2.3.2) Consider the proper birational morphism
f : X ′ → X obtained by sequentially blowing up the strata of D, first blowing
up the 0-dimensional strata of D, then the strict transformsof the 1-dimensional
strata of D, then the strict transforms of the 2-dimensional strata of D, etc.
The inverse image f −1(D) is a strict normal crossings divisor in X ′ and, by
Lemma 2.3.10, its naive dual complex is the barycentric subdivision ofΣ(D).
Given its interpretation in Lemma 2.3.6 as the order complex of Σ(D), the
vertices of the barycentric subdivision can be coloredwith at most d colors “by
dimension”, with the subset of vertices corresponding to elements in Σ(D)i
having color i . This coloring has the property that no two distinct vertices of
the same color are both contained in a simplex; equivalently, the correspond-
ingly colored components of f −1(D) are disjoint in X ′. Hence the union of
all irreducible components of the same color is a regular divisor.

Thus, we can express f −1(D) as the union of at most d regular (but not
necessarily connected) divisors, as required. We can further blow up smooth
points to get a union of exactly d regular divisors. ��

2.4 Construction of rational functions for splitting ramification

Let {Vi }i∈I be a family of cycles on X . Given a subset J ⊂ I , let VJ denote the
naive intersection cycle, defined as follows. Given two integral subschemes
A and B of X , the naive intersection cycle is (A ∩ B)red, written as a sum of
its irreducible components. Given two cycles

∑
aiWi and

∑
b jW j , the naive
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intersection is the union of the naive intersections Wi ∩ Wj . (This is purely a
way of measuring dimensions of support as a notational convenience, nothing
else. We thus ignore coefficients and intersection multiplicities.)

Definition 2.4.1 A collection of irreducible subschemes {Wi }i∈I of X inter-
sects properly if for every subset J ⊂ I we have codimWJ ≥ ∑

i∈J codimWi
(using the convention that codim ∅ = ∞). A collection of cycles {Vi }i∈I on
X intersect properly if any collection {Wi }i∈I , where Wi is an irreducible
component of the support of Vi for all i ∈ I , intersects properly.

Lemma 2.4.2 Let X be a scheme. Suppose that {Wi }i∈I is a collection of
cycles of X that intersect properly. If W ⊂ X is an irreducible subscheme
such that, for every subset J ⊂ I , the scheme W intersects each irreducible
component of WJ properly, then {Wi } ∪ {W } intersects properly.
Proof We omit the proof. ��

The following is a direct generalization of the lemma in the correction to
[44], and which can be viewed as a version of Kawamata’s trick, see [1, §5.3].

Lemma 2.4.3 Let X be a regular scheme admitting an ample invertible sheaf
and let D1, . . . , Dd be a collection of regular divisors on X whose union is a
strict normal crossings divisor. Let

D̃i =
d∑

j=1

mi, j D j , i = 1, . . . , n

be a collection of integer linear combinations of the D j . In this case, for
i = 1, . . . , n, there exist rational functions fi and divisors Ei on X such that

1. div( fi ) = D̃i + Ei , and
2. the collection {Ei }i=1,...,n ∪ {Dj } j=1,...,d intersects properly.

Proof We construct the fi inductively.

Base case i = 1. Let P be a (scheme-theoretic) disjoint union of closed
points, with one closed point in each irreducible component of DI for each
subset I ⊂ {1, . . . , d}. Let R be the semilocal ring of the points of P (which
exists since we can put P in a single quasi-affine open of X , using the ample
invertible sheaf [21, Théorème 4.5.2] and the graded prime-avoidance lemma
[17, Section 3.2]). By [7, Chapitre II, Section 5.4, Proposition 5], since finitely
generatedprojectivemodules over R are free, it follows that eachDi is principal
on R. In particular, we may write Di as the zero locus of a function xi ∈ R. We
then have, upon setting f1 = ∏

x
m1, j
j , that ( f1) = D̃1 + E1 and the support

of E1 contains none of the strata DI . In particular, since E1 is a divisor, the
codimension of E1 ∩ DI in DI is at least 1 as desired.
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Induction step. Suppose we have previously defined f1, . . . , fr−1 with the
property that div( fi ) = D̃i + Ei with {Ei }i=1,...,r−1 ∪ {Dj } j=1,...,d intersect
properly. For every pair of subsets I ⊂ {1, . . . , d} and J ⊂ {1, . . . , r − 1},
consider the intersection DI ∩ EJ and let P be a scheme theoretic union
consisting of at least one closed point from each irreducible component of each
of these nonempty intersections for every I, J as above. Let R be the semilocal
ring at P . As above, wemaywrite Di as the zero locus of some function xi ∈ R
on Spec R ⊂ X , and considering the xi as rational functions on X , we set
fr = ∏

x
mr, j
j . It follows that ( fr ) = D̃r +Er where the support of Er contains

no irreducible component of the strata DI ∩ EJ , with J ⊂ {1, . . . , r − 1}.
Therefore {Ei }i=1,...,r ∪ {Dj } j=1,...,d intersects properly as desired. ��

Let T ∈ Matn,d(Z) be an n × d matrix. For subsets I ⊂ {1, . . . n} and
J ⊂ {1, . . . , d}, let TI,J denote the |I | × |J |-submatrix of T with rows corre-
sponding to the elements of I and columns corresponding to the elements of J .

Definition 2.4.4 Let � be a prime and n, d be positive integers with n ≥ d.
An n × d matrix T ∈ Matn,d(Z) is �-Pirutka if for all nonempty subsets
I ⊂ {1, . . . , n} and J ⊂ {1, . . . , d}, with |I | − |J | = n − d, the submatrix
TI,J has (maximal) rank |J | modulo �.

Lemma 2.4.5 Let R be a regular local ring with fraction field F and let
α ∈ Ht (F,µ⊗t

� ) where � is invertible in R. Let x1, . . . , xn ∈ R be a regular
system of parameters and suppose that α = (u1, . . . , ut−h, x1, . . . , xh) with
ui units in R. If L = F( �

√
x1, . . . , �

√
xh) and S is the integral closure of R in

L, then

1. S is a regular local ring with maximal ideal generated by �
√
x1, . . . , �

√
xh,

xh+1, . . . , xn,
2. the class αL has trivial residue at each codimension one prime of S.

Proof We omit the proof that S = R[z1, . . . , zh]/(z�1 − x1, . . . , z�h − xh) and
is regular with maximal ideal m = (z1, . . . , zh, xh+1, . . . , xn).

Now, for a prime P ⊂ R of height one and a prime Q ⊂ S lying over it
with ramification index e, we have a commutative diagram

Ht (F,µ⊗t
� ) Ht−1(Frac(R/P),µ⊗t−1

� )

e res

Ht (L ,µ⊗t
� ) Ht−1(Frac(S/Q),µ⊗t−1

� )

of residue maps, which shows that αL only ramifies at primes lying over the
ramification locus of α. In particular, αL can only ramify over the primes (zi )
for i = 1, . . . , h, which each have ramification index � over (xi ). Since all
residues of α are �-torsion, the diagram shows that αL is unramified. ��

123



314 B. Antieau et al.

Lemma 2.4.6 Let X be a regular scheme of dimension d admitting an ample
invertible sheaf and D1, . . . , Dd be a collection of regular divisors of X whose
union is snc. Let � be a prime invertible on X and let α ∈ H2(F,µ⊗2

� ) be a
class ramified only along the union of the Di . Let T = (mi j ) be an �-Pirutka
n× d matrix. For each i = 1, . . . , n, let D̃i = ∑d

j=1mi j D j and let fi and Ei

be as in Lemma 2.4.3. If L = F( �
√

f1, . . . , �
√

fn), then αL is unramified.

Proof By Lemma 2.2.2, for any point z ∈ X , we have that

α = α0 +
∑

(ui , xi ) +
∑

i, j

mi, j (xi , x j ) (2.1)

for ui ∈ 𝒪×
X,z and xi local equations for Di in 𝒪X,z .

To show that α becomes unramified in L , by Lemma 2.1.5, it suffices to
show that for every point z ∈ X and each term in (2.1), there is a subfield of
L where that term becomes unramified over some regular subring contained
in L and integral over 𝒪X,z .

For example, by Lemma 2.4.5, any term of the form (ui , xi ) will become
unramified over a regular subring of an extension F( �

√
gi ) where gi is a local

equation for Di at z; any term of the form (xi , x j ) will become unramified
over a regular subring of an extension F( �

√
gi , �

√
g j ).

We thus seek the following: for each point z ∈ X and each j = 1, . . . , d,
an element g j ∈ F such that
1. g j is a local equation for r D j at z, where r ≡ 1 mod �;
2. F( �

√
g j ) ⊂ L .

Choose J maximal with respect to inclusion so that z ∈ DJ . If J = ∅ (so that
α is unramified over 𝒪X,z), then g j = 1 works for all j . Otherwise, choose
any j0 ∈ J ; we will find g j0 ∈ F satisfying conditions (1) and (2) above.

We claim that we can find I ⊂ {1, . . . n}with |I |−|J | = n−d and z /∈ ∪Ei .
To see this, set

I ′ = {i ∈ {1, . . . , n} | z ∈ Ei }.
Since z ∈ EI ′ ∩ DJ , it follows by the properness of the intersection that
|I ′| + |J | ≤ d = dim(X). In particular, there are at most d − |J | indices i
such that z ∈ Ei . This means we can find a set of n − (d − |J |) indices i such
that z /∈ Ei . Let I be such a set. Since T is an �-Pirutka matrix, the submatrix
TI,J has full rank |J | modulo �, and hence we can find ai ∈ Z for i ∈ I such
that

∑
i∈I aimi, j ≡ δ j, j0 mod � for each j ∈ J . Translating in terms of D̃i

and Di , this says that there exists r ≡ 1 mod � such that

∑

i∈I
ai D̃i = r D j0 +

∑

j /∈J

b j D j
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and therefore

div

(
∏

i∈I
f aii

)
= r D j0 +

∑

j /∈J

b j D j +
∑

i∈I
ai Ei .

Let g j0 = ∏
i∈I f aii . Since z /∈ Ei for all i ∈ I and z /∈ Dj for all j /∈ J , we

find that g j0 is a local equation for r D j0 in 𝒪X,z . It is clear that �
√
g j0 ∈ L . ��

Theorem 2.4.7 Let X be a regular scheme of dimension d admitting an ample
invertible sheaf. Let � be a prime invertible on X and α ∈ H2(F,µ⊗2

� ) be
ramified along a strict normal crossings divisor. If there exists an �-Pirutka
n × d matrix, then we can find rational functions f1, . . . , fn ∈ F so that α

becomes unramified in L = F( �
√

f1, . . . , �
√

fn).

Proof ByLemma2.3.2we canperforma sequence of blowups of X tomake the
ramification divisor ofα contained in an snc divisor that is a union D1∪· · ·∪Dd
of regular divisors. Now the result is an immediate application of Lemma 2.4.6.

��

2.5 Some Pirutka matrices

Example 2.5.1 Pirutka’s proof in [43] uses the following �-Pirutka matrix.
Consider n = d2, and let T be the d2 × d matrix given by d (vertical) copies
of the d×d identity matrix. The condition is now: for every subset of columns
J , and subset of rows I of order d2 − d + |J |, we have full rank. But notice
that since |J | ≥ 1, we are always removing fewer than d rows. Since each row
of the identity matrix occurs d times, each row of the identity matrix must still
occur in the I, J -minor, showing that TI,J has full rank.

Example 2.5.2 The 3 × 3 matrix
⎛

⎝
1 3 3
1 2 1
1 1 2

⎞

⎠

considered in [43, Remark 5] is �-Pirutka for all primes � > 3.

Example 2.5.3 The 4 × 3 matrix
⎛

⎜⎜⎝

1 1 1
1 1 0
0 1 1
1 2 1

⎞

⎟⎟⎠

found in [43, Remark 4] is �-Pirutka for all primes �.
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Remark 2.5.4 A computer search shows that

1. there are no 2-Pirutka 2 × 2 or larger square matrices, and
2. there are no 3-Pirutka 3 × 3 or larger square matrices.

It is easy to write a 2× 2 matrix that is �-Pirutka for all primes � > 2. Thus
one can split the ramification of odd prime period classes on surfaces using
roots of two rational functions, reproducing results of Saltman [45] except for
classes of period 2.

Question 2.5.5 For which �, n, d do there exist �-Pirutka n × d matrices?

It is clear that if n � d, then there exist �-Pirutka n × d matrices. We also
have the following bound for square matrices.

Proposition 2.5.6 If � >
(2n−1

n

)
is prime, then there exist �-Pirutka n × n

matrices.

Proof First note that an n × n matrix T is �-Pirutka if and only if all maximal
minors of the n × 2n matrix A = (In|T ) do not vanish modulo �. We will
consider building the matrix A = (e1, . . . , en, t1, . . . , tn) by inserting the
columns ti one at a time. For inserting the first column, we simply require
that all entries in t1 do not vanish. Once the first column has been fixed, we
require that t2 avoids the

(n+1
n−1

)
hyperplanes defined by the maximal minors

containing t2, which is certainly possible if � >
(n+1
n−1

)
. Similarly, once the

first k columns have been fixed, we then require that tk+1 avoids the
(n+k
n−1

)

hyperplanes defined by themaximalminors containing tk+1, which is certainly
possible if � >

(n+k
n−1

)
. When k = n − 1, then inserting the final column tn is

certainly possible if the stated bound is satisfied. ��
Of course this bound is far from sharp. The hyperplanes in the above proof

are not in general position.

3 Alterations

In this section, we use Gabber’s theory of prime-to-� alterations over a discrete
valuation ring; see [28], [29]. For an example of the statement we are interested
in, see [11, Théorème 3.25] and its proof.

Definition 3.1 Let � be a prime number and X a scheme of finite type over
an excellent ring. An �′-alteration X ′ → X is a proper surjective generically
finite map such that for every maximal point η of X , there exists a maximal
point η′ of X ′ over η such that the residue field extension κ(η′)/κ(η) has degree
prime to �.
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Lemma 3.2 Let X be an integral scheme, X ′ → X an �′-alteration, η′ a
maximal point of X ′ dominating X, and α ∈ Br(κ(X)). If ind(ακ(η′)) = �N

then ind(α) = �N .

Proof Because κ(η′)/κ(X) has degree prime-to-�, the result follows by a stan-
dard restriction-corestriction argument. ��
Definition 3.3 Let R be a discrete valuation ring, s ∈ Spec R the closed point,
and X an R-scheme. If X is equidimensional, flat and of finite type over R, the
generic fiber of X over Spec R is smooth, and the reduced special fiber X0,red
is a strict normal crossings divisor on X , then X is said to be quasi-semistable
over R.

The following two results are a distillation of the main results of Gabber’s
theory of uniformization by �′-alterations; see [28, Theorem 1.4], [29, X.2],
and [11, Théorème 3.25].

Lemma 3.4 If X is quasi-semistable over R, then X → Spec R is étale locally
of the form

X = Spec R[t1, . . . , tn]/(ta11 · · · tarr − π), (3.1)

where π is a uniformizing parameter of R.

Theorem 3.5 (Gabber) If R is an excellent henselian discrete valuation ring
with residue field k of characteristic p ≥ 0 and fraction field K , and X is a
proper scheme over R, then for any prime � �= p, there exists a commutative
diagram of �′-alterations

X ′ X

Spec R′ Spec R

with R′ an excellent henselian discrete valuation ring such that X ′ is a regular
scheme that is quasi-semistable and projective over R′.

Proposition 3.6 Let R be an excellent henselian discrete valuation ring, X be
an integral scheme proper over R of relative dimension d. If α ∈ Br(κ(X))[�],
then there exists a diagram of morphisms

Y ′ h Y
g

X ′ f
X

Spec R′′ Spec R′ Spec R

(3.2)
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where

1. R′/R and R′′/R′ are finite extensions of excellent henselian discrete valu-
ation rings such that R′′/R has degree prime to �,

2. f and h are �′-alterations,
3. X ′ and Y ′ are regular and integral,
4. X ′ → Spec R′ and Y ′ → Spec R′′ are projective and quasi-semistable,
5. Y is integral and the function field extension induced by g has the form

κ(Y ) = κ(X ′)( �
√

f1, . . . ,
�
√

fN )

for some N, and
6. ακ(Y ′) lies in the subgroup Br(Y ′)[�] ⊆ Br(κ(Y ′))[�].
Moreover, if there exists an �-Pirutka n × (d + 1) matrix, then we may take
N = n.

Proof By Theorem 3.5, there exists a commutative diagram of �′-alterations

X1
f1

X

Spec R1 Spec R

where X1 is regular and integral, and projective over R1. Consider the ramifi-
cation divisor D1 of ακ(X1) on X1. By an application of Gabber’s embedded
uniformization (see [28, Theorem 1.4]), there exists a further commutative
diagram of �′-alterations

X ′ f2
X1

Spec R′ Spec R1

where X ′ is regular and integral, and projective and quasi-semistable over R′,
and such that f −1

2 (D1)red ∪ (Xs)red has normal crossings (but not necessarily
strict normal crossings), where s ∈ Spec R′ is the closed point. After blowing
up X ′, we may assume that f −1

2 (D1)red ∪ (X ′
s)red is a strict normal crossings

divisor [14, Paragraph 2.4] (see also [12]). On the other hand, the ramification
divisor of ακ(X ′) must be contained in f −1

2 (D1)red, so (after this blowing up)
that ακ(X ′) has ramification divisor with strict normal crossings. We compose
these two squares to arrive at the right-most square in the desired diagram. We
can also assume, by possibly taking a further prime-to-� extension, that R′ has
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a primitive �th root of unity so that we may apply the results of Sect. 2.2 to
classes in the Brauer group.

By Theorem 2.4.7 and Example 2.5.1, there exist rational functions
f1, . . . , fN in κ(X ′) such that αL is unramified, where L = κ(X ′)( �

√
f1, . . . ,

�
√

fN ). (We can always choose N = (d + 1)2, and moreover, if there exists an
�-Pirutka n× (d + 1) matrix, we can take N = n.) Let Y be the normalization
of X ′ in L and g : Y → X ′ the induced map. We now apply Theorem 3.5
again to arrive at an �′-alteration

Y ′ h Y

Spec R′′ Spec R′

where Y ′ is regular and integral, and projective and quasi-semistable over R′′.
Since ακ(Y ) is unramified, we have by Lemma 2.1.3 that ακ(Y ′) is unramified,
whence ακ(Y ′) ∈ Br(Y ′) by Example 2.1.4. ��

4 Existence of twisted sheaves on strict normal crossings surfaces

The purpose of this section is to show that period equals index for Brauer
classes on strict normal crossings surfaces.More precisely, if X is a snc surface
over a separably closed or semi-finite field andα ∈ H2(X,µn) is a cohomology
class with n invertible on X , we show in Proposition 4.7 below that there is an
Azumaya algebra A of degree n on X with cohomology class α (equivalently,
there exists a twisted sheaf of rank n and trivial determinant).

We note first that Brauer groups of curves vanish in a high degree of gener-
ality.

Lemma 4.1 Let C be a curve over a field k of characteristic p ≥ 0. If k is
separably closed (resp. k is semi-finite and C is proper), then Br(C)[n] = 0
for n prime to p (resp. Br(C) = 0).

Proof If k is separably closed, then this is [24, Corollaire 1.3]. Thus, assume
that k is semi-finite and C is proper over k. Consider the Leray spectral
sequence in étale cohomology

Est
2 = Hs(k,Rt π∗Gm,C ) �⇒ Hs+t (C,Gm,C )

for the structural morphism π : C → Spec k. The only contributions to
H2(C,Gm,C ) are
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H0(k,R2 π∗Gm,C ),

H1(k,R1 π∗Gm,C ) ∼= H1(k,PicC/k),

H2(k,R0 π∗Gm,C ) ∼= H2(k,Gm).

The last vanishes because k is semi-finite. To analyze the second term, let
C̃ → C be the normalization of the largest reduced subscheme Cred of C . By
[6, Corollary 9.2.11] (in fact, by reading the preceding Propositions carefully),
there is an exact sequence

0 → G → PicC/k → PicC̃/k → 0

of étale sheaves over k, whereG is a geometrically integral commutative linear
algebraic group. Moreover, as C̃/k is smooth (since k is perfect), there is an
exact sequence (e.g., [6, Propositions 9.2.3, 9.2.14])

0 → Pic0
C̃/k

→ PicC̃/k → A → 0,

wherePic0
C̃/k

is an abelian variety and A is an étale sheaf on kwith A(ks) ∼= Zr ,

where r is the number of irreducible components of C̃ks . In fact, A becomes
constant as soon as each component of C̃ acquires a rational point. In particular,
Aks is isomorphic to Zr , with the factors corresponding to the irreducible
components, and hence permuted by the Galois group Γ = Gal(ks/k). This
means that Aks , as a Galois module, is of the form

⊕
i Z[Γ/Hi ] for some

open subgroups Hi ⊂ Γ . By Shapiro’s Lemma, we have H1(Spec k, A) =
H1(Γ,

⊕
i Z[Γ/Hi ]) = ∏

i H
1(Hi ,Z) = 0.

Note that since k is semi-finite, we have that H1(Spec k,G) = 0 for each
geometrically integral commutative group scheme G over k. To see this, it
suffices to show (since G is commutative) that any G-torsor T has a 0-cycle
of degree 1, for which it suffices to show that T is trivial over the maximal
prime-to-� extension for each prime number �. But these fields are all pseudo-
algebraicaly closed (by the definition of semi-finiteness), hence T has a point
over each of them, as G is assumed to be geometrically integral.

It follows by considering the above exact sequences that H1(k,PicC/k) = 0.
It remains to prove that H0(k,R2 π∗Gm,C ) = 0. But, the stalk of R2 π∗Gm,C is
isomorphic to H2(Cks ,Gm), where ks is the separable closure of k. Since ks is
algebraically closed (as k is perfect), this groupvanishes by [24,Corollaire 1.2].

��
Remark 4.2 There is also a proof that uses Tsen’s theorem (resp. class field
theory) to treat the regular case and then deduces the general case by defor-
mation from points and a Moret-Bailly type formal gluing argument, but we
omit the details here.
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Remark 4.3 The conclusion that Br(C)[n] = 0 for n prime to p cannot be
improved to Br(C) = 0 without assuming that k is algebraically closed. If k
is separably closed but not algebraically closed, then Br(k[x]) is nonzero.
This example appears already in Auslander and Goldman [5, Theorem 7.5].
Consider the Artin–Schreier extension L of k(x) defined by y p − y − x = 0.
The ring k[x, y]/(y p − y − x) is easily seen to be smooth over k, and hence
it is the integral closure of k[x] in L . Since k is not separably closed, there is
an element w ∈ k such that w /∈ k p. The algebra

k[x]〈y, z〉/(y p − y − x, z p − w, zy − yz − z)

is Azumaya over k[x]. For further details, see Gille and Szamuely [20, Sec-
tion 2.5]. This also explains why the full Brauer group is not A1-homotopy
invariant.

The following lemma shows that the only obstruction to extending an 𝒳-
twisted locally free sheaf on a curve C inside a surface X is whether or not the
determinant extends. It is a direct generalization to the twisted setting of [16,
Lemma 5.2], although the proof is slightly different owing to the fact that if
the µn-gerbe 𝒳 is nontrivial, then we cannot make use of an 𝒳-twisted line
bundle on X .

Lemma 4.4 Let C be a proper curve in a regular quasi-projective 2-
dimensional scheme X over a field k of characteristic p ≥ 0, and fix aµn-gerbe
𝒳 → X,where n is prime to p. Suppose that𝒳 has index n and that the Brauer
class of𝒳 vanishes on every proper curve in X, e.g., k is separably closed or
semi-finite by Lemma 4.1.

If V is a locally free 𝒳-twisted sheaf on C of rank n with det V = L|C,
where L ∈ Pic(X), then, possibly after taking a finite prime-to-n extension
of k, there exists a locally free 𝒳-twisted sheaf W on X such that W |C ∼= V
and det(W ) ∼= L.

Proof Since 𝒳 has index n, there is a locally free 𝒳-twisted sheaf E of rank
n, see [36, Proposition 3.1.2.1(iii)]. Choose an ample line bundle 𝒪X (1) on X .
To prove the Lemma, we will use the following.

Claim There is an integer m, a proper curve D ⊂ X with dim(D ∩ C) = 0
in the linear system |L(mn) ⊗ det(E∨)|, and an invertible𝒳-twisted sheaf M
on D such that there is an exact sequence of 𝒳C -twisted sheaves

0 → E(−m)|C → V → M |C∩D → 0.

We prove the lemma first assuming the claim. Let

γ ∈ Ext1C(M |C∩D, E(−m)|C)
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be the corresponding (nonzero) extension class. Our goal is to lift γ to
Ext1X (M, E(−m)). Given any open subset U ⊆ X containing C , there is
an exact sequence

Ext1U (M |U∩D, E(−m)|U ) → Ext1C (M |C∩D, E(−m)|C)

→ Ext2U (M |U , E(−m)(−C)|U ).

Now,

ℰ𝓍𝓉0U (M |U∩D, E(−m)(−C)|U ) = 0

since M |U∩D is a torsion sheaf, while

ℰ𝓍𝓉2U (M |U∩D, E(−m)(−C)|U ) = 0

because M |U∩D is a locally free sheaf on a curve in U and hence has coho-
mological dimension 1. From the local-to-global ext spectral sequence it
follows that

Ext2U (M |U∩D, E(−m)(−C)|U ) ∼= H1(U,ℰ𝓍𝓉1U (M |U∩D, E(−m)(−C)|U )).

Ifwe further chooseU to be such thatU∩D is affine and dim(X�U ) = 0, then
this latter group vanishes since ℰ𝓍𝓉1U (M |U∩D, E(−m)(−C)|U ) is supported
on D and so

H1(U,ℰ𝓍𝓉1U (M |U∩D, E(−m)(−C)|U ))

∼= H1(U ∩ D,ℰ𝓍𝓉1U (M |U∩D, E(−m)(−C)|U )|D) = 0,

by Serre’s vanishing theorem for the cohomology of a quasi-coherent sheaf
on an affine variety. It follows that γ lifts to an extension

0 → E(−m)|U → Ṽ → M |U∩D → 0

on U such that Ṽ |C ∼= V . Let W be j∗Ṽ , where j : U → X is the inclu-
sion. Then, W is reflexive since X −U has codimension 2. By construction it
restricts to V onC , and since S is regular and 2-dimensional,W is locally free.

The determinant of W is

det(E(−m)) ⊗ det(M) ∼= det(E)(−mn) ⊗ det(M).

Since M is a locally free𝒳-twisted sheaf of rank 1 on D, we have det(M) ∼=
𝒪X (D) (see [36, Proposition A.5]). But D was chosen to be in the class of
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the linear system associated to L(mn) ⊗ det(E∨). It follows immediately that
det(W ) ∼= L , as desired.

Finally, we proceed to prove the Claim. For sufficiently large m, a general
element of Hom(E |C , V (m)) is injective and has a cokernel isomorphic to
the pushforward of an invertible 𝒳-twisted line bundle on a general member
of the linear system

∣∣N |C
∣∣, where N |C = det(V (m)) ⊗ det(E |∨C ). (We sup-

press the fact that N depends on m in the notation.) This follows from [35,
Corollary 3.2.4.21]; if k is finite, to use the required Bertini theorem we can
take arbitrarily large finite prime-to-n extensions of k to ensure the existence
of rational points avoiding the “forbidden cone” (as any open subset of affine
space over an infinite field contains rational points). By assumption, the line
bundle N |C is the restriction of the line bundle N = L(mn) ⊗ det(E∨) on X .
For sufficiently large m, N is ample, and a general member of |N | restricts to
a general member of

∣∣N |C
∣∣. We let D be a general regular member of |N | such

that D ∩C is the support of an injective map E |C → V (m) with cokernel the
pushforward of an invertible 𝒳-twisted sheaf on D ∩ C . By hypothesis, the
Brauer class of𝒳 vanishes on D, so there is an invertible𝒳-twisted sheaf M
on D. This proves the claim. ��

Before getting to the main result, we need to extend a standard result about
elementary transformations to the case of a strict normal crossings scheme.
The case of a regular scheme is handled in [36, Corollary A.7].

Definition 4.5 Suppose that Z is an algebraic stack, i : W ⊂ Z is a closed
substack, F is a quasi-coherent sheaf on Z admitting a quotient q : F |W → Q.
The elementary transform of F along q is defined to be the kernel of the
morphism F → i∗Q induced by the adjunction map and q.

Lemma 4.6 Let X be a scheme and C ⊂ X an effective Cartier divisor with
connected component decomposition C = �iCi . Suppose that π : 𝒳 → X
is a µn-gerbe and that E is a locally free 𝒳-twisted sheaf. If q : E |C → F
is a surjection to a locally free 𝒳-twisted sheaf F supported on C, then the
determinant of the elementary transform of E along q is isomorphic to

det(E) ⊗ 𝒪X
(− ∑

i miCi
)
,

where mi is the rank of F |Ci .

Proof In order for the determinant to be well-defined, we need to check that
the subsheaf G := ker(E → i∗F) is perfect when viewed as a complex of
𝒳-twisted 𝒪𝒳-modules with quasi-coherent cohomology sheaves. In fact, G
is locally free. To see this, it suffices to work smooth-locally and prove the
following: let Z be a scheme, i : W ↪→ Z an effective Cartier divisor, and
E a locally free sheaf on Z . Given a locally free sheaf F on W , the kernel of
any surjection E � i∗F is locally free. This in turn reduces to the local case,
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so we may assume that Z = Spec A, that W is cut out by a single regular
element a ∈ A, and that E and F are free on Z and W , respectively. Since
𝒪W has projective dimension 1 over A, so does F . But since E has projective
dimension 0, it follows that the kernel of any such surjection must also be
projective, hence locally free, as desired.

To prove the Lemma, it is enough to verify that det(i∗F) ∼= 𝒪X (
∑

i miCi ).
Assume henceforth that C is connected, and hence that F has constant rank,
say m, everywhere on C . Pulling back to the Severi–Brauer scheme P → X
associated to the Azumaya algebra π∗ ℰ𝓃𝒹(E) (so that𝒳|P has trivial Brauer
class) and using the fact that Pic(X) → Pic(P) is injective,we are immediately
reduced to the analogous statement for trivial Brauer classes. Let L be an
invertible 𝒳-twisted sheaf. The classical theory of determinants tells us that
det(i∗F ⊗ L∨) ∼= 𝒪(mC). But the rank of i∗F is 0, so this also computes
det(i∗F), as desired. ��
Proposition 4.7 Let X be a quasi-projective geometrically connected snc sur-
face over a field k of characteristic p ≥ 0, and let 𝒳 → X be a µn-gerbe,
where n is prime to p. Suppose that𝒳 has index n on each irreducible compo-
nent of X and that the Brauer class of𝒳 vanishes on each closed subscheme
of X of dimension at most 1. (This later condition holds when k is separably
closed or X is proper and k is semi-finite by Lemma 4.1.) Then there exists a
locally free𝒳-twisted sheaf of rank n and trivial determinant on X.

Proof First, we show that if there exists an𝒳-twisted sheaf F of rank n on X ,
then F can be chosen to have trivial determinant. Indeed, for m � 0, we
can assume that det(F(m)) = 𝒪Y (D), where D is an effective Cartier divisor
on X . By choosing an invertible 𝒳-twisted sheaf on D (which is possible by
the assumption that the Brauer class of𝒳 vanishes on curves), we can find an
invertible quotient Q of F(m)|D . By Lemma 4.6, the elementary transform
of F(m) along Q has trivial determinant. Thus, we have constructed a locally
free 𝒳-twisted sheaf of rank n on Y with trivial determinant.

Now we proceed by induction on the number of irreducible components
of X . If X is irreducible (hence regular), then the existence of a locally free
𝒳-twisted sheaf F of rank n on X follows from the fact that 𝒳 has index n
and the existence of Azumaya maximal orders over a regular surface. By the
above, we can choose F to have trivial determinant.

In general, let X = X1 ∪ · · · ∪ Xr be the decomposition of X into its
irreducible components. Assume that there exists a locally free 𝒳-twisted
sheaf F of rank n on Y = X1 ∪ · · · ∪ Xr−1. Let C = Y ∩ Xr . By the above,
we can choose F with trivial determinant. Consequently the restriction of F
to C has trivial determinant, which coincides with the restriction 𝒪Xr |C of
the trivial line bundle from Xr . Hence by Lemma 4.4, there exists a locally
free 𝒳-twisted sheaf Fr on Xr such that F |C is isomorphic to Fr |C . Let E
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be the fiber product of F and Fr over their restrictions to C (via the chosen
isomorphism) in the abelian category of𝒳-twisted sheaves on X . By applying
[40, Theorem 2.1] étale-locally, we see that E is locally free of rank n on X ,
as desired. By the above, we can choose E with trivial determinant.

By induction, we produce the desired locally free𝒳-twisted sheaf on X . ��
The following corollary, which in particular asserts that index equals period,

may be found in [36, Corollary 4.2.2.4] in the case when X is smooth over a
separably closed field.

Corollary 4.8 Under the hypotheses of Proposition 4.7, the map

H1(X,PGLn) → H2(X,µn)

is surjective.

Proof Given a µn-gerbe 𝒳 → X , the proposition produces a locally free 𝒳-
twisted sheaf V of rank n. The determinant of V differs from [𝒳] by a class of
Pic(X)/n Pic(X). Performing an elementary transformation along a suitable
effective Cartier divisor corrects the determinant, by Lemma 4.6. ��

5 Deformation theory of perfect twisted sheaves

5.1 Generalities

Thematerial in this section is similar to [35, Section 2.2.3], except our infinites-
imal deformations of the ambient scheme are not assumed to be flat over a base.
We review the theory in this case; there are no essential differences.

Let i : X0 ↪→ X be a closed subscheme of a quasi-separated noetherian
scheme X defined by a square-zero sheaf of ideals I of 𝒪X . Let π : 𝒳 → X
be a µ�-gerbe, write 𝒳0 = 𝒳 ×X X0 and π0 : 𝒳0 → X0 for the restriction
of π , and write ι : 𝒳0 → 𝒳 for the induced closed immersion. We write
D(1)
qc (𝒳) for the derived category of 𝒳-twisted sheaves with quasi-coherent

cohomology. Let F0 be an object in D
(1)
qc (𝒳0).

Definition 5.1.1 A deformation of F0 to𝒳 consists of a complex F inD(1)
qc (𝒳)

and a quasi-isomorphism 𝒪𝒳0 ⊗L
𝒪𝒳

F � F0.

For convenience, we write I ⊗L F for the complex of 𝒳-twisted sheaves
π∗ I ⊗L

𝒪𝒳
F and I⊗LF0 for the complex of𝒳0-twisted sheavesπ∗

0 i
∗ I⊗L

𝒪𝒳0
F0.

Lemma 5.1.2 If F0 is perfect and F is a deformation of F0 to 𝒳, then F is
perfect.
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Proof Note that there is a distinguished triangle I ⊗L F → F → ι∗F0 in
D(1)
qc (𝒳). If we prove that F has finite Tor-amplitude, then it will follow from

[46, Theorem 2.5.5] that I ⊗L F is quasi-isomorphic to

ι∗
(
I ⊗L Lι∗F

) � ι∗(I ⊗ F0).

On a quasi-separated noetherian scheme Y the perfect complexes of 𝒪Y -
modules are precisely those complexes which have coherent cohomology
sheaves and which moreover have bounded Tor-amplitude (see [46, Exam-
ple 2.2.8 and Proposition 2.2.12]). Thus, choosing an étale covering of X
splitting𝒳 → X , we see that the same holds for complexes on𝒳. Since ι∗F0
and ι∗(I ⊗ F0) have coherent cohomology sheaves, it follows that if we show
that F has finite Tor-amplitude, the lemma will follow.

Recall that a complex F of D(1)
qc (𝒳) has Tor-amplitude contained in an

interval with integer endpoints [a, b] if and only if 𝒯ℴ𝓇𝒪𝒳
n (G, F) = 0 for

all 𝒪𝒳-modules G and all n /∈ [a, b]. Suppose that F0 has Tor-amplitude
contained in [a, b]. Suppose that n ∈ Z, and suppose that 𝒯ℴ𝓇𝒪𝒳

n (G, F) is
not zero. Then, there is a closed point x of X such that𝒯ℴ𝓇𝒪𝒳

n (k(x), F) is not
zero. But

F ⊗L
𝒪𝒳

k(x) � F ⊗L
𝒪𝒳

(𝒪𝒳0 ⊗L
𝒪𝒳0

k(x)) � F0 ⊗L
𝒪𝒳0

k(x).

Hence,

𝒯ℴ𝓇𝒪𝒳
n (k(x), F) ∼= 𝒯ℴ𝓇

𝒪𝒳0
n (k(x), F0),

which implies that n ∈ [a, b], as desired. ��
Definition 5.1.3 Recall that there is an essentially unique determinant functor

det : Perf(𝒳) → Pic(𝒳)

that associates to each perfect complex of 𝒳-twisted sheaves an invertible
sheaf. Given a perfect complex F ∈ Perf(𝒳) and an fppf cover Y → 𝒳 over
which F � C•, a finite complex of locally free sheaves, the determinant is
computed as

det(F) =
⊗

n∈Z
det(Cn)(−1)n .

(See [32, Theorem 2], [35, Definition 2.2.4.1].)
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Definition 5.1.4 Suppose that F has det(F0) ∼= 𝒪𝒳0 , and fix one such trivial-
ization. An equideterminantal deformation of F0 is a deformation F as above
together with a deformation of the trivialization of the determinant.

The next proposition is well-known to experts and follows immediately
from the techniques in [27], cf. [35, Proposition 2.2.4.9].

Proposition 5.1.5 Let X0 ↪→ X be a closed subscheme of a quasi-separated
noetherian scheme X defined by a square-zero sheaf of ideals I of 𝒪X . Fix
a µ�-gerbe 𝒳 → X, and let 𝒳0 = 𝒳 ×X X0. Suppose F0 is a perfect
complex of 𝒳0-twisted sheaves. Then the obstruction to the existence of an
equideterminantal deformation of F0 to𝒳 lies in

H2(X0, I ⊗L sRℰ𝓃𝒹(F0)),

where sRℰ𝓃𝒹(F0) denotes the trace zero part of the complex of endomorphism
sheaves.

Remark 5.1.6 In Proposition 5.1.5, when the rank of F0 is invertible on X0,
we can computeH2(X0, I ⊗L sRℰ𝓃𝒹(F0)) as Ext2𝒳0

(F0, I ⊗ F0)0, the kernel
of the trace map

Ext2𝒳0
(F0, I ⊗ F0) → H2(𝒳0, I )

on cohomology. Indeed, in this case the trace map Rℰ𝓃𝒹(F0) → 𝒪𝒳0 splits
because the composition

𝒪𝒳0 → Rℰ𝓃𝒹(F0) → 𝒪𝒳0

is multiplication by the rank of F0 (see [35, Lemma 2.2.4.5]).

5.2 Fracking

In the next two sections we describe a standard trick in deformation theory
that kills obstructions in dimension 2. Because the general local tool we use
roughly corresponds to “punching holes” in a sheaf, we call this fracking.

Let X be a locally noetherian scheme, π : 𝒳 → X a G-gerbe for some
closed subgroupG ⊂ Gm , and F a locally free𝒳-twisted sheaf of finite rank.
Let i : Spec K → X denote a closed immersion whose image is a regular
point x of X , where K is a field. We will write 𝒳0 = 𝒳 ×X Spec K , we will
let π0 : 𝒳0 → Spec K denote the restriction of π , and we will let ι : 𝒳0 → 𝒳
denote the natural closed immersion.
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Given two 𝒪X -modules M and N , there is a trace map

Hom(M ⊗ F, N ⊗ F) → Hom(M, N )

induced by the isomorphism

ℋℴ𝓂(M ⊗ F, N ⊗ F) ∼= ℋℴ𝓂(M, N ) ⊗ ℋℴ𝓂(F, F)

and the usual trace map. We will let Hom(M ⊗ F, N ⊗ F)0 denote the kernel
of this trace map.

Lemma 5.2.1 (Fracking Lemma) With the above notation, suppose that

1. dim𝒪X,x ≥ 2;
2. the rank of F is prime to the characteristic of K ;
3. M and N are invertible in a neighborhood of x;
4. the class of 𝒳0 in Br(K ) is trivial;
5. f is an element ofHom(M⊗F, N⊗F)0 whose image inHom(ι∗(M⊗F),

ι∗(N ⊗ F))0 is non-zero;

Then there exists a locally free 𝒳0-twisted sheaf Q of rank rk(F) − 1 and a
surjection ι∗F → Q such that, writing G for the kernel of the adjoint map
F → ι∗Q, the endomorphism f is not in the image of the natural inclusion

ρ : Hom(M ⊗ G, N ⊗ G)0 → Hom(M ⊗ F, N ⊗ F)0

induced by the canonical isomorphism G∨∨ → F.

Proof Since 𝒳0 has trivial Brauer class, we can choose an invertible 𝒳0-
twisted sheaf Λ; the sheaf Λ is unique up to non-unique isomorphism. Define
two functors

τ† : Coh(1)(𝒳0) → Coh(Spec K )

and

τ † : Coh(Spec K ) → Coh(1)(𝒳0)

by the formulas τ†(A) = (π0)∗(A ⊗ Λ∨) and τ †(B) = Λ ⊗ π∗
0 B. It follows

from these formulas and the basic theory of twisted sheaves that τ † and τ† are
essentially inverse equivalences. Given a quasi-coherent sheaf M on X and an
object A ∈ Coh(1)(𝒳0), there is a natural isomorphism

τ†(ι
∗π∗M ⊗ A) ∼= i∗M ⊗ τ†(A). (5.2.1.1)
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Write F = τ†(ι
∗F). By (5.2.1.1) and the fact that i∗M and i∗N are 1-

dimensional K -vector spaces, we can transport ι∗ f to a non-trivial traceless
homomorphism

f : i∗M ⊗ F → i∗N ⊗ F

of K -vector spaces of the same (finite) dimension, see [36, Theorem 3.1.1.11].
Because the nonzero f has trace zero and all nonzero scalar matrices have
nonzero trace (by the assumption that F has rank prime to the characteristic
of K ), there is a line L in F such that f does not preserve L (i.e., f (i∗M ⊗ L)

is not contained in i∗N ⊗ L).
Let Q be the 𝒳0-twisted sheaf π†F/π†L and σ : F → ι∗Q the adjoint of

the natural surjection. Write G for the kernel of σ and γ : G → F for the
inclusion. Note that the canonical map G∨∨ → F is an isomorphism. (Here
we use that F is locally free, hence G is locally free away from x , and that x
itself is a regular point.) Since M and N are invertible near x , it follows that
there is an induced canonical inclusion

ρ : Hom(M ⊗ G, N ⊗ G)0 ↪→ Hom(M ⊗ F, N ⊗ F)0.

(The one subtle point is the preservation of the trace zero condition. This
follows since M and N are invertible near x and F is locally free, so the
traceless condition can be detected on the punctured neighborhood of x .)

This canonical inclusion has the property that for any homomorphism
s ∈ Hom(M ⊗ G, N ⊗ G) we have a commuting diagram

M ⊗ G s

idM ⊗ γ

N ⊗ G

idN ⊗ γ

M ⊗ F
ρ(s)

N ⊗ F.

It follows that the image of ρ lies in the subgroup B of Hom(M ⊗ F, N ⊗ F)0
of those trace zero endomorphisms whose restrictions to the fiber over x map
the flag i∗M ⊗ π†L ⊆ i∗M ⊗ π†F into the flag i∗N ⊗ π†L ⊆ i∗N ⊗ π†F .
On the other hand, there is an exact sequence

0 → B → Hom(M ⊗ F, N ⊗ F)0 → Hom
(
M ⊗ π†L, N ⊗ (

π†F/π†L
))

.

Since the endomorphism f we started with is nonzero on the right, it is not
contained in B, and hence is not in the image of ρ, as desired. ��
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5.3 Removing global obstructions by fracking

In this section, we explain how to use Lemma 5.2.1 to produce unobstructed
twisted subsheaves in dimension 2.

Suppose that X is a proper Gorenstein surface over a field k that is either
semi-finite or separably closed,𝒳 → X is a µ�-gerbe, F is a perfect coherent
𝒳-twisted sheaf whose rank is invertible in k, and M is a coherent sheaf on
X that is the pushforward of an invertible sheaf on a closed subscheme X ′ of
X that contains a nonempty open subscheme U ⊂ X (e.g., M could be an
invertible sheaf on a component of X ).

In this situation, there are two trace maps

Hom(M ⊗ F, ωX ⊗ F) → Γ (X, M)

and

Ext2𝒳(F, M ⊗ F) → Γ (X, M).

Via Serre duality, there is an isomorphism of trace zero subspaces

Ext2𝒳(F, M ⊗ F)0 = Hom(M ⊗ F, ωX ⊗ F)∨0 .

Proposition 5.3.1 In this situation, there is an 𝒳-twisted subsheaf G ⊂ F
such that

1. F/G is supported at finitely many regular closed points of X whose residue
fields are separable extensions of k, and

2. Ext2𝒳(G, M ⊗ G)0 = 0.

Proof Let f : M⊗F → ωX ⊗F be a nonzero element of the k-vector space of
trace zero homomorphisms Hom(M ⊗ F, ωX ⊗ F)0. Choose a regular closed
point x of X with separable residue field such that f is nonzero at x . This is
possible sinceM is invertible on X ′ and F is locally free on a dense open of X ′.
Since M ⊗ F and ωX ⊗ F are isomorphic at x , we can apply Lemma 5.2.1 at
x (using the fact that κ(x) has trivial Brauer group and the fact that the fibers
of ωX and M are one-dimensional) to obtain a subsheaf G ⊆ F such that

1. G is a perfect sheaf with reflexive hull F ,
2. the map

Hom(M ⊗ G, ωX ⊗ G)0 → Hom(M ⊗ F, ωX ⊗ F)0

induced by passing to reflexive hulls are injective, but
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3. f is not in the image.

Since (2) and (3) imply that that the dimension of Hom(M ⊗ G, ωX ⊗ G)0
is strictly smaller than that of Hom(Mi ⊗ F, ωX ⊗ F), we can, possibly after
repeating the process finitely many times, find G such that

Ext2𝒳(G, M ⊗ G)∨0 = 0,

as desired. ��

6 Proofs of the main results

In this section we provide the proofs of Theorems 1.1 and 1.4. By a stan-
dard reduction, we may assume that per(α) = � is a prime distinct from the
residue characteristics of X , see [3, Proof of Theorem 6.2]. Since the index
is preserved under taking prime-to-� extensions, we may adjoin a primitive
�th root, if necessary, so that we can apply the results of Sect. 2.2 to classes
in the Brauer group. By Proposition 3.6 and the results of Sect. 2.5 (specif-
ically Example 2.5.2 for � > 3 and Example 2.5.3 for � | 6), the proofs of
Theorem 1.1 and Theorem 1.4 both reduce to proving Theorem 1.4 under the
additional hypothesis that X → Spec R is quasi-semistable. Let 𝒳 → X be
the µ�-gerbe associated to α.

Let π be a uniformizing parameter of R, so that (π) denotes the sheaf
of ideals in 𝒪X that cuts out the special fiber X0, and let I ⊇ (π) be the
sheaf of ideals in 𝒪X that cuts out the reduced special fiber X0,red ⊆ X0.
Write 𝒳0,red → X0,red for the restriction 𝒳 ×X X0,red. By Proposition 4.7,
there exists an 𝒳0,red-twisted sheaf F of rank � with trivial determinant. To
finish the proof, it suffices to find a perfect twisted subsheaf G ⊂ F such
that rank(G) = rank(F) such that G deforms to an 𝒳-twisted sheaf over
the formal scheme X̂ . Indeed, by the Grothendieck Existence Theorem [22,
Théorème 5.1.4], any such formal deformation algebraizes to yield an 𝒳R̂-
twisted sheaf of rank � on X R̂ , the pullback of X → Spec R to the completion
R̂ of R. By Artin approximation, there is thus a coherent 𝒳-twisted sheaf V
of rank �. By [36, Proposition 3.1.2.1], we have that ind(ακ(X)) divides �, as
desired.

The rest of this section is devoted to producing the desired formal deforma-
tion. We will do this by analyzing the formal local structure of X near X0,red
and then applying Lemma 5.2.1 to eliminate obstructions to deforming across
infinitesimal neighborhoods of X0,red.

Given two sheaves of ideals I1 and I2 on a scheme Y , define

I1 � I2 = (I1 I2 : I1 ∩ I2).
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If f ∈ Γ (Y,𝒪Y ) is a regular section, then ( f I1 : I2) = f (I1 : I2) and
( f I1 : f I2) = (I1 : I2), so that f I1 � f I2 = f (I2 � I2). If Y is the spectrum
of a UFD, then for any two sections f, g ∈ Γ (Y,𝒪Y ), we have

( f ) � (g) = (gcd( f, g)) (6.0.0.1)

Since this can be checked locally, it also follows that (6.0.0.1) holds in any
locally factorial scheme.

Since I/(π) is nilpotent, there is a least m such that Im ⊆ (π). Given
1 ≤ a ≤ m and b ≥ 0, let Ja,b = I a(πb) � (πb+1). The ideals Ja,b have the
following properties.

1. Ja+1,b ⊆ Ja,b for 1 ≤ a ≤ m − 1 and J1,b+1 ⊆ Jm,b.
2. Jm,b = (πb+1). Indeed, the inclusion Im(πb) ⊆ (πb+1) gives that

(πb+1) ⊆ Im(πb) � (πb+1). Since X is regular, I is locally principal,
so that the inclusion (πb+1) ⊆ Jm,b is locally an equality and hence an
equality.

3. Ja,b/Ja+1,b ∼= Ja,0/Ja+1,0 for 1 ≤ a ≤ (m − 1) and also that
Jm,b/J1,b+1 ∼= Jm,0/J1,1 ∼= 𝒪X/I . This also follows from the fact that
π is a regular section of 𝒪X .

Consider the filtration

I = J1,0 ⊃ J2,0 ⊃ . . . ⊃ Jm−1,0 ⊃ (π) = Jm,0 ⊃ (6.0.0.2)

J1,1 ⊃ J2,1 ⊃ . . . ⊃ Jm−1,1 ⊃ (π2) = Jm,1 ⊃
J1,2 ⊃ J2,2 ⊃ . . . ⊃ Jm−1,2 ⊃ (π3) = Jm,2 ⊃
. . . .

By the above calculations, there are only finitely many𝒪X -modules appearing
in the list of successive quotients in this filtration. By our choice of m, all of
the successive quotients are nonzero. Moreover, multiplication by I kills any
of these 𝒪X -modules, so we can view them as 𝒪X0,red-modules.

Claim Each successive quotient in the filtration defined in (6.0.0.2) is locally
free of rank 1 on its support, which consists a union of components of X0,red.

The claim is immediate for Jm,b/J1,b+1 ∼= 𝒪X/I = 𝒪X0,red. For all
1 ≤ a < m, we verify the claim étale locally, where we can appeal to the
étale local structure (3.1) of X . Thus, we may assume that our scheme is
X = Spec R[t1, . . . , tn]/(ta11 · · · tarr − π). In this case, I = (t1 · · · tr ) and
(π) = (ta11 · · · tarr ). Using (6.0.0.1), we find that

Ja,0 = (tmin(a,a1)
1 · · · tmin(a,ar )

r ),
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and hence the quotient Ja,0/Ja+1,0 is isomorphic to

𝒪X/(tε(1,a)
1 · · · tε(r,a)

r ),

where

ε(i, a) =
{
0 if ai ≤ a,

1 if ai > a.

Note that, by our choice of m, for any 1 ≤ a < m, some ε(i, a) is nonzero. It
follows that the successive quotient is (étale locally) isomorphic to the structure
sheaf of some collection of components of the reduced special fiber, proving
the claim.

For notational simplicity, set M0 = 𝒪X0,red and Mi = Ji,0/Ji+1,0 for
1 ≤ i < m. We claim that there is a perfect 𝒳0,red-twisted subsheaf G ⊆ F
such that F/G is supported in dimension 0 and

Ext2𝒳0,red
(G, Mi ⊗ G)0 = 0

for 0 ≤ i < m. If this is so then the obstruction of Proposition 5.1.5 to
deforming any suchG (with trivial determinant) through the filtration (6.0.0.2)
vanishes, giving the desired formal deformation. But this follows from Propo-
sition 5.3.1 applied in sequence to M1, . . . , Mm−1.

Remark 6.0.1 In the proof, we may have to take a torsion free subsheaf of F
in order to remove obstructions to deforming off of X0,red. (We need G to
be perfect so that taking its determinant makes sense, and we work with the
equideterminantal deformations in order to kill obstruction spaces usingPropo-
sition 5.3.1.) In that case, the resulting 𝒳-twisted sheaf may not be locally
free. Moreover, a reflexive sheaf on a regular threefold need not be locally
free, though it will have torsion free fibers over R. Algebraically speaking,
this process may yield a maximal order in the division algebra corresponding
to α that is not locally free (see [2]).
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