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Abstract

We study moduli spaces of maximal orders in a ramified division algebra over the
function field of a smooth projective surface. As in the case of moduli of stable com-
mutative surfaces, we show that there is a Kollar-type condition giving a better moduli
problem with the same geometric points: the stack of blt Azumaya algebras. One
virtue of this refined moduli problem is that it admits a compactification with a virtual
fundamental class.
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1 Introduction

Much recent progress has been made on the structure theory of maximal orders over
algebraic surfaces. Several authors have produced a satisfying minimal model program
for such orders (a sampling of which is represented by [7-9] and their references).
Others have studied the moduli of Azumaya orders in a fixed unramified division
algebra and related moduli problems (e.g. [10,15,17,18]).

In this paper we extend the moduli theory to orders in a ramified Brauer class.
In so doing we encounter a phenomenon similar to that which occurs in the moduli
theory of stable projective surfaces, arising from an analogue of Kollar’s condition
on the compatibility of the reflexive powers of the dualizing sheaf with base change.
Because the global dimension of our orders is 2, things are technically rather simpler
than in Kollar’s theory, and we arrive at a satisfying moduli space with a natural
compactification carrying a virtual fundamental class. We expect a similar story could
be told in higher dimension, but it would involve a careful extension of the results of
Sect. 5.3.

As in the commutative theory, the naive moduli problem (given by fixing the prop-
erties of the fibers of a family) contains a refined version as a bijective closed substack.
This refined moduli problem can be described as a moduli problem of Azumaya alge-
bras on stacks rather than orders on varieties. (One can also interpret this refined
problem as a moduli theory of parabolic Azumaya algebras.) These Azumaya alge-
bras have a precise interaction with the ramification divisor arising from the structure
of hereditary orders in matrix algebras over discrete valuation rings, first described by
Brumer [5], giving them a structure we call Brumer log terminal, or blt.

We begin in Sect. 2 by studying the local problem, relating hereditary algebras over
complete dvrs to Azumaya algebras over root construction stacks. This is globalized
in Sect. 2.2. A simple approach to families of maximal orders is described in Sect. 3.
The two resulting moduli problems are described in Sect. 4 and compared in Sect. 5
(with a proof that they can differ included in Sect. 5.5). The comparison relies crucially
on ideas similar to those introduced by Kollér in his theory of hulls and husks [11]
and a local analysis of reflexive Azumaya algebras on families of rational double
points. Finally, in Sect. 6 we describe how to compactify the Azumaya problem using
algebra-objects of the derived category of a stack (that one might think of as “parabolic
generalized Azumaya algebras”) along lines familiar from [17].

2 Normal orders and parabolic Azumaya algebras

2.1 Hereditary orders over dvrs

Fix a discrete valuation ring R with uniformizer ¢ and residue field . Write R"* for
the strict Henselization of R. Fix a separable closure ¥ C k. Fix a positive integer n

invertible in R. Given a positive integer r, let 7 : 2, — Spec R be the stack-theoretic
quotient of the natural action of u,. on R[s]/(s" —¢). The root construction provides an

isomorphism B, S (2, QR ©)red. An Azumaya algebra <7 on 2 thus gives rise
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BIt Azumaya algebras and moduli of maximal orders 269

to an Azumaya algebra on By, by restriction. By §4.1 of [13], any such algebra is
isomorphic to the sheaf of endomorphisms of the vector bundle on By, z associated to
arepresentation of p,.. Call this the representation associated to < this representation
is defined up to tensoring with a character.

Definition 2.1 Say that a hereditary order A over R is of type m if A ® R" has exactly
m distinct indecomposable projective modules. Given a positive divisor m of n, call
an Azumaya algebra o7 over 2 of type m if the representation associated to .7 is the
restriction of scalars of the regular representation of p,, via the natural quotient map

Ry = B

Definition 2.2 The hereditary site F of Spec R is the site whose underlying category
consists of faithfully flat quasi-finite étale R-schemes U — Spec R with U of pure
dimension 1, with coverings given by collections of R-maps U; — U that are jointly
surjective.

Define two stacks on the hereditary site of Spec R as follows.

Definition 2.3 Given an object U — Spec R of F, an Azumaya algebra </ on 2 is
n-typed if for each closed point u € U the restriction of &7 to 2" @ Oy, has type
m for some positive integer m dividing n. A hereditary order A on U is n-typed if for
every closed point u € U, the restriction of A to O, has type m for some positive
integer m dividing n.

Definition 2.4 Given an object U — Spec R of F, the stack A, has as objects over
U the groupoid of n-typed Azumaya algebras <7 of degree n on .2 Xgpec g U. The
stack H,, has as objects the groupoid of n-typed hereditary orders on U'.

Since the n-typed Azumaya and hereditary properties are étale-local, it is clear that
both A,, and H,, are stacks.

Proposition 2.5 Suppose n is invertible in the residue field k of R. For any object
o € Ap(U), the finite Oy-algebra m,of lies in H,. The resulting map of stacks
A = H, is a 1-isomorphism.

Proof Since both stacks are limit-preserving and the statements are étale-local on U,
it suffices to prove the following: if R above is a strictly Henselian discrete valuation
ring then for any locally free sheaf ¥ of rank n and type m on 2, the R-algebra
w.énd (V) is hereditary of type m, and in fact this gives an equivalence of groupoids
between Azumaya algebras of degree n and type m on 2" and hereditary R-algebras
of degree n and type m. Indeed, since Br(K (R))[n] = 0, the generic fiber of any
hereditary R-order and the Brauer class of any Azumaya algebra of degree n over 2~
are trivial, which reduces us to the case of matrix algebras and orders therein.

We recall Brumer’s fundamental description of hereditary orders [5,6] (combined
with Artin-de Jong characterization of the number of indecomposable projectives =
number of embeddings in maximal orders): given a K -vector space V of dimension
n, the hereditary orders in End(V) of type m are equivalent to collections of R-
submodules {M; C V};ez such that for all i we have M; 1 C M; and M;y,, =

@ Springer



270 R. S. Kulkarni, M. Lieblich

tM;, up to a shift of indices. The equivalence is given by sending {M;} to the ring
of endomorphisms f of V such that for all i we have f(M;) C M;; this filtered
endomorphism ring is then the hereditary order corresponding to the filtered module
{M;}.

On the other hand, Azumaya algebras of type m on 2, are the pullbacks of Azu-
maya algebras </’ of type m on 2, and any such algebra .’ is isomorphic to the
pushforward of its pullback to 2, via the natural map 2, — 2.

Thus, it suffices to prove the proposition in case n = m. The filtered module {;}
is precisely an object of the category of parabolic vector bundles with denominator
n, called Par 1 (Spec R, (¢)) in [4], and the corresponding order is nothing other than
the endomorf)hisms of the parabolic sheaf. Just as in [4], we know that there is a
locally free sheaf ¥ on 2, giving rise to {M;} in such a way that End(?") equals
the endomorphisms of the parabolic sheaf. But the R-module End(¥") is precisely
e énd (V).

What is ¥'? Since each inclusion M, C M; is proper, the eigendecomposition of
¥ must have n distinct summands, which implies that the representation associated
to 7 is the regular representation.

What are the automorphisms of A := m,&nd(¥)? Any R-automorphism of A
localizes to a K -automorphism of End(V'), which by the Skolem—Noether theorem is
given by conjugation by an automorphism ¢ of V. If this conjugation is to preserve
the set of morphisms stabilizing the filtered module {M;} then ¢ itself must preserve
the filtration, which means precisely that ¢ is induced by an automorphism of the
parabolic sheaf corresponding to {M;}, which in turn is equivalent to ¢ being induced
by an automorphism of 7. Thus, the induced map Aut(énd(?)) — Aut(A) is a
bijection, as desired. 0

The reader wishing to avoid stacks can also interpret the equivalence purely in
terms of parabolic sheaves: the hereditary orders on R are equivalent (as a groupoid)
to “parabolic Azumaya algebras”: parabolic sheaves of algebras locally isomorphic to
the parabolic sheaf of endomorphisms of a parabolic vector bundle with denominator
equal to the type of the order. This seems to hold no advantage (when the type is
bounded as it is) over the formulation in terms of root stacks.

2.2 Globalization for terminal orders

Let o be a terminal Brauer class over the function field of a smooth surface X in
the sense of [8]. The ramification data of « yield a simple normal crossings divisor
D =Dy +---+ D, C X, and for each component D; a ramification degree ¢;|n.
Let 7 : 2 — X be the smooth stack that is given by the fiber product (with respect
to i) of the root construction of order e; along D;. Let n; be the generic point of D;.
Asin Sect. 2.1, an Azumaya algebra over 2" has associated representations over each

Bu,, «(p;; call the representation associated to D; the ith representation associated
to of .

Definition 2.6 An Azumaya algebra o7 on 2 is Brumer log terminal (blt) if for every
i the local Azumaya algebra 27, has type e;.
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BIt Azumaya algebras and moduli of maximal orders 271

Recall that a normal order with center X and Brauer class « is an order satisfying
the usual conditions (R1) and (S2), see definition (2.3) in [8]. Further a normal order
is called terminal if its ramification data satisfies additional conditions, see definition
(2.5) of [8].

Proposition 2.7 Pushforward by w defines an equivalence of groupoids between blt
Azumaya algebras on 2" and terminal orders on X with Brauer class a.

Remark 2.8 Note that the geometric information about ramification at (singular) points
of the ramification divisor as well as ramification along irreducible divisors is incor-
porated in the construction of 2.

Proof The proof is mainly a routine globalization of Proposition 2.5.

First, we have that the pushforward of any such .o is normal, as we can check
this locally at any codimension 1 point, where this is an immediate consequence
of Proposition 2.5. Thus, the pushforward of a blt Azumaya algebra is normal, as
desired. To show that m, is essentially surjective, note that since any maximal order
A is reflexive we have that

A= ﬂ Ay,

xeX®

and similarly for blt Azumaya algebras on 2, where X (1) is the set of codimension
1 points of X and Ay := A® Ox is the localization. Moreover, 7, commutes
with the formation of intersections. It thus suffices to prove the analogous result for
localizations at codimension 1 points (keeping track of the embedding in the generic
algebras), which is precisely Proposition 2.5.

To show that m, is fully faithful, it suffices to prove the analogous statement upon
replacing X by its localization at ;. Indeed, since the maximal orders A and the
Azumaya algebras o7 are reflexive, we have that for any blt Azumaya algebras <7 and
% with pushforwards A and B the isomorphisms are given by

Isom (<, B) = ﬂ Isom (<, B)

xex®

and

Isom(A, B) = (] Isom(Ay. By)
xex(®

where X (1 is the set of codimension 1 points of X and the intersection takes place inside
the set Isom(.27,, %) of isomorphisms of the generic algebras. Since Proposition2.5

shows that Isom (%, , 4,) = Isom(A,, By), the result follows. O

In more classical terms, terminal orders are parabolic Azumaya algebras with
parabolic structure along the ramification divisor.
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272 R. S. Kulkarni, M. Lieblich

3 Naive relative maximal orders
3.1 Definitions and basic geometric properties

Definition 3.1 Let Z be an integral algebraic space. A torsion free coherent sheaf .o
of 0'z-algebras is a maximal order if any injective morphism o/ — % of torsion
free ¢'z-algebras that is an isomorphism over a dense open subspace U C Z, is an
isomorphism.

We will prove that maximality in a family is a fiberwise condition.

Definition 3.2 Given a morphism X — § with locally Noetherian geometric fibers,
an S-flat family of coherent sheaves is an S-flat quasi-coherent 0’y -module . of finite
presentation. If X has integral fibers, we will say that a possibly non-flat quasi-coherent
O'x-module of finite presentation ¥ is torsion free if its geometric fibers ¥ are torsion
free coherent Ox -modules.

Definition 3.3 Given a flat morphism X — § with integral fibers, an S-flat family of
coherent Oy -algebras o7 is

(1) arelative maximal order if for any T — § and any injective morphism <7 — %
into a torsion free O, -algebra that is an isomorphism over a fiberwise dense
open subspace U C X7 is an isomorphism;

(12) a relative normal order if the geometric fibers o/ are R and S5, in the sense of

[8].

While relative normality is defined as a fiberwise condition, relative maximality is
not obviously so. Let us prove this.

Lemma 3.4 Suppose X is a proper integral algebraic space over an algebraically
closed field k. A coherent sheaf </ of Ox-algebras is a maximal order on X if and
only ifitis a relative maximal order on X / Spec k. In particular, for any field extension
K /k we have that & ® K is a maximal order on X ® K.

Proof Since any relatively maximal order is obviously maximal, it suffices to assume
that .7 is maximal and prove that it is relatively maximal. Suppose @77 — 2 is an
injective map to a torsion free Oy, -algebra that is an isomorphism over the fiberwise
dense open U C X7. For any geometric point Spec K — T, the base change &/ —
Pk is thus injective and an isomorphism over a dense open of the scheme X . If we
can show that this restricted map is always an isomorphism then the result is proven.
Thus, we are reduced to the case in which 7 = Spec K with K an algebraically closed
extension field of k.

Since A is of finite presentation, we may assume by a standard limit argument that
there is a finite type integral k-scheme T’ — Spec k, a torsion free algebra %’ over T’
with an injective map ¢ : & — 9’, and a dominant morphism Spec K — T’ such
that the base change of ¢ isomorphic to the given inclusion .27 — . The locus over
which ¢ is an isomorphism is an open subscheme U’ C X7/ whose restriction to the
geometric generic fiber over T’ is non-empty. By Chevalley’s theorem the image of
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U’ in T’ is constructible, hence contains a dense open, whence shrinking 7" we may
assume that U’ is dense in every fiber. But now T’ has a dense set of k-points (as it
is of finite type over an algebraically closed field), and we know by assumption that
for any such point t' € T the restriction .7, < %,/ is an isomorphism. We conclude
that U’ = T’, which finishes the proof that <7 is a relative maximal order. O

Remark 3.5 Note that if the base field & is not assumed to be algebraically closed,
the result of Lemma 3.4 is false. Indeed, there are Brauer classes on varieties X over
a field £ which are ramified but become unramified over the algebraic closure of k.
Any maximal order over k£ will be geometrically hereditary but non-maximal at the
generic points of the preimage of the ramification divisor in X ® k. A simple example
is furnished by the quaternion algebra (x, a) over k(x, y), where a is a non-square
element of k. This gives a ramified algebra on P> whose base change to k is trivial, and
it follows that no maximal order in this quaternion algebra can be relatively maximal.

Proposition 3.6 Suppose X — S is a flat morphism of finite presentation between
algebraic spaces whose geometric fibers are integral. An S-flat family of torsion free
coherent Ux-algebras <7 is a relative maximal order if and only if for every geometric
point s — S the fiber </ is a maximal order on the integral k (s)-space X.

Proof It follows immediately from the definition that the geometric fibers of a relative
maximal order are maximal. To prove the other implication, by Lemma 3.4 it suffices
to assume that the geometric fibers are maximal and show that .2 is maximal (i.e., we
may assume that 7 = §; lifting geometric points to 7 by taking field extensions does
not disturb the hypotheses by Lemma 3.4).

Suppose ¢ : &/ — 2 is an injection into a torsion free Oy-algebra that is an
isomorphism over a fiberwise dense open U C X. To prove that ¢ is an isomorphism
it suffices to work locally on S, so we can assume that S = Spec A for A a local ring
whose closed point s is the image of a geometric point over which &7 is maximal.
Since ¢ is an isomorphism over a fiberwise dense open and &7 and % have torsion
free fibers, the reduction ¢ : &7 — 9B, is injective and an isomorphism over a dense
open. Since .7 is maximal (as follows immediately from the same being true of its
base change to k' (s)), we conclude that ¢, is an isomorphism. By Nakayama’s Lemma,
we have that ¢ is surjective, whence it is an isomorphism, as desired. O

Corollary 3.7 Suppose X is a smooth projective surface over a field k and D is a central
division algebra over its function field. Let k — R — k be a local Artinian k-algebra
with residue field k. Given a maximal order o/ C D, any infinitesimal deformation of
o over X Qi R is a maximal order in the generic algebra D ®y R.

Proof There’s only one geometric fiber! O

Proposition 3.8 Suppose X — S = Spec A is an algebraic space of finite presenta-
tion with integral fibers over a local ring A with residue field k. An A-flat family of
torsion free Ox-algebras <7 is a relative maximal order if and only if its geometric
closed fiber is a maximal order on X Q@ k.
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274 R. S. Kulkarni, M. Lieblich

Proof We may suppose that A is Noetherian and reduced. By Proposition 3.6, it suffices
to prove that the geometric fibers are all maximal, which immediately reduces us by
a pullback argument and Lemma 3.4 to showing that if A is a discrete valuation ring
with algebraically closed residue field then the generic fiber of .o is a maximal order
(in the absolute sense).

Let o) < %, by aninjection into a torsion free Oy, -algebra thatis an isomorphism
over the generic point of Z;. Let y € X be the generic point of the closed fiber
and let 6 € X be the generic point of X. Considering localizations as quasi-coherent
sheaves on X, we can focus on quasi-coherent sheaves of algebras containing .27 whose
localizations at y are isomorphic to <7, via the natural inclusion. A standard argument
shows that there is a coherent such algebra % extending %,; saturating if necessary,
we may assume that % has torsion free fibers. This produces a family .« < % over
all of X which is an isomorphism over a fiberwise dense open subscheme. Reducing
to k as in the proof of Proposition 3.6, we conclude that &7 — £ is an isomorphism,
whence the original map 7, < 28, is an isomorphism, showing that .27, is maximal.
(Applying the same argument to a localization of the normalization in any extension
of the fraction field of A shows that the geometric generic fiber of .2 is maximal.) O

Let f : Z — S be a flat morphism of finite presentation between algebraic spaces
with integral geometric fibers and <7 an S-flat torsion free &'z-algebra of finite pre-
sentation. Define a subfunctor Az,, C Z parametrizing morphisms 77 — Z such that
o/t is Azumaya.

Lemma 3.9 The map of functors Az, — Z is a quasi-compact open immersion.

Proof By absolute Noetherian approximation, there is an algebraic space Sy of finite
type over Z, flat morphism Zo — Sp of finite type with integral geometric fibers,
and a morphism § — Sy such that the pullback of Z to S is isomorphic to Z. Since
&7 is of finite presentation, we can assume that o7 is defined on Zj. Now, since Z
is Noetherian any open subscheme is quasi-compact. Thus, it suffices to prove that
Az, — Z is open to conclude that it is quasi-compact.

Since the locus over which &7 is locally free is open and contains Az, we may
shrink Z and assume that .o is locally free. Consider the morphism of locally free
sheaves u : &/ ® @/° — &nd(<f) given by left and right multiplication. We know
that .o/ is Azumaya if and only if w7 is an isomorphism, identifying Az, with the
functor of points on which p is an isomorphism. But this is equivalent to the cokernel
of w vanishing, which is clearly an open condition. O

By Chevalley’s theorem, the image of Az, in S is a constructible set gAz , C |S|.
Definition 3.10 The set gAz_, will be called the central simple locus of <7 .
The constructible central simple locus has two nice properties. First, it is open.

Proposition 3.11 Let Z — S be a proper morphism of finite presentation between
algebraic spaces with integral geometric fibers. Given a relative maximal order </ on
Z, the central simple locus of <7 is open.
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Proof Since the formation of gAz_, is compatible with base change and .27 is of finite
presentation, we immediately reduce to the case in which S is Noetherian. Now, since
gAz_, is constructible, to show that it is open it suffices to prove it under the additional
assumption that S = Spec R is the spectrum of a discrete valuation ring and that gAz
contains the closed point of S. Let 1 be the generic point of the closed fiber of Z over S.
The localization .27, is a finite flat algebra over the discrete valuation ring &z . (The
latter is a dvr because the fiber is integral, so the uniformizing parameter on S is also a
uniformizer in &’z ;,.) Moreover, the reduction &7 ® « () is a central simple algebra.
Thus, the closed fiber of the map .27, ® dno — &nd(gt,)) of free Oz ,-modules is
an isomorphism. By Nakayama’s Lemma, the generic fiber is also an isomorphism,
which shows that the generic stalk of <7 is a central simple algebra over the function
field of Z, as desired. O

Second, fixing a Brauer class yields a closed central simple locus, in the following
sense.

Proposition 3.12 Suppose X is a variety over a field k and S is a k-scheme. Let </ be
a relative maximal order on X x S. Suppose there exists a class a € Br(k(X)) such
that for every geometric point s € gAz , the restriction of </ to «k (s)(X) has Brauer
class o. Then the central simple locus gAz , is closed in S.

Proof We immediately reduce to the case in which S is Noetherian. Since gAz , is
constructible and compatible with base change on S, and relative maximal orders are
stable under base change, to show that gAz_, is closed it suffices to prove it under the
additional assumption that § = Spec R is the spectrum of a dvr and gAz , contains
the generic point. Let 1 be the generic point of the closed fiber of X x S. Given an
inclusion of finite algebras ¢ : %, < B, there is an S-flat coherent sheaf of Oy s-
algebras # with an inclusion .« — % whose germ over 7 is isomorphic to ¢. Indeed,
the subsheaf B C @7k (x) is a colimit of the finite algebras that contain <7, and some
member of the directed system will have stalk B at 7.

It follows that .27, is a maximal order in its fraction ring F' := 2, ® K (X). But we
know that F' is a central simple algebra with Brauer class restricted from Ox s ,, and
therefore that any maximal order over Ox s, in F is Azumaya. It follows that o7, is
Azumaya, and therefore that gAz , contains the closed point of S, as desired. O

Finally, let us define arelative terminal order of relative global dimension 2. Suppose
S is an algebraic space and Z — S is a proper smooth relative surface. Suppose
furthermore that R = R{ + - - - + Ry, is a(n S-flat) relative snc divisor on Z.

Definition 3.13 A Brauer class ¢ € Br(Z\R) is terminal if its restriction to every
geometric fiber Z; is terminal in the sense of Definition 2.5 of [8] and for each i the
ramification index e; (s) of o along (R;);s is independent of s.

A relative maximal order .7 on Z with Brauer class o will be called a relative
terminal order.

When working over a non-algebraically closed field, the pathology of Remark
3.5 remains an issue: gil/en a Brauer class o € Br(k(X)) that is ramified but such
that its base change to k is unramified, no maximal order 7 with class o will be
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relatively maximal over k (because it is not geometrically maximal). The order .«
is still relatively normal, however. Thus, if one endeavors to study moduli spaces
associated to Brauer classes such as «, one should allow certain normal orders. Of
course, one would not like to allow arbitrary normal orders in a given division algebra,
only those orders whose non-Azumaya locus is related to the ramification locus of «
over the base field.

When the base field is algebraically closed this pathology does not happen, as one
cannot dissolve ramification with a base extension. We will focus our attention on this
case in the present paper.

4 Moduli
4.1 Notation and assumptions

Inthis section X — S will denote a proper smooth relative surface of finite presentation
and D = D + --- + D, will be a fixed relative snc divisor in X. This means that
each D; is a proper smooth relative curve over S and that for any pair i # j the
intersection scheme D; N D is finite étale over S. We also fix a class a € Br(U)|[n],
where U = X\ D and n is invertible on S. In this section we will try to describe moduli
of maximal orders with Brauer class locally (on §) equal to «.

Assumption 4.1 There are integers e1, ..., e, > 1 such that for each geometric point
s — S, the fiber |y, is ramified to order e; on D;, and this ramification configuration
is terminal in the sense of Definition 2.5 of [8].

Note that the pair (X, A) with A := > (1 — el’_)Di associated to the ramification
datum is Kawamata log terminal. This appears to be the genesis of this notation.

A simple example the reader should keep in mind is when S is the spectrum of
an algebraically closed field and « is a Brauer class with snc ramification divisor
D = D1 +-- -+ D,. Our more general setup gives us the ability to work with families
of such Brauer classes, but a proper theory would allow singular fibers of X/S.

There are two moduli problems that one can associate to the pair (X /S, «), termed
as Naive and BLT families in this article..

4.2 Naive families

In this section we write A for the stack of S-flat torsion free coherent algebras on X.
As described in [14], A is an Artin stack locally of finite presentation over S.

Definition 4.2 The stack of naive maximal orders is the stack NMO% /s Whose objects
over an S-scheme T are relative maximal orders .« on X x g T such that for every
geometric point t — T the Brauer class of .o/ |y «,+ equals of|g7 x 4z-

Remark 4.3 One might think that in Definition 4.2 one should require that the Brauer
class is « étale-locally on the base. As we will see in Sect. 5.5, this does not materially
improve the situation.
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Lemma4.4 Let A be a local Noetherian ring over S, and let &/ be a flat family of
cohe::z;t Ox-algebras over A. If the closed fiber of </ belongs to NMO% /s then so
does o/ .

Proof By Proposition 3.8 . is arelative maximal order, and the usual characterizations
show that <7 is Azumaya over U 4. It remains to show that for any geometric fiber of
X over A the Brauer class of that fiber of .o/ is «. It suffices to prove this under the
assumption that A is a complete discrete valuation ring. Thus, we may assume that X 4
is a regular scheme of dimension 3 and <7 is a maximal order which is Azumaya away
from a snc divisor D = D; + - - - + D, and whose Brauer class has order invertible in
A. For sufficiently large and divisible N, the Brauer class of <7y extends to an element
of B in the Brauer group of the root construction X {Dl/ N } (in the notation of [12]).
By the proper base change theorem for the morphism X{D!/N} — Spec A, the class
B is determined by its closed fiber, so it must equal the pullback of «, whence the
geometric generic fiber of .27 has Brauer class «, as desired. O

Corollary 4.5 Let A be a complete local ring with maximal ideal m. The functor

NMOY 5(4) — lim NMO% Js(A/m"th

is an equivalence of categories.

Proof This is the classical Grothendieck existence theorem combined with Proposition
3.8 and Lemma 4.4, which says that the effectivization of any formal family lying in
NMOY s also lies in NMOY . O

Lemma 4.6 Suppose </ is a flat family of coherent Ox-algebras over a Noetherian
base scheme T that is of finite type over an excellent Dedekind domain or a field. There
is an open subscheme U C T such that for any geometric pointt — T, the geometric
fiber < is in NMO’;‘(/S if and only if t factors through U.

Proof By Theorem 0.5 of [2], it suffices to prove the result after replacing T by a
Dedekind scheme, and now we wish to show that the geometric generic fiber of <7 is
in NMO% /s if and only if all but finitely many geometric fibers lie in NMO¢% /s By
Lemma 4.4, if any closed geometric fiber is in NMO% /s then the geometric generic
fiber is in NMOY, ;. It thus suffices to show that if the geometric generic fiber is in
NMO% /s then all but finitely many geometric closed fibers are in NMO% /s

By Proposition 2.7, the generic fiber .27, is the pushforward of a blt Azumaya algebra
2, on %, along the morphism 7, : £, — X,. By spreading out, we may assume
after removing finitely many points from 7' that 2 extends to all of 2". Moreover, the
isomorphism .7, > 42, extends to an isomorphism over some dense open U C X
that contains the generic fiber. The complement of U will have finite image in 7',
whereupon we have identified the remaining fibers with pushforwards of blt Azumaya
algebras with Brauer class «, rendering them elements of NMOS, /g as desired. 0O

Proposition 4.7 The stack NMO% /s is an Artin stack locally of finite presentation over
S, and the morphism NMO% /s A is an open immersion. (Recall that A stands for
the stack of S-flat torsion free coherent algebras on X.)
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Proof 1t suffices to prove the latter statement by Tag 01TQ of [20]. Since belonging
to NMO")‘( /s is a fiberwise statement, this follows immediately from Lemma 4.6. O

We arrive at the somewhat surprising conclusion that maximal orders with Brauer
class « form an open substack of the stack of all coherent algebras. However, the
deformation theory is “arbitrarily bad” in the sense that it is identical to the deforma-
tion theory of maximal orders. We will describe a refinement of the moduli problem
with the same closed points but different infinitesimal properties that has a natural
compactification admitting a virtual fundamental class.

Remark 4.8 Without the Assumption 4.1, the openness of the locus of naive families
is undoubtedly false.

4.3 Blt Azumaya families

Write :fjf — X for the stack X(D'/") in the notation of Section 3.B of [12];
the stack X is a product of root constructions on each D; and is a smooth proper
Deligne-Mumford relative surface over S.

Definition 4.9 The stack of blt Azumaya algebras is the stack BLT")L( /s whose objects

over T are Azumaya algebras .2/ on X7 such that for every geometric point t — T
the fiber .7 is a blt Azumaya algebra with Brauer class «;.

Proposition 4.10 The stack BLT‘% /s is an Artin stack locally of finite presentation

over S.

Proof It is a standard result that for an Azumaya algebra A on a stack Z, the
deformation group is given by H'(Z, A/©0'7) and the obstruction group is given by
H2(Z, A/Oy). Indeed, the sheaf A/C is the sheaf of derivations of A, and this is
precisely the sheaf of infinitesimal automorphisms of A (by the Skolem—Noether the-
orem). Since any deformation of A is locally trivial, the cohomology of the sheaf
of infinitesimal automorphisms determines the deformation in the standard way. (In
slightly different language: deformations of A form a gerbe with structure group
A/0O7. See [10,17] for explicit calculations.) These groups satisfy Artin’s axioms for
a deformation and obstruction theory [1]. Moreover, if Z is proper over the base, Ols-
son’s Grothendieck Existence Theorem for stacks [19, Section 11] shows that formal
families of Azumaya algebras on Z algebraize. It follows from the main results of [1]
that the stack of Azumaya algebras on X is an Artin stack locally of finite presentation
on S. The locus where the type at each x; is e; is an open substack. Finally, the proper
and smooth base change theorem in étale cohomology shows that the locus on which
the fibers have Brauer class « is open and closed. O

Remark 4.11 While it is easy to write down the deformation theory associated to
BLT‘;? /s° it is mysterious what the deformation theory is for NMO$% /s This is one

indication that the former moduli problem is likely better behaved.
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5 Relations among the moduli problems
5.1 Pushforwards of Azumaya families are naive families

Let <7 be a family in BLT‘}‘Z /s overa base T. The pushforward morphism 7 : X->X
yields a sheaf of algebras A := 7,.7.

Proposition 5.1 The algebra A described above is a family in NMO‘;‘(/S.

Proof First, since X is tame and .7 is T-flat and coherent, we know that A is also
T-flat and coherent, and that the formation of A is compatible with base change on
T. Thus, to show that A is a family in NMO‘;‘( /s it suffices to assume that 7" is the

spectrum of an algebraically closed field K. Since X - Xisan isomorphism over
a dense open subset, we know that A is generically Azumaya with Brauer class «.
By Proposition 2.7 we have that A is terminal, and Assumption 4.1 implies that any
terminal order is maximal, completing the proof. O

Pushforward along m thus defines a 1-morphism of stacks

D : BLT")L( — NMO‘;‘(/S.

/S
This morphism will be the object of study for the rest of this section. In particular, we
will show that it is a proper bijection that is not in general surjective on tangent spaces.
Thus this realizes BLT‘;‘? /s 88 something between NMO% /s and its normalization.
We are not sure what normality properties BLT‘;‘? /s enjoys, but it is likely that it can
be arbitrarily bad (although one might hope for stabilization as one varies discrete
parameters like the second Chern class).

5.2 Naive families over complete dvrs and reflexive blt Azumaya algebras

Let R be a complete dvr over S with uniformizer ¢ and algebraically closed residue
field k and let A € NMO% / g(R). In this section we will show that locally on X the
family A comes from areflexive Azumaya algebra over a stack with A,,_1-singularities
and coarse moduli space X g. We will use this in Sect. 5.4 to show that ® satisfies the
valuative criterion of properness.

Write X = X[D!/"], in the notation of Section 3.B of [12]. This is a stack with
coarse moduli space X that may be locally described as follows: at a crossing section of
two components D and D; of X with local equations t; = O and#, = 0, the stack X is
given by taking the stack-theoretic quotient for the action of w,, on O[wy, w2]/(wy —
t, wg‘ — ) given by ¢ - (wy, w2) = (Cwy, C‘lwz). Since D has relative normal
crossings, we see that X has flat families of A,_-singularities in fibers.

As in Sect. 2.2, we have a smooth stack X dominating X.

We will prove the following local structure theorem in this section, and then study
reflexive Azumaya algebras on X in the following section.
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Proposition 5.2 Let Spec R — S be a dvr over S. Any algebra in NMO‘;‘(/S(R) is the

pushforward from X of a unique reflexive blt Azumaya algebra on Xr with Brauer
class .

Proof Let A € NMO% /s(R). By Proposition 2.7, the generic fiber A, is the pushfor-

ward of an Azumaya algebra <7, on X »- Since X > Xis relatively tame, we see that
the pushforward of <7, to X is areflexive blt Azumaya algebra Zn that pushes forward
to Ay. _

The morphisms Xg — Xg — Xpg are isomorphisms over the generic point of
the closed fiber of X g. Moreover, the order A is Azumaya in a neighborhood of that
point, and all of the orders and Azumaya algebras described so far are contained in
the localization B of A at this point. O

Lemma 5.3 Let Z be an integral Sy Noetherian Deligne—Mumford stack and A a finite-
dimensional k(Z)-algebra. Suppose for each codimension 1 point 7 there is given a
maximal order B, C A over the local ring Oz .. Then there is at most one maximal
order B over Z such that B® Uz , = B, C A.

Proof Given two such maximal orders B and B’, consider the algebra B” := BN B’.
Since B and B’ are S, we have that B” is also S. Since B” is S> and maximal in
codimension 1 it is maximal. By hypothesis, the inclusions B” C B and B” C B’
are isomorphisms are all codimension 1 points. Thus, B” — B and B” — B’ are
isomorphisms, as desired. O

Now let A be any reflexive extension of Zn that localizes to B. We see that the
pushforward of A is a maximal order agreeing with A in the generic fiber and at
the generic point of the closed fiber, and thus at all codimension 1 points. Applying
Lemma 5.3, we conclude that A pushes forward to A, as desired. O

5.3 Local structure of reflexive Azumaya algebras on families of rational double
points

In this section we will analyze the local structure of reflexive Azumaya algebras on
X.

Let R be a complete dvr with uniformizer ¢ and algebraically closed residue field k
of characteristic 0. Let Z := Spec B — Spec R be a smooth relative affine surface and
D1, D, C Z smooth relative curves whose intersection S := D1 N D; is isomorphic to
the scheme-theoretic image of a section of Z/R. Replacing Z with an open subscheme
containing S if necessary, we may assume that D; is the vanishing locus of a global
function 1; € T'(Z, 0z),i = 1,2. Let Z' = Spec Blw]/(w" — t112) be the cyclic
cover branched along D; U D»; there is a section o : R > 8 cz lifting S.
There is a stack 2 with coarse moduli space Z’ given by taking the quotient of
Spec Blwy, wa]/(w] — t1, w5 — ) by the action of u,, in which ¢ - (w1, w2) =
(w1, ¢~ 'wy). The natural map & — Z’ is an isomorphism away from the singular
locus §’.

Write z € Z' for the closed point of S, and let ¥" = Spec ﬁgs,’z and %' =Y xzp &
be the Henselizations of Z’ and % at z. Because R is strictly Henselian, there is a
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section T C Y — Spec R lying over §’. Finally, let Y be the Henselization of Y’
along T and let % = %" xy/ Y, with w : % — Y the natural map. We have that
(% Xy T)req is isomorphic to Bp,, 7. Write U = Y\T'; this is in fact the regular locus
of Y, and it has regular geometric fibers over R. Note that, as a limit of Henselian local
schemes, Y is itself still a Henselian local scheme.

Lemma 5.4 The Brauer group Br(U) is trivial.

Proof By purity, we have that Br(U) = Br(%/), so it suffices to show that the latter

vanishes. Since Y is Henselian along 7', we have by the usual deformation arguments

that Br(#%') = Br(Bu,, 1), so it suffices to show that this last group is trivial.
Consider the projection 7w : Bu,, 7 — T. The Leray spectral sequence yields

H”(T,RY7,.Gp) = HP T Bp, 7, Gm).

We know by §4.2 of [13] that R*m,;, = 0 and R'7,G,, = Z/nZ. Since R is
Henselian with algebraically closed residue field we have that H'(7', Z/nZ) = 0.
The sequence of low degree terms then shows that the pullback map H>*(T', G,,) —
H2(B[,Ln’7~, G,;) is an isomorphism. But, again because R is Henselian with alge-
braically closed residue field, we know that H*(T', G,,) = Br(T) = 0. O

Corollary 5.5 A reflexive Azumaya algebra on Y has the form &nd (M), where M is a
reflexive Oy-module.

Proof Let <7 be a reflexive Azumaya algebra. By Lemma 5.4 we know that o/ |y =
énd(V) with V alocally free coherent sheaf on U. If M is the unique reflexive coherent
extension of V then &nd(M) is reflexive and isomorphic to </ in codimension 1,
whence &7 = &nd(M). O

Proposition 5.6 Suppose of is a reflexive Azumaya algebra of degree r on Y such that
the restriction </ Q@ k is a reflexive Azumaya algebra on Y @ k. Then

(1) o = &nd(M) with M a direct sum of indecomposable reflexive Oy-modules of
rank 1;
(2) there is a blt Azumaya algebra 2 on % such that &f = w,B.

Proof By assumption we have that &/ @ k = &nd(V) with V a reflexive Oy g -
module. But Y ® k is the Henselization of an A, _1-singularity, so we know that V
decomposes as a direct sum of reflexive modules of rank 1 by the McKay correspon-
dence [3]. This gives rise to a full set of idempotents ¢; € &/ (Y ®k), j =1,...,r.
Since Y is Henselian, these idempotents lift to global sections €; of .«7. By Corollary
5.5 we have that & = &nd(M). The idempotents ¢; decompose M as a direct sum
of submodules of rank 1. Since M is reflexive, each of these summands is reflexive,
proving the first statement.

To prove the second statement, note that a reflexive sheaf of rank 1 on Y is the
pushforward along 7 of a unique invertible sheaf on ¢. Thus, M is isomorphic to
7N for some locally free sheaf ¥ on %'. The Azumaya algebra 8 = &nd(N) has
reflexive pushforward that is canonically isomorphic to <7 over U, whence & = 7, %,
as desired. O
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5.4 Proof that @ is a proper bijection

In this section we show that & : BLT‘;‘( 5 NMO% /s is a proper morphism. Since it
is already locally of finite presentation and bijective, it suffices to show the following

valuative criterion.

Proposition 5.7 If R is a complete dvr over S then any naive family A on X has the
form .o/, where <f is an Azumaya family on X g.

Proof By Proposition 5.2, we know that A is the pushforward of a family 2 of reflexive
Azumaya algebras on X. It thus suffices to show that = p,.o7, where p : X->X
is the natural morphism.

Let V C X be the smooth locus of X /S. By construction there is a natural diagram

X

in which the diagonal arrows are fiberwise dense open immersions whose complements
have codimension two in each geometric fiber. By the theory of hulls [11], we have
that the adjunction map & — j, Ay is an isomorphism. Since pi = j, to prove the
result it suffices to prove that i, Ay is an Azumaya algebra on X.

This latter statement is étale local on X, so we may replace X by the local Henselian
scheme Y of section 5.3. In this case we have that 4 is isomorphic to p,.</ for some
Azumaya algebra 7. The algebra i %y is thus isomorphic to i<y, and so it suffices
to show that the adjunction map a : &/ — i,y is an isomorphism. But the stack X is
regular and ¢/ is locally free, so a is an isomorphism if and only if it is an isomorphism
in codimension 1. Since V has codimension 2, we know that a is an isomorphism at
every codimension 1 point, and the result follows. O

5.5 Proof that & need not be an isomorphism

In this section we prove that the map BLTO)L( s NMO% /S need not be an isomor-
phism by exhibiting examples for which the map on tangent spaces is not surjective.
Let D C X be a smooth divisor in a projective surface such that
(1) there is an infinitesimal deformation D C Xy(¢) for which O, , (D — Dyje)) is
non-torsion in Pic(Xg[e));
(2) there is a blt Azumaya algebra </ on X for which the pushforward m,.</ is a
maximal order on X of period n and H? (X o |0%) =0.
Write X/ = Xile] {D'/"} and (by abuse of notation) 7 : X - Xie for the
projection to the coarse moduli space. By deforming <7 to X’ we will make a tangent
vector to NMOy /s that does not lie in the image of the tangent map to BLT ¢ /s
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Proposition 5.8 There is a deformation &’ of & to a blt Azumaya algebra on X' such
that the resulting object A’ = .o/’ of NMOx s (k[e]) is not in the image of BLTy .

Proof The key to the proof is to relate the dualizing bimodule of A’ to the divisor class
D.

Lemma5.9 Given X', /' and A as above, there is a natural isomorphism
a)A, = A ®/ka a)ka/k[s ((n — 1)D).

Let us briefly accept Lemma 5.9 and see how to complete the proof of Proposition
5.8. We need the following lemma:

Lemma 5.10 The pullback map Pic(Xye)) — Hl(Xk[s], A"*) is injective modulo
torsion as a map of pointed sets.

Proof Recall that the pointed set H(X kel A™) classifies right modules locally iso-
morphic to A 4. The reduced norm defines a sequence 0> — (A’)* — & such that
the composition is raising to the nth power (and thus surjective in the étale topology).
Applying the étale H' functor we see that the natural map

HY (Xuen, 05, ) = B (e, (4))

is injective modulo n-torsion. This proves the lemma. O

If A’ is in the image of BLTy /S(k[s]), the analogous computation with Dyg)

in place of D would yield an isomorphism between the bimodules a)f’," and
A’ ®ﬁxu J a)')’(klsj/k[g]((n — 1) Dyge1)- Applying Lemma 5.10, we conclude that &'(D —

Dy(g) 1s torsion in Pic(Xy[¢)), contrary to our original hypothesis. O

It remains to prove Lemma 5.9.

Proof of Lemma 5.9 To simplify notation, write X’ = Xy,] and write wy for the rela-
tive dualizing sheaf over k[e]. Recall that the dualizing bimodule is given by the sheaf
Homg,, (A', wx). Writing A" = m,.27' and using duality, we have isomorphisms of
bimodules

wa = Homg,, (', wx1) = w0 Hom (;zf’/, rr!a)X/>

= mHom (', wg) = 7 (' Qwy) .
As an ¢/’-bimodule, we have that (&' @ wg/)®" = &’ ®a) "((n — 1)D). To see
this, note that we can locally write X' = [Spec Ox/[z]/(z" —t)/1,], where t is a local

equation for D; computing the relative differentials immediately yields the result.
There is a natural map

(re (' @0g))*" = m. (' © %) ")
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giving rise (using the computation of the preceding paragraph) to a map
¢:or—> A ®0$ (n—1)D)

that we wish to show is an isomorphism.

Note that an étale-local model for X', A’, &/’ around a closed point of X’ is given
by the trivial family whose fiber is the standard cyclic algebra. Thus, to prove that ¢
is an isomorphism it suffices to prove it for the local constant family, and thus (by
compatibility with pullback) for the local family over a smooth surface over k. But
this is Proposition 5 of [9]. O

To give a concrete example, let X = E x E for a smooth projective curve of genus
1 over an algebraically closed field of characteristic O and let D = D1+ D5 be the sum
of two disjoint closed fibers of the second projection. Let E’ C E be the complement
of the image of D under pr,. There is a finite covering C — E’ of degree 2 that is
totally ramified at both points of E\E’, giving a class « € H!(E’, Z/2Z). Choosing
any B € H'(E, uu3) we can form the class pryaUpri B e H2(E x E', n,), giving a
Brauer class y € Br(k(E x E)). Elementary computations show that the ramification
extension of this Brauer class on each component of D is given by the class of g, so
that maximal orders must be hereditary along D.

Any non-constant infinitesimal deformation of D (e.g., that induced by moving
along E) will give a D as in the statement of Proposition 5.8. It remains to show that
there is an unobstructed Azumaya algebra on the stack X — E x E branched over
D. Since Br(X) = Br'(X), there is certainly some Azumaya algebra in that class.
Producing one that is unobstructed is a standard argument that can be found written
out for projective surfaces in Proposition 3.2 of [10]. We omit the details.

Remark 5.11 The construction given here also shows that fixing the Brauer class to
be o étale-locally on the base of families in Definition 4.2 does not ameliorate the
situation, as any infinitesimal deformation of the class of « on E x E’ is constant.

6 Generalized Azumaya algebras on X

In this section we will suppose that S = Spec k is the spectrum of an algebraically
closed field. We will compactify the stack BLT‘;L( 5 The constructions described here

are almost identical to those in [17]. By the proper and smooth base change theorems

in étale cohomology, any family in BLT‘;L( /s defines a section of the finite constant

sheaf (scheme!) R? f,u,,, where f : X — S is the structural morphism, giving a
morphism of stacks

c:BLTg ¢ — R’ fiu,.

Thus, to compactify BLT‘;i( /s We will compactify each fiber.
Write @ € H2(X, I,,) for a lift of @ via the Kummer sequence. The fiber of ¢ over

o will be denoted BLT% /st Letp : 2 — X be a IL,-gerbe representing the class
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. That there is such an Artin stack is discussed in Section 2.4 of [13]. In Sections
2.2 and 2.3 of [13] or in [16] the reader will also find a discussion of the theory of
Z -twisted sheaves in connection with the Brauer group.

Definition 6.1 A torsion free .2 -twisted sheaf .7 is blt if the O'y-algebra p,&nd(F)
is blt on the Azumaya locus.

Let Sh 9~ denote the stack of torsion free blt 2 -twisted sheaves of rank n with
trivial determinant. The basic result on the stack Sh 4- is the following.

Proposition 6.2 The stack Sh o~ is an Artin stack locally of finite presentation over S.
Moreover, Sh g is a G,-gerbe over an algebraic space Sh g~ with proper connected
components.

Proof This is proven in Sections 3 and 4 of [18], once we note that any torsion free
Z -twisted sheaf of rank n is automatically stable when the Brauer class has period
n. (]

Let Shég denote the locus of locally free 2 -twisted sheaves. The morphism 7"

p«énd(Y) defines a morphism of stacks e : Shf;f — BLT‘;‘:(/S.

Lemma 6.3 The morphism e is an epimorphism of stacks.
Proof Since both stacks are locally of finite presentation, it suffices to prove that if §
is strictly Henselian and A is an Azumaya on X g with Brauer class «, then A is of the

form p,&nd (V) for ¥ ablt locally free Zs-twisted sheaf.
This follows immediately from Giraud’s description of the cohomology class in

H? (% , It,,) associated to A: one takes the stack of isomorphisms &nd (V) = A with

V locally free with trivialized determinant det V > 0. Thisis a I,-gerbe 2, and
the sheaves V glue to give an .2 -twisted sheaf of rank n with trivial determinant. O

Let G = Picy / s[n] be the (finite) n-torsion subgroupscheme of the relative Picard

scheme. Given an invertible sheaf % with a trivialization .#®" = O'% there is an
induced 1-morphism ® % : Shp- — Sh .

Lemma 6.4 The morphisms ® £ defined above as £ ranges over a set of represen-
tatives for G define an action G x Shg — Shg-.

Proof Given an invertible sheaf .% with a trivialization £®" = ¢ and a torsion free
sheaf .# of rank n with a trivialization det # — €, we get a trivialization

det(F @ L) > det(F) @ LP" S5 000 > 0.

This map induces the action. O

Proposition 6.5 The morphism e : ¥V +— p,énd(¥) induces an isomorphism of
stacks

[Sh', /G1 = BLT% ;.
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Proof Via the morphism e the scalar multiplication action on ¥ is sent to the
trivial action on p,énd(¥’) so that e factors through an epimorphism of stacks

e : Shf;/, — BLT‘;‘? /s It follows from the Skolem—Noether theorem that any iso-

morphism p,&nd(¥) — p.&nd(¥') comes from an isomorphism ¥ — ¥’ ® L for
some invertible sheaf L, and that any invertible sheaf L induces a canonical isomor-
phism p.&nd(¥) = puénd(¥ Q@ L).

Since G acts by twisting by invertible sheaves, the morphism ¢ factors through
the quotient as € : [Shgf /Gl — BLT‘;‘; /st On the other hand, suppose given an

isomorphism p,&nd(?) = p«énd(#). By the above remark, we have that there
is an invertible sheaf M and an isomorphism 7 S WM. Taking determinants
gives an isomorphism det V = det W ® M®". Via the isomorphisms det V S0
and det W > O we get a canonical isomorphism M®" =S 0, displaying #  as the
image of #" under ® M. This shows that € is a monomorphism, showing that it is an
isomorphism. O

Remark 6.6 The stack [Sh 9~ /G] gives the desired compactification of BLT% /s Argu-

ing as in Proposition 6.5.1.1 of [17] and Section 6.5.2 of [17], one can also show that
[Sh 4 /G] carries a virtual fundamental class. We will not discuss this in further detail
here.
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