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Abstract: The purpose of this study was to use 3D motion capture and stretchable soft robotic
sensors (SRS) to collect foot-ankle movement on participants performing walking gait cycles on flat
and sloped surfaces. The primary aim was to assess differences between 3D motion capture and a
new SRS-based wearable solution. Given the complex nature of using a linear solution to accurately
quantify the movement of triaxial joints during a dynamic gait movement, 20 participants
performing multiple walking trials were measured. The participant gait data was then upscaled (for
the SRS), time-aligned (based on right heel strikes), and smoothed using filtering methods. A
multivariate linear model was developed to assess goodness-of-fit based on mean absolute error
(MAE; 1.54), root mean square error (RMSE; 1.96), and absolute R? (R?; 0.854). Two and three SRS
combinations were evaluated to determine if similar fit scores could be achieved using fewer
sensors. Inversion (based on MAE and RMSE) and plantar flexion (based on R?) sensor removal
provided second-best fit scores. Given that the scores indicate a high level of fit, with further
development, an SRS-based wearable solution has the potential to measure motion during gait-
based tasks with the accuracy of a 3D motion capture system.

Keywords: wearables; soft robotic sensors; 3D motion capture; foot-ankle complex; gait; mean
absolute error; root mean square error; adjusted R% multivariate linear model; data coupling

1. Introduction

The biomechanical analysis of movement patterns, such as walking gait, is essential to
understanding how an individual can maximize movement [1]. A typical gait cycle spans two
consecutive events of the same limb, usually with initial contact to an external surface [2]. Throughout
one gait cycle, each lower extremity passes through two phases: (a) A stance phase and (b) a swing
phase [2]. During the stance phase, five different movement stages with corresponding joint angles
are executed: (a) Initial contact/heel strike (0° of ankle and knee flexion/extension, 20° flexion of hip
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joint), (b) foot flat (5° plantar flexion of ankle, 15° of flexion of knee and hip joints), (c) midstance (5°
dorsiflexion of ankle, 5° flexion of knee, 0° of hip), (d) heel off (0° of flexion of ankle and knee, 10-20°
of hyperextension of hip), and (e) toe-off (20° plantarflexion of ankle, 30° of knee flexion, 10-20° of
hyperextension of hip) [2]. The second stage—the swing phase—consists of three stages: (a)
Acceleration (10° plantar flexion of ankle, 30° flexion of knee, 20° of flexion of hip), (b) midswing (0°
ankle flexion, 30° flexion of knee and hip), and (c) deceleration (0° of ankle and knee, 30° flexion of
hip) [2]. The ability to capture these joint kinematics is made possible through 3D motion capture and
wearable technology.

Biomechanical analyses of gait have become a valuable tool for practitioners to assist in clinical
diagnoses, strength and conditioning (S&C) specialists to improve athletic performance, and
therapists to promote rehabilitation. To monitor gait, 3D motion capture is considered the optimal
system for identifying kinematics and kinetics of the gait cycle [3]. However, 3D motion capture
traditionally takes place in a laboratory setting which can hinder the opportunity to analyze a real-
life scenario and can be quite expensive due to the costs of required equipment [3], as well as the
steep learning curve. Moreover, wearable sensor technology is another option to analyze kinematics
during a real-life scenario either in a rehabilitation clinic or on a competitive playing field [4].

Various types of wearable sensor technology (WST) have increased in popularity on the market
such as accelerometers, gyroscopes, micro electromechanical systems (MEMS), and inertial
measurement units (IMUs) [5-7]. Being portable, WST allows remote monitoring in real-life
environments as opposed to the simulated laboratory setting. In addition to portability, WST is
inexpensive when compared to a 3D motion capture system [4]. However, there are several
reoccurring problems with several types of WST such as an IMU. According to Filippeschi et al.
(2017), IMUs have issues with reducing drifts, magnetic disturbances, and calibration. Due to non-
homogenous magnetic fields, mainly from construction building materials and magnetic
interference, distortion and drift affect a sensor’s vertical and horizontal data [5]. A sensor system
that could simulate stretch and strain around the joints may offer an alternative method to gait
analysis rather than using stiff, circuit board based IMUs [8]. Consistency and calibration issues
regularly result from sensors on the market, a potential solution may lie in the form of a different
type of sensor, such as stretchable soft robotic sensors (SRS) [8].

Due to the reoccurring issues with wearable technology, the purpose of this paper is to continue
the research and development narrative for building a new SRS-based wearable solution that closes
the WST gap identified by the practitioners [8]. This paper suggests alternative methods for capturing
the human gait cycle in a real-life setting for more precise rehabilitation techniques and improvement
of athletic performance. Luczak et al. [8] and Saucier et al. [9] recommend a more accurate
technology —stretchable SRS accompanied by liquid conductive material, placed in garments, that
can be directly placed on joints to analyze joint kinematics [8,9]. There are several benefits for using
SRS which include (a) the capability to capture biomechanical strain without the occlusion of errors
that normally occur in 3D motion capture systems and eliminate drift that can arise in IMU sensors
[8]; (b) the realization of small changes in electromechanical specifications during loading and
unloading; and (c) limited interference observed by the consumer. In addition, SRS inherently offer
“stretchability,” which allows the sensors to cover the joints of the human body [9].

2. Materials and Methods

In Parts II and III of “closing the wearable gap” paper series [9,10], both 3D motion capture and
SRS were used to assess specific foot-ankle movements. Part II analyzed the four primary foot-ankle
complex angles—plantar flexion (PF), dorsiflexion (DF), inversion (INV), and eversion (EVR)—
during static movement assessments where each angle was measured separately [9]. Part III captured
PF and DF during dynamic slip and trip movements that were both expected and unexpected [10].
For Part IV of this series, all four foot-ankle movements will be captured simultaneously during
dynamic gait trials. Therefore, due to similarities in equipment, study design, and discovery intent,
much of the layout and wording of this section will originate from the previous papers [9,10] with
modifications to describe (a) the new population of participants and (b) modifications in the methods
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to shift from single sensors capturing static movements and two sensors capturing dynamic slips and
trips to four sensors per leg capturing dynamic gait movements.

2.1. Participants

A total of 20 participants (10 males: Height, 168-193 cm; mass, 61-117 kg; foot size, 10-13; and
10 females: Height, 158-168 cm; mass, 50-113 kg; foot size, 5.5-10) with no self-reported history of
lower extremity musculoskeletal injuries or surgeries and neuromuscular diseases or disorders were
tested. Note that participant foot sizes are indicated using US shoe size measurements. This sample
was chosen to examine both genders and individuals with small/medium and large/extra-large sized
feet. Since this was a gait assessment study, the sample size was set at 20 participants, which is
consistent with recent gait-based literature [11-14]. The study was approved for human subjects
testing under the University’s Institutional Review Board (IRB; protocol #17-725). Informed consent
was obtained for all participants after fully explaining the protocol along with the risks and benefit
involved.

2.2. Study Design

All participants were instructed to visit the Human Performance Laboratory (HPL) at
Mississippi State University’s Center for Advanced Vehicular Systems (CAVS) research center. The
study design followed a single day testing protocol with an initial familiarization session that was
conducted before the experimental testing. During familiarization, all participants were briefed on
the procedures and provided an opportunity to perform a few trials of the experiment that includes
a self-paced, regular speed walk on both a flat surface (FS) and a tilted surface platform (TSP). The
FS was comprised of four, half-inch thick rubber mats that were 0.91 by 1.52 m in size. The short edge
of the mats was aligned such that a rubber walkway of 6.10 m covered the middle section of the HPL
floor running south to north from the entrance side to the room to the back portion of the room. A
linear walking space of 6.10 m is enough to capture at least three full gait cycles for an average person
[15]. Since the FS does not induce inversion or eversion at the foot, a TSP was designed and built such
that INV and EVR at the foot-ankle complex could be recorded for participants during their self-
paced gait cycles. A wooden platform was built to be 1.22 m wide by 7.32 m long, creating a walkway
tilted at 10 degrees. The same type of rubber mats used on the floor for the FS was placed on the TSP
as not to create a confounding variable between walking on different surface types. The walkway,
running parallel to the FS trial area of the HPL, weighed over 54.43 kg and therefore was not
susceptible to slippage during a participant trial. The platform surface angle of 10 degrees was
validated using the bubble level application (PixelProse SARL Tools) on an iPhone (Apple). The TSP
designed for this study was inspired by the dimensions and slope of a walkway built for a railroad
ballast surface [16] in which similar participant INV and EVR characteristics were studied. Figure 1
shows the TSP with rubber mat surface. Following the familiarization process for gait trials on both
the FS and TSP, the participants performed the experimental testing.
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Figure 1. A 1.22 m wide by 7.32 m long tilted surface platform or TSP walkway with 10-degree slope

for inducing inversion (INV) and eversion (EVR) foot-ankle complex movements during self-paced
gait trials; includes 6.10 m of covered half-inch rubber mats; simulated participant trial during TSP
right-foot INV and left-foot EVR.

2.3. Instrumentation and Participant Preparation

The experimental testing included measurements of ankle joint kinematics using 12 Bonita™ 10
camera 3D motion capture system (Vicon™, Oxford, UK) and eight StretchSense™ SRS (Auckland,
New Zealand). The motion capture data was sampled at 200 Hz and the SRS data was sampled at 25
Hz. The MotionMonitor™ (Innovative Sports Training, Inc.™, Chicago, IL) was used in conjunction
with Vicon™ to capture, visualize, and assess the motion capture data. For this study, both foot-ankle
complexes were measured. During testing, each participant was prepared by placing reflective
motion capture marker clusters on the right lower extremity for the foot and shank (lower leg)
segments. Four SRS were placed on each ankle and foot segment in a predetermined placement and
orientation configuration (POC) identified in Part II of “closing the wearable gap” [9].

2.3.1. SRS POCs

Prior to this study, four different POCs were determined based on bony landmarks and
movement patterns of the foot-ankle segment. The four POCs used herein were validated using
multiple statistical methods including R-squared (R?) value and root-mean-squared error (RMSE) in
order to respectively assess relative and absolute goodness of fit for the SRS placement against the
gold standard of motion capture [9]. SRS POC donning at rest during the start of a TSP trial is
demonstrated in Figure 2. Figure 3 illustrates the POC mounting of all four SRS for a single leg.
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Figure 2. Soft robotic sensor placement and orientation configuration or SRS POC placement for the
(a) left and (b) back for a simulated participant at rest prior to a TSP gait trial; SRS POC placement
and motion capture marker set placement for the (c) left, (d) front, and (e) right for stimulated seated

participant.

(a) PF Sensor (b) DF Sensor (c) INV Sensor POC (d) EVR Sensor POC
POC POC

Figure 3. (a) Plantar flexion (PF) SRS mounted on the dorsal surface and oriented towards the hallux
(big toe) to measure the downward movement of the foot; (b) dorsiflexion (DF) SRS mounted on the



Electronics 2019, 8, 1382 6 of 16

heel of the foot to measure the upward movement of the foot towards the lower leg; (c) INV SRS
mounted directly over the lateral malleolus (bony landmark on the lateral side of the ankle) to
measure the movement of the sole (bottom of the foot) towards the midline of the body; (d) EVR SRS
mounted directly over the medial malleolus (bony landmark on the medial side of the ankle) [1].

2.4. Experimental Procedures

Each participant was first instructed to read through a participation consent form and, upon
agreement to the expectations of the study methods, sign their approval as per IRB protocol. Each
participant was then asked to be seated in a chair-back seat and was given two socks each with four,
pre-placed SRS sensors attached to be worn on both feet. Each sock corresponded to a specific leg;
researchers ensured the appropriate sock was appropriately placed on the correct leg. Moreover,
researchers ensured all participants arrived for the study with their own clean socks to be worn under
the SRS donned socks for safety and hygiene purposes. Participants were given a pair of small to
medium or large to extra-large socks depending on their shoe size. Following confirmation of proper
sock application, the motion capture cluster sensors were mounted to both right and left foot and
right and left shanks; following this, each participant assumed a neutral standing position, and the
sensors were then calibrated to each participant for 3D motion capture.

A validation step was conducted, where on both the FS and TSP, each participant performed a
minimum of two full gait cycles. For both surface types, the researchers confirmed that the 3D motion
capture equipment and SRS donned socks were correctly capturing movement data for right and left
foot-ankle joints for sensor locations. Upon completion of all validation steps, each participant was
instructed to walk at a self-regulated pace across the 6.10 m of the FS rubber matting resulting in a
minimum of two full gait cycles. The participant would then repeat the FS gait cycle for a total of six
trials. After the first cycle where the participant began in the south side of the HPL and ended the
trial in the north side, the participant was instructed to stand in place, turn around, and begin the
next trial by walking from the north side of the room and back to the south. This process was repeated
for each participant until all six FS trials were completed and a minimum of three gait cycles were
captured per trial.

Upon completion of the six FS trials, six more trials were then captured in the same manner on
the TSP across the 6.1 m of rubber matting secured to the platform. Since the TSP sat at a 10-degree
incline, as the participants began their trial from the south to north, their left foot-ankle complex
would be in an INV state and their right foot-ankle would be in EVR. After the first trial was complete
and the participant was asked to stop, turn around, and walk the TSP from the north to south ends
of the HPL, their left foot-ankle complex would then be in EVR and their right in INV. This process
was completed until six trials (three trials with left leg INV and three trials with right leg INV) each
with a minimum of two gait cycles were captured thereby concluding the data collection for each
participant. A total of 12 trials (six on FS and six on TSP) were collected with a minimum 24 gait
cycles recorded for each participant.

All participants were instructed to begin all gait trials with their right foot. A gait cycle (or stride)
begins with the first heel strike of one foot, ends at the following heel strike of that same foot, and
includes both the stance and swing phase for each leg [17,18]. For this study, because participants
always started with the right foot, all gait cycles are calculated between right heel strikes.

2.5. Data Preprocessing

A similar approach for preprocessing of the data was taken in [9]. Motion capture data was
collected at 200 Hz and smoothed with a 30 Hz Butterworth filter. StretchSense™ data was collected
at roughly 25 Hz and was approximated and upsampled to 200 Hz to match the sampling rate of the
motion capture system. Following this, cross-correlation was used to align the two datasets over time.
Each foot was analyzed separately for each trial to eliminate any potential delay that may occur
between Bluetooth modules transmitted data from StretchSense™, and mobile devices (i.e.,
smartphones, laptops) received the Bluetooth data transmission. Further, only the DF and PF datasets
from StretchSense™ SRS were used to determine the timing delay, as the INV and EVR data values
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did not present linear results with the 3D motion capture due to the potential for coupling of foot
movements while some participants were walking (coupling is detailed further during the
Limitations Subsection). As was done for previous studies, line plots were created for each of the
preprocessed trials that were then validated by the researchers as having data aligned adequately
over time. Some datasets were hand-trimmed due to errors in the recording systems where the 3D
motion capture system would lose tracking of the participant, which was sometimes experienced
when a participant would walk too closely to the outside of the capture space. Figure 4 provides an
example of the formatted data for a participant’s left foot when walking across a flat surface. Note
that for cross-correlation, the PF and DF sensor outputs were compared individually to the motion
capture flexion data output, and the sensor that produced the highest autocorrelation coefficient of
the two was used for adjusting the delay between the SRS data output and the data from 3D motion
capture.
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Figure 4. (a) Scaled output of StretchSense™ DF sensor output (capacitance) compared to motion
capture flexion output (degrees); (b) scaled output of StretchSense™ PF sensor output compared to
the inverted motion capture flexion output; (c) scaled output of StretchSense™ INV sensor output
compared to motion capture inversion output; (d) scaled output of StretchSense™ EVR sensor output
compared to motion capture inversion output.

After the data was resampled and time-aligned, individual gait cycles were extracted from each
of the trials. Due to the nature of gait cycles being unique for each participant, there was not a typical
pattern to easily detect for automating separation of each gait cycle. To resolve this, each trial was
reviewed in the MotionMonitor™ data playback software. This playback option provided a visual
illustration of what movement was occurring in the motion capture system. The beginning of each
gait cycle was marked as the beginning of the right foot heel strike. When reviewing the
MotionMonitor™ playback, frame numbers were recorded for each point in the 3D motion capture
data to mark the beginning and end of each gait cycle. An example of this is illustrated in Figure 5.
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Based on the variable stride length of the participants and the recommended walking path length for
gait studies, a minimum of two gait cycles were collected for each trial. When participant stride
lengths were shorter, a third gait cycle was collected as well. Three gait cycles were recorded for 80%
of all the trials (190/238 trials). For the 20% of the trials where only two gait cycles were collected,
participants had longer stride lengths and were not able to complete a third gait cycle within the 6.10
m walk space.

Figure 5. Example of MotionMonitor™ playback used to record right heel strike frame numbers.
Pictured on the left is the frame where the first right foot heel strike occurs. On the right are examples
of the graphs depicting the output of the motion capture measurements.

After the frame numbers were collected, they were then converted to seconds and used to trim
the preprocessed data into separate files, each representing individual gait cycles. Finally, a third-
order Savitzky-Golay filter was applied to the StretchSense™ data for smoothing. This filter was
chosen as it is particularly effective at preserving minimum and maximum values after filtering [19].
Further, this filter application has been used in other applications for human motion analysis [20-22].
This filter was used to mitigate the effects of the aliasing that occurred when upsampling the
StretchSense™ data to the same sampling rate as the 3D motion capture data. A filter length of 39
was used as this produced the best results when correlating the StretchSense™ data to the 3D motion
capture data. An example of the improvements to the data made through this filtering is observed in
Figure 6.
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Figure 6. (a) Upsampled StretchSense™ gait cycle data for the left foot collected before filtering. (b)
Upsampled StretchSense™ gait cycle data for the left foot after filtering (third-order, window length
of 39).
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2.6. Statistical Analysis

Initially, the analysis was performed one-at-a-time on a single sensor basis in a similar manner
as previous studies [9,10]. In this approach, linear models were generated for each individual sensor
and compared to its corresponding movement (i.e., PF and DF sensors modeled to motion capture
flexion; INV and EVR sensors modeled to motion capture inversion). DF and INV sensors were only
compared to the positive angle values of the corresponding 3D motion capture data, while PF and
EVR sensors were only compared to the negative values of the corresponding data. However,
researchers discovered that this approach led to poor results for gait assessment, due to the
occurrence of multiple foot-ankle movements at the same time. Due to the POC of the sensors, a
coupling of movements occurred where sensor output would be affected by foot-ankle movements
that they were not positioned to measure (e.g., a sensor positioned for flexion could also measure
inversion movements).

Therefore, a multivariate linear model was developed to better predict the angle output of the
motion capture data. For predicting both flexion and inversion data, all four sensors on each foot
were used to predict the output of these two, primary foot-ankle movements. Figures 6 and 7
illustrate the difference in prediction performance versus motion, surface, and foot. Various
combinations of multivariate linear models were investigated as well to determine how much
prediction accuracy was lost with the removal of different sensors. A model was developed where
only PF and DF were used to predict flexion motion, and INV and EVR were used to predict inversion
motion. Further, models were generated with each sensor removed individually. Results from all
combinations of multivariate linear models are depicted in Table 1.

3. Results

Table 1 provides a summary of the key performance statistics of the experiment. In addition to
using the root mean square error (RMSE) and adjusted R? to determine measurement performance as
was done for previous experiments [9,10], the mean absolute error (MAE) was added as a
performance metric. MAE was found to be a desirable metric as it still provides a measure of the
prediction performance of the stretchable SRS but—unlike RMSE —it does not add significant weight
to large errors. Therefore, individual outliers do not drastically penalize prediction performance. Like
RMSE, MAE is negatively oriented, so a lower value is better [23]. Including both metrics, in addition
to adjusted R?, provides an idea of how much prediction performance was affected by significant
outliers in the output of the SRS. The first column provides the mean and standard deviation MAE,
RMSE, and adjusted R?values when using all four SRS to predict inversion and flexion of the foot.
Additional columns were added to show the loss in performance when certain sensors were removed
from the model. The second column provides the performance results for using only the PF and DF
SRS to predict flexion and using the INV and EVR SRS to predict inversion. The last four columns
give the performance results when one sensor is removed when modeling both motions with the
remaining three sensors.

Table 1. Results for various combinations of multivariate linear models to predict motion output. Best
results highlighted.

s All Sensors for Two Sensors No PF No DF No INV No EVR
Statistic (°)

each Motion for each Motion Sensor Sensor Sensor Sensor
Mean MAE 1.54 1.96 1.85 1.88 1.81 1.89
Mean RMSE 1.96 2.45 2.36 2.34 2.29 2.36
Mean Adjusted R? 0.854 0.779 0.806 0.802 0.781 0.791
Standard
Deviation MAE 0.612 0.761 0.790 0.848 0.683 0.753
Standard 0.779 0.935 1.030 1.030 0.849 0.920

Deviation RMSE
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Standard
Deviation 0.134 0.188 0.160 0.167 0.213 0.179
Adjusted R?

Figure 7 presents violin plots showing a breakdown of the RMSE and MAE performance against
the motion being predicted, the foot that SRS was mounted to, and the surface being walked on.
These violin plots represent a kernel density distribution portrayed vertically. A greater horizontal
width of a curve in the plot indicates a greater portion of participants that produced results near the
value on the y-axis. More information on these types of plots and their benefits when performing
these kinds of assessments can be found in Part II [9]. Violin plots of the adjusted R? performance
compared against these same factors can be seen in Figure 8. Adjusted R2was used as an additional
metric to determine goodness-of-fit of the model, while also incorporating the model’s degrees of
freedom, accounting for the four sensors that are included in the model. It represents the proportion
of total variance explained by the model [24].

Comparison of RMSE, MAE vs. Motion, Surface, and Foot
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Figure 7. Violin plot of root mean square error (RMSE) and mean absolute error (MAE) metric
showing the mean and spread of results with respect to various factors. Flexion and inversion
columns represent the motion that was being predicted. Rows represent the two types of surfaces the
participant walked on. Left foot and right foot sensors are represented in the graph as LF and REF,
respectively.
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Comparison of Adjusted R-Squared vs. Motion, Surface, and Foot
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Figure 8. Violin plot of adjusted R? metric showing mean and spread of results with respect to various
factors. Colored points represent individual participant means. Flexion and inversion columns
represent the motion that was being predicted. Rows represent the two types of surfaces the
participant walked on. Left foot and right foot sensors are represented in the graph as LF and RF,
respectively.

4. Discussion

Part II of the “closing the wearable gap” paper series explored basic, static movements of the
foot-ankle complex to assess optimal placement of stretchable SRS for mirroring 3D motion capture
data as closely as possible. The results indicated two critical pieces of information: (a) Where
stretchable SRS should be positioned around bony landmarks for optimal movement data capture
and that (b) R? and RMSE were excellent assessment methodologies for indicating robustness of SRS
output compared to 3D motion capture output [9]. High R? values indicate a successful relative
measure of fit between sensor placement and data versus the gold standard of 3D motion capture
data. Whereas low RMSE values indicated an absolute measure of fit between the two sets of data
collected about foot-ankle complex movement. Part III of the paper series explored a similar
stretchable SRS data collection method versus 3D motion capture study via fast, dynamic movements
such as expected and unexpected slips and trips. Goodness-of-fit was validated again through high
R? and low RMSE for many of the study’s participants [10]. However, some of the participants did
not share the same robustness as others due to a myriad of reasons mainly relating to technology
(lower SRS refresh rates versus quicker movements) and methodology (the jerky and abrupt
stoppage of the dynamic movements challenging the placement security of the motion tracking
markers) limitations [10]. For this reason, average R? and RMSE values suffered across the population
of all participants. RMSE values suffer further due to the nature of this assessment methodology
given that scores are penalized more for more significant prediction errors—errors in this instance
representing the differences in movement capture data between the gold standard (3D motion
capture) and the stretchable SRS. The desire to achieve goodness-of-fit while exploring all the ways
to evaluate the said fit were carefully considered for this study, Part IV, where lessons learned were
applied to the SRS capture of gait cycles.
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The purpose of this study was to use 3D motion capture and stretchable SRS to collect foot-ankle
movement on participants as they performed walking gait cycles on both a flat surface and a sloped
platform with the primary goal being to assess the data output delta between the gold standard and
a new wearable sensor solution. SRS POC for the primary foot-ankle movements (PF, DF, INV, and
EVR) identified in Part II [9] were used, and the data assessment methodologies detailed in Parts II
and III where utilized and added upon for this study [9,10]. Given the complex nature of using a
linear solution to accurately quantify movement of a triaxial joint during a dynamic movement such
as walking, 20 participants performing multiple walking trials were used. The participant gait trial
data was then upscaled (for the SRS), time-aligned (based on the right heel strike), and smoothed
using filtering methods. Due to the coupling of movements discovered in output of the SRS data, the
basic linear models utilized in the previous studies [9,10] were determined to not be successful for
gait assessment. A multivariate linear model combined with multiple linear models was developed
to predict specific flexion better (from PF and DF) and inversion (INV and EVR) movements. With
both data sets (3D motion capture and SRS) properly aligned, researchers could return to standard
assessment methods of adjusted R? and RMSE. A new assessment measure to compare the difference
between two continuous variables, MAE, was added to provide additional information that
contributes a complementary perspective to RMSE. Where RMSE penalizes the average more when
larger errors occur, errors found in MAE are penalized less. Since there is variability within the gait
cycle between all people [18] —there is value in using both methods. This is further explained in the
following subsections.

4.1. Mean MAE

For mean MAE, the lower the value, the closer the fit between the 3D motion capture and
stretchable SRS. A mean MAE score of 1.54 across flexion (PF and DF) and inversion (INV and EVR)
of both left and right feet for all 20 participants while walking on a flat surface and a tilted platform
is a positive result indicating a successful experiment. A low mean MAE was achieved despite having
outliers as a result of noisy data from the left foot of two participants. Given that the right foot of
these outlier participants didn’t generate the same noisy output, this would seem to indicate that the
issue was not with the individuals performing the gait cycles but with the setup of either the 3D
motion capture or the attachment of the SRS (this will be discussed in more detail in the Limitations
Subsection). Despite the noisy data occurring on the left foot, the mean MAE was consistently higher
in all situations for the right foot, indicating slightly less goodness-of-fit for the right. The right foot
heel strike was the indicator for the beginning of the gait cycle and the alignment of the data, so an
inference could be made that the right foot for all participants for all gait cycles was more accurately
aligned than the left foot. However, until more data is captured on more participants, the reasoning
behind a slightly worse fit for the right foot will require further investigation. Regardless, there is
room to improve upon this low mean MAE score with continuous refinement of this study through
the discovery and elimination of reasons leading to outlier participant trials.

4.2. Mean RMSE

Mean RMSE will always be higher than the mean MAE due to the nature of squaring the
prediction error, as was indicated in the 1.96 score. Less accuracy between the joint angle
measurements calculated by the stretchable SRS versus the gold standard will increase the overall
mean RMSE score. For example, a 10-degree joint angle prediction error will impact the
appropriateness-of-fit score much more than a five-degree prediction error. Whereas the mean MAE
will be more forgiving of larger prediction errors treating them, not equally, but less harshly in the
fit score. Since every person has a unique gait [18], the process of creating a wearable tool that
accurately assesses movement at a complex, triaxle joint such as the foot-ankle may indefinitely
encounter prediction difficulties simply because of wide varieties in the anthropometry and gait
cycles of people. Therefore, utilizing the mean MAE for fit considers that not all errors may be
preventable and should not overly penalize the fit score.
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However, given that the goal of this entire project and “closing the wearable gap” paper series
is to design a device that meets the needs of the practitioners by accurately capturing foot-ankle data
“from the ground up” [8], then perhaps the more penalized score provided by mean RMSE is a more
realistic appropriation of fit. Variance by five degrees in the calculation of a joint angle may not be
viewed by a practitioner as problematic for flexion-based movements given that the foot-ankle joint
can move in much wider arcs in the sagittal plane. However, perhaps a 10-degree joint angle
prediction error in flexion is too high. Likewise, the inversion angle movement within the frontal
plane is far more limited in range, and any degree of error may be too high given that a common
ankle sprain, the plantar flexion inversion, can occur at minimal joint angles. The point is to
emphasize that perhaps a more substantial penalty for larger errors warrants a worse fit score
indicating that further improvement is needed for practitioners to get the technology and data they’re
requesting to aid in the appropriate decision-making process for human health and safety.

4.3. Mean Adjusted R?

Whereas mean MAE and RMSE indicate fit by lower scores, goodness-of-fit is shown via the
mean adjusted R?2by values closer to one. For this experiment, a score of 0.854 was found indicating
a good fit between SRS and 3D motion capture, and this was despite the left and right foot outliers of
participants’ gait cycles. Compared to the static movements of the individual joint angles collected in
Part II [9], however, the fit for dynamic gait movements shows an increase in errors between 3D
motion capture and when all four sensors are donned.

4.4. Stretch SRS Reduction Combinations

While using the capacitance values captured from all four SRS in the multivariate linear model
created promising fit scores, two and three SRS combinations created higher mean MAE and RMSE
values and lower mean adjusted R? values indicating worse fit. The purpose behind this part of the
study was to understand if any sensor was largely redundant considering that PF and DF are both
movements that occur in the sagittal plane, and both INV and EVR movements occur in the frontal
plane. Again, stressing that the purpose of this research is to create a wearable product using a unique
type of sensor and noting that the stretchable SRS are the costliest components in the said product,
reducing the number of sensors while retaining movement data accuracy would result in a positive
economic design decision. Reviewing the two and three SRS combinations in Table 1, however,
indicates that this research team is not yet ready to move away from the one-to-one ratio of sensors
to primary foot-ankle movements. All two and three sensor combinations result in higher mean MAE
and RSME scores and lower mean adjusted R?scores. Surprisingly, dropping the INV sensor provides
the second-best mean MAE and RMSE. Given that PF and INV provide the widest range of flexion
and inversion movement types in the sagittal and frontal planes respectively, researchers had initially
hypothesized that DF and ENV sensors seem to be the more likely candidates for sensor reduction
options. Perhaps the better score achieved when removing INV has more to do with the noisy
participant outliers than anything to do with the type of data collected at this foot-ankle movement.
Likewise, based on mean adjusted R? scores, PF is the recommended sensor to remove. PF also
experienced a left foot participant outlier. While the researchers of this study will continue to assess
solutions that remain accurate yet utilize fewer sensors, more work is needed first to improve fit
scores further before any sensors are removed from this wearable prototype solution.

4.5. Limitations

While the extreme outliers visualized in the violin plots (Figures 7 and 8) were just from the left
feet of two participants and were primarily contained to the INV movement, this noisiness in the SRS
data resulted in a mean lower fit across all participants and all feet walking across all surfaces. Upon
careful inspection of the data from the participants, the researchers suspect that the left foot of these
participants was at or approaching the edge of the motion tracking space, and therefore the resulting
errors may have had more to do with noise from the 3D motion capture data rather than issues from
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the SRS. Given that all participants began all gait trials with their right heel strike, participants with
longer gait lengths were reaching the end of the 6.1 m walkway prior to the final footfall of their left
foot. Limitations of the lab space aside, this explanation may account for some of the outliers; it does
not account for all noise and coupling seen within the participant gait trial data.

Considering all noise and coupling seen within the data results of the experiment, two primary
issues have been recognized by the researchers as areas for improvement needed prior to the next
SRS-based gait study: (a) Sensors were not pre-strained enough meaning that some minimal
movements were not captured because there was potential slack in the SRS and (b) 3D motion capture
errors occurred because the marker clusters were not mounted appropriately. As visualized in Figure
2b (for error demonstration) the participant’s right foot has a marker cluster that is more closely
mounted over the toes instead of being mounted behind the toes as on the left foot. Mounting the
cluster over the toes may increase recorded movement between the shank and the foot because, as
the participant flexes his or her toes, additional movements are recorded that would not have
otherwise occurred had the marker been secured to the top of the foot. This toe flexion or “toe-
curling” noise artificially creates movement where it should not be and therefore increase the error
between the SRS and what is supposed to be the gold standard.

Another limitation ties back to variance in participant gait patterns and stride length (there is
variability within different gait cycles of the same person and between the gait cycles of different
people [18]), and INV is more challenging to capture than PF. Depending on the participant, INV
interpretation may also be more challenging due to coupling of the different movements due to the
sensor position. As Figure 9 visualizes, coupling can occur —typically between the PF and INV SRS—
but does not consistently occur on the same foot or the same participant or across all gait cycles in a
trial. When coupling does occur, however, this, too, can lead to noisy data and outliers that reduce
goodness-of-fit scores.

WALKO1_RF_Gait_1.csv

Inversion

R Foot Inversion

- SSRightINV

Scaled Measurement

Time

WALKO1_RF_Ghit_1.csv

Flexion
R Ankle Flexion

— SSRightPF

Scaled Measurement

Time

Figure 9. Sample participant data demonstrating a coupling effect between INV and PF sensors of the
right foot. PF is causing a decrease in the inversion value because tension is being taken off the INV
SRS during the gait movement. Therefore, as PF increases, INV incorrectly decreases due to this
coupling effect.

4.6. Future Work

Moving forward, there are still other approaches available to investigate to potentially improve
goodness-of-fit results even more. A decoupling coefficient matrix could be implemented to
potentially mitigate the influence of the coupled movements that are affecting the SRS outputs.
Further, there is a need to develop a more generic model that can predict values accurately across
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several sessions of using the SRS rather than a per-trial basis. Deep learning techniques could also be
applied to improve prediction accuracy. However, a much larger quantity of data will need to be
collected for the in-depth learning approach to be feasible. Additionally, a more consistent SRS
mounting method will need to be developed to ensure consistency between different data collection
sessions when SRS measurements are collected so that a deep learning model would be trained
effectively. The researchers are investigating a new hook and eye design to aid in consistency across
SRS mounting and to eliminate all future sensor pre-strain issues, thereby ensuring SRS can only be
mounted in one way to the sock fabric.

5. Conclusions

Upon completion of the participant trials, mean MAE, RMSE, and adjusted R? were used to
determine relative, absolute, and general goodness of fit for the SRS output as compared to the 3D
motion capture. Robustness was determined by lower MAE and RMSE scores and higher adjusted
R? scores. Violin plots were used to visualize the impact of outlier participants while still showing a
successful fit between a new wearable solution and the gold standard of movement assessment.

Additional analyses were performed to determine if a two or three SRS combination would
provide similar fit scores but a reduced sensor count. Results indicate and expected worse fit for any
sensor combination outside of using all four SRS. However, the second-best fit scores were a result
of running assessments without INV for mean MAE and RMSE and without PF for mean Adjusted
R?, which is surprising given that these are the primary movements in their respective frontal and
sagittal planes. Researchers perceive this to have been largely impacted by data outliers caused by
SRS sensors that were not properly pre-strained or marker clusters placed too close to the
participant’s toes. Regardless of the challenges, this research team remains confident that an accurate
gait assessment that rivals the accuracy of 3D motion capture systems can still be achieved using only
four off-the-shelf SRS sensors. As is consistent with the Conclusions Section in Part II of the “closing
the wearable gap” paper series: “the solution verified on human participants within this study
essentially creates a real-time, continuous, and consistent electric goniometer that a user can wear to
assess their movements accurately” [8].
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