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Abstract: A novel wearable solution using soft robotic sensors (SRS) has been investigated to model 

foot-ankle kinematics during gait cycles. The capacitance of SRS related to foot-ankle basic 

movements was quantified during the gait movements of 20 participants on a flat surface as well as 

a cross-sloped surface. In order to evaluate the power of SRS in modeling foot-ankle kinematics, 

three-dimensional (3D) motion capture data was also collected for analyzing gait movement. Three 

different approaches were employed to quantify the relationship between the SRS and the 3D 

motion capture system, including multivariable linear regression, an artificial neural network 

(ANN), and a time-series long short-term memory (LSTM) network. Models were compared based 

on the root mean squared error (RMSE) of the prediction of the joint angle of the foot in the sagittal 

and frontal plane, collected from the motion capture system. There was not a significant difference 

between the error rates of the three different models. The ANN resulted in an average RMSE of 3.63, 

being slightly more successful in comparison to the average RMSE values of 3.94 and 3.98 resulting 

from multivariable linear regression and LSTM, respectively. The low error rate of the models 

revealed the high performance of SRS in capturing foot-ankle kinematics during the human gait 

cycle. 

Keywords: wearable sensors; soft robotic sensors; 3D motion capture; human gait; multivariable 

linear model; ANN; LSTM; RNN 

 

1. Introduction 

Gait recognition systems are non-invasive biometric technologies that can be used to analyze the 

way someone walks. These technologies have applications in both surveillance and healthcare 

systems. Clinical research has identified clear links between human gait characteristics and different 

medical conditions and demonstrated their significance not only in clinical disease diagnosis and 

prevention [1–6], but also in the fields of sports [7], rehabilitation [8], training, and robotics [9,10]. 
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The importance of gait analysis in sports is to improve performance as well as to avoid the risk of 

injuries in athletics [11]. Throughout one gait cycle, each lower extremity passes through two phases: 

(a) a stance phase and (b) a swing phase. During the stance phase, five different movement stages 

with corresponding joint angles are executed: (a) initial contact/heel strike (0° of ankle and knee 

flexion/extension, 20° flexion of the hip joint), (b) foot flat (5° plantar flexion of ankle, 15° of flexion 

of knee and hip joints), (c) midstance (5° dorsiflexion of ankle, 5° flexion of knee, 0° of hip), (d) heel 

off (0° of flexion of ankle and knee, 10–20° of hyperextension of hip), and (e) toe-off (20° plantar 

flexion of ankle, 30° of knee flexion, 10–20° of hyperextension of hip). The second stage—the swing 

phase—consists of three stages: (a) acceleration (10° plantar flexion of ankle, 30° flexion of knee, 20° 

of flexion of hip), (b) midswing (0° ankle flexion, 30° flexion of knee and hip), and (c) deceleration (0° 

of ankle and knee, 30° flexion of hip) [12]. Figure 1 presents the different phases of gait movement. 

 

Figure 1. Different phases of gait movement adapted from [13]. 

Optical motion capture analyzes the 3-dimensional (3D) position and motion of a subject using 

data captured by two or more cameras and has been widely used in different areas. Optical motion 

capture systems provide an accurate solution for analyzing kinematics and kinetics of the gait cycle 

and has been considered the gold standard for monitoring gait movement [14,15]; however, they are 

costly, labor-intensive and their use is restricted to the clinical settings [14,16]. Because this system is 

only available in clinical settings, implementation of data capture during real-life activities, activities 

that occur outside the lab, or those that require continuous monitoring are difficult. 

Wearable sensors (WS) are another technology that could be joined with the body or wearable 

objects to monitor the health situation and record human motion activities in real-time [17]. WS could 

be implemented to assess the human gait cycle, and since they are portable, foot-ankle kinematic 

analysis can be performed during real-life scenarios. Additionally, WS cost considerably less than a 

motion capture system. In general, a motion capture system including PC, software, and a model V12 

to model V16 Vicon camera system will cost between $125 K and $150 K, while the WS solution used 

for this study cost roughly $2000. Several types of WS, including accelerometers, gyroscopes, 

microelectromechanical systems (MEMS), and inertial measurement units (IMUs), have been 

introduced in the literature. 

Accelerometers and gyroscopes could be used together to determine the position and orientation 

of a moving object by measuring acceleration and angular velocity signals. The history of using 

accelerometers and gyroscopes in analyzing position and orientation can be tracked back to 

aerospace studies; however, these technologies could be implemented in analyzing human gait 

kinematics [18]. Early studies around accelerometers go back to the 1990s when Willemsen et al. [19] 

and Heyn et al. [20] implemented uniaxial accelerometers for analyzing the movements of the foot, 

shank, thigh, and pelvis of subjects by Velcro strap attachment; however, their model was only 

suitable when there were simple motions. 

IMUs have been utilized in navigation and attitude estimation of aerial vehicles [21] and they 

have been implemented for tracking human motion in recent years. IMUs do not suffer from 

occlusions, but Filippeschi et al. [22] indicated that IMUs have issues with reducing drift, magnetic 

disturbances, and calibration. Luczak et al. [23] designed a study in order to investigate the use of 

liquid metal sensors, specifically Liquid Wire sensors, as a potential solution for accurately capturing 
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foot-ankle complex movements such as plantar flexion (PF), dorsiflexion (DF), inversion (INV), and 

eversion (EVR). The results of this study confirmed the researchers’ hypothesis that soft robotic 

sensors (SRS) can serve as a substitute for IMU-based solutions attempting to capture specific foot-

ankle kinematics. 

Several studies have been conducted for evaluating the performance of SRS introduced by 

Luczak et al. [23] in analyzing human foot-ankle movement [24–26]. Saucier et al. [24] investigated 

the foot-ankle movements in a sitting position and compared SRS against a 3D motion capture system 

to illustrate the performance of SRS in analyzing joint angles and to determine optimal placement 

and orientation of the SRS. Chander et al. [25] conducted a study using 10 participants to evaluate 

the performance of SRS during more complicated movements: slip and trip perturbations. Four 

different experiments were performed including an unexpected trip, expected trip, unexpected slip, 

and expected slip. Comparing the SRS result against the 3D motion capture system demonstrated 

that 71.25% of the trials exhibited a minimal error of less than 4.0 degrees using a linear regression 

model. 

In a more recent study from Saucier et al. [26], a multivariable linear regression model was 

implemented to investigate four different foot ankle movements including DF, PF, INV, and EVR 

during the gait cycle in two designed walking surfaces: a flat surface and a cross-sloped surface with 

10 degrees incline (in order to increase the intensity of INV and EVR movements). While previous 

studies used a simple linear model, the data collected from this study revealed that the output of the 

SRS was coupled to multiple movements. This was determined to be a result of the tri-planar 

movement of the foot-ankle complex, categorized as supination and pronation, that occurs while a 

human is walking. Pronation consists of abduction, DF, and EVR, while supination consists of 

adduction, PF, and INV [27]. When seeing that pronation and supination are natural combinations of 

ankle movements, Saucier et al. [26] deduced that the output of the SRS mounted to the foot will 

change based on more than one plane of movement. As a result, more advanced modeling 

approaches were investigated to handle this behavior. 

Wearable technology has attracted much attention in studying human movement and there is a 

vast amount of literature in this field. Different approaches have been employed to address the 

problem from statistical analyses, rule-based approaches, and linear regressions to more complicated 

approaches such as data mining. Additionally, deep learning methods have been developed. 

Many supervised and unsupervised algorithms have been utilized by researchers to classify 

human activities or diagnose a specific condition in human movement. Twelve human activities have 

been studied by Attal et al. [28] using three inertial sensors. Supervised and unsupervised methods 

including k-nearest neighbor (k-NN), support vector machines (SVM), Gaussian mixture models 

(GMM), random forest (RF), k-means, Gaussian mixture models (GMM) and hidden Markov models 

(HMM) were examined on data acquired from the sensors positioned on the chest, right thigh and 

left ankle. The fall detection problem has been addressed by many researchers [29–31]. Ozdemir et 

al. [29] addressed the problem of fall detection with six classifiers including k-NN, least squares 

method, SVM, Bayesian decision making, dynamic time warping, and artificial neural networks 

(ANNs) with more than 99% accuracy. Shibuya et al. [30] introduced a wireless gait analysis sensor 

(WGAS) system for real-time fall detection using an SVM. WGAS data has been implemented to 

analyze data from T4 (fourth thoracic vertebra) and waist movement. The SVM achieved 98.8% and 

98.7% fall classification accuracies from data at the T4 and belt positions, respectively. Ojetola et al. 

[31] identified four different types of falls using two SHIMMER sensor nodes with a C4.5 classifier. 

They report the precision and recall equal to 81% and 92% respectively. Mazilu et al. [5] considered 

the application of accelerometer sensors in the detection of freezing of gait (FoG) which is a gait deficit 

in advanced Parkinson’s disease (PD). Random forest (RF), C4.5, naive Bayes, MLP, AdaBoost with 

C4.5, and bagging with C4.5 have been employed to model data with the average sensitivity and 

specificity of more than 95%. Sprager et al. [32] analyzed gait cycles of six participants using 

accelerometer sensors. The SVM has been implemented to recognize the gait movements of 

participants with three different speeds and the accuracy of the model was equal to 93%. 
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In another study conducted by Novak et al. [33], two types of sensors including IMUs and 

pressure-sensitive insoles were implemented to identify within-subject and subject-independent gait 

initiation and termination. The classification tree successfully identified gait initiation, especially 

with subject-independent models. Gait termination also had been detected with 80% accuracy. The 

results reveal the same performance for both types of sensors in identifying gait initiation, while the 

IMU was more efficient in gait termination detection. 

ANNs and recurrent neural networks (RNN) have been implemented widely on human motion 

analysis as well as gait analysis, performing a variety of tasks including classification, biomechanical 

modeling, and prediction of gait parameters [34]. Lafuente et al. [35] provided a feed-forward neural 

network with one hidden layer for classification of arthrosis patients (including ankle, knee and hip 

arthrosis) from age-matched control subjects using gait data from force plates. The ANN with an 80% 

discrimination rate outperformed a Bayes quadratic classifier with a 75% discrimination rate. 

Sepulveda et al. [36] adapted two separate neural networks with backpropagation to model the 

relationship between electromyography (EMG) (input) and moments and angles (outputs) for the 

hip, knee and ankle joints. These two models were successful to provide estimation for joint angle 

and moment with less than 7% deviation. Gioftsos and Grieve [37] carried out three RNNs for 

prediction of walking speed and walking conditions. The experiments included data from seven 

different walking speeds (0.30, 0.45, 0.60, 0.75, 0.90, 1.05, and 1.20 statures s−1) and three different 

conditions of walking: normal walking, walking with a 3.5 kg mass strapped securely and 

comfortably to the right ankle, and walking with the right knee fixed in an extended position by 

means of a knee brace. They also implemented linear discriminant analysis (LDA) to evaluate the 

performance of RNNs. Results revealed that the performance of RNN models is as good as LDA, and 

there was not a significant improvement in the results. The authors realized that the sample size was 

too small for training of RNNs. 

For this study, the researchers implement a multivariable linear regression model, a feed-

forward neural network and an LSTM network to analyze gait movement. In order to evaluate the 

accuracy of gait assessment with WS data, the researchers compare this data with the data acquired 

from the 3D motion capture system. The aim of this study is to predict the 3D motion capture data 

accurately based on data received from eight SRS and validate SRS against the gold standard, 

examining the success of SRS in modeling the kinematic foot-ankle data during the gait cycle. The 

researchers compare the results of the three models to find their strengths and weaknesses during 

the assessment of SRS-based gait data. 

2. Materials and Methods 

In the “Closing the Wearable Gap” paper series [24–26,38], various scenarios have been designed 

and tested to further study the capability and efficiency of SRS in tracking lower body movements. 

In each study, the designed experiments have been modeled and compared to the 3D motion capture 

system data to investigate the performance of SRS. In Part II [24], four primary foot-ankle complex 

movements including DF, PF, INV, and EVR have been assessed separately using four sensors placed 

on the right foot while participants were seated, and best sensor placement has been introduced 

according to the comparison of SRS data with the 3D motion capture system. Part III [25] designed 

more dynamic movements, including slip and trip perturbations while there were two different 

conditions: expected and unexpected. In Part IV [26] of the paper series, which uses the same dataset 

as the present study, the authors designed two different walking paths including a flat surface and a 

cross sloped surface with a 10 degrees incline to analyze gait movement. In all these studies, the 

authors investigate the linear relationship (consisting of a single or multivariable relationship) 

between the SRS capacitance data and angle orientation in the 3D motion capture system, and the 

model performance is based only within a specific gait cycle’s dataset. Another study, Part V of the 

paper series [38], assessed pressure-based SRS against other measurement tools such as pressure mats 

and force plates but, because this study didn’t specifically assess foot-ankle kinematic data, the 

methods and data collected were not considered for this present effort. For this study, the researchers 

create different models including multivariable linear regression, ANN, and LSTM to determine 
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which method explains this relationship most precisely. Further, these models are tested on trials of 

other datasets to see how well they generalize using cross validation. 

2.1. Dataset 

A dataset of 20 participants including 10 men and 10 women provided in [26] was collected for 

this study. In Part IV, participants were chosen so that different shoe sizes be included in the study. 

The 10 male participants’ heights were in the range of 168–193 cm; their mass was in range of 61–117 

kg; and their foot sizes were in the range of 10–13. The 10 female participants’ heights were in the 

range of 158–168 cm; their mass was in range of 50–113 kg; and their foot sizes were in the range of 

5.5–10. Participants had no self-reported history of lower extremity musculoskeletal injuries or 

surgeries and neuromuscular diseases or disorders have been collected. 

In this study, the researchers investigate the data from four SRS (for each foot) placed on the 

foot-ankle to capture four basic ankle movements—PF, DF, EVR, and INV. Sensors have been 

mounted on the socks according to the optimal placements introduced in Part II [24]; PF SRS was 

mounted on the dorsal surface and oriented towards the hallux (big toe) to measure the downward 

movement of the foot; DF SRS was mounted on the heel of the foot to measure the upward movement 

of the foot towards the lower leg; INV SRS was mounted directly over the lateral malleolus (bony 

landmark on the lateral side of the ankle) to measure the movement of the sole (bottom of the foot) 

towards the midline of the body; EVR SRS was mounted directly over the medial malleolus (bony 

landmark on the medial side of the ankle). 

This data constitutes the input space. Data from the right foot and left foot were analyzed 

separately; therefore, eight SRS in total were used. Each participant completed two different 

experiments while wearing a pair of socks with the SRS placed over bony landmarks identified in the 

results of Part II [24], walking on a flat surface and walking on a cross sloped surface with a 10 degrees 

slope. Each participant walked six times across each walkway, generating 12 trials in total. During 

each trial, participants completed two to three complete gait cycles based on their stride length. 

The data was categorized based on the foot the data was collected on and what surface was being 

walked across during the trial. These categories are: walking across the flat surface measuring the left 

foot (WL); walking across the flat surface measuring the right foot (WR); walking across the surface 

where there is forced INV, measuring the left foot (IL); walking across the surface where there is 

forced INV measuring the right foot (IR). 

A 3D motion capture system was used to capture gait during the experimental trials. Kinematic 

data was collected using a 3D motion analysis system that contained 12 Bonita 10 infra-red cameras 

(Vicon, Oxford, UK), which collected the kinematic data at 200 Hz [26]. Retro-reflective marker 

clusters were attached bilaterally using nylon straps with Velcro on the dorsal aspect of the foot and 

shank. MotionMonitorTM software [39] was used to determine the ankle joint center using the centroid 

method by placing a measurement sensor on the medial and lateral femoral condyles, the medial and 

lateral malleoli, and the second distal phalanx [40]. 

The kinematic variables at the ankle were calculated using MotionMonitorTM software through 

the Grood-Suntay angle orientation. The foot and ankle joint centers were defined by putting the tip 

of the measurement stylus on the medial and lateral malleoli and the distal second phalanx. The 

shank was used as the reference point in the software to create the foot in the software [41]. Foot and 

ankle complex movements of PF-DF and INV-EVR were quantified and used as dependent variables. 

2.2. Data Preprocessing 

A few preprocessing steps have been applied to the dataset to make the data easier to model. 

Data preprocessing steps in this study follow the same approach taken in reference [26], therefore 

they will only be briefly mentioned here. The 3D motion capture data was collected at 200 Hz and 

smoothed with a 30 Hz Butterworth filter. SRS data was initially sampled at 25 Hz, which was then 

up-sampled to 200 Hz to match the 3D motion capture data. Next, the two datasets were aligned over 

time using cross-correlation. Finally, individual gait cycles were extracted from each of the trials. 
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Depending on the walking pattern of each participant, two or three complete gait cycles were 

extracted from each trial. 

2.3. Experimental Procedures 

In order to model the relationship between SRS and 3D motion capture data, three different 

approaches have been applied including multivariable linear regression, ANN, and LSTM, which are 

explained in the following sections. The researchers consider data from each participant separately 

when developing models. Since the pattern of walking for everyone is unique and there are many 

factors contributing to the way someone walks, data from different participants should be 

investigated distinctly [42]. In this paper, eight different models for each participant have been 

developed to model the relationship among four categories of data (left foot, right foot, flat surface, 

sloped surface). For each model, four sets of inputs (DF, PF, INV, and EVR SRS) are used to predict 

two sets of output data (sagittal and frontal plane from motion capture). 

2.3.1. Multivariable Linear Regression 

Previous studies using SRS revealed linear modeling could explain the relationship between the 

SRS data (capacitance) and 3D motion capture data (angle) with a minor error. Multivariable linear 

regression is like simple linear regression but with multiple independent variables contributing to 

the dependent variable. In the gait movement, data from all four sensors are used to model each 

movement since the foot-ankle movements are coupled, so a multivariable linear regression model is 

needed using Equation (1): 

�� = � +  ����
(�)

+ ����
(�)

+ ����
(�)

+ ����
(�)

. (1) 

In this equation �� is the estimate of the i-th sample from 3D motion capture data, ��
(�)

 is the i-th 

sample from the j-th sensor and �� is the coefficient of the j-th sensor. In this regression model, we 

employed the least-squares approach to fit the best fitting line on the observations in the experiments 

and predict the α and �� coefficients. 

2.3.2. Artificial Neural Network 

The ANN or multilayer perceptron (MLP) is a network consisting of several neurons and links 

between them, which are loosely inspired by the human brain and allows us to model the relationship 

between dependent and independent variables. ANNs are useful for fitting a model when there are 

complex hidden patterns on data. An ANN has been carried out for prediction of 3D motion capture 

data based on the SRS data. This network consists of three segments: the input layer, a hidden layer, 

and an output layer. In the input layer, there are N neurons equal to the size of the independent 

attributes in the dataset to enter data into the network. The second part of the ANN consists of a 

series of hidden layers which are connected according to the weight vectors. They transform the input 

into something that the output layer can use. Finally, in the output layer, the output of the system 

will be predicted based on the extracted features from the previous layers. 

At the network initialization phase in an untrained model, connections between input and 

output variables will be established according to the randomly assigned weight vectors. At this stage 

the model couldn’t perform better than a random prediction model [43]. Through the training 

process, weight vectors will be updated according to the difference between the prediction of the 

model and the true target value, and they will be adjusted using the least-squares approach. The 

number of hidden layers and neurons in each hidden layer depends on the complexity and the degree 

of nonlinearity in data. If there is no nonlinearity in the data, then there will be no need for hidden 

layers or nonlinear activations in the neurons. After initializing the network, the network should be 

trained. In this phase, the input layer processes the input vectors and then passes the outputs through 

all the layers until they reach the final layer, which predicts the target values. This process is called 

forward propagation. The performance of the network is then evaluated by the difference between 

the target value and the prediction of the network for each data point, which will be considered as 
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the loss function. The last phase in the training network is to adjust the network parameters from the 

model’s errors or misclassifications, which is called backpropagation. In this phase, the error is 

calculated and distributed through the network to update the weight vectors to converge the network 

towards better predictions of target values. The error (E) in each epoch (n) of training will be 

distributed through the network relative to the partial derivative of the error based on each neuron’s 

weight [44]. The weights will be updated using the Levenberg-Marquardt algorithm and Equation 

(2): 

∆ ���(�) = � 
��

����
+ ����(� − 1), 

(2) 

where ωij indicates the weight of j-th neuron in the i-th layer. The parameters η and α are the learning 

rate and momentum, respectively. Momentum determines the effect of past weight changes on the 

direction of weight changes during the training. The network performance improves gradually 

through repeating forward propagation and backpropagation so that the predictions of the model 

get as close as possible to the target values. 

Different network structures have been tested on the dataset for each participant and input-

output combination to determine the best fit for each one. Networks with one and two hidden layers 

were tested and the number of neurons was between 1 and 10. Figure 2 depicts a general form of an 

ANN with two hidden layers. We have an input layer with four neurons designed for input attributes 

including data received from the four SRS placed on the socks. These input variables are fed to the 

NN for training the weight vectors of the network and the output of the NN is the prediction of the 

3D motion capture data. The output layer consists of one neuron producing the output of the 

network. 

DF (pF)

Input layer Hidden layer 1 Hidden layer 2 Output layer

PF (pF)

INV (pF)

EVR (pF)

Frontal or Sagittal 
Plane Angle (°)

 

Figure 2. A general artificial neural network (ANN) structure with two hidden layers. (DF = 

dorsiflexion, PF = plantar flexion, IN = inversion, EVR = eversion). 

2.3.3. Long Short-Term Memory Network 

An LSTM [45] is a special type of RNN architecture that is beneficial when long dependencies 

exist between samples to tackle the RNNs’ vanishing gradient problem. RNNs have been developed 

to tackle sequential datasets. In sequential data, there is a meaningful relationship between samples 

in a dataset, each time step is related to its previous time steps, and RNN cells have a memory that 

can preserve this relationship. RNNs are more likely to be useful when there are short term 

dependencies among data, while LSTMs provide networks with a very powerful approach that can 

handle datasets with long term dependencies. LSTM uses backpropagation through time (BPTT) 

which is a generalization of backpropagation for training and optimizing weight vectors. Observing 

the data in this study, the joint angle values of the foot-ankle complex in each time step aren’t 

separated from each other, and there is a relationship over time between samples. In this section, the 

network consists of seven layers, and Figure 3 shows the network structure. 
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Figure 3. Designed long short-term memory (LSTM) structure. “n” shows the number of neurons in each LSTM layer and “p” shows the probability to exclude 

inputs from activation and weight updates to avoid overfitting. (MSE = mean squared error).
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Each gait cycle represents a sequence, and the dataset in the form of sequences is the input to 

the first layer of the network, which is the sequence layer. In the next layer, which uses 125 hidden 

units, the first LSTM layer is trained. As mentioned before, LSTMs can handle sequences of data. 

LSTM has a memory cell (cell state), that enables the LSTM network to remember values over 

arbitrary time intervals [32], and the network does so using three gates: input gate, forget gate, and 

output gate. To keep the information from previous time steps, LSTM uses the input vector at time 

step t and the cell state (contains information from the previous time steps in the current sequence) 

and hidden state (the output of LSTM block in each time step) of the previous time state (t-1). The 

output of the LSTM block in each time step at the first LSTM layer would be 125 hidden states. 

The dropout layer randomly sets input elements to zero with a given probability and helps 

prevent the network from overfitting. A dropout layer with p = 0.5 is used as the third layer, which 

removes half of the inputs received from the previous layer (first LSTM layer). The data is fed into 

another LSTM layer using 100 hidden units to create a deeper model with more accurate predictions, 

followed by another dropout layer with p = 0.5. Afterward, a fully connected layer combines all the 

features (local information) learned by the previous layers and implements the hidden states in each 

time step to predict the output of models, which is the motion capture output. Finally, the output 

layer (regression layer) calculates the half-mean-squared-error loss of the predictions. Several 

different structures have been implemented and among them, this seven-layer network generated 

the best results. This seven-layer network is implemented to predict the 3D motion capture data based 

on the gait cycle data gathered by the SRS. 

Multivariable linear regression is a simple statistical approach that assumes there is a linear 

relationship between the input variables and the output variables and fits a linear model over the 

data. However, if there are nonlinear relationships among the data, ANNs are a more suitable 

approach to catch the complex structures in the data. Both regression and ANN ignore the 

relationship between time steps in the dataset and consider only one data point at a time, while 

LSTMs using the cell memory, preserving the information from previous time steps. Figure 4 depicts 

the three models’ approaches in using dataset samples during the training phase. 

 

Figure 4. Multivariable linear regression, ANN, and LSTM methods’ approaches in using samples of 

dataset during training phase. (SRS = soft robotics sensors). 

2.4. Validation 

In all models explained in previous sections, cross-validation has been used to split the data into 

a training and testing set in order to train the models and evaluate their performance. In this way, all 

the trials appear in the test set at least once. There were six trials containing 12–18 sequences (gait 

cycles) total collected for each experiment. In multivariable linear regression, four trials are randomly 

selected as training data and the two remaining trials as the test set in each fold to have two-thirds of 
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the data as the training set and one-third as the testing set, which resulted in three-fold cross-

validation. The same approach has been conducted for the ANN, except a validation set is needed as 

well to prevent the model from overtraining. Therefore, four trials are used as the training set, one 

trial as the validation set, and the remaining trial as the test set. LSTM can handle single data points 

as well as sequential data, like gait cycles. LSTM is sensitive to the length of the sequence and is not 

capable of handling the data in the form of long sequences like a complete trial. Therefore, gait cycles 

are considered as individual sequences of data for training and testing LSTM models. Cross-

validation has been implemented to split up the training and testing set for LSTM. In each fold, three 

gait cycles are randomly selected as the testing dataset and the remaining gait cycles are used as the 

training dataset, resulting in four-fold, five-fold, and six-fold cross-validation based on the number 

of completed gaits for each participant. The RMSE was calculated for each model based on the 

difference between model predictions and actual values acquired by the 3D motion capture system. 

Figure 5 provides an overview of the performed steps. 

 

Figure 5. Process flowchart. 

3. Experimental Results and Discussion 

The analysis was done with MATLABTM R2018a. Models were fit separately for all 20 

participants; the mean and standard deviation of RMSE values for all participants are provided in 
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Tables 1 and 2 respectively. Results for all three approaches including multivariable linear regression, 

ANN and LSTM are compared in these two tables. According to the results, the ANN provides lower 

error rates in comparison to the two other methods, and the LSTM performed as the second-best 

model. However, the LSTM and multivariable linear regression models provide almost the same 

error, but the LSTM has more uniform RMSE results as it has the lowest standard deviation according 

to Table 2. The results reveal that there is not a huge difference between errors provided by all three 

approaches, and all perform well on modeling the relationship between SRS and the 3D motion 

capture system. Results disclose that it is more challenging for all models to predict the EVR and INV 

movements which could be explained by the more complex nature of these movements. The angle 

range for these two movements is more restricted, and there is a high potential for coupling with 

movements in the sagittal plane, including DF and PF. 

Table 1. Mean of root mean squared error (RMSE) values in degrees (°) for linear regression, ANN, 

and LSTM. The lower values indicate better performance (FLX = flexion; INV = inversion). 

Model Data Flat Surface   Cross Sloped Surface  Overall 

Mean 
  Right foot Left foot Right foot Left foot  

  FLX(°) INV(°) FLX(°) 
INV(°

) 
FLX(°) 

INV(°

) 
FLX(°) INV(°) (°) 

Linear 

regression  

Train 

set 
3.27 2.76 3.17 2.51 4.15 4.01 3.27 3.70 3.36 

Test set 3.62 3.09 3.62 2.97 5.02 4.95 4.16 4.93 4.05 

ANN 

Train 

set 
2.67 2.25 2.53 1.97 3.64 3.17 2.67 2.86 2.72 

Test set 3.40 2.99 3.16 2.51 4.85 4.32 3.74 4.05 3.63 

LSTM 

Train 

set 
4.58 2.64 3.37 2.46 5.61 3.63 3.78 3.59 3.71 

Test set 4.47 3.08 3.70 2.80 5.74 4.05 4.06 3.89 3.98 

Table 2. Standard Deviation of RMSE values in degrees (°) for Linear Regression and LSTM. The 

lower values indicate better performance (FLX = Flexion; INV = Inversion). 

Method Data Flat Surface   Cross Sloped Surface  Overall 

Std 
  Right foot Left foot Right foot Left foot  

  FLX(°) INV(°) FLX(°) INV(°) FLX(°) 
INV(

°) 
FLX(°) INV(°) (°) 

Linear 

regression  

Train 

set 
0.85 0.78 0.70 0.95 1.82 1.03 0.89 0.89 0.99 

Test set 1.11 1.03 0.92 1.41 2.92 1.45 2.27 1.87 1.62 

ANN 

Train 

set 
2.67 2.25 2.53 1.97 3.64 3.17 2.67 2.86 2.72 

Test set 1.28 1.24 0.84 0.97 2.94 1.69 1.49 1.31 1.47 

LSTM 

Train 

set 
1.11 0.96 0.78 0.66 1.84 1.01 1.09 1.03 1.06 

Test set 1.27 1.01 0.72 0.76 2.38 1.26 1.20 0.96 1.20 

A more detailed comparison of the prediction models has been illustrated with the violin plot of 

the RMSE in Figure 6, which depicts the kernel density distribution of the data at different error 

values. Prediction errors for each modeling approach are shown in separate columns and the subplots 

in each row show the results based on the experiment setting (3D motion capture system output; 

flexion (sagittal plane) and inversion (frontal plane); and designed walking surface; flat surface, and 

sloped surface). In each subplot, the violin plot of RMSE results from the left foot and right foot are 

presented with green and blue colors respectively; also, mean (red squares), median (green circles), 

and interquartile ranges (black line) are illustrated in each plot. The width of each violin plot is related 
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to the percentage of participants having the same error value equal to the value on the y-axis. As we 

see in the violin plots, the lower part of the plots is wider in most of the subplots, which shows that 

a greater portion of prediction errors for the 20 participants places within the lower part of the violin 

plot. 

 

Figure 6. Violin plot of RMSE measurements representing the kernel density distribution and mean, 

median and IQR (difference between 75th and 25th percentiles). 

Violin plots of the sloped surface for flexion output on the right foot represent the existence of 

one or more outliers as these plots have a higher rate of error for all three modeling approaches. In 

order to identify the potential outliers, we investigated the RMSE errors of 20 participants and 

realized that participant 4 has a larger RMSE error for this experiment. When reviewing the playback 

in MotionMonitorTM, it was noted by the researchers that participant 4 walked flat-footed, which may 

have been the cause of error. Figures 7 and 8 compare the SRS data for this experiment for participant 

4 (as an example of someone who walks flat-footed) and 17 (as an example of someone with normal 

gait movement) to provide more insight into the potential reasons behind the higher error rate of 

participant 4 for this particular experiment. Further discussion on potential reasons for outliers can 

be found in [25]. Excluding data from participant 4 will remedy this situation as seen in Figure 9. 
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Figure 7. Data from the right foot SRS in the sloped surface experiment performed by participant 17. 

 

Figure 8. Data from the right foot SRS in the sloped surface experiment performed by participant 4. 
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Figure 9. RMSE results of sloped surface experiments and flexion output for all participants excluding 

participant 4. 

4. Conclusion and Future Work 

In this study, the researchers examined three different modeling approaches for prediction of 

foot-ankle kinematics captured by the 3D motion capture system based on capacitance data collected 

from SRS during gait movement. The aim of this study is to evaluate the performance of SRS in 

analyzing gait movement as a substitute for the 3D motion capture system. Results revealed the high 

performance of the models and the high potential of SRS to be a reliable method for analyzing gait 

movement. All three models performed well, while the ANN provides prediction errors slightly 

lower than linear regression and LSTM. LSTM and linear regression provided almost the same RMSE, 

but the LSTM is computationally expensive. Due to LSTM’s complexity, the researchers were not able 

to design and apply many structures to find the best fitted structure for each participant. Doing so 

might improve the LSTM performance. 

Another interesting point is that in most of the violin plots we see that the prediction error for 

the right foot is a little higher than the left foot. This might be related to the mounting of the SRS or 

3D motion capture clusters. There were several participants with gait patterns that were challenging 

for the models to predict; more investigations should be performed to determine if these occurred 

due to different walking patterns during different trials or if there were some issues regarding how 

the data was collected.  

Future work needs to be done to create generalized models that can predict data for both flat 

and cross-sloped surfaces simultaneously. In addition to better accuracy with predicting joint angles, 

deep learning approaches can be investigating using SRS to detect and classify the eight phases of 

the gait cycle as well as to classify types of gait. 

Limitations: In general, deep learning approaches require a large amount of quality data to be 

successful to train a model that fits the data. In this study we used the dataset from Part IV, and this 

dataset was not originally collected to be modeled by deep learning algorithms. To collect more data 

for training deep learning algorithms, performing longer experiments in order to collect more full 

gait cycles is desired. Furthermore, we strive to develop more generalizable deep learning methods 

that can generalize and not require per-participant training.  

Also, the researchers have only performed data collection on healthy participants to date. In 

future studies, the researchers plan to use the SRS among participants that do have foot-ankle 

impairments or injuries, such as chronic ankle instability, with the ultimate goal for the SRS to detect 

changes in movement kinematics that occur as a result of an injury or long term disability. Deep 

learning models can become more accurate as larger gait datasets are collected on both healthy 

participants as well as those with impairments or recovering from injury. 
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