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Abstract. We study multiview moduli problems that arise in computer vision. We show that these moduli
spaces are always smooth and irreducible, in both the calibrated and uncalibrated cases, for any
number of views. We also show that these moduli spaces always admit open immersions into Hilbert
schemes for more than two views, extending and refining work of Aholt, Sturmfels, and Thomas.
‘We use these moduli spaces to study and extend the classical twisted pair covering of the essential
variety.
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1. Introduction. In this paper, we discuss a functorial approach to multiview geometry, a
subfield of computer vision. The literature on multiview geometry is vast, although this is the
first attempt that we know of to use the techniques of modern functorial algebraic geometry
to approach the subject. As we hope to demonstrate here and elsewhere, this approach has
a great deal of promise. A beautiful introduction to the subject can be found in [6]. Earlier
versions of this paper (available as arXiv preprints) also contain a condensed introduction to
the subject suitable for algebraic geometers.

1.1. Our results. The main result of this paper is the following, proven in sections 3
and 4.

Theorem 1.1. There are smooth irreducible varieties Cam,, and CalCam, parametrizing
n-view camera configurations and n-view calibrated camera configurations, respectively.
1. The variety Cam,, has dimension 11n — 15. For all n > 1, sending a configuration
to its joint image defines a locally closed embedding

Cam,, — Hllb(P2)n .

If n > 2, then this morphism is an open immersion, so that Cam,, is identified with
an open subscheme of the smooth locus of Hilbp2yn.

2. The variety CalCam,, has dimension 6n — 7. For all n > 1, there is a natural locally
closed embedding

CalCamn — Hilb01X-~-><CnC(P2)"
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(where the latter is a diagram Hilbert scheme; see subsection 3.3). If n > 2, then this
morphism is an open immersion.

3. The natural decalibration morphism v, : CalCam, — Cam, is finite, proper, and
unramified. The morphism 1o is an étale cover of its image with general fiber of
order 2. For n > 2 the morphism v, is generically injective but not injective.

The statements on Hilbert schemes generalize and refine the results of [1]. In particular,
our methods show that the formation of the multiview variety gives an open immersion into
the Hilbert scheme at all points, identifying the moduli space with an open subscheme of the
Hilbert scheme.

1.2. Methodological contributions. There are a few basic principles that set this work
apart from other work on multiview geometry.

1. The functorial method, common in modern algebraic geometry, gives us insight into
the intrinsic geometry of natural moduli problems growing out of the classical con-
structions. While [1] uses the Geometric Invariant Theory (GIT) quotient to con-
struct the moduli of uncalibrated camera configurations, this method does not obvi-
ously generalize to a construction for calibrated cameras. Additionally, by developing
the functorial theory of cameras we hope to make the field of multiview geometry
accessible to a wider audience in pure mathematics.

2. The geometric view of calibration via calibration data gives us insight into the struc-
ture of the space of calibrated cameras in a way that seems not to have been con-
sidered before. In particular, by restricting camera configurations to morphisms
between calibrating conics, we get a fibration structure on the moduli space of cali-
brated camera configurations that is quite useful for studying the moduli space. In
subsection 3.4, there’s a third Hilbert scheme—the Hilbert scheme of the product
of calibrating conics—that is the base of this fibration. This way of thinking about
calibration can also be used to understand the essential variety in new ways. In [12],
this is used to reproduce results of both [2] and [3] (which itself used the results of
[2]) from first principles, among other things.

3. The use of diagram Hilbert schemes allows us to treat the case of calibrated cameras
similarly to how uncalibrated cameras are treated in [1]. Instead of closed sub-
schemes, as were used for the calibrated case, we use a type of flag to keep track of
the calibration data. This transparently recovers the result that the moduli space is
open in a Hilbert scheme.

This paper also opens up many new lines of inquiry and leaves many questions unanswered.
We discuss a few of these questions in section 5.

2. The algebraic geometry of pinhole cameras. In this section we review the basic theory
of pinhole cameras, with a geometric emphasis. We include a canonical treatment of calibrated
cameras with a greater focus on the geometry of the calibrating conics. For the sake of clarity,
we focus in subsections 2.1 and 2.2 on the geometry over an algebraically closed field. In
subsection 2.3 we study what happens over a general base scheme, as a preparation for the
study of moduli and deformation theory in section 3.
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2.1. Basic definitions.

Definition 2.1. A pinhole camera is a surjective rational map ¢ : P? --» P2 given by three
linearly independent sections of Ops(1). The center of the camera is the unique point p € P3
at which ¢ is undefined.

Definition 2.2. A calibrated plane is a pair (P2, D) with D a smooth conic.

Definition 2.3. A calibration datum for a pinhole camera ¢ is a pair of planar degree 2
curves C C P? and D C P? such that D is a smooth conic and the restriction o : C --» P?
factors through the inclusion D C P2.

If C' is smooth, the calibration datum will be called smooth or nondegenerate; otherwise,
it will be called degenerate. If a calibrated plane (P2, D) is fived, a relative calibration datum
for a pinhole camera ® is a curve C C P3 such that (C, D) is a calibration datum for ®.

Remark 2.4. If C' is smooth, then it follows from the linearity of the camera projection
that ® must map C isomorphically to D, and that the center of ® is not contained in the
plane spanned by C. If C is degenerate, it must be a divisor-theoretic sum of two lines on
the quadric cone in P? generated by D under the projection ® (i.e., a union of two distinct
rulings or a double ruling). When the two cone points are distinct (i.e., the configuration is
general), a union of two distinct rulings cannot occur as a limit of calibration data.

Remark 2.5. A given camera with calibrated image plane (P2, D) has infinitely many
relative calibration data: one can take any plane section of the quadric cone in P? lying
over D. Once we look at configurations of two or more cameras, there will be at most two
calibration data (smooth or degenerate). This is described at length in subsection 4.1.2.

Degenerate calibrations give us closures of natural moduli spaces, including the closure
of the classical twisted pair moduli space SO(3) x P? to a finite étale cover of the essential
variety described in subsection 4.2. Imagining the system of plane sections of the cone over
D, one readily sees that degenerate calibration data arise as limits of smooth calibration data.

Definition 2.6. A calibrated camera is a pair (p, (C, D)) where ¢ is a pinhole camera and
(C, D) is a calibration datum for .

Remark 2.7. In the classical literature, a camera is called calibrated (or sometimes nor-
malized) when it takes the absolute conic to the Euclidean conic: more precisely, we can endow
P? with coordinates z,y, z,w and P? with coordinates X,Y, Z, and then we take the curves
C and D to be given by the equations {w = 0,22 +y? + 22 = 0} and {X? + Y2 + Z2 = 0},
respectively. Note that any camera as described here with a smooth calibration datum can
be transformed to a classically calibrated camera by applying suitable automorphisms to P?3
and P2. (This is not unique.) The degenerate calibrations cannot.

There are two reasons to use this more flexible approach.

(1) It leads to the “right definition” of the moduli space of calibrated camera configura-
tions (subsection 3.4).

(2) By always forcing the absolute conic to map to the Euclidean conic, one makes it
impossible to study modular boundary points where the absolute conic is flattened
until it collapses (yielding degenerate calibrations). As we will describe below, these
degenerate calibrations give geometrically meaningful compactifications of the space
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of calibrated camera configurations.

2.2. Multiview configurations. In this section, we describe some of the geometry attached
to a collection of cameras with distinct centers.

2.2.1. Uncalibrated cameras.

Definition 2.8. A multiview configuration is a collection of cameras
©O1,. .. on P35 P2,

Notation 2.9. We will generally use ® : P3 --» (P2)" to denote a multiview configuration,
writing ®; = pr, o® for its components when necessary. The length of ® is the number of
cameras; we will denote it len(®). Write Center(®) C P? for the tuple of camera centers.
Write 7 : Res(®) — P? for the blowup of P? at the reduced closed subscheme supported
at the camera centers; if two cameras have the same center, we only count it once. Given
an index i, let E; denote the exceptional divisor over the ith camera center, with canonical
inclusion ¢; : E; < Res(®). By the previous convention, this means that there can be i # j
for which F; = Fj.

Definition 2.10. A multiview configuration ® is general if the camera centers are all dis-
tinct. It is noncollinear if the camera centers do not all lie on a single line, and collinear
otherwise.

Definition 2.11. An isomorphism between multiview configurations ®' and ®% of common
length n is an automorphism € : P3 — P3 fitting into a commutative diagram

Lemma 2.12. Let Y be a scheme, and let (£, so,...,8,) be an invertible sheaf with n
sections. If Z is the zero scheme of sq,..., Sy, then the rational map induced by this linear
series extends uniquely to a morphism Blz Y — P™.

Proof. By definition the sections sq, ..., s, define a surjection
ﬁ{ﬁ“ AR
which extends to a surjective map of Oy-algebras
Sym*(.ZV)®n+l @ B

The induced map on relative Proj constructions gives the desired morphism. |
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Proposition 2.13. Given a multiview configuration ®, there is a unique commutative dia-
gram

Res(®)
1 x
- i (P2)1en(<§)
! L
L
P3

The diagram has the property that for each i, the composition
E; —"— Res(®) —— (P?)ln(®) i, p?

s an isomorphism.

Proof. Lemma 2.12 shows the existence and uniqueness of the desired diagram. To check
that the composition is an isomorphism on exceptional divisors, one can see that each map
is locally isomorphic to the morphism Bly A® — P? that resolves the canonical presentation
A3\ {0} — P2, and here one can simply check that the induced map from the exceptional
divisor to the plane is an isomorphism. We omit the details. |

2.2.2. Calibrated cameras. When the cameras are adorned with calibration data, we
track these data through the diagrams.

Definition 2.14. Given a multiview configuration ® : P3 ——» (P2)", a multiview calibration
datum is a pair (C, (C4,...,Cy)) such that for eachi = 1,...,n the pair (C, C;) is a calibration
datum for ®;. Given a tuple of calibrated planes (P?,C;) fori = 1,...,n, a relative calibration
datum for ® is a curve C C P3 such that (C,(Ch,...,Cy)) is a calibration datum for ®.

Notation 2.15. We will write C for a calibration datum (C, (C;)), and then Cy = C and
CizC,- forizl,...,n.

Notation 2.16. A calibrated multiview configuration (®,C) will be called nondegenerate
if the calibration datum is nondegenerate.

Definition 2.17. An isomorphism between multiview configurations with calibration data
(®',CY) and (®2,C2) of common length n is an isomorphism € : ®' — ®2 of multiview
configurations as in Definition 2.11 such that e(C}) = C% and such that for i =1,...,n we
have C} = C2.

2.2.3. A characterization of isomorphic general configurations. In this section we briefly
consider when two multiview configurations ®! and ®? are isomorphic (and similarly when
they are endowed with calibration data). This will play a role in studying a particular map
from the moduli space to Hilbert schemes in later sections of this paper.

Definition 2.18. Given a multiview configuration ®, the associated multiview scheme, also
known as the joint image [1, 16], is the scheme-theoretic image of the resolution Res(®) under
the canonical extension p of Proposition 2.13. It is denoted Sch(®). Working over a field (as
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we temporarily are here), the multiview scheme is a variety, and is called the “multiview
variety” in [1].

In the following, an n-term flag of schemes will be a sequence of closed immersions
Xo—>X1 > Xo— - = X, 1.

Definition 2.19. Given a calibrated multiview configuration (®,C) with calibrated image
planes (P?,C;), i = 1,...,n, the associated multiview flag, denoted Flag(®,C), is the 2-term
flag of schemes C C Sch(®) contained in Cy x --- x C,, C (P?)",

As we will gradually see, the following lemma is the key result connecting the abstract
moduli problems we study here to Hilbert schemes.

Lemma 2.20. The canonical map Osy@) — R pxOres(@) 15 a quasi-isomorphism. Equiv-
alently, the canonical map p* Op2yn — PxORes(®) 15 an isomorphism, and all higher direct
images R? PxORes(®) (with i > 0) vanish.

Proof. For the first statement, note that p.Ores(s) is a finite &(p2yn-algebra by properness.
Moreover, since every nonempty fiber of p is geometrically integral (it being an intersection
of lines, and hence either a point or a line), we see that pf is surjective after base change to
any point of (P?)"”. By Nakayama’s lemma, p is surjective.

Now we show that the higher direct images vanish. By the Theorem on Formal Functions
[4, Théoreme 4.1.5], the completion of R’ p,& at a point p is isomorphic to lim H(X,,, Ox,),
where X, is the mth infinitesimal neighborhood of the fiber of p over p. When the fiber is
empty or a point, this vanishes. The only interesting case is the unique singular point that is
the image of the strict transform of the line through all camera centers in the collinear case.
Note that OY,, is filtered by subquotients that are symmetric powers of the ideal sheaf .Zx,
restricted to Xo. Given a line L in P3, we have that .#7|;, & 01(—1)®2. For each point on L
that we blow up, the ideal sheaf gets twisted by 1 (functions from P? vanish to extra order
on the strict transform along the intersection with the exceptional divisor). In fact, if we are
blowing up n points, we have that Zx,|x, = Ox,(n —1)®2. The ¢th symmetric power will be
a sum of copies of Ox,(¢(n —1)). All such sheaves have vanishing H’ for all i > 0.

Write .7, for the ideal sheaf of X, in Res(®). Consider the standard exact sequences

0— Im-1/Im — Ox,, — Ox, _, — 0.
The above calculations show inductively that H'(X,,, @x,) = 0 for all n > 0 and all i > 0.

This concludes the proof. |

Corollary 2.21. If ® is a noncollinear multiview configuration, then the map p : Res(®) —
(P?)" is a closed immersion.

Proof. By the noncollinearity assumption, the geometric fibers of p all have length at most
1. Thus, p is proper and quasi-finite, and hence finite. Applying Lemma 2.20 then shows that
p is a closed immersion. |

Lemma 2.22. Suppose ©1,p3 : P? ——» P2 are cameras and o : P3 --s P3 is a birational
automorphism such that w2 = @1 0 a. If a and p1 o a are both regular on an open subset
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U C P? whose complement has codimension at least 2, then o extends to a unique reqular
automorphism P3 — P3.

Proof. Removing the center of ¢ if necessary, we may assume that there is an open
subscheme U C P3 on which @1, @2, and « are all regular and codim(P3,P3\ U) > 2. By
assumption, pf0(1) = Op(1). Thus, a*@(1) = O(1). Since I'(U, 0(1)) = I'(P3,0(1)), we
conclude from the universal property of projective space that the morphism « : U — P3
extends to a unique endomorphism & of P3. Since « is birational, & is an isomorphism, as
desired. |

Proposition 2.23. Two multiview configurations ®' and ®% of length n are isomorphic if
and only if their associated multiview schemes in (P?)" are equal. Two calibrated multiview
configurations (®',C1) and (®2,C3) are isomorphic if and only if their associated multiview
flags Flag(®!,C1) and Flag(®?2,Cs) are equal.

Proof. Since ® is birational onto its image for i = 1,2, we see that if Sch(®!) = Sch(®?),
then there is a birational automorphism « : P3 --s P3 such that ®? = ®! o a. Moreover,
pr; o®!, o, and pr; o®2 o a are all regular on the open subscheme of P3 that is the comple-
ment of the line joining the centers of the two cameras pr; o®! and pr; o®? (as this maps
isomorphically into the smooth locus of Sch(®')). Applying Lemma 2.22, we see that « is
regular, as desired. The calibrated case follows, once we note that the calibrating curves lie
in the regular locus of all cameras. |

2.3. Relativization. In this section we describe how to generalize the results of subsec-
tions 2.1 and 2.2 to families of cameras over an arbitrary base space. This is a necessary step
towards defining the moduli of camera configurations.

Definition 2.24. Given a scheme S, a relative pinhole camera over S is a rational map
p:P--» P% over S uniquely determined by the following information:
1. the scheme P is a Zariski P3-bundle (i.e., has the form P(V) for a locally free
Og-module of rank 4);
2. there is a map o : ﬁgg — Op(1) whose cokernel is an invertible sheaf supported
exactly over a section Z of P — S, called the camera center;
3. a representative of p is given by the morphism P\ Z — P% determined by the quotient
op\z and the universal property of projective space.

Throughout this section, when the base scheme S is clear, we will often simply write P?
for P2, etc.

Definition 2.25. Given a scheme S, a relative multiview configuration of length n over S
is given by a proper S-scheme P — S of finite presentation and a rational map ® : P --»
(P%)” over S such that for each i the composition pr; o® is a relative pinhole camera as in
Definition 2.24.

Two relative multiview configurations

P, -->P%, i=1,2,
are isomorphic if there is an S-isomorphism € : Py = Py such that ®% = ®' o ¢.

In what follows, we will write P? for P2, etc., when the base scheme S is understood.
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Notation 2.26. Given a multiview configuration ® : P — (P?)" of length n, we will write
1. S(®) for the domain P of ®;
2. Z1(®),...,Z,(®) C ® for the camera centers;
3. Z(®) for the scheme-theoretic union Z;(®)U--- U Z,(P);
4. Res(®) for the blowup of S(®) in Z.

Definition 2.27. A relative multiview configuration ® over S is general if the camera cen-
ters Z1,. .., Zien(®) are pairwise disjoint closed subschemes of P.

Definition 2.28. A relative multiview configuration ® : P --» (P%)" over S is collinear if
there is a closed subscheme L C S(®) that is a relative line over S and that contains Z(®).
It is nowhere-collinear if it is not collinear upon any basechange S’ — S.

Definition 2.29. Given a relative multiview configuration ® of length n over S, a calibra-
tion datum for ® is a pair (C,(C1,...,Cy)) where
1. C C P is a relative degree 2 curve over S;
2. C; C P% is a relative smooth conic over S fori=1,...,n;
3. fori=1,...,n, the induced morphism (pr; o®)c factors through C;.
If C is smooth, the calibration datum will be called smooth or nondegenerate; otherwise, it
will be called degenerate.

Proposition 2.30. Given a general relative multiview configuration ® over S, there is a
unique commutative diagram

Res(®)
i X‘

ﬂ__li (PZ)len(*b)
! L
p-

The diagram has the property that for each i, the composition

E; —“5 Res(®) —2— (P2)len(®) i, p2

is an isomorphism. Moreover, this diagram is compatible with arbitrary base change on S.

Proof. The arrow p exists again by Lemma 2.12, and the functoriality follows from the
functoriality of Lemma 2.12 and the flatness of everything over S. Finally, the isomorphism
condition can be checked on geometric fibers, which reduces it to Proposition 2.13. |

Definition 2.31. Given a general multiview configuration ® of length n, the scheme-theoretic
image of the morphism p described in Proposition 2.30 is the multiview scheme of ®. Sim-
ilarly, given a calibrated multiview configuration (®,C, (C1,...,Cy)), there is an associated
flag Flag(®, C) sitting inside the flag scheme Cy x --- x Cy, C (P?)".

Notation 2.32. The multiview scheme of ® will be denoted Sch(®). It is a closed sub-
scheme of (P2)len(®),
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In the following, we fix conics in P? and only record the curve C' C P? when considering
calibrations.

Proposition 2.33. Two general multiview configurations ®', ®2 of length n over S are iso-
morphic if and only if Sch(®') = Sch(®?) as closed subschemes of (P%)™. Similarly, two
general calibrated multiview configurations (®1,C1) and (P2, Co) are isomorphic if and only
if their flags Flag(®1,C1) and Flag(®2, Cy) are equal.

The proof of Proposition 2.33 is a modification of that of Proposition 2.23. We require a
modification of Lemma 2.22.

Lemma 2.34. Suppose A is a ring and U C P3 is an open subset such that for every
geometric point A — k the fiber U, C P2 has complement of codimension at least 2. Sup-
pose o : U — P3 is a morphism such that o*O(1) = Oy(1). Then a extends to a unique
automorphism of P134.

Proof. By the universal property of projective space, it suffices to show that restriction
defines an isomorphism

L(P}, 0(1) = T(U,0(1)).
To show this, it suffices to show that the adjunction map v(1) : Ops(l) — t.Op(1) is an
isomorphism of sheaves. By the projection formula, it suffices to show that the adjunction
map for the structure sheaf
|78 ﬁpi — Ly ﬁU
is an isomorphism. But this is precisely Proposition 3.5 of [7]. [ ]

Proposition 2.35. If ® is a general multiview configuration over S, then for all base changes
T — S we have that the natural morphism

SCh(ql’) xXgT — SCh(‘I’ Xs T)
18 an isomorphism; that is, formation of the associated multiview scheme is compatible with
base change. Furthermore, Sch(®) is flat over the base.

Proof. By Lemma 2.20 the structure morphism Op2yn — pxORes(@) is surjective. Consider
the triangle in the derived category

I = Op2yn — R puOgega) — 1[1].

Let i : (P?)? — (P?)" be an embedding of a fiber. Pulling back to the fiber and using
cohomology and base change, we have

L ’L* Rp* ﬁRes({ﬂ ~ R,O* L il*{es(fb) ﬁRes(‘P)
= Rp*(ﬁRes(fb))q
= (ﬁRes(@))Q'

Applying [9, Lemma 3.31] to R p.ORes(s), We see that it is quasi-isomorphic to a sheaf flat
over the base. But #°(R p. ORes(®)) 18 pxORes(®)- Thus, we conclude that the short exact
sequence

0= = Op2yn = pxORres(@) — 0
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consists of S-flat sheaves and is compatible with arbitrary base change. This establishes the
result. |

3. Moduli and deformation theory.

3.1. Moduli of uncalibrated camera configurations. In this section we describe the basic
moduli problem attached to uncalibrated camera configurations. In subsection 3.2 we will
study the deformation theory of a configuration ®, especially as it relates to the deformation
theory of the associated scheme Sch(®). Ultimately this will allow us to embed the moduli
space into the Hilbert scheme.

Definition 3.1. Given a positive integer n, the functor of camera configurations of length
n, denoted Cam,, has as value over a scheme S the set of isomorphism classes of general
relative multiview configurations of length n.

Since a camera configuration of length at least 2 has trivial automorphism group, it follows
from standard descent theory that Cam,, is a sheaf in the fppf topology. In this section we
will show that it is a quasi-projective variety.

Notation 3.2. Let M" C M3, 4 be the locus of n-tuples of full rank 3 x 4 matrices whose
kernels are pairwise distinct. Let T be the torus given by the kernel of the multiplication map
G}, — G,,. There is a natural free action of T'x GL4 on M" (where the torus T" acts diagonally
by scaling). Moreover, since T x GLy4 is reductive over Z and M3, , is affine, we can realize the
quotient sheaf M" /T x GL4 as an open subvariety of the GIT quotient M3, ,/T x GL4. In
particular, the quotient M" /T x GL4 is a smooth quasi-projective variety. Because the action
is free, we also know the functor of points of M" /T x GLy4: the S-valued points are given by
pairs (L — S, : S — M"), where L — S is a T' x GLg-torsor and ¢ is a T x GL4-equivariant
map. In particular, a morphism M" /T x GLy — Y to a scheme Y is the same thing as a
T x GLg-invariant morphism M"™ — Y.

Proposition 3.3. There is a natural isomorphism of functors ¢ : M"™ /T x GL4 — Cam,,.

Proof. Sending a 3 x 4-matrix to its associated camera defines a morphism M"™ — Cam,,.
This is T x GLy-equivariant, since, by definition, projective automorphisms of P3 do not affect
the isomorphism class of a camera configuration. To see that ¢ is an isomorphism, it suffices
to show that ¢(R) is a bijection for any strictly Henselian local ring R. In this case, every
form of P? is trivial, so we see that any camera configuration is given by a tuple of matrices,
showing that c is surjective. On the other hand, by definition, two such configurations are
isomorphic if and only if they differ by an automorphism of P? and individual scalings of the
factors, which says precisely that they lie in the same T' x GL4(R)-orbit in M™(R). The result
follows. |

Corollary 3.4. If n > 1, then the space Cam, is a smooth quasi-projective scheme over
SpecZ.

Proof. This follows immediately from Proposition 3.3 and the remarks in Notation 3.2.H

3.2. Deformations of multiview configurations. In this section, we study the relationship
between the infinitesimal deformation theory of a camera configuration and the deformation
theory of its associated multiview scheme. As we will see in subsection 4.3, the deformation-
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theoretic approach gives strong results on the relationship between Cam,, and Hilbp2)n, clari-
fying and improving the groundbreaking results of [1]. In particular, our infinitesimal analysis
will apply at all points. These methods are very different from the ideal-theoretic methods of
[1]. It would be especially interesting to understand how the cotangent complex argument of
subsection 3.2.3 relates to the Grobner basis calculations in [1].

Definition 3.5. Fiz a ring A containing an ideal I such that I? = 0, and let Ay = A/I.
Suppose B is a relative multiview configuration of length n over Ag. An infinitesimal defor-
mation of ®° to A is a pair (®,¢), where ® is a multiview configuration of length n over A
and e : ® @4 Ag = ®Y is an isomorphism of relative multiview configurations.

An isomorphism between infinitesimal deformations (®,¢) and (®',¢') of ®° is an iso-
morphism o : ® = ® of relative multiview configurations such that € oa ®4 Ag = €.

Notation 3.6. We will write Defgo for the functor of isomorphism classes of infinitesimal
deformations of ®°, and Defsch( ®0)C (P2)len(®0) for the usual functor of infinitesimal deforma-

tions of the point [Sch(®)] of the Hilbert scheme Hilb(Pz)len@o).

Our goal in this section is to prove the following, which is the key step in our generalization
of the results of [1].

Proposition 3.7. If ® is a general multiview configuration of length n > 2, then the mor-
phism
Sch : Defq;.o — Defsch(q,())qu)n

18 an isomorphism of deformation functors.

Proof. The proof will be developed through this section. In particular, the injectivity of
Sch follows from Proposition 2.33, and surjectivity follows from Proposition 3.11. |

That is, if ® is a general multiview configuration of length n > 2 with associated multiview
variety V C (P2)", then we have that the infinitesimal deformations of ® are in bijection with
the infinitesimal deformations of V as a closed subscheme of (P2)". The proof will work
roughly as follows.

1. First, we will recall the well-known description of abstract deformations of V as a
scheme. As we will see, V has a property that we will call essential rigidity.

2. Using this essential rigidity, we will show that any deformation of V' as a closed
subscheme of (P?)" arises from a deformation of ®. In the collinear case this is
nontrivial, because Res(®) — (P?)" contracts a line, but a simple argument with the
cotangent complex gives the desired result.

3. Using Proposition 2.33, we have that two deformations of ® give rise to the same
deformation of V' if and only if they are isomorphic, completing the proof.

It is worth noting (as hinted at in this outline) that the proof we give here is almost
purely geometric. We do not rely on dimension estimates, ideal-theoretic calculations, etc.
The arguments are simple variants of classical Italian geometric arguments, first used to study
the geometry of projective surfaces. Proposition 3.7 is ultimately the reason that the space
of multiview configurations admits an open immersion into the Hilbert scheme, as we will see
in subsection 4.3.
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3.2.1. Essential rigidity of blowups of P3. In this section we fix a commutative ring Ao,

a square-zero extension
I CA— A,

and a collection of pairwise everywhere-disjoint sections
o; : Spec Ag — Pio.

We write Py for the blowup Blyg, P?AO, where Z; is the reduced closed subscheme of Pio
supported on the union of the images of the o;. For the most part, these results are well
known. Unfortunately, the available literature tends not work in sufficient generality (for
example, [14] works over a fixed field k).

Proposition 3.8. Given a deformation P of Py over A, there is a unique morphism
B:P—P3
deforming the canonical blowdown map
Bo: Py — P3,
up to infinitesimal automorphism of P‘z. Moreover, B realizes P as the blowup of PE‘ at a

closed subscheme Z that deforms Zy (and Z is a union of n sections of P3)).

Proof. If one is willing to work entirely over a field (although here we are working over
Z), one can extract this from [14, Proposition 3.4.25(ii)]. It is not difficult to prove this in full
generality for blowups of projective spaces along collections of sections by showing that the
blowdown map admits a canonical deformation, and each deformed exceptional divisor maps
to a section under this deformed blowdown. We omit the details for the sake of space. |

3.2.2. Lifting deformation for noncollinear configurations. In this section, we explain
how any deformation of a noncollinear multiview scheme lifts to a deformation of the associated
multiview configuration. Fix a deformation situation

ICA— A

and a noncollinear multiview configuration ®° of length n over Ay with scheme Sch(®").

Proposition 3.9. If X C (P%)% is an A-flat deformation of Sch(®°), then there is a defor-
mation ® of ®° such that Sch(®) = X as closed subschemes of (P?)™. Moreover, ® is unique
up to unique isomorphism of deformations of ®° over A.

Proof. Since ®° is noncollinear, the natural morphism
Res(®%) — Sch(®°) c (P?)"

is an isomorphism. By Proposition 3.8, any deformation of Sch(®°) is a blowup P of Pi’l at
n disjoint sections over Spec A. The deformation thus results in a rational map

o P - (PY)"
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extending ®°. We wish to show that ® is a relative multiview configuration in the sense of
Definition 2.27. To do this, it suffices to check that composition with each projection is a
relative pinhole camera. Write p : Pil -- PIQ4 for one such projection; we will abuse notation
and also write p for the corresponding map P — P124 from the blowup. We will write E for
the exceptional divisor associated to p and Z for the section blown up to make F, that is, we
assume that p is the ith projection of ® and that F is the preimage of the ith section in Pi,
which we call Z, uniformly omitting 7 from the notation. By the pinhole camera assumptions
on ®° p|E4, maps E isomorphically to P1240. It follows from Nakayama’s lemma that p|g
maps F isomorphically to P124.

Write U C PPA for the complement of the sections that are blown up to resolve ®. By the
previous paragraph, we see that Uy, C P3AO is precisely the complement of the camera centers
of ®°. By the universal property of projective space, the morphism p is given by a surjective
morphism

N O &
for some .# in Pic(P). Write 7 : P — P3 for the blowdown map. We know from the
definition of pinhole cameras, the rigidity of invertible sheaves on P, and the canonical way
to extend morphisms generically across blowups that ¥ = 7*(&(1))(—FE). Moreover, the
resulting arrow
fim0% = Ops (1)

has the property that its image is precisely ﬁpi (1) ® Sz, where .#; is the ideal sheaf of Z.
(This follows from the universal property of blowing up.) This shows that the cokernel of f
is an invertible sheaf supported on Z, showing that p is a relative pinhole camera, as desired.

It remains to show that any two such realizations ®; and ®5 are conjugate by an infini-
tesimal automorphism of P3. But this follows immediately from Proposition 2.33. |

3.2.3. Lifting deformations for collinear configurations. For the sake of computational
ease, in this section we consider a deformation situation I C A — Ap in which A is an Artinian
local ring with maximal ideal m and m/ = 0. Write k = A/m.

We start with a multiview configuration ® : Pio --» (P?)" whose special fiber ®;, is
collinear. Thus, the morphism

Res(®},) — Sch(®;) C (P?)"

contracts a line ¢ C Res(®y). To make things easier to read, write R = Res(®;) and B =
Sch(®g). Write Ly p for the cotangent complex of the morphism R — B. In addition,
write E1,...,E, C R for the exceptional divisors. The usual calculations show that Kr =
™ Kps +2FE1 +--- + 2FE,.

Lemma 3.10. If n > 2, then Ext}(Lg/p, Or) = 0.
Proof. Consider the standard spectral sequence
(3.1) EY? = Ext?(# 9Ly, Or)) = ExtP*(Lg,p, OR).

We know that %O(LR/B) = Q}%/B, and that jf‘j(LR/B) is supported on £ for all j > 0. By
Serre duality, we can compute the terms in the spectral sequence as

Ext? (2 ~(Lg/p), Or) = W P(R, #~(Lgp)(KR))".
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Since the cohomology sheaves of Lr/p are all supported on ¢, all columns of the qu page
(3.1) vanish except (possibly) for p = 2,3. It follows that

Exth(Lr/p, Or) = H' (R, Qp 5(Kr))".

A local calculation shows that Q}% /B is annihilated by the ideal of £, so that Q}% /B =

Q and thus

1
¢/ Speck’
H' (R, QO 5(KR))" = H'(¢, Oi(Ky + Kg))¥ = H (L, O(~Kg)) = H(£, 6(4 - 2n)) = 0,

as desired. [

Proposition 3.11. Suppose n > 2. If X C (P?)% is an A-flat deformation of Sch(®?),
then there is a deformation ® of ®° such that Sch(®) = X as closed subschemes of (P?)".
Moreover, ® is unique up to the unique isomorphism of deformations of ®° over A.

Proof. By Lemma 3.10 and [10, I11.2.2.4], the obstruction to deforming the morphism
Res(®%) — Sch(®?)

over A vanishes, resulting in a deformation R — X. Applying the results of subsection 3.2.1,
we see that this arises from a deformation ®, as desired. The uniqueness of ® up to isomor-
phism is an immediate consequence of Proposition 2.33. |

3.3. Diagram Hilbert schemes. In this section, we briefly explain a basic idea that is
hard to find in the literature: diagram Hom-schemes and diagram Hilbert schemes. They are
a mild elaboration of the idea of a flag Hilbert scheme. By remembering not only the data of
the image but also the calibrating conics, the moduli space of calibrated cameras maps to a
diagram Hilbert scheme in the same way that the moduli space of uncalibrated cameras maps
to a Hilbert scheme.

3.3.1. Definition and examples. Fix a base scheme S, a category I, and a functor X :
I — AlgSypg, where AlgGpg denotes the category of algebraic spaces over S.

Definition 3.12. The diagram Hilbert functor
Hilby : Gchg — Gets

is the functor whose value on an S-scheme T is the set of isomorphism classes of natural
transformations Y — X xgT of functors I — Schp where for each i € I the associated arrow
Y (i) » X (i) xsT is a T-flat family of proper closed subschemes of X (i) of finite presentation
over T'.

Ezxample 3.13. The usual Hilbert scheme is an example: Just take I to be the singleton
category. So is the flag Hilbert scheme of length n: In this case the category I is the category
n associated to the poset {1,...,n}, and the functor X is the constant functor X — X. A
natural transformation ¥ — X defines a nested sequence of closed subschemes of X. This is
the flag Hilbert scheme (of length 2 flags).
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There is also a stricter kind of flag scheme: Suppose X1 C X5 is a closed immersion and
one wants to parameterize pairs Y; C X; such that Y7 C Y5, that is precisely the diagram
Hilbert functor associated to the poset-category 2 = {1 < 2} with the functor 2 — Gchg
sending i to X;. This last example is the one that will arise naturally for us in the context of
calibrated cameras. (We record more general results here in case someone in the future needs
this general idea of a diagram Hilbert scheme.)

Notation 3.14. If the diagram in question is a single morphism X — Y, we will write
Hilb x_,y for the associated Hilbert functor.

3.3.2. Representability. The main result about diagram Hilbert functors is that they are
representable. We prove this in a high degree of generality, in case this is of independent
interest.

Proposition 3.15. Let I be a finite category and X : I — AlgG&pg a functor whose compo-
nents are separated algebraic spaces. Then the diagram Hilbert functor Hilbx is representable
by an algebraic space locally of finite presentation over S. If the X(i) are locally quasi-
projective schemes, then Hilbx is represented by a locally quasi-projective S-scheme.

Proof. There is a natural functor

F :Hilby — [ [ Hilbx ),
icl

and we know that the latter is representable by algebraic spaces (resp., schemes) satisfying
the desired conditions. It thus suffices to show the same for F, i.e., that F' is representable
by spaces of the required type.

For each i € I, let

Zi € X (i) x [ [ Hilbx ;)

denote the universal closed subscheme (pulled back over the product). Let A denote the set of
arrows in [; for an arrow a € A, let s(a) and t(a) denote the source and target of a. Consider
the scheme

H:= H Hompiy () (Z(s(a)), Z(t(a))),
acA

which naturally fibers over [[Hilby(). The standard theory of Hom-schemes shows that
H — [[Hilbx;) is representable by spaces of the desired type.

The final observation to make is that composition of two arrows gives equations boa = ¢
in A, and these translate into closed conditions on H because all of the subschemes Z(i) are
separated. Since the conditions desired are stable under taking closed subspaces, we have
proven the result. [ ]

3.4. Moduli of calibrated camera configurations. Let % denote the space of smooth
conics in P2 and let Cuniv C P% denote the universal smooth conic. (The space

SpecZ[1/2]’
% is an open subscheme of the bundle of sections of ﬁpg 212 (2).) The tuple of conics
pec
(Cuniv, - - - » Cuniv) inside (P2)™ will be called the universal calibration.
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Definition 3.16. Given a positive integer n, the sheaf of calibrated camera configurations of
length n, denoted CalCam,,, is the sheaf over the Cartesian power €™ whose value over a point
t:S — €™ consists of the set of isomorphism classes of general relative calibrated multiview
configurations of length n with calibration datum of the form (C,t*(Cuniv, - - -, Cuniv))-

In down-to-earth terms, we are just describing the space of n-tuples of calibrated cameras
with pairwise nonintersecting centers, together with arbitrary but specified calibration data. In
the existing literature, the word “calibrated” usually means that one has fixed the calibrating
conics to be the canonical absolute conic in space (attached to the Euclidean distance form
on P3) and the circle in the plane. Since any two smooth conics are conjugate under a
homography, this seems harmless. As we hope to describe in this section, thinking more
geometrically and tracking the conics as data instead of normalizing them gives us a great
deal of insight into the underlying moduli problem. The point of the universal conic in P?
is that we only want to allow the conic in P3 to vary; that is, we fix calibration data on the
image planes when we define the moduli problem. By working with the universal conic, we
allow those fixed planar data to be arbitrary.

Notation 3.17. Since we are fixing the calibration data on the image planes to be the
universal conic, we will omit them from the notation for a calibration datum. Thus, we
will write (®,C) for a calibrated configuration. When we need to refer to the image plane
calibrating curves, we will use C; for the curve in the ith plane. It is key to remember that
while C; can vary as the base varies (depending upon how it maps to "), this is determined
solely by the base and not by the object of CalCam,, over that point of the base.

The main result of this section is the following.
Proposition 3.18. The sheaf CalCam,, is a smooth scheme of finite type over €.

Let 7, : CalCam, — CalCam,,_1 X¢n—1%" be the morphism given by forgetting the last
camera (and retaining the last calibrating plane conic).

Lemma 3.19. The morphism T, is representable by separated schemes of finite presentation.

Proof. Let ((¢1,--.,%¢n-1,C),Cy) be a T-valued point of CalCam,,_1 X¢»-1%". The fiber
of 7, is given by the set of cameras ¢,, with the same domain P — T as the first n—1 cameras,
with the following additonal properties.

1. The center of ¢, avoids the centers of ¢; fort =1,...,n — 1.

2. The restriction ¢, |C factors through the closed subscheme C,, C P.
The space of camera centers satisfying the first condition is an open subscheme P° C P, and
taking the center gives a natural map

CalCam,, — P° x CalCam,,_1 Xgn-1€".

It suffices to show that this map is representable, and thus we may assume that the center
is a given section o : T — P. Blowing up along o(T) to yield P, with exceptional divisor
E, we can then realize the cameras inside the open locus of the Hom-scheme Hom(P, P?)
parametrizing maps f : P — P? for which f*@p2(1) is isomorphic to &(1)(—E) on each
geometric fiber over T'. This locus is of finite type. Finally, the condition that C' lands in C),
is closed (and of finite presentation), completing the proof. |
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Proposition 3.20. The morphism T, is smooth.

Proof. By Lemma 3.19 and [15, Tag 02H6], it suffices to show that 7, is formally smooth.
Let A — Ag be a square-zero extension of rings, and suppose that

(8017 <o Pny C) S CalCamn(Ao)

is fixed. To show formal smoothness we can work Zariski-locally and thus assume that the
domains of ¢1,..., v, are Pio. Now suppose that we fix a deformation

(@155 Ph_1,Ca),Cn) € CalCamy,_1(A) Xgn-1(4) €"(A).

(Because we are working over the universal conic in each image plane, we have to specify the
deformation of the conic that we will use in attempting to deform the nth calibrated camera.)
To show formal smoothness it suffices to extend ¢,, to a morphism ¢/, that maps Cy4 to C,,.

The choice of deformation of C' to C'y4 induces a lift of C — Pio to Cyq — PIQL‘. This is
because H(C, 0 (1)) = 0, so sections defining a map can always be lifted. We will show that
we can extend this to a camera that acts on Cy in the given way.

We are thus reduced to the following: We are given a tuple of three sections oy, 01,09 €
[(P? ,0(1)), a planar curve Cq C P of degree 2, and lifts of the oj|c to I'(Ca, €(1)). We
wish to lift these extensions to sections o; € T'(P3, &(1)). We can do this one section at a
time. By Definition 2.3, the curve C4 is contained in a canonically defined family of planes
in Piﬁ we will write C'4 C Pi - Pi and similarly for Ay. (If the plane is not trivial, we can
further shrink A to make it so; this is immaterial for the calculations and is only a notational
device.)

Consider the diagrams

0 —— D(P%,,0)®4, ] —— (P, 0) ——— T(P} ,0) —— 0

| ! |

0 —— (P ,0(1)®a, I — T(P%,0(1)) —— TP} ,0(1)) —— 0

l J l

0—— F(Pjo, O(1) @4y I —— T(P%4,0(1)) — F(Pio,ﬁu)) — 0
and

0 —— [(P%,,0(-1)) ®a, I —— T(P%,0(-1)) — I'(P% ,0(-1)) —— 0

J l |

0 —— T'(P%,,0(1) ®4, ] —— T(P%,0(1)) —— T(P3,,0(1)) —— 0

l l |

00— T(C,0(1) @4, I —— D(Ca, 0(1)) —— T(C, 0(1)) —— 0

By the usual calculations of the cohomology of projective space, these two diagrams have
exact columns. A simple diagram chase then shows that we can lift sections to P? given
values on P‘ZO and Cjy, completing the proof. [ ]
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Proof of Proposition 3.18. It remains to show smoothness. We use Proposition 3.20 and
induction on n. For n = 1, we see that CalCam; is smooth over ¥, which is itself open in a
projective space, and hence smooth. |

3.5. Deformation theory of calibrated camera configurations. In this section we prove
the following analogue of Proposition 3.7.

Theorem 3.21. If (®,C) is a nondegenerate calibrated general multiview configuration of
length n > 2 with associated multiview flag

(CCV)= (Cyx----Cp C (PO,

then we have that the infinitesimal deformations of (®,C) are in bijection with the infinitesimal
deformations of C C V as a closed subscheme diagram of Cy x --- x C,, C (P?)".

Proof. The proof leverages the proof of Proposition 3.7. In particular, we can forget the
calibrations and apply Proposition 3.7 to see that under the given hypotheses any deformation
of Flag(®, C) induces a deformation of Sch(®) that is the image of a deformation ® of ®. The
assumption that the deformation of Sch(®) arises from a deformation of Flag(®,C) means
that there is also an associated deformation of C'. Since @ is an isomorphism onto its image
in a neighborhood of C, this deformation of C' canonically lifts to give a calibration of ®. H

4. Comparison morphisms. In subsection 4.1 we compare Cam, and CalCam, by the
natural decalibration morphism. In subsection 4.2 we focus on the case of two cameras,
leading to a 2-1 cover of the essential variety that compactifies the twisted pair covering.
Finally, in subsection 4.3 we state how both moduli spaces of cameras map to appropriate
Hilbert schemes.

4.1. The decalibration morphism v,, : CalCam,, — Cam,, X%"™. In this section, we
study a natural morphism
CalCam,, — Cam,, x&"

given by forgetting the camera calibration datum.

Definition 4.1. The decalibration morphism s the morphism
v, : CalCam, — Cam, x€"

given by sending (®,C) to P.

4.1.1. Intersections of conic cones. Before we delve into the geometry of v,, we need a
few preliminaries about intersections of conic cones in P3.

Proposition 4.2. Let X; and X be two conic cones in P3 with distinct cone points P and
Py. Suppose C C X1 N Xs is a plane curve of degree 2, so that X1 N Xo = CUD with D a
curve of degree 2. Then D must be planar and have support distinct from the support of C.
More precisely, one of the following must occur.

1. C and D are smooth conics meeting at two distinct points.
2. C'is a smooth conic and D is a doubled planar line.
3. C is a doubled planar line and D is a smooth conic.
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In particular, we can never have C = D (i.e., X1 N Xo cannot be a doubled smooth conic).

Proof. This is a standard result, and it can be extracted from the material in [8, Chapter
13, section 11]. We briefly describe a proof in modern language for the reader’s convenience.
By assumption, C is either a smooth conic or a planar doubled line. It is easy to write down
examples where the intersection XM X5 is a union of two smooth conics meeting at two points
(e.g., in characteristic different from 2 the pair X2 + Y24+ Z2 =0and Y2+ Z2 + W2 =0 is
such an example).

If X1 N X5 contains a doubled planar line, then X; and X9 must be tangent along a ruling.
Since P; # P», the residual curve must be a smooth conic.

Suppose X1 N Xy = CUD with C a smooth conic and D a singular curve. We wish to
show that D is a doubled planar line. Since D has degree 2 in P3, it must be the case that
the reduced structure on D is a line. The only doubled lines contained in a conic cone are
planar: They are given by intersecting with the tangent plane along rulings.

It remains to rule out the possibility that X; N X5 is a doubled conic. Note that a doubled
conic is the intersection of X; with a doubled plane 2P € Ops(2). We can rule out this case
if we can show that the pencil spanned by X; and a doubled plane not containing its cone
point does not contain any more conic cones. We can represent the cone X; and an aribtrary
doubled plane missing the cone point by the matrices

2

1 0 00 a® ab ac a
010 0 4 |ab b2 be b
0 010 ac be & ¢
0 0 0 O a b ¢ 1

for a, b, c € k. Searching for a conic cone in the pencil corresponds to finding A such that the
following matrix has rank 3:

a’+ )\ ab ac a A0 0 O
ab b2+ \ be b “th row reduction O N0 O
ac be A+ ¢ W oW requetio 0 0 X 0]’
a b c 1 a b ¢ 1
but the latter matrix can never have rank 3. [ |

4.1.2. The geometry of v,. Fix a point £ of Cam,, x%". That is, fix conics C4,...,C},
in P? and a multiview configuration ®. In this section we compute the fiber of v, over &.

Proposition 4.3. The scheme-theoretic fiber v, 1(€) is a reduced r(§)-scheme of length at
most 2.

Proof. The fiber v, 1(£) is precisely the scheme of smooth conics in the intersection of
the cones over the image conics C; inside the ambient P3. The result is thus immediate
from Proposition 4.2. (In particular, the lack of doubled conic means that the fibers are
discrete.) [ ]

Corollary 4.4. The morphism v, is unramified.

Proof. The proof is an immediate consequence of Proposition 4.3. |
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Proposition 4.5. The morphism v, is proper.

Proof. Suppose we have a multiview configuration ® of length 2 over a complete dvr R
with fraction field K, degree 2 curves C1,...,C, C P%, and a degree 2 curve C'x C P% such
that ® g maps Ck isomorphically to the generic fiber of each C;. By the valuative criterion
for properness, it suffices to extend C'x to a degree 2 curve Cg.

Assume we have a multiview configuration ® of length 2 over a complete dvr R with
fraction field K, and suppose we have conics C1,...,C, C P%% in each image plane. Write
C,; c P3 for the cone over C; under pr;o® and I = C1N---NC,. Finally, assume that there
is a conic Cx C P3. such that ®x maps Ck isomorphically to the generic fiber of each Cj;
that is, C'x C Ix. Let Cr be the specialization of Ck in the closed fiber Cy. The curve Cg
is degree 2, giving us a calibrated configuration over R. |

Note that even if C} is a nondegenerate conic, Cy need not be. This is why we need to
add degenerate conics.

Proposition 4.6. The morphism vy has smooth image and general fiber of length 2. For any
n > 2 the morphism v, is generically injective.

Proof. The projective closure of the image of a fiber of CalCamy over €2 under v is
known as the “essential variety,” and its singularities are well known (see [3, section 2.1]);
none of its singular points lie in the image of v5. To study the general fiber, it suffices by the
irreducibility of all spaces involved to produce a single example of a camera configuration of
length 2 such that the fiber of 15 has length 2. To do this, it further suffices to find a single
example of two conic cones C1,Cy C P? whose intersection is a pair of smooth conics. One
such example is given by the cones X2 +Y? 4+ Z2 =0 and Y2+ Z2 + W2 = 0.

We now show that v, is generically injective for n > 2. Given a smooth conic C' in P3, the
locus in |Ops(2)| consisting of conic cones containing C' is 3-dimensional (since such a cone is
determined by its vertex). Thus, we can find three noncollinear conic cones that contain any
given smooth conic C'. On the other hand, given two conic cones C7, Co, the set of conic cones
that vanish on their entire intersection C7 N C5 is contained in the pencil spanned by C; and
C5. We conclude that if C; N Cs is reducible, then we can choose general cones Cs, ..., Cy
containing a smooth conic in Cy N Cy such that C; is not in the pencil spanned by C7 and Cy
for each ¢ > 2. The joint vanishing locus C1 N CyNCsN---NC), is a smooth conic. Since this
is generic behavior, this shows that v, is generically injective for all n > 2. |

It is a potentially interesting problem to characterize the locus over which v, is not injec-
tive, and the singular locus of its image (the “variety of calibrated n-focal tensors,” which is
studied for n = 3 in coordinatized form in [11]).

Corollary 4.7. The morphism v, is finite.
Proof. We have shown that v, is quasi-finite and proper and, thus, finite. |

Question 4.8. Is the singular locus of the image of CalCam,,, for n > 2, equal to the locus
over which the fiber of v, has length 27

4.2. Twisted pairs and moduli. In this section we study the morphism v, in more detail,
showing how the Hilbert scheme gives a natural compactification of the classical “twisted pair”
construction. To explicitly compare this new treatment with the literature, in this section we
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will fix the calibrating conics to be v(z2 + 2% + 23) C P?. Also, we will often think of an
essential matrix as the corresponding pair of calibrated cameras in normalized coordinates.
In these coordinates we can fix notation P; = [I|0] and P» = R[I|t], where t = (a, b, c).

4.2.1. Twisted pairs. As shown in section 5.2 of [13], the locus M of essential matrices
is smooth (over C) and admits an étale surjection SO(3) x P? — M, coming from composing
a camera with a rotation and a translation, up to scaling. In terms of matrices we send (R, t)
to the camera pair P = [I|0],Q = [R]t] which has essential matrix [t]xR. One can check in
local coordinates that the map is étale [2, Proposition 3.2].

For any real essential matrix M € M(R), the fiber of m over M contains two points: One
can take a pair of cameras P;, P, and replace it with the pair P, ]52 where ]32 results from
rotating P» by 180 degrees around the axis connecting the centers of P; and P». In normalized
coordinates, the matrix

202 — 1 2ab 2ac 0

R | 2ab 262 -1 2bc 0
Tl 2ac 2c  22—1 0
0 0 0 1

is rotation by 180 degrees and P, = R[I|t]R;. (Note that over the reals we can always rescale
t so that a® + b? + ¢ = 1.) The pair (P, ), (P, P») is called a twisted pair; what we have
described is a well-known construction in computer vision [6, Result 9.19]. The key thing to
note is that the rotation construction described above preserves calibrations for real cameras.
For complex cameras, things get more complicated, and for displacements (a, b, c) such that
a? +b% + ¢ = 0, the corresponding transformation produces a new camera pair (P, P») for
which P is no longer calibrated.

4.2.2. Compactification of the twisted pair construction. The morphism
vy : CalCamy — Cams X €2

gives a double covering of a closed subscheme that generalizes the twisted pair covering of the
essential variety. A point of CalCamy is the datum (P, Py, C') where P; and P, are cameras
and C is a planar curve of degree 2 contained in the intersection of the cones defined by the
preimage of Cyuniv via P and P,. Proposition 4.2 tells us that this intersection must contain
either another nondegenerate conic or a doubled line. In either case denote this other degree
2 curve by C. The general fibers of vy are the triples (Pi, Py, C) and (P, P>, C).

This double covering agrees with the twisted pair covering on real points. In normalized
coordinates C' is defined by the simultaneous vanishing of

2 4+12+22=0 and (a®+b* + A)w — 2(ax + by + cz) = 0.

When a? + b2 + ¢ = 1, as it must over R (up to scaling), one can check that changing
coordinates on P3 via the automorphism

1 0 0 0

0 1 0 O

H= 0 0 1 0
—2a —2b —2c¢ 1
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sends the triple (Py, Py, C) to the triple (Py, Py, C).

However, over the complex numbers there exist essential matrices such that a®>+b%+c? = 0.
This is exactly the condition that C is a doubled line. In this situation the twisted pair
construction fails because the camera P no longer has a trivial calibration. Mathematically
speaking, we are really discussing the fact that the twisted pair morphism 7, while always
étale, is not finite. Allowing degenerate calibrations (doubled lines) extends the twisted pair
morphism 7 to vs.

Proposition 4.9. There exists a fixed-point free involution, x : CalCamg — CalCamsy over
Cams given by fizing the cameras and swapping calibrating curves. More precisely, voox = vo.

Proof. Given a pair of cameras ® — P2 x P? and smooth conics D1, Dy C P2, we can
pull back to get two cones X1, Xy C P3. Let F = X; N X,. Blowing up the camera centers,
the strict transforms of these cones, X]_,XQ C Blgz, 7, P32, are smooth surfaces in P3. The
intersection is a relative effective Cartier divisor and X 1N XQ ~ [ since the cone centers are
distinct.

A point in CalCamsy is a pair (®, C') where C'is a relative effective Cartier divisor contained
in F'. By [15, Tag 0B8V] there exists another relative effective Cartier divisor C’ such that
C' + C = F. Checking at a geometric point, Proposition 4.2 shows that C’ is a degree 2
curve, and that no geometric point of CalCams is fixed by x. This argument is functorial
and so induces the desired involution. Since y only changes the calibrating conic we have
V9 0 X = V2. |

Theorem 4.10. The morphism vs factors as a finite étale morphism followed by a closed
1MMEersion.

Proof. By Corollary 4.7, vy is a finite morphism, and hence closed. This yields a fac-
torization CalCamy — Z — Camsy with the second arrow a closed immersion and the first
scheme-theoretically surjective. Let A be a strictly Henselian local ring and Spec A — Z a
morphism. The finiteness of vy yields a diagram

Spec B —— CalCamy

0 |
Spec A ——— Cams
By [15, Tag 04GH], B is the product of local Henselian rings. By Proposition 4.6, the general
fibers of ¥ are length 2, corresponding to the two possible calibrating conics, so Spec B ~
Spec By U Spec By. By Corollary 4.4, 4 is unramified, and thus (by [15, Tag 04GL]) restricts
to a closed embedding on each Spec B;.
Spec B; —— Spec By LI Spec By —— CalCams

SpecA ——— Camgy
The involution described in Proposition 4.9 induces an isomorphism f : Spec By — Spec Bs.

In other words, both components map isomorphically to the image, so v, is étale over Z, as
claimed. |

© 2020 Max Lieblich and Lucas Van Meter



Downloaded 08/05/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

TWO HILBERT SCHEMES 319

4.3. Morphisms to Hilbert schemes. The following describes the main result relating the
moduli problems Cam,, and CalCam,, to Hilbert schemes. This gives the generalization of the
results of [1, Theorem 6], leveraging the novel methods of this paper to give more information
about the uncalibrated case and the appropriate result in the calibrated case.

Proposition 4.11. The associations
® — Sch(®)

and
(®,C) — Flag(®,C)

define monomorphisms
Sch : Camy,, — Hilbp2)n specz(1/2]

and
Flag : CalCam,, — HﬂbC’,ﬁnivc(PQ)n/%"

such that
1. when n > 2, the morphism Sch (resp., Flag) itself is an open immersion into
Hilb{s ) speczir/2) (7esp- Hilbgn | cpoyo jgen )
2. the arrows Sch and Flag together with the forgetful maps give a commutative diagram

Flag

CalCam,, ——=— Hilbon < (p2 ) jign

"] |

Cam,, XSpecZ[l/Z}an T Hilb(ngn)n/%ﬁn
In particular, every geometric fiber of Sch over SpecZ[1/2] is an open immersion of Cam,,
into the smooth locus of a single irreducible component of the Hilbert scheme, and similarly
for geometric fibers of Flag and components of the diagram Hilbert scheme.

Proof. Propositions 2.33 and 2.35 show that Flag is a well-defined monomorphism. Since
CalCam,, is smooth over €™, we have that Flag is an open immersion in a neighborhood
of any point where it induces an isomorphism of deformation functors. Theorem 3.21 then
applies to give the two desired statements. |

5. Questions. In this section, we briefly discuss questions raised by this work and suggest
some directions for future investigation.

Question 5.1. What concrete computational consequences follow from functorial methods?

We believe that the techniques described here may be useful for studying the numerical
properties of multiview geometry. For example, in [12], we will give an explicit equation for the
fiber of CalCamy over the pair of standard Euclidean conics, which appears as a double cover
of the essential variety extending the twisted pair construction. It is given by the vanishing
of a single bilinear form on P3 x P3. This can be used to rederive the main results of [2], and
to rephrase the five-point algorithm in terms of intersections of six bilinear forms in P? x P3
instead of the nine Demazure cubics and five linear forms. This is also related to the results

© 2020 Max Lieblich and Lucas Van Meter



Downloaded 08/05/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

320 MAX LIEBLICH AND LUCAS VAN METER

of [3], but the derivations are completely different and independent of [2] (which is used in an
essential way in [3]).

Question 5.2. What is the correct boundary for Cam,, (resp., CalCam,,)?

Is there a extension of our moduli theory to handle degenerate configurations, where
camera centers collide? Should these models include degenerations of image planes along the
lines of Hacking’s approach [5]7 Is there a good moduli theory for pairs (X, C') consisting of a
threefold with an embedded curve? These might be useful for studying degenerations of the
ambient space together with its calibrating curve.

Question 5.3. What is the right general formulation of Carlsson—Weinshall duality?

Carlsson—Weinshall duality is somewhat mysterious from the point of view taken here.
One can think about it in terms of birational isomorphisms of universal correspondences. It
would be interesting to get a deeper understanding of this phenomenon.

Acknowledgments. We had interesting and helpful conversations with many people dur-
ing the course of this work: Sameer Agarwal, Roya Beheshti, Dustin Cartwright, Charles
Godfrey, Richard Hartley, Jonathan Hauenstein, Fredrik Kahl, Joe Kileel, Irina Kogan, Luke
Oeding, Peter Olver, Brian Osserman, Tomas Pajdla, Jean Ponce, Jessica Sidman, Bernd
Sturmfels, Rekha Thomas, Matthew Trager, and Bianca Viray. Rekha Thomas gave espe-
cially valuable remarks that helped us significantly improve our exposition. We benefitted
greatly from the Berlin Algebraic Vision meeting in October 2015, hosted at TU Berlin, and
the AIM meeting on Algebraic Vision in May 2016, held in San Jose, CA. Last, we thank the
referees and editors for patiently giving us numerous helpful suggestions and comments.

REFERENCES

[1] C. AHOLT, B. STURMFELS, AND R. THOMAS, A Hilbert scheme in computer vision, Canad. J. Math., 65
(2013), pp. 961-988, https://doi.org/10.4153/CIM-2012-023-2.

[2] M. DEMAZURE, Sur deuz problemes de reconstruction, Tech. Report RR-0882, INRIA, Rocquencourt,
France, 1988, https://hal.inria.fr/inria-00075672.

[3] G.FLoYsTAD, J. KILEEL, AND G. OTTAVIANI, The Chow form of the essential variety in computer vision,
J. Symbolic Comput., 86 (2018), pp. 97-119, https://doi.org/10.1016/j.jsc.2017.03.010.

[4] A. GROTHENDIECK, Eléments de géométrie algébrique. I11. Etude cohomologique des faisceaux cohérents. 1,
Inst. Hautes Etudes Sci. Publ. Math., 11 (1961), pp. 5-167, http://www.numdam.org/item/PMIHES_
1961_-11_5.0/.

[5] P. HACKING, Compact moduli of plane curves, Duke Math. J., 124 (2004), pp. 213257, https://doi.org/
10.1215/S0012-7094-04-12421-2.

[6] R. HARTLEY AND A. ZISSERMAN, Multiple View Geometry in Computer Vision, Cambridge University
Press, Cambridge, 2003.

[7] B. HASSETT AND S. J. KovAcs, Reflezive pull-backs and base extension, J. Algebraic Geom., 13 (2004),
pp. 233-247, https://doi.org/10.1090/S1056-3911-03-00331-X.

[8] W. V. D. HODGE AND D. PEDOE, Methods of Algebraic Geometry. Vol. I11. Book 111: General Theory
of Algebraic Varieties in Projective Space, Book IV: Quadrics and Grassmann Varieties, Cambridge
Mathematical Library, Cambridge University Press, Cambridge, 1994, reprint of the 1952 original,
https://doi.org/10.1017/CBO9780511623899.

[9] D. HUYBRECHTS, Fourier-Mukai Transforms in Algebraic Geometry, Oxford University Press, Oxford,
2006.

© 2020 Max Lieblich and Lucas Van Meter


https://doi.org/10.4153/CJM-2012-023-2
https://hal.inria.fr/inria-00075672
https://doi.org/10.1016/j.jsc.2017.03.010
http://www.numdam.org/item/PMIHES_1961__11__5_0/
http://www.numdam.org/item/PMIHES_1961__11__5_0/
https://doi.org/10.1215/S0012-7094-04-12421-2
https://doi.org/10.1215/S0012-7094-04-12421-2
https://doi.org/10.1090/S1056-3911-03-00331-X
https://doi.org/10.1017/CBO9780511623899

Downloaded 08/05/20 to 128.95.104.109. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

TWO HILBERT SCHEMES 321

[10] L. ILLusie, Compleze cotangent et déformations. I, Lecture Notes in Math. 239, Springer-Verlag, Berlin,
New York, 1971.

[11] J. KILEEL, Minimal problems for the calibrated trifocal variety, STAM J. Appl. Algebra Geom., 1 (2017),
pp. 575-598, https://doi.org/10.1137/16M1104482.

[12] M. LieBLICH, L. VAN METER, AND B. VIRAY, A new approach to the essential variety, in preparation.

[13] S. MAYBANK, Theory of Reconstruction from Image Motion, Springer Ser. Inform. Sci. 28, Springer-Verlag,
Berlin, 1993, https://doi.org/10.1007/978-3-642-77557-4.

[14] E. SERNESI, Deformations of Algebraic Schemes, Grundlehren Math. Wiss. 334, Springer-Verlag, Berlin,
2007.

[15] The Stacks project, http://stacks.math.columbia.edu, 2017.

[16] M. TRAGER, M. HEBERT, AND J. PONCE, The joint image handbook, in Proceedings of the 2015 IEEE
International Conference on Computer Vision, IEEE, 2015, pp. 909-917.

© 2020 Max Lieblich and Lucas Van Meter


https://doi.org/10.1137/16M1104482
https://doi.org/10.1007/978-3-642-77557-4
http://stacks.math.columbia.edu

	Introduction
	Our results
	Methodological contributions

	The algebraic geometry of pinhole cameras
	Basic definitions
	Multiview configurations
	Uncalibrated cameras
	Calibrated cameras
	A characterization of isomorphic general configurations

	Relativization

	Moduli and deformation theory
	Moduli of uncalibrated camera configurations
	Deformations of multiview configurations
	Essential rigidity of blowups of P^3
	Lifting deformation for noncollinear configurations
	Lifting deformations for collinear configurations

	Diagram Hilbert schemes
	Definition and examples
	Representability

	Moduli of calibrated camera configurations
	Deformation theory of calibrated camera configurations

	Comparison morphisms
	The decalibration morphism ...
	Intersections of conic cones
	The geometry of nu_n

	Twisted pairs and moduli
	Twisted pairs
	Compactification of the twisted pair construction

	Morphisms to Hilbert schemes

	Questions

