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Abstract
We study moduli spaces of maximal orders in a ramified division algebra over the
function field of a smooth projective surface. As in the case of moduli of stable com-
mutative surfaces, we show that there is a Kollár-type condition giving a better moduli
problem with the same geometric points: the stack of blt Azumaya algebras. One
virtue of this refined moduli problem is that it admits a compactification with a virtual
fundamental class.
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1 Introduction

Much recent progress has been made on the structure theory of maximal orders over
algebraic surfaces. Several authors have produced a satisfyingminimalmodel program
for such orders (a sampling of which is represented by [7–9] and their references).
Others have studied the moduli of Azumaya orders in a fixed unramified division
algebra and related moduli problems (e.g. [10,15,17,18]).

In this paper we extend the moduli theory to orders in a ramified Brauer class.
In so doing we encounter a phenomenon similar to that which occurs in the moduli
theory of stable projective surfaces, arising from an analogue of Kollár’s condition
on the compatibility of the reflexive powers of the dualizing sheaf with base change.
Because the global dimension of our orders is 2, things are technically rather simpler
than in Kollár’s theory, and we arrive at a satisfying moduli space with a natural
compactification carrying a virtual fundamental class. We expect a similar story could
be told in higher dimension, but it would involve a careful extension of the results of
Sect. 5.3.

As in the commutative theory, the naïve moduli problem (given by fixing the prop-
erties of the fibers of a family) contains a refined version as a bijective closed substack.
This refined moduli problem can be described as a moduli problem of Azumaya alge-
bras on stacks rather than orders on varieties. (One can also interpret this refined
problem as a moduli theory of parabolic Azumaya algebras.) These Azumaya alge-
bras have a precise interaction with the ramification divisor arising from the structure
of hereditary orders in matrix algebras over discrete valuation rings, first described by
Brumer [5], giving them a structure we call Brumer log terminal, or blt.

We begin in Sect. 2 by studying the local problem, relating hereditary algebras over
complete dvrs to Azumaya algebras over root construction stacks. This is globalized
in Sect. 2.2. A simple approach to families of maximal orders is described in Sect. 3.
The two resulting moduli problems are described in Sect. 4 and compared in Sect. 5
(with a proof that they can differ included in Sect. 5.5). The comparison relies crucially
on ideas similar to those introduced by Kollár in his theory of hulls and husks [11]
and a local analysis of reflexive Azumaya algebras on families of rational double
points. Finally, in Sect. 6 we describe how to compactify the Azumaya problem using
algebra-objects of the derived category of a stack (that onemight think of as “parabolic
generalized Azumaya algebras”) along lines familiar from [17].

2 Normal orders and parabolic Azumaya algebras

2.1 Hereditary orders over dvrs

Fix a discrete valuation ring R with uniformizer t and residue field κ . Write Rhs for
the strict Henselization of R. Fix a separable closure κ ⊂ κ . Fix a positive integer n
invertible in R. Given a positive integer r , let π : Xr → Spec R be the stack-theoretic
quotient of the natural action ofµr on R[s]/(sr − t). The root construction provides an
isomorphism Bµr ,κ

∼→ (Xr ⊗R κ)red. An Azumaya algebraA onXr thus gives rise
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Blt Azumaya algebras and moduli of maximal orders 269

to an Azumaya algebra on Bµr ,κ by restriction. By §4.1 of [13], any such algebra is
isomorphic to the sheaf of endomorphisms of the vector bundle on Bµr ,κ associated to
a representation ofµr . Call this the representation associated toA ; this representation
is defined up to tensoring with a character.

Definition 2.1 Say that a hereditary order A over R is of type m if A⊗ Rhs has exactly
m distinct indecomposable projective modules. Given a positive divisor m of n, call
an Azumaya algebraA overX of type m if the representation associated toA is the
restriction of scalars of the regular representation of µm via the natural quotient map
µn → µm .

Definition 2.2 The hereditary site F of Spec R is the site whose underlying category
consists of faithfully flat quasi-finite étale R-schemes U → Spec R with U of pure
dimension 1, with coverings given by collections of R-maps Ui → U that are jointly
surjective.

Define two stacks on the hereditary site of Spec R as follows.

Definition 2.3 Given an object U → Spec R of F, an Azumaya algebraA onXU is
n-typed if for each closed point u ∈ U the restriction of A to X ⊗R OU ,u has type
m for some positive integer m dividing n. A hereditary order A on U is n-typed if for
every closed point u ∈ U , the restriction of A to OU ,u has type m for some positive
integer m dividing n.

Definition 2.4 Given an object U → Spec R of F, the stack An has as objects over
U the groupoid of n-typed Azumaya algebras A of degree n on X ×Spec R U . The
stackHn has as objects the groupoid of n-typed hereditary orders on U .

Since the n-typed Azumaya and hereditary properties are étale-local, it is clear that
both An and Hn are stacks.

Proposition 2.5 Suppose n is invertible in the residue field κ of R. For any object
A ∈ An(U ), the finite OU -algebra π∗A lies in Hn. The resulting map of stacks
An → Hn is a 1-isomorphism.

Proof Since both stacks are limit-preserving and the statements are étale-local on U ,
it suffices to prove the following: if R above is a strictly Henselian discrete valuation
ring then for any locally free sheaf V of rank n and type m on X , the R-algebra
π∗End(V ) is hereditary of type m, and in fact this gives an equivalence of groupoids
between Azumaya algebras of degree n and type m on X and hereditary R-algebras
of degree n and type m. Indeed, since Br(K (R))[n] = 0, the generic fiber of any
hereditary R-order and the Brauer class of any Azumaya algebra of degree n overX
are trivial, which reduces us to the case of matrix algebras and orders therein.

We recall Brumer’s fundamental description of hereditary orders [5,6] (combined
with Artin-de Jong characterization of the number of indecomposable projectives =
number of embeddings in maximal orders): given a K -vector space V of dimension
n, the hereditary orders in End(V ) of type m are equivalent to collections of R-
submodules {Mi ⊂ V }i∈Z such that for all i we have Mi+1 � Mi and Mi+m =
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270 R. S. Kulkarni , M. Lieblich

tMi , up to a shift of indices. The equivalence is given by sending {Mi } to the ring
of endomorphisms f of V such that for all i we have f (Mi ) ⊂ Mi ; this filtered
endomorphism ring is then the hereditary order corresponding to the filtered module
{Mi }.

On the other hand, Azumaya algebras of type m on Xn are the pullbacks of Azu-
maya algebras A ′ of type m on Xm , and any such algebra A ′ is isomorphic to the
pushforward of its pullback to Xn via the natural map Xn → Xm .

Thus, it suffices to prove the proposition in case n = m. The filtered module {Mi }
is precisely an object of the category of parabolic vector bundles with denominator
n, called Par 1

n
(Spec R, (t)) in [4], and the corresponding order is nothing other than

the endomorphisms of the parabolic sheaf. Just as in [4], we know that there is a
locally free sheaf V on Xn giving rise to {Mi } in such a way that End(V ) equals
the endomorphisms of the parabolic sheaf. But the R-module End(V ) is precisely
π∗End(V ).

What is V ? Since each inclusion Mi+1 ⊂ Mi is proper, the eigendecomposition of
V must have n distinct summands, which implies that the representation associated
to V is the regular representation.

What are the automorphisms of A := π∗End(V )? Any R-automorphism of A
localizes to a K -automorphism of End(V ), which by the Skolem–Noether theorem is
given by conjugation by an automorphism φ of V . If this conjugation is to preserve
the set of morphisms stabilizing the filtered module {Mi } then φ itself must preserve
the filtration, which means precisely that φ is induced by an automorphism of the
parabolic sheaf corresponding to {Mi }, which in turn is equivalent to φ being induced
by an automorphism of V . Thus, the induced map Aut(End(V )) → Aut(A) is a
bijection, as desired. 	


The reader wishing to avoid stacks can also interpret the equivalence purely in
terms of parabolic sheaves: the hereditary orders on R are equivalent (as a groupoid)
to “parabolic Azumaya algebras”: parabolic sheaves of algebras locally isomorphic to
the parabolic sheaf of endomorphisms of a parabolic vector bundle with denominator
equal to the type of the order. This seems to hold no advantage (when the type is
bounded as it is) over the formulation in terms of root stacks.

2.2 Globalization for terminal orders

Let α be a terminal Brauer class over the function field of a smooth surface X in
the sense of [8]. The ramification data of α yield a simple normal crossings divisor
D = D1 + · · · + Dm ⊂ X , and for each component Di a ramification degree ei |n.
Let π : X → X be the smooth stack that is given by the fiber product (with respect
to i) of the root construction of order ei along Di . Let ηi be the generic point of Di .
As in Sect. 2.1, an Azumaya algebra overX has associated representations over each
Bµei ,κ(Di )

; call the representation associated to Di the i th representation associated
to A .

Definition 2.6 An Azumaya algebraA onX is Brumer log terminal (blt) if for every
i the local Azumaya algebra Aηi has type ei .
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Blt Azumaya algebras and moduli of maximal orders 271

Recall that a normal order with center X and Brauer class α is an order satisfying
the usual conditions (R1) and (S2), see definition (2.3) in [8]. Further a normal order
is called terminal if its ramification data satisfies additional conditions, see definition
(2.5) of [8].

Proposition 2.7 Pushforward by π defines an equivalence of groupoids between blt
Azumaya algebras on X and terminal orders on X with Brauer class α.

Remark 2.8 Note that the geometric information about ramification at (singular) points
of the ramification divisor as well as ramification along irreducible divisors is incor-
porated in the construction of X .

Proof The proof is mainly a routine globalization of Proposition 2.5.
First, we have that the pushforward of any such A is normal, as we can check

this locally at any codimension 1 point, where this is an immediate consequence
of Proposition 2.5. Thus, the pushforward of a blt Azumaya algebra is normal, as
desired. To show that π∗ is essentially surjective, note that since any maximal order
A is reflexive we have that

A =
⋂

x∈X (1)

Ax ,

and similarly for blt Azumaya algebras on X , where X (1) is the set of codimension
1 points of X and Ax := A⊗OX ,x is the localization. Moreover, π∗ commutes
with the formation of intersections. It thus suffices to prove the analogous result for
localizations at codimension 1 points (keeping track of the embedding in the generic
algebras), which is precisely Proposition 2.5.

To show that π∗ is fully faithful, it suffices to prove the analogous statement upon
replacing X by its localization at ηi . Indeed, since the maximal orders A and the
Azumaya algebrasA are reflexive, we have that for any blt Azumaya algebrasA and
B with pushforwards A and B the isomorphisms are given by

Isom(A ,B) =
⋂

x∈X (1)

Isom(Ax ,Bx )

and

Isom(A, B) =
⋂

x∈X (1)

Isom(Ax , Bx )

where X (1) is the set of codimension1points of X and the intersection takes place inside
the set Isom(Aη,Bη) of isomorphisms of the generic algebras. Since Proposition2.5
shows that Isom(Ax ,Bx ) = Isom(Ax , Bx ), the result follows. 	


In more classical terms, terminal orders are parabolic Azumaya algebras with
parabolic structure along the ramification divisor.
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272 R. S. Kulkarni , M. Lieblich

3 Naïve relativemaximal orders

3.1 Definitions and basic geometric properties

Definition 3.1 Let Z be an integral algebraic space. A torsion free coherent sheaf A
of OZ -algebras is a maximal order if any injective morphism A → B of torsion
free OZ -algebras that is an isomorphism over a dense open subspace U ⊂ Z , is an
isomorphism.

We will prove that maximality in a family is a fiberwise condition.

Definition 3.2 Given a morphism X → S with locally Noetherian geometric fibers,
an S-flat family of coherent sheaves is an S-flat quasi-coherentOX -moduleF of finite
presentation. If X has integral fibers, wewill say that a possibly non-flat quasi-coherent
OX -module of finite presentation G is torsion free if its geometric fibers Gs are torsion
free coherent OXs -modules.

Definition 3.3 Given a flat morphism X → S with integral fibers, an S-flat family of
coherent OX -algebras A is

(1) a relative maximal order if for any T → S and any injective morphismAT → B
into a torsion free OXT -algebra that is an isomorphism over a fiberwise dense
open subspace U ⊂ XT is an isomorphism;

(12) a relative normal order if the geometric fibers A are R1 and S2, in the sense of
[8].

While relative normality is defined as a fiberwise condition, relative maximality is
not obviously so. Let us prove this.

Lemma 3.4 Suppose X is a proper integral algebraic space over an algebraically
closed field k. A coherent sheaf A of OX -algebras is a maximal order on X if and
only if it is a relative maximal order on X/Spec k. In particular, for any field extension
K/k we have that A ⊗ K is a maximal order on X ⊗ K.

Proof Since any relatively maximal order is obviously maximal, it suffices to assume
that A is maximal and prove that it is relatively maximal. Suppose AT → B is an
injective map to a torsion free OXT -algebra that is an isomorphism over the fiberwise
dense openU ⊂ XT . For any geometric point Spec K → T , the base changeAK →
BK is thus injective and an isomorphism over a dense open of the scheme XK . If we
can show that this restricted map is always an isomorphism then the result is proven.
Thus, we are reduced to the case in which T = Spec K with K an algebraically closed
extension field of k.

SinceB is of finite presentation, we may assume by a standard limit argument that
there is a finite type integral k-scheme T ′ → Spec k, a torsion free algebraB′ over T ′
with an injective map φ : AT ′ → B′, and a dominant morphism Spec K → T ′ such
that the base change of φ isomorphic to the given inclusionAT → B. The locus over
which φ is an isomorphism is an open subscheme U ′ ⊂ XT ′ whose restriction to the
geometric generic fiber over T ′ is non-empty. By Chevalley’s theorem the image of
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Blt Azumaya algebras and moduli of maximal orders 273

U ′ in T ′ is constructible, hence contains a dense open, whence shrinking T ′ we may
assume that U ′ is dense in every fiber. But now T ′ has a dense set of k-points (as it
is of finite type over an algebraically closed field), and we know by assumption that
for any such point t ′ ∈ T ′ the restrictionAt ′ ↪→ Bt ′ is an isomorphism. We conclude
that U ′ = T ′, which finishes the proof that A is a relative maximal order. 	

Remark 3.5 Note that if the base field k is not assumed to be algebraically closed,
the result of Lemma 3.4 is false. Indeed, there are Brauer classes on varieties X over
a field k which are ramified but become unramified over the algebraic closure of k.
Any maximal order over k will be geometrically hereditary but non-maximal at the
generic points of the preimage of the ramification divisor in X ⊗ k. A simple example
is furnished by the quaternion algebra (x, a) over k(x, y), where a is a non-square
element of k. This gives a ramified algebra on P2 whose base change to k is trivial, and
it follows that no maximal order in this quaternion algebra can be relatively maximal.

Proposition 3.6 Suppose X → S is a flat morphism of finite presentation between
algebraic spaces whose geometric fibers are integral. An S-flat family of torsion free
coherentOX -algebrasA is a relative maximal order if and only if for every geometric
point s → S the fiber As is a maximal order on the integral κ(s)-space Xs.

Proof It follows immediately from the definition that the geometric fibers of a relative
maximal order are maximal. To prove the other implication, by Lemma 3.4 it suffices
to assume that the geometric fibers are maximal and show thatA is maximal (i.e., we
may assume that T = S; lifting geometric points to T by taking field extensions does
not disturb the hypotheses by Lemma 3.4).

Suppose ι : A → B is an injection into a torsion free OX -algebra that is an
isomorphism over a fiberwise dense open U ⊂ X . To prove that ι is an isomorphism
it suffices to work locally on S, so we can assume that S = Spec A for A a local ring
whose closed point s is the image of a geometric point over which A is maximal.
Since ι is an isomorphism over a fiberwise dense open and A and B have torsion
free fibers, the reduction ιs : As → Bs is injective and an isomorphism over a dense
open. Since As is maximal (as follows immediately from the same being true of its
base change to κ(s)), we conclude that ιs is an isomorphism. By Nakayama’s Lemma,
we have that ι is surjective, whence it is an isomorphism, as desired. 	

Corollary 3.7 Suppose X is a smooth projective surface over a field k and D is a central
division algebra over its function field. Let k → R � k be a local Artinian k-algebra
with residue field k. Given a maximal orderA ⊂ D, any infinitesimal deformation of
A over X ⊗k R is a maximal order in the generic algebra D ⊗k R.

Proof There’s only one geometric fiber! 	

Proposition 3.8 Suppose X → S = Spec A is an algebraic space of finite presenta-
tion with integral fibers over a local ring A with residue field κ . An A-flat family of
torsion free OX -algebras A is a relative maximal order if and only if its geometric
closed fiber is a maximal order on X ⊗ κ .
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274 R. S. Kulkarni , M. Lieblich

Proof Wemay suppose that A isNoetherian and reduced.ByProposition 3.6, it suffices
to prove that the geometric fibers are all maximal, which immediately reduces us by
a pullback argument and Lemma 3.4 to showing that if A is a discrete valuation ring
with algebraically closed residue field then the generic fiber of A is a maximal order
(in the absolute sense).

LetAη ↪→ Bη byan injection into a torsion freeOXη -algebra that is an isomorphism
over the generic point of Xη. Let γ ∈ X be the generic point of the closed fiber
and let δ ∈ X be the generic point of X . Considering localizations as quasi-coherent
sheaves on X , we can focus on quasi-coherent sheaves of algebras containingA whose
localizations at γ are isomorphic toAγ via the natural inclusion. A standard argument
shows that there is a coherent such algebra B extending Bη; saturating if necessary,
we may assume thatB has torsion free fibers. This produces a family A ↪→ B over
all of X which is an isomorphism over a fiberwise dense open subscheme. Reducing
to κ as in the proof of Proposition 3.6, we conclude thatA → B is an isomorphism,
whence the original mapAη ↪→ Bη is an isomorphism, showing thatAη is maximal.
(Applying the same argument to a localization of the normalization in any extension
of the fraction field of A shows that the geometric generic fiber of A is maximal.) 	


Let f : Z → S be a flat morphism of finite presentation between algebraic spaces
with integral geometric fibers and A an S-flat torsion free OZ -algebra of finite pre-
sentation. Define a subfunctor AzA ⊂ Z parametrizing morphisms T → Z such that
AT is Azumaya.

Lemma 3.9 The map of functors AzA ↪→ Z is a quasi-compact open immersion.

Proof By absolute Noetherian approximation, there is an algebraic space S0 of finite
type over Z, flat morphism Z0 → S0 of finite type with integral geometric fibers,
and a morphism S → S0 such that the pullback of Z0 to S is isomorphic to Z . Since
A is of finite presentation, we can assume that A is defined on Z0. Now, since Z0
is Noetherian any open subscheme is quasi-compact. Thus, it suffices to prove that
AzA ↪→ Z is open to conclude that it is quasi-compact.

Since the locus over which A is locally free is open and contains AzA , we may
shrink Z and assume that A is locally free. Consider the morphism of locally free
sheaves μ : A ⊗A ◦ → End(A ) given by left and right multiplication. We know
that AT is Azumaya if and only if μT is an isomorphism, identifying AzA with the
functor of points on which μ is an isomorphism. But this is equivalent to the cokernel
of μ vanishing, which is clearly an open condition. 	


By Chevalley’s theorem, the image of AzA in S is a constructible set gAzA ⊂ |S|.
Definition 3.10 The set gAzA will be called the central simple locus of A .

The constructible central simple locus has two nice properties. First, it is open.

Proposition 3.11 Let Z → S be a proper morphism of finite presentation between
algebraic spaces with integral geometric fibers. Given a relative maximal orderA on
Z, the central simple locus of A is open.
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Blt Azumaya algebras and moduli of maximal orders 275

Proof Since the formation of gAzA is compatible with base change andA is of finite
presentation, we immediately reduce to the case in which S is Noetherian. Now, since
gAzA is constructible, to show that it is open it suffices to prove it under the additional
assumption that S = Spec R is the spectrumof a discrete valuation ring and that gAzA
contains the closed point of S. Let η be the generic point of the closed fiber of Z over S.
The localization Aη is a finite flat algebra over the discrete valuation ring OZ ,η. (The
latter is a dvr because the fiber is integral, so the uniformizing parameter on S is also a
uniformizer in OZ ,η.) Moreover, the reduction A ⊗ κ(η) is a central simple algebra.
Thus, the closed fiber of the map Aη ⊗A ◦

η → End(Aη) of free OZ ,η-modules is
an isomorphism. By Nakayama’s Lemma, the generic fiber is also an isomorphism,
which shows that the generic stalk of A is a central simple algebra over the function
field of Z , as desired. 	


Second, fixing a Brauer class yields a closed central simple locus, in the following
sense.

Proposition 3.12 Suppose X is a variety over a field k and S is a k-scheme. LetA be
a relative maximal order on X × S. Suppose there exists a class α ∈ Br(k(X)) such
that for every geometric point s ∈ gAzA the restriction of As to κ(s)(X) has Brauer
class α. Then the central simple locus gAzA is closed in S.

Proof We immediately reduce to the case in which S is Noetherian. Since gAzA is
constructible and compatible with base change on S, and relative maximal orders are
stable under base change, to show that gAzA is closed it suffices to prove it under the
additional assumption that S = Spec R is the spectrum of a dvr and gAzA contains
the generic point. Let η be the generic point of the closed fiber of X × S. Given an
inclusion of finite algebras ι : Aη ↪→ B, there is an S-flat coherent sheaf of OX×S-
algebrasB with an inclusionA ↪→ B whose germ over η is isomorphic to ι. Indeed,
the subsheaf B ⊂ AK (X) is a colimit of the finite algebras that contain A , and some
member of the directed system will have stalk B at η.

It follows thatAη is a maximal order in its fraction ring F := Aη ⊗ K (X). But we
know that F is a central simple algebra with Brauer class restricted fromOX×S,η, and
therefore that any maximal order over OX×S,η in F is Azumaya. It follows thatAη is
Azumaya, and therefore that gAzA contains the closed point of S, as desired. 	


Finally, let us define a relative terminal order of relative global dimension 2. Suppose
S is an algebraic space and Z → S is a proper smooth relative surface. Suppose
furthermore that R = R1 + · · · + Rm is a(n S-flat) relative snc divisor on Z .

Definition 3.13 A Brauer class α ∈ Br(Z\R) is terminal if its restriction to every
geometric fiber Zs is terminal in the sense of Definition 2.5 of [8] and for each i the
ramification index ei (s) of α along (Ri )s is independent of s.

A relative maximal order A on Z with Brauer class α will be called a relative
terminal order.

When working over a non-algebraically closed field, the pathology of Remark
3.5 remains an issue: given a Brauer class α ∈ Br(k(X)) that is ramified but such
that its base change to k is unramified, no maximal order A with class α will be
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276 R. S. Kulkarni , M. Lieblich

relatively maximal over k (because it is not geometrically maximal). The order A
is still relatively normal, however. Thus, if one endeavors to study moduli spaces
associated to Brauer classes such as α, one should allow certain normal orders. Of
course, one would not like to allow arbitrary normal orders in a given division algebra,
only those orders whose non-Azumaya locus is related to the ramification locus of α

over the base field.
When the base field is algebraically closed this pathology does not happen, as one

cannot dissolve ramification with a base extension. We will focus our attention on this
case in the present paper.

4 Moduli

4.1 Notation and assumptions

In this section X → Swill denote a proper smooth relative surface of finite presentation
and D = D1 + · · · + Dr will be a fixed relative snc divisor in X . This means that
each Di is a proper smooth relative curve over S and that for any pair i �= j the
intersection scheme Di ∩ Dj is finite étale over S. We also fix a class α ∈ Br(U )[n],
whereU = X\D and n is invertible on S. In this section we will try to describe moduli
of maximal orders with Brauer class locally (on S) equal to α.

Assumption 4.1 There are integers e1, . . . , er > 1 such that for each geometric point
s → S, the fiber α|Us is ramified to order ei on Di , and this ramification configuration
is terminal in the sense of Definition 2.5 of [8].

Note that the pair (X ,�) with � := ∑
(1 − 1

ei
)Di associated to the ramification

datum is Kawamata log terminal. This appears to be the genesis of this notation.
A simple example the reader should keep in mind is when S is the spectrum of

an algebraically closed field and α is a Brauer class with snc ramification divisor
D = D1 +· · ·+ Dr . Our more general setup gives us the ability to work with families
of such Brauer classes, but a proper theory would allow singular fibers of X/S.

There are two moduli problems that one can associate to the pair (X/S, α), termed
as Naive and BLT families in this article..

4.2 Naïve families

In this section we write A for the stack of S-flat torsion free coherent algebras on X .
As described in [14], A is an Artin stack locally of finite presentation over S.

Definition 4.2 The stack of naïve maximal orders is the stackNMOα
X/S whose objects

over an S-scheme T are relative maximal orders A on X ×S T such that for every
geometric point t → T the Brauer class of A |U×T t equals α|U×S t .

Remark 4.3 One might think that in Definition 4.2 one should require that the Brauer
class is α étale-locally on the base. As we will see in Sect. 5.5, this does not materially
improve the situation.
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Lemma 4.4 Let A be a local Noetherian ring over S, and let A be a flat family of
coherent OX -algebras over A. If the closed fiber of A belongs to NMOα

X/S then so
does A .

Proof ByProposition 3.8A is a relativemaximal order, and the usual characterizations
show that A is Azumaya over UA. It remains to show that for any geometric fiber of
X over A the Brauer class of that fiber of A is α. It suffices to prove this under the
assumption that A is a complete discrete valuation ring. Thus, we may assume that XA

is a regular scheme of dimension 3 andA is a maximal order which is Azumaya away
from a snc divisor D = D1 + · · · + Dr and whose Brauer class has order invertible in
A. For sufficiently large and divisible N , the Brauer class ofAU extends to an element
of β in the Brauer group of the root construction X{D1/N } (in the notation of [12]).
By the proper base change theorem for the morphism X{D1/N } → Spec A, the class
β is determined by its closed fiber, so it must equal the pullback of α, whence the
geometric generic fiber of AU has Brauer class α, as desired. 	

Corollary 4.5 Let A be a complete local ring with maximal ideal m. The functor

NMOα
X/S(A) → lim

n
NMOα

X/S(A/mn+1)

is an equivalence of categories.

Proof This is the classicalGrothendieck existence theorem combinedwith Proposition
3.8 and Lemma 4.4, which says that the effectivization of any formal family lying in
NMOα

X/S also lies in NMOα
X/S . 	


Lemma 4.6 Suppose A is a flat family of coherent OX -algebras over a Noetherian
base scheme T that is of finite type over an excellent Dedekind domain or a field. There
is an open subscheme U ⊂ T such that for any geometric point t → T , the geometric
fiber At is in NMOα

X/S if and only if t factors through U.

Proof By Theorem 0.5 of [2], it suffices to prove the result after replacing T by a
Dedekind scheme, and now we wish to show that the geometric generic fiber of A is
in NMOα

X/S if and only if all but finitely many geometric fibers lie in NMOα
X/S . By

Lemma 4.4, if any closed geometric fiber is in NMOα
X/S then the geometric generic

fiber is in NMOα
X/S . It thus suffices to show that if the geometric generic fiber is in

NMOα
X/S then all but finitely many geometric closed fibers are in NMOα

X/S .
ByProposition 2.7, the generic fiberAη is the pushforward of a bltAzumaya algebra

Aη on Xη along the morphism πη : Xη → Xη. By spreading out, we may assume
after removing finitely many points from T that A extends to all ofX . Moreover, the
isomorphism Aη

∼→ π∗Aη extends to an isomorphism over some dense open U ⊂ X
that contains the generic fiber. The complement of U will have finite image in T ,
whereupon we have identified the remaining fibers with pushforwards of blt Azumaya
algebras with Brauer class α, rendering them elements of NMOα

X/S , as desired. 	

Proposition 4.7 The stackNMOα

X/S is an Artin stack locally of finite presentation over
S, and the morphism NMOα

X/S → A is an open immersion. (Recall that A stands for
the stack of S-flat torsion free coherent algebras on X.)
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Proof It suffices to prove the latter statement by Tag 01TQ of [20]. Since belonging
to NMOα

X/S is a fiberwise statement, this follows immediately from Lemma 4.6. 	


We arrive at the somewhat surprising conclusion that maximal orders with Brauer
class α form an open substack of the stack of all coherent algebras. However, the
deformation theory is “arbitrarily bad” in the sense that it is identical to the deforma-
tion theory of maximal orders. We will describe a refinement of the moduli problem
with the same closed points but different infinitesimal properties that has a natural
compactification admitting a virtual fundamental class.

Remark 4.8 Without the Assumption 4.1, the openness of the locus of naïve families
is undoubtedly false.

4.3 Blt Azumaya families

Write π : X̃ → X for the stack X〈D1/n〉 in the notation of Section 3.B of [12];
the stack X̃ is a product of root constructions on each Di and is a smooth proper
Deligne–Mumford relative surface over S.

Definition 4.9 The stack of blt Azumaya algebras is the stack BLTα

X̃/S
whose objects

over T are Azumaya algebras A on X̃T such that for every geometric point t → T
the fiber At is a blt Azumaya algebra with Brauer class αt .

Proposition 4.10 The stack BLTα

X̃/S
is an Artin stack locally of finite presentation

over S.

Proof It is a standard result that for an Azumaya algebra A on a stack Z , the
deformation group is given by H1(Z , A/OZ ) and the obstruction group is given by
H2(Z , A/OZ ). Indeed, the sheaf A/OZ is the sheaf of derivations of A, and this is
precisely the sheaf of infinitesimal automorphisms of A (by the Skolem–Noether the-
orem). Since any deformation of A is locally trivial, the cohomology of the sheaf
of infinitesimal automorphisms determines the deformation in the standard way. (In
slightly different language: deformations of A form a gerbe with structure group
A/OZ . See [10,17] for explicit calculations.) These groups satisfy Artin’s axioms for
a deformation and obstruction theory [1]. Moreover, if Z is proper over the base, Ols-
son’s Grothendieck Existence Theorem for stacks [19, Section 11] shows that formal
families of Azumaya algebras on Z algebraize. It follows from the main results of [1]
that the stack of Azumaya algebras on X̃ is an Artin stack locally of finite presentation
on S. The locus where the type at each xi is ei is an open substack. Finally, the proper
and smooth base change theorem in étale cohomology shows that the locus on which
the fibers have Brauer class α is open and closed. 	


Remark 4.11 While it is easy to write down the deformation theory associated to
BLTα

X̃/S
, it is mysterious what the deformation theory is for NMOα

X/S . This is one
indication that the former moduli problem is likely better behaved.
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5 Relations among themoduli problems

5.1 Pushforwards of Azumaya families are naïve families

LetA be a family in BLTα

X̃/S
over a base T . The pushforward morphism π : X̃ → X

yields a sheaf of algebras A := π∗A .

Proposition 5.1 The algebra A described above is a family in NMOα
X/S.

Proof First, since X̃ is tame and A is T -flat and coherent, we know that A is also
T -flat and coherent, and that the formation of A is compatible with base change on
T . Thus, to show that A is a family in NMOα

X/S , it suffices to assume that T is the

spectrum of an algebraically closed field K . Since X̃ → X is an isomorphism over
a dense open subset, we know that A is generically Azumaya with Brauer class α.
By Proposition 2.7 we have that A is terminal, and Assumption 4.1 implies that any
terminal order is maximal, completing the proof. 	


Pushforward along π thus defines a 1-morphism of stacks

� : BLTα

X̃/S
→ NMOα

X/S .

This morphism will be the object of study for the rest of this section. In particular, we
will show that it is a proper bijection that is not in general surjective on tangent spaces.
Thus this realizes BLTα

X̃/S
as something between NMOα

X/S and its normalization.

We are not sure what normality properties BLTα

X̃/S
enjoys, but it is likely that it can

be arbitrarily bad (although one might hope for stabilization as one varies discrete
parameters like the second Chern class).

5.2 Naïve families over complete dvrs and reflexive blt Azumaya algebras

Let R be a complete dvr over S with uniformizer t and algebraically closed residue
field k and let A ∈ NMOα

X/S(R). In this section we will show that locally on XR the
family A comes from a reflexiveAzumaya algebra over a stackwith An−1-singularities
and coarse moduli space XR . We will use this in Sect. 5.4 to show that � satisfies the
valuative criterion of properness.

Write X = X [D1/n], in the notation of Section 3.B of [12]. This is a stack with
coarsemoduli space X thatmay be locally described as follows: at a crossing section of
two components D1 and D2 of X with local equations t1 = 0 and t2 = 0, the stack X is
given by taking the stack-theoretic quotient for the action of µn onO[w1, w2]/(wn

1 −
t1, wn

2 − t2) given by ζ · (w1, w2) = (ζw1, ζ
−1w2). Since D has relative normal

crossings, we see that X has flat families of An−1-singularities in fibers.
As in Sect. 2.2, we have a smooth stack X̃ dominating X .
We will prove the following local structure theorem in this section, and then study

reflexive Azumaya algebras on X in the following section.
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Proposition 5.2 Let Spec R → S be a dvr over S. Any algebra in NMOα
X/S(R) is the

pushforward from X of a unique reflexive blt Azumaya algebra on X̃ R with Brauer
class α.

Proof Let A ∈ NMOα
X/S(R). By Proposition 2.7, the generic fiber Aη is the pushfor-

ward of an Azumaya algebraAη on X̃η. Since X̃ → X is relatively tame, we see that
the pushforward ofAη to X is a reflexive blt Azumaya algebra Aη that pushes forward
to Aη.

The morphisms X̃ R → X R → XR are isomorphisms over the generic point of
the closed fiber of XR . Moreover, the order A is Azumaya in a neighborhood of that
point, and all of the orders and Azumaya algebras described so far are contained in
the localization B of A at this point. 	

Lemma 5.3 Let Z be an integral S2 NoetherianDeligne–Mumford stack and A a finite-
dimensional κ(Z)-algebra. Suppose for each codimension 1 point z there is given a
maximal order Bz ⊂ A over the local ring OZ ,z . Then there is at most one maximal
order B over Z such that B ⊗OZ ,z = Bz ⊂ A.

Proof Given two such maximal orders B and B ′, consider the algebra B ′′ := B ∩ B ′.
Since B and B ′ are S2, we have that B ′′ is also S2. Since B ′′ is S2 and maximal in
codimension 1 it is maximal. By hypothesis, the inclusions B ′′ ⊂ B and B ′′ ⊂ B ′
are isomorphisms are all codimension 1 points. Thus, B ′′ → B and B ′′ → B ′ are
isomorphisms, as desired. 	


Now let A be any reflexive extension of Aη that localizes to B. We see that the
pushforward of A is a maximal order agreeing with A in the generic fiber and at
the generic point of the closed fiber, and thus at all codimension 1 points. Applying
Lemma 5.3, we conclude that A pushes forward to A, as desired. 	


5.3 Local structure of reflexive Azumaya algebras on families of rational double
points

In this section we will analyze the local structure of reflexive Azumaya algebras on
X .

Let R be a complete dvr with uniformizer t and algebraically closed residue field k
of characteristic 0. Let Z := Spec B → Spec R be a smooth relative affine surface and
D1, D2 ⊂ Z smooth relative curves whose intersection S := D1∩D2 is isomorphic to
the scheme-theoretic image of a section of Z/R. Replacing Z with an open subscheme
containing S if necessary, we may assume that Di is the vanishing locus of a global
function ti ∈ �(Z ,OZ ), i = 1, 2. Let Z ′ = Spec B[w]/(wn − t1t2) be the cyclic
cover branched along D1 ∪ D2; there is a section σ : R

∼→ S′ ⊂ Z ′ lifting S.
There is a stack Z with coarse moduli space Z ′ given by taking the quotient of
Spec B[w1, w2]/(wn

1 − t1, wn
2 − t2) by the action of µn in which ζ · (w1, w2) =

(ζw1, ζ
−1w2). The natural map Z → Z ′ is an isomorphism away from the singular

locus S′.
Write z ∈ Z ′ for the closed point of S′, and let Y ′ = Spec Ohs

Z ′,z andY
′ = Y ×Z ′ Z

be the Henselizations of Z ′ and Z at z. Because R is strictly Henselian, there is a
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section T ⊂ Y → Spec R lying over S′. Finally, let Y be the Henselization of Y ′
along T and let Y = Y ′ ×Y ′ Y , with π : Y → Y the natural map. We have that
(Y ×Y T )red is isomorphic to Bµn,T . WriteU = Y\T ; this is in fact the regular locus
of Y , and it has regular geometric fibers over R. Note that, as a limit of Henselian local
schemes, Y is itself still a Henselian local scheme.

Lemma 5.4 The Brauer group Br(U ) is trivial.

Proof By purity, we have that Br(U ) = Br(Y ), so it suffices to show that the latter
vanishes. Since Y is Henselian along T , we have by the usual deformation arguments
that Br(Y ) = Br(Bµn,T ), so it suffices to show that this last group is trivial.

Consider the projection π : Bµn,T → T . The Leray spectral sequence yields

Hp(T ,Rqπ∗Gm) ⇒ Hp+q(Bµn,T ,Gm).

We know by §4.2 of [13] that R2π∗µn = 0 and R1π∗Gm = Z/nZ. Since R is
Henselian with algebraically closed residue field we have that H1(T ,Z/nZ) = 0.
The sequence of low degree terms then shows that the pullback map H2(T ,Gm) →
H2(Bµn,T ,Gm) is an isomorphism. But, again because R is Henselian with alge-
braically closed residue field, we know that H2(T ,Gm) = Br(T ) = 0. 	

Corollary 5.5 A reflexive Azumaya algebra on Y has the form End(M), where M is a
reflexive OY -module.

Proof Let A be a reflexive Azumaya algebra. By Lemma 5.4 we know that A |U ∼=
End(V )with V a locally free coherent sheaf onU . IfM is the unique reflexive coherent
extension of V then End(M) is reflexive and isomorphic to A in codimension 1,
whence A ∼= End(M). 	

Proposition 5.6 SupposeA is a reflexive Azumaya algebra of degree r on Y such that
the restriction A ⊗ k is a reflexive Azumaya algebra on Y ⊗ k. Then

(1) A ∼= End(M) with M a direct sum of indecomposable reflexive OY -modules of
rank 1;

(2) there is a blt Azumaya algebra B on Y such that A = π∗B.

Proof By assumption we have that A ⊗ k ∼= End(V ) with V a reflexive OY ⊗ k-
module. But Y ⊗ k is the Henselization of an An−1-singularity, so we know that V
decomposes as a direct sum of reflexive modules of rank 1 by the McKay correspon-
dence [3]. This gives rise to a full set of idempotents e j ∈ A (Y ⊗ k), j = 1, . . . , r .
Since Y is Henselian, these idempotents lift to global sections ẽ j of A . By Corollary
5.5 we have that A ∼= End(M). The idempotents ẽ j decompose M as a direct sum
of submodules of rank 1. Since M is reflexive, each of these summands is reflexive,
proving the first statement.

To prove the second statement, note that a reflexive sheaf of rank 1 on Y is the
pushforward along π of a unique invertible sheaf on Y . Thus, M is isomorphic to
π∗N for some locally free sheaf V on Y . The Azumaya algebra B = End(N ) has
reflexive pushforward that is canonically isomorphic toA overU , whenceA ∼= π∗B,
as desired. 	
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5.4 Proof that8 is a proper bijection

In this section we show that � : BLTα

X̃/S
→ NMOα

X/S is a proper morphism. Since it
is already locally of finite presentation and bijective, it suffices to show the following
valuative criterion.

Proposition 5.7 If R is a complete dvr over S then any naïve family A on XR has the
form π∗A , where A is an Azumaya family on X̃ R.

Proof ByProposition 5.2,we know that A is the pushforward of a familyB of reflexive
Azumaya algebras on X . It thus suffices to show that B ∼= p∗A , where p : X̃ → X
is the natural morphism.

Let V ⊂ X be the smooth locus of X/S. By construction there is a natural diagram

X̃

��

V

i
����������

j ���
��

��
��

�

X

inwhich the diagonal arrows arefiberwise dense open immersionswhose complements
have codimension two in each geometric fiber. By the theory of hulls [11], we have
that the adjunction map B → j∗BV is an isomorphism. Since pi = j , to prove the
result it suffices to prove that i∗BV is an Azumaya algebra on X̃ .

This latter statement is étale local on X , so wemay replace X by the local Henselian
scheme Y of section 5.3. In this case we have thatB is isomorphic to p∗A for some
Azumaya algebraA . The algebra i∗BV is thus isomorphic to i∗AV , and so it suffices
to show that the adjunction map a : A → i∗AV is an isomorphism. But the stack X̃ is
regular andA is locally free, so a is an isomorphism if and only if it is an isomorphism
in codimension 1. Since V has codimension 2, we know that a is an isomorphism at
every codimension 1 point, and the result follows. 	


5.5 Proof that8 need not be an isomorphism

In this section we prove that the map BLTα

X̃/S
→ NMOα

X/S need not be an isomor-
phism by exhibiting examples for which the map on tangent spaces is not surjective.

Let D ⊂ X be a smooth divisor in a projective surface such that

(1) there is an infinitesimal deformation D ⊂ Xk[ε] for which OXk[ε](D − Dk[ε]) is
non-torsion in Pic(Xk[ε]);

(2) there is a blt Azumaya algebra A on X̃ for which the pushforward π∗A is a
maximal order on X of period n and H2(X̃ ,A /OX̃ ) = 0.

Write X̃ ′ = Xk[ε]{D1/n} and (by abuse of notation) π : X̃ ′ → Xk[ε] for the
projection to the coarse moduli space. By deformingA to X̃ ′ we will make a tangent
vector to NMOX/S that does not lie in the image of the tangent map to BLTX̃/S .
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Proposition 5.8 There is a deformationA ′ ofA to a blt Azumaya algebra on X̃ ′ such
that the resulting object A′ = π∗A ′ ofNMOX/S(k[ε]) is not in the image of BLTX̃/S.

Proof The key to the proof is to relate the dualizing bimodule of A′ to the divisor class
D.

Lemma 5.9 Given X̃ ′, A ′ and A′ as above, there is a natural isomorphism

ω⊗n
A′ ∼= A′ ⊗OXk[ε] ωn

Xk[ε]/k[ε]((n − 1)D).

Let us briefly accept Lemma 5.9 and see how to complete the proof of Proposition
5.8. We need the following lemma:

Lemma 5.10 The pullback map Pic(Xk[ε]) → H1(Xk[ε], A′×) is injective modulo
torsion as a map of pointed sets.

Proof Recall that the pointed set H1(Xk[ε], A′×) classifies right modules locally iso-
morphic to AA. The reduced norm defines a sequence O× → (A′)× → O× such that
the composition is raising to the nth power (and thus surjective in the étale topology).
Applying the étale H1 functor we see that the natural map

H1
(
Xk[ε],O×

Xk[ε]

)
→ H1 (

Xk[ε], (A′)×
)

is injective modulo n-torsion. This proves the lemma. 	

If A′ is in the image of BLTX̃/S(k[ε]), the analogous computation with Dk[ε]

in place of D would yield an isomorphism between the bimodules ω⊗ n
A′ and

A′ ⊗OXk[ε] ωn
Xk[ε]/k[ε]((n− 1)Dk[ε]). Applying Lemma 5.10, we conclude that O(D−

Dk[ε]) is torsion in Pic(Xk[ε]), contrary to our original hypothesis. 	

It remains to prove Lemma 5.9.

Proof of Lemma 5.9 To simplify notation, write X ′ = Xk[ε] and write ωX ′ for the rela-
tive dualizing sheaf over k[ε]. Recall that the dualizing bimodule is given by the sheaf
HomOX ′ (A

′, ωX ′). Writing A′ = π∗A ′ and using duality, we have isomorphisms of
bimodules

ωA′ = HomOX ′
(
π∗A ′, ωX ′

) = π∗Hom
(
A ′, π !ωX ′

)

= π∗Hom
(
A ′, ωX̃ ′

) = π∗
(
A ′ ⊗ ωX̃ ′

)
.

As anA ′-bimodule, we have that (A ′ ⊗ ωX̃ ′)⊗ n ∼= A ′ ⊗ ω⊗ n
X ′ ((n − 1)D). To see

this, note that we can locally write X̃ ′ = [Spec OX ′ [z]/(zn − t)/µn], where t is a local
equation for D; computing the relative differentials immediately yields the result.

There is a natural map

(
π∗

(
A ′ ⊗ ωX̃ ′

))⊗ n → π∗
((
A ′ ⊗ ωX̃ ′

)⊗ n
)
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giving rise (using the computation of the preceding paragraph) to a map

φ : ωA′ → A′ ⊗ ω⊗ n
X ′ ((n − 1)D)

that we wish to show is an isomorphism.
Note that an étale-local model for X ′, A′,A ′ around a closed point of X ′ is given

by the trivial family whose fiber is the standard cyclic algebra. Thus, to prove that φ

is an isomorphism it suffices to prove it for the local constant family, and thus (by
compatibility with pullback) for the local family over a smooth surface over k. But
this is Proposition 5 of [9]. 	


To give a concrete example, let X = E × E for a smooth projective curve of genus
1 over an algebraically closed field of characteristic 0 and let D = D1+D2 be the sum
of two disjoint closed fibers of the second projection. Let E ′ ⊂ E be the complement
of the image of D under pr2. There is a finite covering C → E ′ of degree 2 that is
totally ramified at both points of E\E ′, giving a class α ∈ H1(E ′,Z/2Z). Choosing
any β ∈ H1(E, μ2) we can form the class pr∗2 α ∪ pr∗1 β ∈ H2(E × E ′,µ2), giving a
Brauer class γ ∈ Br(k(E × E)). Elementary computations show that the ramification
extension of this Brauer class on each component of D is given by the class of β, so
that maximal orders must be hereditary along D.

Any non-constant infinitesimal deformation of D (e.g., that induced by moving
along E) will give a D as in the statement of Proposition 5.8. It remains to show that
there is an unobstructed Azumaya algebra on the stack X̃ → E × E branched over
D. Since Br(X̃) = Br′(X̃), there is certainly some Azumaya algebra in that class.
Producing one that is unobstructed is a standard argument that can be found written
out for projective surfaces in Proposition 3.2 of [10]. We omit the details.

Remark 5.11 The construction given here also shows that fixing the Brauer class to
be α étale-locally on the base of families in Definition 4.2 does not ameliorate the
situation, as any infinitesimal deformation of the class of α on E × E ′ is constant.

6 Generalized Azumaya algebras on ˜X

In this section we will suppose that S = Spec k is the spectrum of an algebraically
closed field. We will compactify the stack BLTα

X̃/S
. The constructions described here

are almost identical to those in [17]. By the proper and smooth base change theorems
in étale cohomology, any family in BLTα

X̃/S
defines a section of the finite constant

sheaf (scheme!) R2 f∗µn , where f : X̃ → S is the structural morphism, giving a
morphism of stacks

c : BLTα

X̃/S
→ R2 f∗µn .

Thus, to compactify BLTα

X̃/S
we will compactify each fiber.

Write α ∈ H2(X̃ ,µn) for a lift of α via the Kummer sequence. The fiber of c over
α will be denoted BLTα

X̃/S
. Let p : X → X̃ be a µn-gerbe representing the class
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α. That there is such an Artin stack is discussed in Section 2.4 of [13]. In Sections
2.2 and 2.3 of [13] or in [16] the reader will also find a discussion of the theory of
X -twisted sheaves in connection with the Brauer group.

Definition 6.1 A torsion freeX -twisted sheafF is blt if the OX̃ -algebra p∗End(F )

is blt on the Azumaya locus.

Let ShX denote the stack of torsion free blt X -twisted sheaves of rank n with
trivial determinant. The basic result on the stack ShX is the following.

Proposition 6.2 The stack ShX is an Artin stack locally of finite presentation over S.
Moreover, ShX is a Gm-gerbe over an algebraic space ShX with proper connected
components.

Proof This is proven in Sections 3 and 4 of [18], once we note that any torsion free
X -twisted sheaf of rank n is automatically stable when the Brauer class has period
n. 	


Let Sh f
X denote the locus of locally freeX -twisted sheaves. The morphism V �→

p∗End(V ) defines a morphism of stacks e : Sh f
X → BLTα

X̃/S
.

Lemma 6.3 The morphism e is an epimorphism of stacks.

Proof Since both stacks are locally of finite presentation, it suffices to prove that if S
is strictly Henselian and A is an Azumaya on X̃ S with Brauer class α, then A is of the
form p∗End(V ) for V a blt locally freeXS-twisted sheaf.

This follows immediately from Giraud’s description of the cohomology class in
H2(X̃ ,µn) associated to A: one takes the stack of isomorphisms End(V )

∼→ A with

V locally free with trivialized determinant det V
∼→ O . This is a µn-gerbe X , and

the sheaves V glue to give anX -twisted sheaf of rank n with trivial determinant. 	

Let G = PicX̃/S[n] be the (finite) n-torsion subgroupscheme of the relative Picard

scheme. Given an invertible sheaf L with a trivialization L ⊗ n ∼→ OX̃ there is an
induced 1-morphism ⊗L : ShX → ShX .

Lemma 6.4 The morphisms ⊗L defined above as L ranges over a set of represen-
tatives for G define an action G × ShX → ShX .

Proof Given an invertible sheafL with a trivializationL ⊗ n ∼→ O and a torsion free
sheaf F of rank n with a trivialization detF

∼→ O , we get a trivialization

det(F ⊗L )
∼→ det(F )⊗L ⊗ n ∼→ O ⊗O

∼→ O.

This map induces the action. 	

Proposition 6.5 The morphism e : V �→ p∗End(V ) induces an isomorphism of
stacks

[Sh f
X /G] ∼→ BLTα

X̃/S
.
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Proof Via the morphism e the scalar multiplication action on V is sent to the
trivial action on p∗End(V ) so that e factors through an epimorphism of stacks
ε : Sh f

X → BLTα

X̃/S
. It follows from the Skolem–Noether theorem that any iso-

morphism p∗End(V )
∼→ p∗End(V ′) comes from an isomorphism V

∼→ V ′ ⊗ L for
some invertible sheaf L , and that any invertible sheaf L induces a canonical isomor-
phism p∗End(V )

∼→ p∗End(V ⊗ L).
Since G acts by twisting by invertible sheaves, the morphism ε factors through

the quotient as ε : [Sh f
X /G] → BLTα

X̃/S
. On the other hand, suppose given an

isomorphism p∗End(V )
∼→ p∗End(W ). By the above remark, we have that there

is an invertible sheaf M and an isomorphism V
∼→ W ⊗ M . Taking determinants

gives an isomorphism det V
∼→ detW ⊗ M⊗ n . Via the isomorphisms det V

∼→ O

and detW
∼→ O we get a canonical isomorphism M⊗ n ∼→ O , displaying W as the

image of V under ⊗ M . This shows that ε is a monomorphism, showing that it is an
isomorphism. 	

Remark 6.6 The stack [ShX /G] gives the desired compactification ofBLTα̃

X̃/S
. Argu-

ing as in Proposition 6.5.1.1 of [17] and Section 6.5.2 of [17], one can also show that
[ShX /G] carries a virtual fundamental class. We will not discuss this in further detail
here.

Acknowledgements The authors had helpful conversations with Daniel Chan, Paul Hacking, and Colin
Ingalls while working on this paper. The authors also thank the referees for useful comments. During
the course of this work, Rajesh S. Kulkarni was partially supported by NSF Grants DMS-0603684, DMS-
1004306 andDMS-1305377.MaxLieblichwas partially supported by anNSFPostdoctoral Fellowship,NSF
Grant DMS-0758391, NSF CAREER grant DMS-1056129, a Sloan Research Fellowship, and a University
of Washington Faculty Fellowship.

References

1. Artin, M.: Versal deformations and algebraic stacks. Invent. Math. 27, 165–189 (1974)
2. Artin, M., Small, L.W., Zhang, J.J.: Generic flatness for strongly Noetherian algebras. J. Algebra

221(2), 579–610 (1999)
3. Artin, M., Verdier, J.-L.: Reflexive modules over rational double points. Math. Ann. 270(1), 79–82

(1985)
4. Borne, N.: Fibrés paraboliques et champ des racines. Int. Math. Res. Not. IMRN 16, 38 (2007)
5. Brumer, A.: Structure of hereditary orders. Bull. Am. Math. Soc. 69, 721–724 (1963)
6. Brumer, A.: Addendum to “Structure of hereditary orders”. Bull. Am. Math. Soc. 70, 185 (1964)
7. Chan, D., Hacking, P., Ingalls, C.: Canonical singularities of orders over surfaces. Proc. Lond. Math.

Soc. (3) 98(1), 83–115 (2009)
8. Chan, D., Ingalls, C.: The minimal model program for orders over surfaces. Invent. Math. 161(2),

427–452 (2005)
9. Chan, D., Kulkarni, R.: Del Pezzo orders on projective surfaces. Adv. Math. 173, 144–177 (2003)

10. de Jong, A.J.: The period-index problem for the Brauer group of an algebraic surface. Duke Math. J.
123(1), 71–94 (2004)

11. Kollár, J.: Hulls and husks. arXiv:0805.0576v4
12. Kovács, S.J., Lieblich, M.: Boundedness of families of canonically polarized manifolds: a higher

dimensional analogue of Shafarevich’s conjecture. Ann. Math. (2) 173(1), 585–617 (2011)
13. Lieblich, M.: Period and index in the Brauer group of an arithmetic surface. J. Reine Angew. Math.

(Crelles Journal) 659, 1–41 (2011). https://doi.org/10.1515/crelle.2011.059

123

http://arxiv.org/abs/0805.0576v4
https://doi.org/10.1515/crelle.2011.059


Blt Azumaya algebras and moduli of maximal orders 287

14. Lieblich, M.: Remarks on the stack of coherent algebras. Int. Math. Res. Not. 12, Art. ID 75273 (2006)
15. Lieblich, M.: Moduli of twisted sheaves. Duke Math. J. 138(1), 23–118 (2007)
16. Lieblich, M.: Twisted sheaves and the period-index problem. Compos. Math. 144(1), 1–31 (2008)
17. Lieblich, M.: Compactified moduli of projective bundles. Algebra Number Theory 3(6), 653–695

(2009)
18. Lieblich, M.: Moduli of twisted orbifold sheaves. Adv. Math. 226(5), 4145–4182 (2011)
19. Olsson, M.: Sheaves on Artin stacks. J. Reine Angew. Math. 603, 55–112 (2007)
20. The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu (2018). Accessed 25

Sept 2019

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://stacks.math.columbia.edu

	Blt Azumaya algebras and moduli of maximal orders
	Abstract
	1 Introduction
	2 Normal orders and parabolic Azumaya algebras
	2.1 Hereditary orders over dvrs
	2.2 Globalization for terminal orders

	3 Naïve relative maximal orders
	3.1 Definitions and basic geometric properties

	4 Moduli
	4.1 Notation and assumptions
	4.2 Naïve families
	4.3 Blt Azumaya families

	5 Relations among the moduli problems
	5.1 Pushforwards of Azumaya families are naïve families
	5.2 Naïve families over complete dvrs and reflexive blt Azumaya algebras
	5.3 Local structure of reflexive Azumaya algebras on families of rational double points
	5.4 Proof that Φ is a proper bijection
	5.5 Proof that Φ need not be an isomorphism

	6 Generalized Azumaya algebras on
	Acknowledgements
	References


