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Two Hilbert Schemes in Computer Vision\ast 
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Abstract. We study multiview moduli problems that arise in computer vision. We show that these moduli
spaces are always smooth and irreducible, in both the calibrated and uncalibrated cases, for any
number of views. We also show that these moduli spaces always admit open immersions into Hilbert
schemes for more than two views, extending and refining work of Aholt, Sturmfels, and Thomas.
We use these moduli spaces to study and extend the classical twisted pair covering of the essential
variety.
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1. Introduction. In this paper, we discuss a functorial approach to multiview geometry, a
subfield of computer vision. The literature on multiview geometry is vast, although this is the
first attempt that we know of to use the techniques of modern functorial algebraic geometry
to approach the subject. As we hope to demonstrate here and elsewhere, this approach has
a great deal of promise. A beautiful introduction to the subject can be found in [6]. Earlier
versions of this paper (available as arXiv preprints) also contain a condensed introduction to
the subject suitable for algebraic geometers.

1.1. Our results. The main result of this paper is the following, proven in sections 3
and 4.

Theorem 1.1. There are smooth irreducible varieties Camn and CalCamn parametrizing
n-view camera configurations and n-view calibrated camera configurations, respectively.

1. The variety Camn has dimension 11n  - 15. For all n > 1, sending a configuration
to its joint image defines a locally closed embedding

Camn \lhook \rightarrow Hilb(\bfP 2)n .

If n > 2, then this morphism is an open immersion, so that Camn is identified with
an open subscheme of the smooth locus of Hilb(\bfP 2)n.

2. The variety CalCamn has dimension 6n - 7. For all n > 1, there is a natural locally
closed embedding

CalCamn \lhook \rightarrow HilbC1\times \cdot \cdot \cdot \times Cn\subset (\bfP 2)n
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(where the latter is a diagram Hilbert scheme; see subsection 3.3). If n > 2, then this
morphism is an open immersion.

3. The natural decalibration morphism \nu n : CalCamn \rightarrow Camn is finite, proper, and
unramified. The morphism \nu 2 is an \'etale cover of its image with general fiber of
order 2. For n > 2 the morphism \nu n is generically injective but not injective.

The statements on Hilbert schemes generalize and refine the results of [1]. In particular,
our methods show that the formation of the multiview variety gives an open immersion into
the Hilbert scheme at all points, identifying the moduli space with an open subscheme of the
Hilbert scheme.

1.2. Methodological contributions. There are a few basic principles that set this work
apart from other work on multiview geometry.

1. The functorial method , common in modern algebraic geometry, gives us insight into
the intrinsic geometry of natural moduli problems growing out of the classical con-
structions. While [1] uses the Geometric Invariant Theory (GIT) quotient to con-
struct the moduli of uncalibrated camera configurations, this method does not obvi-
ously generalize to a construction for calibrated cameras. Additionally, by developing
the functorial theory of cameras we hope to make the field of multiview geometry
accessible to a wider audience in pure mathematics.

2. The geometric view of calibration via calibration data gives us insight into the struc-
ture of the space of calibrated cameras in a way that seems not to have been con-
sidered before. In particular, by restricting camera configurations to morphisms
between calibrating conics, we get a fibration structure on the moduli space of cali-
brated camera configurations that is quite useful for studying the moduli space. In
subsection 3.4, there's a third Hilbert scheme---the Hilbert scheme of the product
of calibrating conics---that is the base of this fibration. This way of thinking about
calibration can also be used to understand the essential variety in new ways. In [12],
this is used to reproduce results of both [2] and [3] (which itself used the results of
[2]) from first principles, among other things.

3. The use of diagram Hilbert schemes allows us to treat the case of calibrated cameras
similarly to how uncalibrated cameras are treated in [1]. Instead of closed sub-
schemes, as were used for the calibrated case, we use a type of flag to keep track of
the calibration data. This transparently recovers the result that the moduli space is
open in a Hilbert scheme.

This paper also opens up many new lines of inquiry and leaves many questions unanswered.
We discuss a few of these questions in section 5.

2. The algebraic geometry of pinhole cameras. In this section we review the basic theory
of pinhole cameras, with a geometric emphasis. We include a canonical treatment of calibrated
cameras with a greater focus on the geometry of the calibrating conics. For the sake of clarity,
we focus in subsections 2.1 and 2.2 on the geometry over an algebraically closed field. In
subsection 2.3 we study what happens over a general base scheme, as a preparation for the
study of moduli and deformation theory in section 3.
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2.1. Basic definitions.

Definition 2.1. A pinhole camera is a surjective rational map \varphi : P3   \dashrightarrow P2 given by three
linearly independent sections of O\bfP 3(1). The center of the camera is the unique point p \in P3

at which \varphi is undefined.

Definition 2.2. A calibrated plane is a pair (P2, D) with D a smooth conic.

Definition 2.3. A calibration datum for a pinhole camera \varphi is a pair of planar degree 2
curves C \subset P3 and D \subset P2 such that D is a smooth conic and the restriction \varphi C : C   \dashrightarrow P2

factors through the inclusion D \subset P2.
If C is smooth, the calibration datum will be called smooth or nondegenerate; otherwise,

it will be called degenerate. If a calibrated plane (P2, D) is fixed, a relative calibration datum
for a pinhole camera \Phi is a curve C \subset P3 such that (C,D) is a calibration datum for \Phi .

Remark 2.4. If C is smooth, then it follows from the linearity of the camera projection
that \Phi must map C isomorphically to D, and that the center of \Phi is not contained in the
plane spanned by C. If C is degenerate, it must be a divisor-theoretic sum of two lines on
the quadric cone in P3 generated by D under the projection \Phi (i.e., a union of two distinct
rulings or a double ruling). When the two cone points are distinct (i.e., the configuration is
general), a union of two distinct rulings cannot occur as a limit of calibration data.

Remark 2.5. A given camera with calibrated image plane (P2, D) has infinitely many
relative calibration data: one can take any plane section of the quadric cone in P3 lying
over D. Once we look at configurations of two or more cameras, there will be at most two
calibration data (smooth or degenerate). This is described at length in subsection 4.1.2.

Degenerate calibrations give us closures of natural moduli spaces, including the closure
of the classical twisted pair moduli space SO(3) \times P2 to a finite \'etale cover of the essential
variety described in subsection 4.2. Imagining the system of plane sections of the cone over
D, one readily sees that degenerate calibration data arise as limits of smooth calibration data.

Definition 2.6. A calibrated camera is a pair (\varphi , (C,D)) where \varphi is a pinhole camera and
(C,D) is a calibration datum for \varphi .

Remark 2.7. In the classical literature, a camera is called calibrated (or sometimes nor-
malized) when it takes the absolute conic to the Euclidean conic: more precisely, we can endow
P3 with coordinates x, y, z, w and P2 with coordinates X,Y, Z, and then we take the curves
C and D to be given by the equations \{ w = 0, x2 + y2 + z2 = 0\} and \{ X2 + Y 2 + Z2 = 0\} ,
respectively. Note that any camera as described here with a smooth calibration datum can
be transformed to a classically calibrated camera by applying suitable automorphisms to P3

and P2. (This is not unique.) The degenerate calibrations cannot.
There are two reasons to use this more flexible approach.
(1) It leads to the ``right definition"" of the moduli space of calibrated camera configura-

tions (subsection 3.4).
(2) By always forcing the absolute conic to map to the Euclidean conic, one makes it

impossible to study modular boundary points where the absolute conic is flattened
until it collapses (yielding degenerate calibrations). As we will describe below, these
degenerate calibrations give geometrically meaningful compactifications of the space
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of calibrated camera configurations.

2.2. Multiview configurations. In this section, we describe some of the geometry attached
to a collection of cameras with distinct centers.

2.2.1. Uncalibrated cameras.

Definition 2.8. A multiview configuration is a collection of cameras

\varphi 1, . . . , \varphi n : P3   \dashrightarrow P2.

Notation 2.9. We will generally use \Phi : P3   \dashrightarrow (P2)n to denote a multiview configuration,
writing \Phi i = pri \circ \Phi for its components when necessary. The length of \Phi is the number of
cameras; we will denote it len(\Phi ). Write Center(\Phi ) \subset P3 for the tuple of camera centers.
Write \pi : Res(\Phi ) \rightarrow P3 for the blowup of P3 at the reduced closed subscheme supported
at the camera centers; if two cameras have the same center, we only count it once. Given
an index i, let Ei denote the exceptional divisor over the ith camera center, with canonical
inclusion \iota i : Ei \lhook \rightarrow Res(\Phi ). By the previous convention, this means that there can be i \not = j
for which Ei = Ej .

Definition 2.10. A multiview configuration \Phi is general if the camera centers are all dis-
tinct. It is noncollinear if the camera centers do not all lie on a single line, and collinear
otherwise.

Definition 2.11. An isomorphism between multiview configurations \Phi 1 and \Phi 2 of common
length n is an automorphism \varepsilon : P3 \rightarrow P3 fitting into a commutative diagram

P3

(P2)n

P3

\bfPhi 1

\varepsilon 

\bfPhi 2

Lemma 2.12. Let Y be a scheme, and let (L , s0, . . . , sn) be an invertible sheaf with n
sections. If Z is the zero scheme of s0, . . . , sn, then the rational map induced by this linear
series extends uniquely to a morphism BlZ Y \rightarrow Pn.

Proof. By definition the sections s0, . . . , sn define a surjection

On+1
Y \twoheadrightarrow L \otimes IZ ,

which extends to a surjective map of OY -algebras

Sym\ast (L \vee )\oplus n+1 \twoheadrightarrow 
\bigoplus 

I n.

The induced map on relative Proj constructions gives the desired morphism.
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Proposition 2.13. Given a multiview configuration \Phi , there is a unique commutative dia-
gram

Res(\Phi )

(P2)\mathrm{l}\mathrm{e}\mathrm{n}(\bfPhi )

P3

\rho 

\pi  - 1

\bfPhi 

The diagram has the property that for each i, the composition

Ei Res(\Phi ) (P2)\mathrm{l}\mathrm{e}\mathrm{n}(\Phi ) P2\iota i \rho \mathrm{p}\mathrm{r}i

is an isomorphism.

Proof. Lemma 2.12 shows the existence and uniqueness of the desired diagram. To check
that the composition is an isomorphism on exceptional divisors, one can see that each map
is locally isomorphic to the morphism Bl0A

3 \rightarrow P2 that resolves the canonical presentation
A3 \setminus \{ 0\} \rightarrow P2, and here one can simply check that the induced map from the exceptional
divisor to the plane is an isomorphism. We omit the details.

2.2.2. Calibrated cameras. When the cameras are adorned with calibration data, we
track these data through the diagrams.

Definition 2.14. Given a multiview configuration \Phi : P3   \dashrightarrow (P2)n, a multiview calibration
datum is a pair (C, (C1, . . . , Cn)) such that for each i = 1, . . . , n the pair (C,Ci) is a calibration
datum for \Phi i. Given a tuple of calibrated planes (P2, Ci) for i = 1, . . . , n, a relative calibration
datum for \Phi is a curve C \subset P3 such that (C, (C1, . . . , Cn)) is a calibration datum for \Phi .

Notation 2.15. We will write C for a calibration datum (C, (Ci)), and then C0 = C and
Ci = Ci for i = 1, . . . , n.

Notation 2.16. A calibrated multiview configuration (\Phi ,C) will be called nondegenerate
if the calibration datum is nondegenerate.

Definition 2.17. An isomorphism between multiview configurations with calibration data
(\Phi 1,C1) and (\Phi 2,C2) of common length n is an isomorphism \varepsilon : \Phi 1 \rightarrow \Phi 2 of multiview
configurations as in Definition 2.11 such that \varepsilon (C1

0) = C2
0 and such that for i = 1, . . . , n we

have C1
i = C2

i .

2.2.3. A characterization of isomorphic general configurations. In this section we briefly
consider when two multiview configurations \Phi 1 and \Phi 2 are isomorphic (and similarly when
they are endowed with calibration data). This will play a role in studying a particular map
from the moduli space to Hilbert schemes in later sections of this paper.

Definition 2.18. Given a multiview configuration \Phi , the associated multiview scheme, also
known as the joint image [1, 16], is the scheme-theoretic image of the resolution Res(\Phi ) under
the canonical extension \rho of Proposition 2.13. It is denoted Sch(\Phi ). Working over a field (as

D
ow

nl
oa

de
d 

08
/0

5/
20

 to
 1

28
.9

5.
10

4.
10

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



© 2020 Max Lieblich and Lucas Van Meter

302 MAX LIEBLICH AND LUCAS VAN METER

we temporarily are here), the multiview scheme is a variety, and is called the ``multiview
variety"" in [1].

In the following, an n-term flag of schemes will be a sequence of closed immersions

X0 \lhook \rightarrow X1 \lhook \rightarrow X2 \lhook \rightarrow \cdot \cdot \cdot \lhook \rightarrow Xn - 1.

Definition 2.19. Given a calibrated multiview configuration (\Phi , C) with calibrated image
planes (P2, Ci), i = 1, . . . , n, the associated multiview flag, denoted Flag(\Phi , C), is the 2-term
flag of schemes C \subset Sch(\Phi ) contained in C1 \times \cdot \cdot \cdot \times Cn \subset (P2)n.

As we will gradually see, the following lemma is the key result connecting the abstract
moduli problems we study here to Hilbert schemes.

Lemma 2.20. The canonical map O\mathrm{S}\mathrm{c}\mathrm{h}(\bfPhi ) \rightarrow R \rho \ast O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ) is a quasi-isomorphism. Equiv-

alently, the canonical map \rho \sharp : O(\bfP 2)n \rightarrow \rho \ast O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ) is an isomorphism, and all higher direct

images Ri \rho \ast O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ) (with i > 0) vanish.

Proof. For the first statement, note that \rho \ast O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ) is a finite O(\bfP 2)n-algebra by properness.
Moreover, since every nonempty fiber of \rho is geometrically integral (it being an intersection
of lines, and hence either a point or a line), we see that \rho \sharp is surjective after base change to
any point of (P2)n. By Nakayama's lemma, \rho \sharp is surjective.

Now we show that the higher direct images vanish. By the Theorem on Formal Functions
[4, Th\'eor\`eme 4.1.5], the completion of Ri \rho \ast O at a point p is isomorphic to limHi(Xm,OXm),
where Xm is the mth infinitesimal neighborhood of the fiber of \rho over p. When the fiber is
empty or a point, this vanishes. The only interesting case is the unique singular point that is
the image of the strict transform of the line through all camera centers in the collinear case.
Note that OXm is filtered by subquotients that are symmetric powers of the ideal sheaf IX0

restricted to X0. Given a line L in P3, we have that IL| L \sim = OL( - 1)\oplus 2. For each point on L
that we blow up, the ideal sheaf gets twisted by 1 (functions from P3 vanish to extra order
on the strict transform along the intersection with the exceptional divisor). In fact, if we are
blowing up n points, we have that IX0 | X0

\sim = OX0(n - 1)\oplus 2. The \ell th symmetric power will be
a sum of copies of OX0(\ell (n - 1)). All such sheaves have vanishing Hi for all i > 0.

Write Im for the ideal sheaf of Xm in Res(\Phi ). Consider the standard exact sequences

0 \rightarrow Im - 1/Im \rightarrow OXm \rightarrow OXm - 1 \rightarrow 0.

The above calculations show inductively that Hi(Xn,OXn) = 0 for all n \geq 0 and all i > 0.
This concludes the proof.

Corollary 2.21. If \Phi is a noncollinear multiview configuration, then the map \rho : Res(\Phi ) \rightarrow 
(P2)n is a closed immersion.

Proof. By the noncollinearity assumption, the geometric fibers of \rho all have length at most
1. Thus, \rho is proper and quasi-finite, and hence finite. Applying Lemma 2.20 then shows that
\rho is a closed immersion.

Lemma 2.22. Suppose \varphi 1, \varphi 2 : P3   \dashrightarrow P2 are cameras and \alpha : P3   \dashrightarrow P3 is a birational
automorphism such that \varphi 2 = \varphi 1 \circ \alpha . If \alpha and \varphi 1 \circ \alpha are both regular on an open subset
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U \subset P3 whose complement has codimension at least 2, then \alpha extends to a unique regular
automorphism P3 \rightarrow P3.

Proof. Removing the center of \varphi 1 if necessary, we may assume that there is an open
subscheme U \subset P3 on which \varphi 1, \varphi 2, and \alpha are all regular and codim(P3,P3 \setminus U) \geq 2. By
assumption, \varphi \ast 

iO(1) = OU (1). Thus, \alpha \ast O(1) = O(1). Since \Gamma (U,O(1)) = \Gamma (P3,O(1)), we
conclude from the universal property of projective space that the morphism \alpha : U \rightarrow P3

extends to a unique endomorphism \widetilde \alpha of P3. Since \alpha is birational, \widetilde \alpha is an isomorphism, as
desired.

Proposition 2.23. Two multiview configurations \Phi 1 and \Phi 2 of length n are isomorphic if
and only if their associated multiview schemes in (P2)n are equal. Two calibrated multiview
configurations (\Phi 1, C1) and (\Phi 2, C2) are isomorphic if and only if their associated multiview
flags Flag(\Phi 1, C1) and Flag(\Phi 2, C2) are equal.

Proof. Since \Phi i is birational onto its image for i = 1, 2, we see that if Sch(\Phi 1) = Sch(\Phi 2),
then there is a birational automorphism \alpha : P3   \dashrightarrow P3 such that \Phi 2 = \Phi 1 \circ \alpha . Moreover,
pr1 \circ \Phi 1, \alpha , and pr1 \circ \Phi 2 \circ \alpha are all regular on the open subscheme of P3 that is the comple-
ment of the line joining the centers of the two cameras pr1 \circ \Phi 1 and pr1 \circ \Phi 2 (as this maps
isomorphically into the smooth locus of Sch(\Phi 1)). Applying Lemma 2.22, we see that \alpha is
regular, as desired. The calibrated case follows, once we note that the calibrating curves lie
in the regular locus of all cameras.

2.3. Relativization. In this section we describe how to generalize the results of subsec-
tions 2.1 and 2.2 to families of cameras over an arbitrary base space. This is a necessary step
towards defining the moduli of camera configurations.

Definition 2.24. Given a scheme S, a relative pinhole camera over S is a rational map
p : P   \dashrightarrow P2

S over S uniquely determined by the following information:
1. the scheme P is a Zariski P3

S-bundle (i.e., has the form P(V ) for a locally free
OS-module of rank 4);

2. there is a map \sigma : O\oplus 3
\bfP \rightarrow O\bfP (1) whose cokernel is an invertible sheaf supported

exactly over a section Z of P \rightarrow S, called the camera center;
3. a representative of p is given by the morphism P\setminus Z \rightarrow P2

S determined by the quotient
\sigma \bfP \setminus Z and the universal property of projective space.

Throughout this section, when the base scheme S is clear, we will often simply write P2

for P2
S , etc.

Definition 2.25. Given a scheme S, a relative multiview configuration of length n over S
is given by a proper S-scheme P \rightarrow S of finite presentation and a rational map \Phi : P   \dashrightarrow 
(P2

S)
n over S such that for each i the composition pri \circ \Phi is a relative pinhole camera as in

Definition 2.24.
Two relative multiview configurations

\Phi i : Pi   \dashrightarrow P2
S , i = 1, 2,

are isomorphic if there is an S-isomorphism \varepsilon : P1
\sim  - \rightarrow P2 such that \Phi 2 = \Phi 1 \circ \varepsilon .

In what follows, we will write P2 for P2
S , etc., when the base scheme S is understood.
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Notation 2.26. Given a multiview configuration \Phi : P \rightarrow (P2)n of length n, we will write
1. S(\Phi ) for the domain P of \Phi ;
2. Z1(\Phi ), . . . , Zn(\Phi ) \subset \Phi for the camera centers;
3. Z(\Phi ) for the scheme-theoretic union Z1(\Phi ) \cup \cdot \cdot \cdot \cup Zn(\Phi );
4. Res(\Phi ) for the blowup of S(\Phi ) in Z.

Definition 2.27. A relative multiview configuration \Phi over S is general if the camera cen-
ters Z1, . . . , Z\mathrm{l}\mathrm{e}\mathrm{n}(\bfPhi ) are pairwise disjoint closed subschemes of P.

Definition 2.28. A relative multiview configuration \Phi : P   \dashrightarrow (P2
S)
n over S is collinear if

there is a closed subscheme L \subset S(\Phi ) that is a relative line over S and that contains Z(\Phi ).
It is nowhere-collinear if it is not collinear upon any basechange S\prime \rightarrow S.

Definition 2.29. Given a relative multiview configuration \Phi of length n over S, a calibra-
tion datum for \Phi is a pair (C, (C1, . . . , Cn)) where

1. C \subset P is a relative degree 2 curve over S;
2. Ci \subset P2

S is a relative smooth conic over S for i = 1, . . . , n;
3. for i = 1, . . . , n, the induced morphism (pri \circ \Phi )C factors through Ci.

If C is smooth, the calibration datum will be called smooth or nondegenerate; otherwise, it
will be called degenerate.

Proposition 2.30. Given a general relative multiview configuration \Phi over S, there is a
unique commutative diagram

Res(\Phi )

(P2)\mathrm{l}\mathrm{e}\mathrm{n}(\bfPhi )

P

\rho 

\pi  - 1

\bfPhi 

The diagram has the property that for each i, the composition

Ei Res(\Phi ) (P2)\mathrm{l}\mathrm{e}\mathrm{n}(\Phi ) P2\iota i \rho \mathrm{p}\mathrm{r}i

is an isomorphism. Moreover, this diagram is compatible with arbitrary base change on S.

Proof. The arrow \rho exists again by Lemma 2.12, and the functoriality follows from the
functoriality of Lemma 2.12 and the flatness of everything over S. Finally, the isomorphism
condition can be checked on geometric fibers, which reduces it to Proposition 2.13.

Definition 2.31. Given a general multiview configuration \Phi of length n, the scheme-theoretic
image of the morphism \rho described in Proposition 2.30 is the multiview scheme of \Phi . Sim-
ilarly, given a calibrated multiview configuration (\Phi , C, (C1, . . . , Cn)), there is an associated
flag Flag(\Phi , C) sitting inside the flag scheme C1 \times \cdot \cdot \cdot \times Cn \subset (P2)n.

Notation 2.32. The multiview scheme of \Phi will be denoted Sch(\Phi ). It is a closed sub-
scheme of (P2)\mathrm{l}\mathrm{e}\mathrm{n}(\bfPhi ).
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In the following, we fix conics in P2 and only record the curve C \subset P3 when considering
calibrations.

Proposition 2.33. Two general multiview configurations \Phi 1,\Phi 2 of length n over S are iso-
morphic if and only if Sch(\Phi 1) = Sch(\Phi 2) as closed subschemes of (P2

S)
n. Similarly, two

general calibrated multiview configurations (\Phi 1, C1) and (\Phi 2, C2) are isomorphic if and only
if their flags Flag(\Phi 1, C1) and Flag(\Phi 2, C2) are equal.

The proof of Proposition 2.33 is a modification of that of Proposition 2.23. We require a
modification of Lemma 2.22.

Lemma 2.34. Suppose A is a ring and U \subset P3
A is an open subset such that for every

geometric point A \rightarrow \kappa the fiber U\kappa \subset P3
\kappa has complement of codimension at least 2. Sup-

pose \alpha : U \rightarrow P3
A is a morphism such that \alpha \ast O(1) = OU (1). Then \alpha extends to a unique

automorphism of P3
A.

Proof. By the universal property of projective space, it suffices to show that restriction
defines an isomorphism

\Gamma (P3
A,O(1))

\sim \rightarrow \Gamma (U,O(1)).

To show this, it suffices to show that the adjunction map \nu (1) : O\bfP 3(1) \rightarrow \iota \ast OU (1) is an
isomorphism of sheaves. By the projection formula, it suffices to show that the adjunction
map for the structure sheaf

\nu : O\bfP 3
A
\rightarrow \iota \ast OU

is an isomorphism. But this is precisely Proposition 3.5 of [7].

Proposition 2.35. If \Phi is a general multiview configuration over S, then for all base changes
T \rightarrow S we have that the natural morphism

Sch(\Phi )\times S T \rightarrow Sch(\Phi \times S T )

is an isomorphism; that is, formation of the associated multiview scheme is compatible with
base change. Furthermore, Sch(\Phi ) is flat over the base.

Proof. By Lemma 2.20 the structure morphism O(\bfP 2)n \rightarrow \rho \ast O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ) is surjective. Consider
the triangle in the derived category

I \rightarrow O(\bfP 2)n \rightarrow R \rho \ast O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ) \rightarrow I[1].

Let i : (P2)nq \rightarrow (P2)n be an embedding of a fiber. Pulling back to the fiber and using
cohomology and base change, we have

L i\ast R \rho \ast O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ) \simeq R \rho \ast L i
\ast 
\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi )O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi )

\simeq R \rho \ast (O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ))q

\simeq (O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ))q.

Applying [9, Lemma 3.31] to R \rho \ast O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ), we see that it is quasi-isomorphic to a sheaf flat
over the base. But H 0(R \rho \ast O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi )) is \rho \ast O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ). Thus, we conclude that the short exact
sequence

0 \rightarrow I \rightarrow O(\bfP 2)n \rightarrow \rho \ast O\mathrm{R}\mathrm{e}\mathrm{s}(\bfPhi ) \rightarrow 0
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consists of S-flat sheaves and is compatible with arbitrary base change. This establishes the
result.

3. Moduli and deformation theory.

3.1. Moduli of uncalibrated camera configurations. In this section we describe the basic
moduli problem attached to uncalibrated camera configurations. In subsection 3.2 we will
study the deformation theory of a configuration \Phi , especially as it relates to the deformation
theory of the associated scheme Sch(\Phi ). Ultimately this will allow us to embed the moduli
space into the Hilbert scheme.

Definition 3.1. Given a positive integer n, the functor of camera configurations of length
n, denoted Camn, has as value over a scheme S the set of isomorphism classes of general
relative multiview configurations of length n.

Since a camera configuration of length at least 2 has trivial automorphism group, it follows
from standard descent theory that Camn is a sheaf in the fppf topology. In this section we
will show that it is a quasi-projective variety.

Notation 3.2. Let Mn \subset Mn
3\times 4 be the locus of n-tuples of full rank 3 \times 4 matrices whose

kernels are pairwise distinct. Let T be the torus given by the kernel of the multiplication map
Gn
m \rightarrow Gm. There is a natural free action of T\times GL4 on Mn (where the torus T acts diagonally

by scaling). Moreover, since T \times GL4 is reductive over Z andMn
3\times 4 is affine, we can realize the

quotient sheaf Mn /T \times GL4 as an open subvariety of the GIT quotient Mn
3\times 4//T \times GL4. In

particular, the quotient Mn /T \times GL4 is a smooth quasi-projective variety. Because the action
is free, we also know the functor of points of Mn /T \times GL4: the S-valued points are given by
pairs (L\rightarrow S, \varphi : S \rightarrow Mn), where L\rightarrow S is a T \times GL4-torsor and \varphi is a T \times GL4-equivariant
map. In particular, a morphism Mn /T \times GL4 \rightarrow Y to a scheme Y is the same thing as a
T \times GL4-invariant morphism Mn \rightarrow Y .

Proposition 3.3. There is a natural isomorphism of functors c : Mn /T \times GL4 \rightarrow Camn.

Proof. Sending a 3\times 4-matrix to its associated camera defines a morphism Mn \rightarrow Camn.
This is T\times GL4-equivariant, since, by definition, projective automorphisms of P3 do not affect
the isomorphism class of a camera configuration. To see that c is an isomorphism, it suffices
to show that c(R) is a bijection for any strictly Henselian local ring R. In this case, every
form of P3 is trivial, so we see that any camera configuration is given by a tuple of matrices,
showing that c is surjective. On the other hand, by definition, two such configurations are
isomorphic if and only if they differ by an automorphism of P3 and individual scalings of the
factors, which says precisely that they lie in the same T \times GL4(R)-orbit in Mn(R). The result
follows.

Corollary 3.4. If n > 1, then the space Camn is a smooth quasi-projective scheme over
SpecZ.

Proof. This follows immediately from Proposition 3.3 and the remarks in Notation 3.2.

3.2. Deformations of multiview configurations. In this section, we study the relationship
between the infinitesimal deformation theory of a camera configuration and the deformation
theory of its associated multiview scheme. As we will see in subsection 4.3, the deformation-

D
ow

nl
oa

de
d 

08
/0

5/
20

 to
 1

28
.9

5.
10

4.
10

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



© 2020 Max Lieblich and Lucas Van Meter

TWO HILBERT SCHEMES 307

theoretic approach gives strong results on the relationship between Camn and Hilb(\bfP 2)n , clari-
fying and improving the groundbreaking results of [1]. In particular, our infinitesimal analysis
will apply at all points. These methods are very different from the ideal-theoretic methods of
[1]. It would be especially interesting to understand how the cotangent complex argument of
subsection 3.2.3 relates to the Gr\"obner basis calculations in [1].

Definition 3.5. Fix a ring A containing an ideal I such that I2 = 0, and let A0 = A/I.
Suppose \Phi 0 is a relative multiview configuration of length n over A0. An infinitesimal defor-
mation of \Phi 0 to A is a pair (\Phi , \varepsilon ), where \Phi is a multiview configuration of length n over A
and \varepsilon : \Phi \otimes A A0

\sim  - \rightarrow \Phi 0 is an isomorphism of relative multiview configurations.
An isomorphism between infinitesimal deformations (\Phi , \varepsilon ) and (\Phi \prime , \varepsilon \prime ) of \Phi 0 is an iso-

morphism \alpha : \Phi 
\sim  - \rightarrow \Phi \prime of relative multiview configurations such that \varepsilon \prime \circ \alpha \otimes A A0 = \varepsilon .

Notation 3.6. We will write Def\bfPhi 0 for the functor of isomorphism classes of infinitesimal
deformations of \Phi 0, and Def

\mathrm{S}\mathrm{c}\mathrm{h}(\bfPhi 0)\subset (\bfP 2)\mathrm{l}\mathrm{e}\mathrm{n}(\bfPhi 
0) for the usual functor of infinitesimal deforma-

tions of the point [Sch(\Phi 0)] of the Hilbert scheme Hilb
(\bfP 2)\mathrm{l}\mathrm{e}\mathrm{n}(\bfPhi 

0) .

Our goal in this section is to prove the following, which is the key step in our generalization
of the results of [1].

Proposition 3.7. If \Phi is a general multiview configuration of length n > 2, then the mor-
phism

Sch : Def\bfPhi 0 \rightarrow Def\mathrm{S}\mathrm{c}\mathrm{h}(\bfPhi 0)\subset (\bfP 2)n

is an isomorphism of deformation functors.

Proof. The proof will be developed through this section. In particular, the injectivity of
Sch follows from Proposition 2.33, and surjectivity follows from Proposition 3.11.

That is, if \Phi is a general multiview configuration of length n > 2 with associated multiview
variety V \subset (P2)n, then we have that the infinitesimal deformations of \Phi are in bijection with
the infinitesimal deformations of V as a closed subscheme of (P2)n. The proof will work
roughly as follows.

1. First, we will recall the well-known description of abstract deformations of V as a
scheme. As we will see, V has a property that we will call essential rigidity .

2. Using this essential rigidity, we will show that any deformation of V as a closed
subscheme of (P2)n arises from a deformation of \Phi . In the collinear case this is
nontrivial, because Res(\Phi ) \rightarrow (P2)n contracts a line, but a simple argument with the
cotangent complex gives the desired result.

3. Using Proposition 2.33, we have that two deformations of \Phi give rise to the same
deformation of V if and only if they are isomorphic, completing the proof.

It is worth noting (as hinted at in this outline) that the proof we give here is almost
purely geometric. We do not rely on dimension estimates, ideal-theoretic calculations, etc.
The arguments are simple variants of classical Italian geometric arguments, first used to study
the geometry of projective surfaces. Proposition 3.7 is ultimately the reason that the space
of multiview configurations admits an open immersion into the Hilbert scheme, as we will see
in subsection 4.3.
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3.2.1. Essential rigidity of blowups of P\bfthree . In this section we fix a commutative ring A0,
a square-zero extension

I \subset A\rightarrow A0,

and a collection of pairwise everywhere-disjoint sections

\sigma i : SpecA0 \rightarrow P3
A0
.

We write P0 for the blowup BlZ0 P
3
A0

, where Z0 is the reduced closed subscheme of P3
A0

supported on the union of the images of the \sigma i. For the most part, these results are well
known. Unfortunately, the available literature tends not work in sufficient generality (for
example, [14] works over a fixed field k).

Proposition 3.8. Given a deformation P of P0 over A, there is a unique morphism

\beta : P \rightarrow P3
A

deforming the canonical blowdown map

\beta 0 : P0 \rightarrow P3
A0
,

up to infinitesimal automorphism of P3
A. Moreover, \beta realizes P as the blowup of P3

A at a
closed subscheme Z that deforms Z0 (and Z is a union of n sections of P3

A).

Proof. If one is willing to work entirely over a field (although here we are working over
Z), one can extract this from [14, Proposition 3.4.25(ii)]. It is not difficult to prove this in full
generality for blowups of projective spaces along collections of sections by showing that the
blowdown map admits a canonical deformation, and each deformed exceptional divisor maps
to a section under this deformed blowdown. We omit the details for the sake of space.

3.2.2. Lifting deformation for noncollinear configurations. In this section, we explain
how any deformation of a noncollinear multiview scheme lifts to a deformation of the associated
multiview configuration. Fix a deformation situation

I \subset A\rightarrow A0

and a noncollinear multiview configuration \Phi 0 of length n over A0 with scheme Sch(\Phi 0).

Proposition 3.9. If X \subset (P2)nA is an A-flat deformation of Sch(\Phi 0), then there is a defor-
mation \Phi of \Phi 0 such that Sch(\Phi ) = X as closed subschemes of (P2)n. Moreover, \Phi is unique
up to unique isomorphism of deformations of \Phi 0 over A.

Proof. Since \Phi 0 is noncollinear, the natural morphism

Res(\Phi 0) \rightarrow Sch(\Phi 0) \subset (P2)n

is an isomorphism. By Proposition 3.8, any deformation of Sch(\Phi 0) is a blowup P of P3
A at

n disjoint sections over SpecA. The deformation thus results in a rational map

\Phi : P3
A   \dashrightarrow (P2

A)
n
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extending \Phi 0. We wish to show that \Phi is a relative multiview configuration in the sense of
Definition 2.27. To do this, it suffices to check that composition with each projection is a
relative pinhole camera. Write p : P3

A   \dashrightarrow P2
A for one such projection; we will abuse notation

and also write p for the corresponding map P \rightarrow P2
A from the blowup. We will write E for

the exceptional divisor associated to p and Z for the section blown up to make E, that is, we
assume that p is the ith projection of \Phi and that E is the preimage of the ith section in P3

A,
which we call Z, uniformly omitting i from the notation. By the pinhole camera assumptions
on \Phi 0, p| EA0 maps E isomorphically to P2

A0
. It follows from Nakayama's lemma that p| E

maps E isomorphically to P2
A.

Write U \subset P3
A for the complement of the sections that are blown up to resolve \Phi . By the

previous paragraph, we see that UA0 \subset P3
A0

is precisely the complement of the camera centers
of \Phi 0. By the universal property of projective space, the morphism p is given by a surjective
morphism

\lambda : O\oplus 3
P \rightarrow L

for some L in Pic(P ). Write \pi : P \rightarrow P3
A for the blowdown map. We know from the

definition of pinhole cameras, the rigidity of invertible sheaves on P , and the canonical way
to extend morphisms generically across blowups that L \sim = \pi \ast (O(1))( - E). Moreover, the
resulting arrow

f : \pi \ast O
\oplus 3 \rightarrow O\bfP 3

A
(1)

has the property that its image is precisely O\bfP 3
A
(1) \otimes IZ , where IZ is the ideal sheaf of Z.

(This follows from the universal property of blowing up.) This shows that the cokernel of f
is an invertible sheaf supported on Z, showing that p is a relative pinhole camera, as desired.

It remains to show that any two such realizations \Phi 1 and \Phi 2 are conjugate by an infini-
tesimal automorphism of P3. But this follows immediately from Proposition 2.33.

3.2.3. Lifting deformations for collinear configurations. For the sake of computational
ease, in this section we consider a deformation situation I \subset A\rightarrow A0 in which A is an Artinian
local ring with maximal ideal m and mI = 0. Write k = A/m.

We start with a multiview configuration \Phi : P3
A0

  \dashrightarrow (P2)n whose special fiber \Phi k is
collinear. Thus, the morphism

Res(\Phi k) \rightarrow Sch(\Phi k) \subset (P2)n

contracts a line \ell \subset Res(\Phi k). To make things easier to read, write R = Res(\Phi k) and B =
Sch(\Phi k). Write LR/B for the cotangent complex of the morphism R \rightarrow B. In addition,
write E1, . . . , En \subset R for the exceptional divisors. The usual calculations show that KR =
\pi \ast K\bfP 3 + 2E1 + \cdot \cdot \cdot + 2En.

Lemma 3.10. If n > 2, then Ext2R(LR/B,OR) = 0.

Proof. Consider the standard spectral sequence

(3.1) Epq2 = Extp(H  - q(LR/B,OR)) \Rightarrow Extp+q(LR/B,OR).

We know that H 0(LR/B) = \Omega 1
R/B, and that H  - j(LR/B) is supported on \ell for all j \geq 0. By

Serre duality, we can compute the terms in the spectral sequence as

Extp(H  - q(LR/B),OR) = H3 - p(R,H  - q(LR/B)(KR))
\vee .
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Since the cohomology sheaves of LR/B are all supported on \ell , all columns of the E2
pq page

(3.1) vanish except (possibly) for p = 2, 3. It follows that

Ext2R(LR/B,OR) \sim = H1(R,\Omega 1
R/B(KR))

\vee .

A local calculation shows that \Omega 1
R/B is annihilated by the ideal of \ell , so that \Omega 1

R/B =

\Omega 1
\ell / \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c} k, and thus

H1(R,\Omega 1
R/B(KR))

\vee \sim = H1(\ell ,O\ell (K\ell +KR))
\vee \sim = H0(\ell ,O\ell ( - KR)) = H0(\ell ,O(4 - 2n)) = 0,

as desired.

Proposition 3.11. Suppose n > 2. If X \subset (P2)nA is an A-flat deformation of Sch(\Phi 0),
then there is a deformation \Phi of \Phi 0 such that Sch(\Phi ) = X as closed subschemes of (P2)n.
Moreover, \Phi is unique up to the unique isomorphism of deformations of \Phi 0 over A.

Proof. By Lemma 3.10 and [10, III.2.2.4], the obstruction to deforming the morphism

Res(\Phi 0) \rightarrow Sch(\Phi 0)

over A vanishes, resulting in a deformation R\rightarrow X. Applying the results of subsection 3.2.1,
we see that this arises from a deformation \Phi , as desired. The uniqueness of \Phi up to isomor-
phism is an immediate consequence of Proposition 2.33.

3.3. Diagram Hilbert schemes. In this section, we briefly explain a basic idea that is
hard to find in the literature: diagram Hom-schemes and diagram Hilbert schemes. They are
a mild elaboration of the idea of a flag Hilbert scheme. By remembering not only the data of
the image but also the calibrating conics, the moduli space of calibrated cameras maps to a
diagram Hilbert scheme in the same way that the moduli space of uncalibrated cameras maps
to a Hilbert scheme.

3.3.1. Definition and examples. Fix a base scheme S, a category I, and a functor X :
I \rightarrow \frakA lgSpS , where \frakA lgSpS denotes the category of algebraic spaces over S.

Definition 3.12. The diagram Hilbert functor

HilbX : Sch\circ S \rightarrow Sets

is the functor whose value on an S-scheme T is the set of isomorphism classes of natural
transformations Y \rightarrow X\times S T of functors I \rightarrow SchT where for each i \in I the associated arrow
Y (i) \rightarrow X(i)\times S T is a T -flat family of proper closed subschemes of X(i) of finite presentation
over T .

Example 3.13. The usual Hilbert scheme is an example: Just take I to be the singleton
category. So is the flag Hilbert scheme of length n: In this case the category I is the category
n associated to the poset \{ 1, . . . , n\} , and the functor X is the constant functor X \rightarrow X. A
natural transformation Y \rightarrow X defines a nested sequence of closed subschemes of X. This is
the flag Hilbert scheme (of length 2 flags).
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There is also a stricter kind of flag scheme: Suppose X1 \subset X2 is a closed immersion and
one wants to parameterize pairs Yi \subset Xi such that Y1 \subset Y2, that is precisely the diagram
Hilbert functor associated to the poset-category 2 = \{ 1 < 2\} with the functor 2 \rightarrow SchS
sending i to Xi. This last example is the one that will arise naturally for us in the context of
calibrated cameras. (We record more general results here in case someone in the future needs
this general idea of a diagram Hilbert scheme.)

Notation 3.14. If the diagram in question is a single morphism X \rightarrow Y , we will write
HilbX\rightarrow Y for the associated Hilbert functor.

3.3.2. Representability. The main result about diagram Hilbert functors is that they are
representable. We prove this in a high degree of generality, in case this is of independent
interest.

Proposition 3.15. Let I be a finite category and X : I \rightarrow \frakA lgSpS a functor whose compo-
nents are separated algebraic spaces. Then the diagram Hilbert functor HilbX is representable
by an algebraic space locally of finite presentation over S. If the X(i) are locally quasi-
projective schemes, then HilbX is represented by a locally quasi-projective S-scheme.

Proof. There is a natural functor

F : HilbX \rightarrow 
\prod 
i\in I

HilbX(i),

and we know that the latter is representable by algebraic spaces (resp., schemes) satisfying
the desired conditions. It thus suffices to show the same for F , i.e., that F is representable
by spaces of the required type.

For each i \in I, let

Zi \subset X(i)\times 
\prod 

HilbX(i)

denote the universal closed subscheme (pulled back over the product). Let A denote the set of
arrows in I; for an arrow a \in A, let s(a) and t(a) denote the source and target of a. Consider
the scheme

H :=
\prod 
a\in A

Hom\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}\prod X(i)
(Z(s(a)), Z(t(a))),

which naturally fibers over
\prod 

HilbX(i). The standard theory of Hom-schemes shows that
H \rightarrow 

\prod 
HilbX(i) is representable by spaces of the desired type.

The final observation to make is that composition of two arrows gives equations b \circ a = c
in A, and these translate into closed conditions on H because all of the subschemes Z(i) are
separated. Since the conditions desired are stable under taking closed subspaces, we have
proven the result.

3.4. Moduli of calibrated camera configurations. Let C denote the space of smooth
conics in P2

\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\bfZ [1/2], and let C\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v} \subset P2
C denote the universal smooth conic. (The space

C is an open subscheme of the bundle of sections of O\bfP 2
\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\bfZ [1/2]

(2).) The tuple of conics

(C\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}, . . . , C\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}) inside (P2)n will be called the universal calibration.
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Definition 3.16. Given a positive integer n, the sheaf of calibrated camera configurations of
length n, denoted CalCamn, is the sheaf over the Cartesian power C n whose value over a point
t : S \rightarrow C n consists of the set of isomorphism classes of general relative calibrated multiview
configurations of length n with calibration datum of the form (C, t\ast (C\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}, . . . , C\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v})).

In down-to-earth terms, we are just describing the space of n-tuples of calibrated cameras
with pairwise nonintersecting centers, together with arbitrary but specified calibration data. In
the existing literature, the word ``calibrated"" usually means that one has fixed the calibrating
conics to be the canonical absolute conic in space (attached to the Euclidean distance form
on P3) and the circle in the plane. Since any two smooth conics are conjugate under a
homography, this seems harmless. As we hope to describe in this section, thinking more
geometrically and tracking the conics as data instead of normalizing them gives us a great
deal of insight into the underlying moduli problem. The point of the universal conic in P2

is that we only want to allow the conic in P3 to vary; that is, we fix calibration data on the
image planes when we define the moduli problem. By working with the universal conic, we
allow those fixed planar data to be arbitrary.

Notation 3.17. Since we are fixing the calibration data on the image planes to be the
universal conic, we will omit them from the notation for a calibration datum. Thus, we
will write (\Phi , C) for a calibrated configuration. When we need to refer to the image plane
calibrating curves, we will use Ci for the curve in the ith plane. It is key to remember that
while Ci can vary as the base varies (depending upon how it maps to C n), this is determined
solely by the base and not by the object of CalCamn over that point of the base.

The main result of this section is the following.

Proposition 3.18. The sheaf CalCamn is a smooth scheme of finite type over C n.

Let \tau n : CalCamn \rightarrow CalCamn - 1\times Cn - 1C n be the morphism given by forgetting the last
camera (and retaining the last calibrating plane conic).

Lemma 3.19. The morphism \tau n is representable by separated schemes of finite presentation.

Proof. Let ((\varphi 1, . . . , \varphi n - 1, C), Cn) be a T -valued point of CalCamn - 1\times Cn - 1C n. The fiber
of \tau n is given by the set of cameras \varphi n with the same domain P \rightarrow T as the first n - 1 cameras,
with the following additonal properties.

1. The center of \varphi n avoids the centers of \varphi i for i = 1, . . . , n - 1.
2. The restriction \varphi n| C factors through the closed subscheme Cn \subset P.

The space of camera centers satisfying the first condition is an open subscheme P\circ \subset P, and
taking the center gives a natural map

CalCamn \rightarrow P\circ \times CalCamn - 1\times Cn - 1C n.

It suffices to show that this map is representable, and thus we may assume that the center
is a given section \sigma : T \rightarrow P. Blowing up along \sigma (T ) to yield \widetilde P, with exceptional divisor
E, we can then realize the cameras inside the open locus of the Hom-scheme Hom(\widetilde P,P2)
parametrizing maps f : \widetilde P \rightarrow P2 for which f\ast O\bfP 2(1) is isomorphic to O(1)( - E) on each
geometric fiber over T . This locus is of finite type. Finally, the condition that C lands in Cn
is closed (and of finite presentation), completing the proof.

D
ow

nl
oa

de
d 

08
/0

5/
20

 to
 1

28
.9

5.
10

4.
10

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



© 2020 Max Lieblich and Lucas Van Meter

TWO HILBERT SCHEMES 313

Proposition 3.20. The morphism \tau n is smooth.

Proof. By Lemma 3.19 and [15, Tag 02H6], it suffices to show that \tau n is formally smooth.
Let A\rightarrow A0 be a square-zero extension of rings, and suppose that

(\varphi 1, . . . , \varphi n, C) \in CalCamn(A0)

is fixed. To show formal smoothness we can work Zariski-locally and thus assume that the
domains of \varphi 1, . . . , \varphi n are P3

A0
. Now suppose that we fix a deformation

((\varphi \prime 
1, . . . , \varphi 

\prime 
n - 1, CA), Cn) \in CalCamn - 1(A)\times Cn - 1(A) C n(A).

(Because we are working over the universal conic in each image plane, we have to specify the
deformation of the conic that we will use in attempting to deform the nth calibrated camera.)
To show formal smoothness it suffices to extend \varphi n to a morphism \varphi \prime 

n that maps CA to Cn.
The choice of deformation of C to CA induces a lift of C \rightarrow P2

A0
to CA \rightarrow P2

A. This is

because H1(C,OC(1)) = 0, so sections defining a map can always be lifted. We will show that
we can extend this to a camera that acts on CA in the given way.

We are thus reduced to the following: We are given a tuple of three sections \sigma 0, \sigma 1, \sigma 2 \in 
\Gamma (P3

A0
,O(1)), a planar curve CA \subset P3

A of degree 2, and lifts of the \sigma j | C to \Gamma (CA,O(1)). We
wish to lift these extensions to sections \widetilde \sigma j \in \Gamma (P3

A,O(1)). We can do this one section at a
time. By Definition 2.3, the curve CA is contained in a canonically defined family of planes
in P3

A; we will write CA \subset P2
A \subset P3

A and similarly for A0. (If the plane is not trivial, we can
further shrink A to make it so; this is immaterial for the calculations and is only a notational
device.)

Consider the diagrams

0 \Gamma (P3
A0
,O)\otimes A0 I \Gamma (P3

A,O) \Gamma (P3
A0
,O) 0

0 \Gamma (P3
A0
,O(1))\otimes A0 I \Gamma (P3

A,O(1)) \Gamma (P3
A0
,O(1)) 0

0 \Gamma (P2
A0
,O(1))\otimes A0 I \Gamma (P2

A,O(1)) \Gamma (P2
A0
,O(1)) 0

and

0 \Gamma (P2
A0
,O( - 1))\otimes A0 I \Gamma (P2

A,O( - 1)) \Gamma (P2
A0
,O( - 1)) 0

0 \Gamma (P2
A0
,O(1))\otimes A0 I \Gamma (P2

A,O(1)) \Gamma (P2
A0
,O(1)) 0

0 \Gamma (C,O(1))\otimes A0 I \Gamma (CA,O(1)) \Gamma (C,O(1)) 0

By the usual calculations of the cohomology of projective space, these two diagrams have
exact columns. A simple diagram chase then shows that we can lift sections to P3

A given
values on P3

A0
and CA, completing the proof.
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Proof of Proposition 3.18. It remains to show smoothness. We use Proposition 3.20 and
induction on n. For n = 1, we see that CalCam1 is smooth over C , which is itself open in a
projective space, and hence smooth.

3.5. Deformation theory of calibrated camera configurations. In this section we prove
the following analogue of Proposition 3.7.

Theorem 3.21. If (\Phi , C) is a nondegenerate calibrated general multiview configuration of
length n > 2 with associated multiview flag

(C \subset V ) \lhook \rightarrow (C1 \times \cdot \cdot \cdot \cdot Cn \subset (P2)n),

then we have that the infinitesimal deformations of (\Phi , C) are in bijection with the infinitesimal
deformations of C \subset V as a closed subscheme diagram of C1 \times \cdot \cdot \cdot \times Cn \subset (P2)n.

Proof. The proof leverages the proof of Proposition 3.7. In particular, we can forget the
calibrations and apply Proposition 3.7 to see that under the given hypotheses any deformation
of Flag(\Phi , C) induces a deformation of Sch(\Phi ) that is the image of a deformation \widetilde \Phi of \Phi . The
assumption that the deformation of Sch(\Phi ) arises from a deformation of Flag(\Phi , C) means
that there is also an associated deformation of C. Since \Phi is an isomorphism onto its image
in a neighborhood of C, this deformation of C canonically lifts to give a calibration of \widetilde \Phi .

4. Comparison morphisms. In subsection 4.1 we compare Camn and CalCamn by the
natural decalibration morphism. In subsection 4.2 we focus on the case of two cameras,
leading to a 2-1 cover of the essential variety that compactifies the twisted pair covering.
Finally, in subsection 4.3 we state how both moduli spaces of cameras map to appropriate
Hilbert schemes.

4.1. The decalibration morphism \bfitnu \bfitn : CalCam\bfitn \rightarrow Cam\bfitn \times C \bfitn . In this section, we
study a natural morphism

CalCamn \rightarrow Camn\times C n

given by forgetting the camera calibration datum.

Definition 4.1. The decalibration morphism is the morphism

\nu n : CalCamn \rightarrow Camn\times C n

given by sending (\Phi , C) to \Phi .

4.1.1. Intersections of conic cones. Before we delve into the geometry of \nu n, we need a
few preliminaries about intersections of conic cones in P3.

Proposition 4.2. Let X1 and X2 be two conic cones in P3 with distinct cone points P1 and
P2. Suppose C \subset X1 \cap X2 is a plane curve of degree 2, so that X1 \cap X2 = C \cup D with D a
curve of degree 2. Then D must be planar and have support distinct from the support of C.
More precisely, one of the following must occur.

1. C and D are smooth conics meeting at two distinct points.
2. C is a smooth conic and D is a doubled planar line.
3. C is a doubled planar line and D is a smooth conic.
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In particular, we can never have C = D (i.e., X1 \cap X2 cannot be a doubled smooth conic).

Proof. This is a standard result, and it can be extracted from the material in [8, Chapter
13, section 11]. We briefly describe a proof in modern language for the reader's convenience.
By assumption, C is either a smooth conic or a planar doubled line. It is easy to write down
examples where the intersection X1\cap X2 is a union of two smooth conics meeting at two points
(e.g., in characteristic different from 2 the pair X2 + Y 2 + Z2 = 0 and Y 2 + Z2 +W 2 = 0 is
such an example).

If X1\cap X2 contains a doubled planar line, then X1 and X2 must be tangent along a ruling.
Since P1 \not = P2, the residual curve must be a smooth conic.

Suppose X1 \cap X2 = C \cup D with C a smooth conic and D a singular curve. We wish to
show that D is a doubled planar line. Since D has degree 2 in P3, it must be the case that
the reduced structure on D is a line. The only doubled lines contained in a conic cone are
planar: They are given by intersecting with the tangent plane along rulings.

It remains to rule out the possibility that X1\cap X2 is a doubled conic. Note that a doubled
conic is the intersection of X1 with a doubled plane 2P \in O\bfP 3(2). We can rule out this case
if we can show that the pencil spanned by X1 and a doubled plane not containing its cone
point does not contain any more conic cones. We can represent the cone X1 and an aribtrary
doubled plane missing the cone point by the matrices\left(    

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

\right)    and

\left(    
a2 ab ac a
ab b2 bc b
ac bc c2 c
a b c 1

\right)    
for a, b, c \in k. Searching for a conic cone in the pencil corresponds to finding \lambda such that the
following matrix has rank 3:\left(    

a2 + \lambda ab ac a
ab b2 + \lambda bc b
ac bc c2 + \lambda c
a b c 1

\right)    with row reduction

\left(    
\lambda 0 0 0
0 \lambda 0 0
0 0 \lambda 0
a b c 1

\right)    ,

but the latter matrix can never have rank 3.

4.1.2. The geometry of \bfitnu \bfitn . Fix a point \xi of Camn\times C n. That is, fix conics C1, . . . , Cn
in P2 and a multiview configuration \Phi . In this section we compute the fiber of \nu n over \xi .

Proposition 4.3. The scheme-theoretic fiber \nu  - 1
n (\xi ) is a reduced \kappa (\xi )-scheme of length at

most 2.

Proof. The fiber \nu  - 1
n (\xi ) is precisely the scheme of smooth conics in the intersection of

the cones over the image conics Ci inside the ambient P3. The result is thus immediate
from Proposition 4.2. (In particular, the lack of doubled conic means that the fibers are
discrete.)

Corollary 4.4. The morphism \nu n is unramified.

Proof. The proof is an immediate consequence of Proposition 4.3.
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Proposition 4.5. The morphism \nu n is proper.

Proof. Suppose we have a multiview configuration \Phi of length 2 over a complete dvr R
with fraction field K, degree 2 curves C1, . . . , Cn \subset P2

R, and a degree 2 curve CK \subset P3
K such

that \Phi K maps CK isomorphically to the generic fiber of each Ci. By the valuative criterion
for properness, it suffices to extend CK to a degree 2 curve CR.

Assume we have a multiview configuration \Phi of length 2 over a complete dvr R with
fraction field K, and suppose we have conics C1, . . . , Cn \subset P2

R in each image plane. Write
Ci \subset P3 for the cone over Ci under pri \circ \Phi and I = C1 \cap \cdot \cdot \cdot \cap Cn. Finally, assume that there
is a conic CK \subset P3

K such that \Phi K maps CK isomorphically to the generic fiber of each Ci;
that is, CK \subset IK . Let CR be the specialization of CK in the closed fiber C0. The curve CR
is degree 2, giving us a calibrated configuration over R.

Note that even if Ck is a nondegenerate conic, C0 need not be. This is why we need to
add degenerate conics.

Proposition 4.6. The morphism \nu 2 has smooth image and general fiber of length 2. For any
n > 2 the morphism \nu n is generically injective.

Proof. The projective closure of the image of a fiber of CalCam2 over C 2 under \nu 2 is
known as the ``essential variety,"" and its singularities are well known (see [3, section 2.1]);
none of its singular points lie in the image of \nu 2. To study the general fiber, it suffices by the
irreducibility of all spaces involved to produce a single example of a camera configuration of
length 2 such that the fiber of \nu 2 has length 2. To do this, it further suffices to find a single
example of two conic cones C1, C2 \subset P3 whose intersection is a pair of smooth conics. One
such example is given by the cones X2 + Y 2 + Z2 = 0 and Y 2 + Z2 +W 2 = 0.

We now show that \nu n is generically injective for n > 2. Given a smooth conic C in P3, the
locus in | O\bfP 3(2)| consisting of conic cones containing C is 3-dimensional (since such a cone is
determined by its vertex). Thus, we can find three noncollinear conic cones that contain any
given smooth conic C. On the other hand, given two conic cones C1, C2, the set of conic cones
that vanish on their entire intersection C1 \cap C2 is contained in the pencil spanned by C1 and
C2. We conclude that if C1 \cap C2 is reducible, then we can choose general cones C3, . . . , Cn
containing a smooth conic in C1 \cap C2 such that Ci is not in the pencil spanned by C1 and C2

for each i > 2. The joint vanishing locus C1 \cap C2 \cap C3 \cap \cdot \cdot \cdot \cap Cn is a smooth conic. Since this
is generic behavior, this shows that \nu n is generically injective for all n > 2.

It is a potentially interesting problem to characterize the locus over which \nu n is not injec-
tive, and the singular locus of its image (the ``variety of calibrated n-focal tensors,"" which is
studied for n = 3 in coordinatized form in [11]).

Corollary 4.7. The morphism \nu n is finite.

Proof. We have shown that \nu n is quasi-finite and proper and, thus, finite.

Question 4.8. Is the singular locus of the image of CalCamn, for n > 2, equal to the locus
over which the fiber of \nu n has length 2?

4.2. Twisted pairs and moduli. In this section we study the morphism \nu 2 in more detail,
showing how the Hilbert scheme gives a natural compactification of the classical ``twisted pair""
construction. To explicitly compare this new treatment with the literature, in this section we
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will fix the calibrating conics to be v(x20 + x21 + x22) \subset P2. Also, we will often think of an
essential matrix as the corresponding pair of calibrated cameras in normalized coordinates.
In these coordinates we can fix notation P1 = [I| 0] and P2 = R[I| t], where t = (a, b, c).

4.2.1. Twisted pairs. As shown in section 5.2 of [13], the locus \scrM of essential matrices
is smooth (over C) and admits an \'etale surjection SO(3)\times P2 \rightarrow \scrM , coming from composing
a camera with a rotation and a translation, up to scaling. In terms of matrices we send (R, t)
to the camera pair P = [I| 0], Q = [R| t] which has essential matrix [t]\times R. One can check in
local coordinates that the map is \'etale [2, Proposition 3.2].

For any real essential matrix M \in \scrM (R), the fiber of \pi over M contains two points: One
can take a pair of cameras P1, P2 and replace it with the pair P1, \widetilde P2 where \widetilde P2 results from
rotating P2 by 180 degrees around the axis connecting the centers of P1 and P2. In normalized
coordinates, the matrix

Rt =

\left(    
2a2  - 1 2ab 2ac 0
2ab 2b2  - 1 2bc 0
2ac 2bc 2c2  - 1 0
0 0 0 1

\right)    
is rotation by 180 degrees and \widetilde P2 = R[I| t]Rt. (Note that over the reals we can always rescale
t so that a2 + b2 + c2 = 1.) The pair (P1, P2), (P1, \widetilde P2) is called a twisted pair ; what we have
described is a well-known construction in computer vision [6, Result 9.19]. The key thing to
note is that the rotation construction described above preserves calibrations for real cameras.
For complex cameras, things get more complicated, and for displacements (a, b, c) such that
a2 + b2 + c2 = 0, the corresponding transformation produces a new camera pair (P1, \widetilde P2) for
which \widetilde P2 is no longer calibrated.

4.2.2. Compactification of the twisted pair construction. The morphism

\nu 2 : CalCam2 \rightarrow Cam2\times C 2

gives a double covering of a closed subscheme that generalizes the twisted pair covering of the
essential variety. A point of CalCam2 is the datum (P1, P2, C) where P1 and P2 are cameras
and C is a planar curve of degree 2 contained in the intersection of the cones defined by the
preimage of C\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v} via P1 and P2. Proposition 4.2 tells us that this intersection must contain
either another nondegenerate conic or a doubled line. In either case denote this other degree
2 curve by \widetilde C. The general fibers of \nu 2 are the triples (P1, P2, C) and (P1, P2, \widetilde C).

This double covering agrees with the twisted pair covering on real points. In normalized
coordinates \widetilde C is defined by the simultaneous vanishing of

x2 + y2 + z2 = 0 and (a2 + b2 + c2)w  - 2(ax+ by + cz) = 0.

When a2 + b2 + c2 = 1, as it must over R (up to scaling), one can check that changing
coordinates on P3 via the automorphism

H =

\left(    
1 0 0 0
0 1 0 0
0 0 1 0

 - 2a  - 2b  - 2c 1

\right)    

D
ow

nl
oa

de
d 

08
/0

5/
20

 to
 1

28
.9

5.
10

4.
10

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



© 2020 Max Lieblich and Lucas Van Meter

318 MAX LIEBLICH AND LUCAS VAN METER

sends the triple (P1, \widetilde P2, C) to the triple (P1, P2, \widetilde C).
However, over the complex numbers there exist essential matrices such that a2+b2+c2 = 0.

This is exactly the condition that \widetilde C is a doubled line. In this situation the twisted pair
construction fails because the camera \widetilde P no longer has a trivial calibration. Mathematically
speaking, we are really discussing the fact that the twisted pair morphism \pi , while always
\'etale, is not finite. Allowing degenerate calibrations (doubled lines) extends the twisted pair
morphism \pi to \nu 2.

Proposition 4.9. There exists a fixed-point free involution, \chi : CalCam2 \rightarrow CalCam2 over
Cam2 given by fixing the cameras and swapping calibrating curves. More precisely, \nu 2\circ \chi = \nu 2.

Proof. Given a pair of cameras \Phi \rightarrow P2 \times P2 and smooth conics D1, D2 \subset P2, we can
pull back to get two cones X1, X2 \subset P3. Let F = X1 \cap X2. Blowing up the camera centers,
the strict transforms of these cones, \~X1, \~X2 \subset BlZ1,Z2 P

3, are smooth surfaces in P3. The
intersection is a relative effective Cartier divisor and \~X1 \cap \~X2 \simeq F since the cone centers are
distinct.

A point in CalCam2 is a pair (\Phi , C) where C is a relative effective Cartier divisor contained
in F . By [15, Tag 0B8V] there exists another relative effective Cartier divisor C \prime such that
C \prime + C = F . Checking at a geometric point, Proposition 4.2 shows that C \prime is a degree 2
curve, and that no geometric point of CalCam2 is fixed by \chi . This argument is functorial
and so induces the desired involution. Since \chi only changes the calibrating conic we have
\nu 2 \circ \chi = \nu 2.

Theorem 4.10. The morphism \nu 2 factors as a finite \'etale morphism followed by a closed
immersion.

Proof. By Corollary 4.7, \nu 2 is a finite morphism, and hence closed. This yields a fac-
torization CalCam2 \rightarrow Z \rightarrow Cam2 with the second arrow a closed immersion and the first
scheme-theoretically surjective. Let A be a strictly Henselian local ring and SpecA \rightarrow Z a
morphism. The finiteness of \nu 2 yields a diagram

SpecB CalCam2

SpecA Cam2

\psi \nu 2

By [15, Tag 04GH], B is the product of local Henselian rings. By Proposition 4.6, the general
fibers of \psi are length 2, corresponding to the two possible calibrating conics, so SpecB \simeq 
SpecB1 \sqcup SpecB2. By Corollary 4.4, \psi is unramified, and thus (by [15, Tag 04GL]) restricts
to a closed embedding on each SpecBi.

SpecBi SpecB1 \sqcup SpecB2 CalCam2

SpecA Cam2

\psi 

The involution described in Proposition 4.9 induces an isomorphism f : SpecB1 \rightarrow SpecB2.
In other words, both components map isomorphically to the image, so \nu 2 is \'etale over Z, as
claimed.
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4.3. Morphisms to Hilbert schemes. The following describes the main result relating the
moduli problems Camn and CalCamn to Hilbert schemes. This gives the generalization of the
results of [1, Theorem 6], leveraging the novel methods of this paper to give more information
about the uncalibrated case and the appropriate result in the calibrated case.

Proposition 4.11. The associations

\Phi \mapsto \rightarrow Sch(\Phi )

and
(\Phi , C) \mapsto \rightarrow Flag(\Phi , C)

define monomorphisms
Sch : Camn \rightarrow Hilb(\bfP 2)n/ \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\bfZ [1/2]

and
Flag : CalCamn \rightarrow HilbCn

\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}\subset (\bfP 2)n/Cn

such that
1. when n > 2, the morphism Sch (resp., Flag) itself is an open immersion into

Hilb\mathrm{s}\mathrm{m}(\bfP 2)n/\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\bfZ [1/2] (resp., Hilb
\mathrm{s}\mathrm{m}
Cn

\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}\subset (\bfP 2)n/Cn);

2. the arrows Sch and Flag together with the forgetful maps give a commutative diagram

CalCamn HilbCn
\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}\subset (\bfP 2

Cn )n/Cn

Camn\times \mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\bfZ [1/2]C
n Hilb(\bfP 2

Cn )n/Cn

\nu n

\mathrm{F}\mathrm{l}\mathrm{a}\mathrm{g}

\mathrm{S}\mathrm{c}\mathrm{h}

In particular, every geometric fiber of Sch over SpecZ[1/2] is an open immersion of Camn

into the smooth locus of a single irreducible component of the Hilbert scheme, and similarly
for geometric fibers of Flag and components of the diagram Hilbert scheme.

Proof. Propositions 2.33 and 2.35 show that Flag is a well-defined monomorphism. Since
CalCamn is smooth over C n, we have that Flag is an open immersion in a neighborhood
of any point where it induces an isomorphism of deformation functors. Theorem 3.21 then
applies to give the two desired statements.

5. Questions. In this section, we briefly discuss questions raised by this work and suggest
some directions for future investigation.

Question 5.1. What concrete computational consequences follow from functorial methods?

We believe that the techniques described here may be useful for studying the numerical
properties of multiview geometry. For example, in [12], we will give an explicit equation for the
fiber of CalCam2 over the pair of standard Euclidean conics, which appears as a double cover
of the essential variety extending the twisted pair construction. It is given by the vanishing
of a single bilinear form on P3 \times P3. This can be used to rederive the main results of [2], and
to rephrase the five-point algorithm in terms of intersections of six bilinear forms in P3 \times P3

instead of the nine Demazure cubics and five linear forms. This is also related to the results
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of [3], but the derivations are completely different and independent of [2] (which is used in an
essential way in [3]).

Question 5.2. What is the correct boundary for Camn (resp., CalCamn)?

Is there a extension of our moduli theory to handle degenerate configurations, where
camera centers collide? Should these models include degenerations of image planes along the
lines of Hacking's approach [5]? Is there a good moduli theory for pairs (X,C) consisting of a
threefold with an embedded curve? These might be useful for studying degenerations of the
ambient space together with its calibrating curve.

Question 5.3. What is the right general formulation of Carlsson--Weinshall duality?

Carlsson--Weinshall duality is somewhat mysterious from the point of view taken here.
One can think about it in terms of birational isomorphisms of universal correspondences. It
would be interesting to get a deeper understanding of this phenomenon.
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