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ABSTRACT: A method for fitting ab initio determined spin−
orbit coupling interactions, in the Breit−Pauli approximation,
based on quasidiabatic representations using neural network fits is
reported. The algorithm generalizes our recently reported neural
network approach for representing the dipole interaction. The S0,
S1, and T1 states of formaldehyde are used as an example. First, the
two singlet states S0 and S1 are diabatized with a modified Boys
Localization diabatization method. Second, the spin−orbit coupling between singlet and triplet states is transformed to the diabatic
representation. This removes the discontinuities in the adiabatic representation. The diabatized spin−orbit couplings are then fit
with smooth neural network functions. The analytic representation of spin−orbit coupling interactions in a diabatic basis by neural
networks will make accurate full-dimensional quantum dynamical treatment of both internal conversion and intersystem crossing
possible, which will help us to gain better understanding of both processes.

The competition between internal conversion and inter-
system crossing is a topic of considerable current

interest.1−4 Here internal conversion refers to spin conserving,
conical intersection induced nonadiabaticity, and intersystem
crossing refers to spin changing, spin−orbit coupling (SOC)
induced nonadiabaticity. To study this competition, a
Hamiltonian that treats both processes in an even handed
manner is required.
There are two ways to construct a Hamiltonian that treats

both processes: the on-the-fly approach in which at each time
step the available electronic wave functions determine all the
electronic structure data (ESD) needed at that time step;3,4 and
the fit-coupled diabatic state representation approach, in which
the energy, energy gradient, and derivative couplings are
provided from an analytic coupled diabatic state representation
fit to the adiabatic ab initio ESD. The relative merits of these two
approaches have been discussed in the literature.5−7 Treatment
of nonadiabatic dynamics may also require spin−orbit or dipole
interactions. Incorporating these interactions is straightforward
for the on-the-fly approach, since the wave functions are
available at each time step. However, for the fit diabatic
representation approach, to incorporate these terms, new
functional forms and fitting approaches must be devised to
account for the different properties of the additional terms. This
extra effort is justified owing to the high quality of the ab initio
data that can be used in the fit diabatic state approach. Indeed, as
the recent numerical studies of intersystem crossing in
thioformaldehyde by Mai et al. have demonstrated,8 the best
option for ab initio methods for excited-state dynamics studies is
correlated multireference methods, as these methods can

provide the correct description of the potential energy surfaces
(PESs) and the couplings between them over a wide range of
nuclear coordinates. However, due to their high computational
cost, thesemethods are not practical for on-the-flymethods even
for small systems. Thus, when high accuracy is required, fit
representations are essential. This work addresses this issue by
developing a neural network (NN) representation of the spin−
orbit interaction within a diabatic framework appropriate for
nonadiabatic dynamics based on the eigenvectors of the spin-
free nonrelativistic Hamiltonian ĤSF. In this regard, previously,
Eisfeld, Manthe, and co-workers9,10 have studied the reaction
dynamics of vibronically and spin−orbit-coupled F(2P) + CH4
using carefully constructed diabatic representations.
Molecular properties or interactions to be fit by analytic

functional forms must be smooth and continuous functions of
nuclear coordinates. In the adiabatic representation, when it
comes to nonadiabatic processes involving conical intersections
of electronic states, molecular properties/interactions will
exhibit discontinuities, which makes them unsuitable for fitting.
However, when transformed to an appropriate diabatic
representation, the discontinuities at conical intersections
disappear, rendering molecular properties/interactions smooth
functions of nuclear coordinates, which eventually can be fit. For
polyatomic molecules, rigorous diabatic representations do not
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exist,11−13 hence the more precise name is quasidiabatic.
However, the attribute quasi will be omitted below except as
needed for emphasis.
The idea of fitting diabatized molecular properties/

interactions has been successfully demonstrated in our recent
work, in which the diabatized electric dipole and transition
dipole moments of the 1,21A states of ammonia were
represented by smooth artificial NN functions.7 The combina-
tion of an accurate derivative-coupling-based diabatization and
machine-learning tools contributed greatly to the success of that
work. The accurate diabatic representation for 1,21A states of
ammonia was constructed using a derivative-coupling-based
diabatization procedure proposed by Zhu and Yarkony
(ZY),6,14−16 in which the ab initio ESD including energies,
energy gradients, and derivative couplings are simultaneously fit
and diabatized to generate a robust and accurate quasidiabatic
representation. Its accuracy has been not onlymeasured by small
residual derivative couplings but also demonstrated by excellent
agreement with experimentally measured dynamical attributes
in the photodissociation of ammonia.17−20 One potential
problem in fitting these matrix elements is the arbitrary sign of
the interstate matrix elements. In the previous work, we showed
how the arbitrariness in the sign of transition dipole moments
could be removed by a cluster growing algorithm21 with
Gaussian process regression (GPR).22 The diabatized dipole
and transition dipole moments were then accurately represented
by smooth and flexible artificial NN functions.
Motivated by the success of fitting diabatized dipole and

transition dipole moments, in this work, we apply this method to
fit spin−orbit coupling (SOC) in a diabatic representation. This
will enable an accurate and unified description for both internal
conversion and intersystem crossing. This work relies on NN
techniques and wave-function-based, as opposed to molecular-
orbital-based, diabatizations. It is distinct from previous work in
the area, which includes the effective relativistic coupling by
asymptotic representation method of Eisfeld et. al,23 the model
space fitting methods of Zeng24 and of Köppel,25 and other
machine-learning-based approaches.26−29 The result of our fit
can be combined with our NN-based representation of the
diabatic potential energy matrix30−32 to provide the equivalent
of wave-function-based input to standard nonadiabatic
quantum2 or surface hopping3,4,33 dynamics codes.
The photodissociation of formaldehyde will provide an ideal

test for our method.34−43 Photoexcitation of formaldehyde from
singlet ground electronic-state S0 to the first singlet excited-state
S1(n−π*) can lead to both radical dissociation with products H
+ HCO and molecular dissociation with products H2 + CO on
the ground state. Both dissociations can be explained by internal
conversion through either a conical intersection between S0 and
S1 or radiationless decay from S1 to S0. Population in the first
triplet excited-state T1 can also accumulate through intersystem
crossing between S1 and T1, which leads to radical dissociation
on T1. Through an accessible T1/S0 crossing, products on S0 can
also be obtained. To fully investigate the competition between
internal conversion and intersystem crossing in the dissociation
of formaldehyde, an accurate global and unified description for
all three states and the couplings between them is necessary.
The total Hamiltonian Ĥ used to describe both internal

conversion and intersystem crossing will be

H H HSF SO
̂ = ̂ + ̂ (1)

where ĤSF is the electrostatic spin-free part, also known as the
spin-free Born−OppenheimerHamiltonian, and ĤSO is the SOC

term, here in the Breit−Pauli approximation.44,45 The ĤSF
eigenstates |i, S, MS⟩ = Ψi

(a),S,MS(r; R), where MS = −S, −S +
1, ..., S − 1, S, r are the electronic coordinates, and R is nuclear
coordinates, are also eigenstates of Ŝ2 and Ŝz. They are normally
called adiabatic states. The eigenvalues of adiabatic-states
Ei
(a)(R) are the adiabatic PESs. In the case of formaldehyde,

S0, S1, and T1 are the adiabatic states of interest. S0 and S1 are
singlet states with S = 0, and T1 is a triplet state with S = 1. It is
important to note that T1 is threefold degenerate in the absence
of spin−orbit coupling, which includes the states |T1,MS =−1⟩, |
T1, MS = 0⟩, and |T1, MS = 1⟩. S0, S1, and T1 form the adiabatic
basis for formaldehyde, and the corresponding representation is
the adiabatic representation. S0 and S1 are coupled through
derivative couplings, which are singular where potential energy
surfaces for S0 and S1 intersect conically. This singularity also
leads to discontinuities in molecular properties/interactions.
Therefore, the SOCs between the two singlet states and the
triplet state will exhibit discontinuities at the conical
intersections between S0 and S1.
The way to eliminate this singularity is to transform to a

diabatic basis. For the two singlet states, the adiabatic basis and
diabatic basis are connected with each other through an
orthogonal transformation
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where θ(R) is the rotation angle that defines the adiabatic to
diabatic (AtD) transformation. In the diabatic basis or in the
diabatic representation, the singular derivative couplings are
removed, and the residual derivative couplings are negligible.
The discontinuities in molecular properties/interactions will
also disappear.7,46 Since T1 does not interact with S0 or S1
through derivative couplings, S0

(d), S1
(d), and T1 will form a

diabatic basis for formaldehyde. According to eq 2, the SOCs
between S0

(d), S1
(d), and T1 will be linear combinations of those in

the adiabatic representation
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(3)

where MS = 0, ±1.
In the adiabatic representation, the elements of the

Hamiltonian matrix, H(a), for formaldehyde are listed in Table
1. |T1, −⟩, |T1, +⟩, and |T1, 0⟩ are time-reversal-symmetry-

adapted47 triplet states, in which the SOC matrix elements are
real, since the spin−orbit coupling operator is invariant under
time reversal, i.e., Xi, Yi, and Zi (i = 0, 1) are real numbers. The
transformation properties of Xi, Yi, and Zi with respect to
rotation are the same as those of the angular momentum
operator L̂x, L̂y, and L̂z. For more details about SOC in
formaldehyde, please see the Supporting Information. Using eqs

Table 1. Matrix Elements of H(a) for Formaldehyde

Ĥ |S0⟩ |S1⟩ |T1, −⟩ |T1, +⟩ |T1, 0⟩

⟨S0| E(S0) 0 X0 Y0 Z0

⟨S1| 0 E(S1) X1 Y1 Z1

⟨T1, −| X0 X1 E(T1) 0 0
⟨T1, +| Y0 Y1 0 E(T1) 0
⟨T1, 0| Z0 Z1 0 0 E(T1)
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2 and 3, the elements of H(d), the diabatic representation for
formaldehyde, can be obtained and are shown in Table 2.
As noted above, the key to obtaining smooth and continuous

diabatized molecular properties/interactions is a proper
diabatization method that can remove the singularities in
derivative couplings at conical intersections. In this work, a
diabatization scheme distinct from that used in the ammonia
work described above, a generalized form of the property-based
Boys localization (BL) diabatization,48 is employed. The
molecular property used in the BL diabatization is the electric
dipole moment. For the diabatization of ith and jth adiabatic
electronic states, the rotation angle that defines the AtD
transformation satisfies following condition

G O

G O
tan 4

2
ij

i j
a

i j
a

i j
a

i j
a

,
( )

,
( )

,
( ) 2

,
( ) 2θ =

·

− (4)

whereGi,j
(a) = 1/2(μi

(a)−μj(a)), andOi,j
(a) = μij

(a). μij
(a) is the transition

dipole moment between the ith and jth states, and μi
(a) and μj

(a)

are the dipole moments of ith and jth states, respectively. BL
diabatization can remove singular derivative couplings at conical
intersections. However, it also creates erroneous diabolical
singularities where actual derivative couplings are finite.49−52

These diabolical singularities can be removed by introducing a
simple modification of eq 4, giving

E E
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where w is an adjustable parameter.50

Apart from the singularity in derivative coupling, a conical
intersection also produces the geometric phase effect.53−59

When moving along a closed path surrounding the conical
intersection, the real adiabatic electronic wave functions will
exhibit a sign change, making adiabatic electronic wave functions
double-valued. Correspondingly, in a diabatization, the rotation
angle will change by π. Considering that H11

(d), H12
(d), and H22

(d) are
all periodic functions of the rotation angle with a period of π,
they will remain single-valued despite the π change in rotation
angle. Therefore, the value of θij that satisfies eq 5 should cover a
r a n g e o f π . L e t n = 2 G i , j

( a ) ·O i , j
( a ) a n d

d E EG O( ) ,i j
a w

i
a

j
a

i j
a

ij,
( ) 2

4
( ) ( ) 2

,
( ) 22

θ= ∥ ∥ + − − ∥ ∥ can be ob-

tained through

n d katan2( , )
4ijθ π= +

(6)

where the two-argument inverse tangent function atan2(y, x) is
used, and k = 0,± 1. It is easy to show that eq 6 satisfies eq 5 and

( ),i j, 2 2
θ ∈ − π π , which is a range of π. To obtain the correct θij,

the sign of transition dipole moment μij, which is arbitrary due to
the arbitrary phases of electronic wave functions in ab initio
calculations, and the value of k have to be (manually) adjusted.

Table 2. Matrix Elements of H(d) for Formaldehyde

Ĥ |S0
(d)⟩ |S1

(d)⟩ |T1, −⟩ |T1, +⟩ |T1, 0⟩

⟨S0
(d)| E(S0) cos

2θ + E(S1) sin
2θ [E(S0) − E(S1)] cos θ sin θ X0 cos θ − X1 sin θ Y0 cos θ − Y1 sin θ Z0 cos θ − Z1 sin θ

⟨S1
(d)| [E(S0) − E(S1)] cos θ sin θ E(S0) sin

2θ + E(S1) cos
2θ X0 sin θ + X1 cos θ Y0 sin θ + Y1 cos θ Z0 sin θ + Z1 cos θ

⟨T1, −| X0 cos θ − X1 sin θ X0 sin θ + X1 cos θ E(T1) 0 0
⟨T1, +| Y0 cos θ − Y1 sin θ Y0 sin θ + Y1 cos θ 0 E(T1) 0
⟨T1, 0| Z0 cos θ − Z1 sin θ Z0 sin θ + Z1 cos θ 0 0 E(T1)

Figure 1. Adiabatic potential energy surfaces for S0, S1 (left panel), and T1 (right panel) in the two-dimensional space. The inset pictures the minimum
energy conical intersection (MEX) between S0 and S1, where R(CO) = 2.238 bohr, R(CH1) = 2.076 bohr, R(CH2) = 3.692 bohr, ∠H1CH2 = 65.45°,
∠H1CO = 139.04°, and ∠H2CO = 107.84°.
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To illustrate that the discontinuities in adiabatic SOCs can be
removed through diabatization, an analysis of the SOCs of
formaldehyde in a two-dimensional subspace of nuclear
coordinate is performed. The two-dimensional space used
here has its origin at the minimum energy conical intersection
(MEX) between S0 and S1, which is shown in Figure 1. The
geometry of the MEX was optimized by the COLUMBUS
program using multireference configuration interaction
(MRCI) with all single- and double-excitation wave func-
tions.60,61 The COLUMBUS program provides analyticalMRCI
gradients and derivative couplings, which makes it convenient to
locate the MEX. The molecular orbitals are obtained from a
state-averaged multiconfiguration self-consistent field treatment
that averages two singlet states and one triplet state with equal
weights and a full valence active space (10 electrons, 9 orbitals).

The basis set used is cc-pVTZ. As can be seen in Figure 1, the
CH2 distance at the MEX is rather large (3.692 bohr), forming a
quasiradical structure. Direct dissociation through this conical
intersection explains the radical products as produced through
internal conversion from S1 to S0 via the conical intersection.
The two-dimensional space under study is spanned by

R(CH2) and the out of plane angle ϕ between RCH2 and
R RCO CH1× . A 31 × 11 uniform grid was employed, and the
adiabatic energies, dipole moments, transition dipole moments,
and SOCs on the grid were calculated from MRCI wave
functions with the MOLPRO 2012.1 package.62 The only
difference between the COLUMBUS and MOLPRO calcu-
lations is that COLUMBUS program provides an uncontracted
MRCI (uc-MRCI), while MOLPRO uses an internally
contracted MRCI (ic-MRCI). This difference gives rise to a

Figure 2. Rotation angle θ from modified BL diabatization (w = 8 au) in the two-dimensional space. The MEX is marked as a red dot.

Figure 3. (a) Two closed circular paths in the two-dimensional space, Loop1 and Loop2, are shown. The center of Loop1 is theMEX and the center of
Loop2 is the point (R(CH2) = 4.5 bohr, ϕ = 180°). (b) Rotation angle θ on the closed loops as a function of polar angle α, which is defined as the
counterclockwise angle from the vertical axis.
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nonzero energy difference of 123 cm−1 predicted by MOLPRO
at the MEX optimized by COLUMBUS. However, considering
the high energy of MEX (∼36 000 cm−1) relative to the energy

minimum of formaldehyde on S0 surface, this difference is rather
small, indicating that the MEX optimized by COLUMBUS is
very near to that on the MOLPRO surface.

Figure 4. H11
(d), H22

(d) (left panel), and H12
(d) (right panel) in the two-dimensional space.

Figure 5. Adiabatic spin−orbit couplings X0, Y0, and Z0 (upper panel) and X1, Y1, and Z1 (lower panel) in the two-dimensional space.
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Figure 1 shows the adiabatic PESs for S0, S1 (left panel), and
T1 (right panel) in the two-dimensional space. A conical
intersection between S0 and S1 can be observed. Except for this
conical intersection, no sign of other intersections is evident on
any of the three surfaces, which indicates that at least in this case,
S0, S1, and T1 span a clean subspace of electronic states for
diabatization.63 By using eq 5 with a large enough weight (w = 8
au),50 the rotation angle θ in the two-dimensional space is
obtained as shown in Figure 2. Discontinuities in θ can be
observed around MEX (R(CH2) = 3.692 bohr, ϕ = 155.4°).
These discontinuities are not wrong but rather manifestations of
the geometric phase effect (GPE). The GPE can be examined by
investigating the changes in rotation angle along closed paths. In
panel (a) of Figure 3, two closed circular paths in the two-
dimensional space, Loop1 and Loop2, are shown. The center of
Loop1 is the MEX, and the center of Loop2 is the point
(R(CH2) = 4.5 bohr, ϕ = 180°). Loop1 circles the MEX, while
Loop2 does not. Panel (b) of Figure 3 then shows the
corresponding rotation angle along these two paths as a function
of polar angle α, which is defined as the counterclockwise angle
from the vertical axis. Along Loop1, rotation angle θ accumulates
a change of π. On the other hand, along Loop2, the change in θ is
zero, as indicated by the dashed horizontal line. These results are
consistent with the GPE. Correspondingly, the diabatic matrix
elementsH11

(d),H22
(d), andH12

(d) are shown in Figure 4. They all are
smooth and continuous functions of nuclear coordinates, which
also indicates the validity of the modified BL diabatization.
With a valid diabatization in hand, we are in a position to

investigate the SOCs in the adiabatic and diabatic representa-
tions. It was mentioned before that the rotational transformation
property of SOCs (Xi, Yi, Zi) is the same as that of the angular
momentum (Lx, Ly, Lz), which is a pseudovector. In order to
illustrate the SOCs more clearly, each geometry is placed at its
standard orientation to remove the translational and rotational
degrees of freedom. The standard orientation used here also
defines a body-fixed Cartesian frame. The unit vectors for the
body-fixed frame are denoted as ex, ey, and ez. This body-fixed
frame is constructed as follows.With the carbon nucleus taken as
the origin, the oxygen nucleus is placed on the positive x axis.
The positive z axis is set to be along the direction of RCO × RCH

1,
and ey is the cross product of ez and ex.
Figure 5 shows the adiabatic SOCs X0, Y0, Z0, X1, Y1, and Z1 in

the two-dimensional space described above. As can be seen, the
magnitude of SOCs is less than 60 cm−1, which is 2 orders of
magnitude smaller than H12

(d). This means that compared to
internal conversion, intersystem crossing may contribute very
little to the direct dissociation of formaldehyde. However, there
are other factors to consider. Table 3 lists adiabatic energies of
selected critical points of formaldehyde, which include the
energy minimum of S1 (S1min), the saddle point on S1 (S1sadd)

connecting S1min and H + HCO products, the energy
minimum of T1 (T1min), the saddle point on T1 (T1sadd)
connecting T1min and H + HCO products, the minimum
energy crossing point between S0 and S1 (MEX), the minimum
intersystem crossing point between S0 and T1 (MSXS0T1), and
the minimum intersystem crossing point between S1 and T1
(MSXS1T1). These critical points were optimized with
COLUMBUS, and the energies shown in the table are relative
to the global minimum on S0. Ab initio calculations indicate that
PESs for S1 and T1 are parallel to each other over a wide range of
configuration space and cross at geometries with extended CO
bonds at very high energies. For example, MSXS1T1 has a
relatively high energy of 45 162.4 cm−1 and a large CO bond
distance of 3.50 bohr. Considering the small energy gap between
S1 and T1 in these regions (around 3000 cm

−1 at S1min, S1sadd,
and T1min), if the excitation energy of the system is not
sufficient to overcome the barrier on S1, less than 37 000 cm−1

for example, the system will wander around S1min, and the
population on T1 can accumulate in a long time scale via
intersystem crossing between S1 and T1 despite the small spin−
orbit coupling between them. Then, through the intersystem
crossing between S0 and T1, products on S0 can still be
obtained.38 In this regard, note that long time dynamics
simulations are not practical with most on-the-fly methods but
can be easily performed provided analytical surfaces have been
constructed.
We now turn to the key issues in this work: the construction of

a quasidiabatic representation of all the SOC interactions and
their representation by NNs. As can be seen in Figure 5, in the
adiabatic representation, all SOC components have obvious
discontinuities around MEX. These discontinuities cannot be
fit; therefore, a smooth and continuous analytic representation
for adiabatic SOCs is not possible. Clearly, an AtD trans-
formation is called for. However, as we will show below, care
must be exercised, since one cannot choose the diabatization
arbitrarily. A pointwise accurate diabatization should be used, by
which we mean a diabatization for which the singularity in the
spin−orbit coupling (located at RSO) is located at the same R
where the derivative coupling is singular (at RCI). The following
observations are germane. (i) In the absence of a pointwise
diabatization, the singularity in the SOC will not be completely
removed, and the region encompassing RSO and RCI will require
special treatment. (ii) The fit of the diabatization must be
performed after the diabatization is used to remove the SOC
singularity. (iii) A single conical intersection creates singularities
in many SOC terms with dramatically different magnitudes (see
Figure 5). One must consider whether the AtD transformation
and SOC data are sufficiently accurate to provide meaningful
results for all the interactions. (iv) Finally, since all spin orbit
diabatic matrix elements originate from adiabatic matrix
e l e m e n t s a n d a r e e x p r e s s e d a s

HU R r R U R r R( ) ( ; ) ( ) ( ; )S a S M S a S M( ), ,
SO

( ), ,S SΨ Ψ⟨ | ̂ | ⟩′ ′ ′ , where US

and US′ are AtD transformations, several distinct diabatizations
can be applied simultaneously.
First, let us examine the adiabatic and diabatized SOCs along

Loop1 in Figure 6, where the range of polar angle α is adjusted to
[−π, π], X0

(d) = H13
(d), Y0

(d) = H14
(d), Z0

(d) = H15
(d), X1

(d) = H23
(d), Y1

(d) =
H24

(d), and Z1
(d) = H25

(d). As can be seen, all adiabatic SOC matrix
elements (upper row) exhibit a discontinuity at α = 0. However,
after the AtD transformation, the discontinuities disappear, and
the resultant diabatized SOCs (lower row) become smooth and
continuous functions of nuclear coordinates. Figure 7 provides a

Table 3. Adiabatic Energies (cm−1) of SelectedCritical Points
of Formaldehyde

E(S0) E(S1) E(T1)

S1min 6910.2 28 874.4 26 029.0
S1sadd 30 699.3 37 976.4 35 110.9
T1min 7455.4 28 997.8 25 910.7
T1sadd 28 656.3 40 105.6 34 333.0
MEX 36 163.3 36 163.3 35 328.0
MSXS0T1 33 790.4 39 142.7 33 790.4
MSXS1T1 38 583.1 45 162.4 45 162.4
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Figure 6. Adiabatic (upper row) and diabatized (lower row) SOCs along Loop1. The range of α is adjusted to [−π, π].

Figure 7. Diabatized spin−orbit couplings X0
(d), Y0

(d), and Z0
(d) (upper panel) and X1

(d), Y1
(d), and Z1

(d) (lower panel) in the two-dimensional space.
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global view of diabatized SOCs in the two-dimensional space,
where the smoothness of the diabatized SOCs is evident. It is
important to note that the relative phases of the S0, S1, and T1

wave functions in ab initio calculations have been manually
adjusted to obtain smooth diabatized spin−orbit couplings.
To further demonstrate the smooth and continuous character

of the diabatized SOCs, they will be represented by analytical
functions. In this work, feed-forwardNNs are employed to fit the
diabatized spin−orbit couplings. The structure and definition of
the feed-forward NN can be found elsewhere.31 To fit each
spin−orbit coupling matrix element, a feed-forward NN with
structure 2−10−10−1 is used, which means that this NN takes
R(CH2) and ϕ as input, has two hidden layers, both of which

have 10 neurons, and gives a scalar output. The transfer function
in the first and second layers is a hyperbolic tangent function f(x)
= tanh(x); in the third layer, it is a linear function f(x) = x. The
training of an NN produces optimized NN parameters λ by
minimizing the following performance index

P X X( )
1
2

( )
q

Q

q
d

q
d

1

( ) ( ),fit 2∑λ = −
= (7)

whereQ is the number of data points,Xq
(d) is the qth data point of

diabatized spin−orbit coupling matrix element X(d), and Xq
(d),fit is

the corresponding NN prediction for qth data point. The
Levenberg−Marquart algorithm is used to minimize the

Table 4. NN Fitting Results with Smallest RMSEs (cm−1) for Each Diabatized Spin−Orbit Coupling Matrix Elementa

no. RMSE(X0
(d)) RMSE(Y0

(d)) RMSE(Z0
(d)) RMSE(X1

(d)) RMSE(Y1
(d)) RMSE(Z1

(d))

1 0.0199 (0.088%) 0.0071 (0.142%) 0.0041 (0.064%) 0.0293 (0.133%) 0.0073 (0.151%) 0.0091 (0.108%)
2 0.0199 (0.088%) 0.0071 (0.142%) 0.0042 (0.065%) 0.0297 (0.134%) 0.0073 (0.151%) 0.0093 (0.110%)
3 0.0201 (0.089%) 0.0071 (0.142%) 0.0043 (0.067%) 0.0298 (0.135%) 0.0078 (0.161%) 0.0096 (0.113%)
4 0.0202 (0.090%) 0.0072 (0.144%) 0.0043 (0.067%) 0.0318 (0.144%) 0.0084 (0.174%) 0.0096 (0.113%)
5 0.0202 (0.090%) 0.0072 (0.144%) 0.0044 (0.069%) 0.0323 (0.146%) 0.0089 (0.184%) 0.0097 (0.115%)
6 0.0203 (0.090%) 0.0072 (0.144%) 0.0044 (0.069%) 0.0325 (0.147%) 0.0092 (0.190%) 0.0097 (0.115%)
7 0.0203 (0.090%) 0.0072 (0.144%) 0.0044 (0.069%) 0.0328 (0.149%) 0.0094 (0.194%) 0.0098 (0.116%)
8 0.0205 (0.091%) 0.0072 (0.144%) 0.0044 (0.069%) 0.0331 (0.150%) 0.0094 (0.194%) 0.0098 (0.116%)
9 0.0206 (0.091%) 0.0072 (0.144%) 0.0045 (0.070%) 0.0336 (0.152%) 0.0095 (0.196%) 0.0098 (0.116%)
10 0.0207 (0.092%) 0.0072 (0.144%) 0.0045 (0.070%) 0.0338 (0.153%) 0.0095 (0.196%) 0.0100 (0.118%)
final 0.0197 (0.087%) 0.0070 (0.140%) 0.0042 (0.065%) 0.0300 (0.136%) 0.0078 (0.161%) 0.0093 (0.110%)

aThe corresponding NRMSEs are listed in parentheses.

Figure 8. NN fitted diabatized spin−orbit couplings X0
(d),fit, Y0

(d),fit, and Z0
(d),fit (upper panel) and X1

(d),fit, Y1
(d),fit, and Z1

(d),fit (lower panel) in the two-
dimensional space.
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performance index. It is very numerically robust and can achieve
convergence very quickly.64 For each spin−orbit coupling
matrix element, a total of 341 data points were assembled. Before
fitting, the data were normalized linearly to fall into a standard
range [−1,1]. In each training, all the data points were randomly
divided into training set (90%) and validation set (10%), and an
early stoppingmethod was employed to avoid over fitting, where
training is stopped if the error on the validation set goes up for
several iterations.65 In order to achieve the best results, 50
trainings with different initial parameters were performed, from
which the fittings with smallest root-mean-square error on the
whole data set were selected as the optimal results. The
definition of root-mean-square error is

X
X X

Q
RMSE( )

( )
d q

Q
q
d

q
d

( ) 1
( ) ( ),fit 2

=
∑ −=

(8)

Table 4 lists 10 fitting results with the smallest RMSEs for
each diabatized SOC matrix element. The corresponding
normalized root-mean-square error (NRMSE) for each
diabatized SOC matrix element is also listed in parentheses.
The NRMSE is defined as

X
X

X X
NRMSE( )

RMSE( )

max( ) min( )
d

d

d d
( )

( )

( ) ( )
=

− (9)

The NRMSE facilitates comparison of the fitting results for
different diabatized SOC matrix elements, which have different
scales. As can be seen in Table 4, the NRMSEs are very small,
showing that NNs can accurately reproduce the fitting data. The
NRMSEs of different diabatized SOC matrix elements are of
similar magnitude, which is expected since the fitting data have
been normalized before fitting. The SOC matrix elements that
have larger magnitude will then have larger RMSEs, which
explains the larger RMSEs for X0

(d) and X1
(d) when compared to

those for the Y(d) and Z(d) counterparts. The final NN result for
each diabatized spin−orbit coupling matrix element is chosen as
the average of the 10 fits with the smallest RMSEs. By averaging
multiple results, more accurate results can be obtained.66−68 The
RMSEs (NRMSEs) for final results are also listed in Table 4.
Figure 8 presents the NN fitted SOCmatrix elements in the two-
dimensional space. None of the NN fitted elements show any
sign of oscillations. The NN model can interpolate very well
between data points, and the smoothness is thus evident.
In summary, in this work, we have demonstrated that another

molecular interaction spin−orbit coupling can be diabatized and
fit with artificial neural networks. This will allow the fit-coupled-
surfacemethod in the diabatic representation to be used to study
the competition between internal conversion and intersystem
crossing very accurately. The singlet-states S0 and S1 and a triplet
T1 state of formaldehyde were studied as a test example. The
spin−orbit couplings between S0, S1, and triplet T1 were
analyzed in a two-dimensional subspace of nuclear coordinate
space. First, a modified Boys localization diabatization method
was employed to diabatize S0 and S1. It generates a proper
diabatic representation that can remove singular derivative
couplings at conical intersections and is free from the unphysical
diabolical singularities. Then the spin−orbit couplings were
transformed to the diabatic representation. In the diabatic
representation, the discontinuities in spin−orbit couplings
around a conical intersection are removed, and the resultant
diabatized spin−orbit couplings become smooth and continu-
ous functions of nuclear coordinates. Finally, the diabatized

spin−orbit couplings were accurately fit by smooth and
continuous neural network functions, which serve to confirm
the smoothness and continuity of the representation and is of
practical utility.
Thus, this work provides an initial example of a robust

procedure for fitting spin−orbit couplings obtained initially in
the convenient adiabatic eigenstate representation using a
standard diabatic representation and neural networks and
demonstrates that an analytic representation of spin−orbit
couplings is possible despite the presence of conical
intersections. To fully study the competition between internal
conversion and intersystem crossing in the photodissociation of
formaldehyde, a subject with a long history,69 a global
description is indispensable. This is the direction to be pursued
in our future work. In that work, the domain of the H(d) will be
extended to all dynamically relevant regions, using the
trajectory-guided point sampling approach.15 Another impor-
tant issue to be addressed in that work is how to remove the
arbitrariness in the phases (signs) of electronic wave functions in
ab initio calculations. This arbitrariness leaves the signs of
transition dipole moments between S0 and S1 and the spin−orbit
couplings between singlet states and triplet state undetermined.
In this work, the signs of transition dipole moments, the value of
k in eq 6, and the signs of spin−orbit couplings have been
manually adjusted to achieve smoothness in H(d). Based on the
smoothH(d) in the two-dimensional subspace used in this work,
the sign consistency can be achieved globally by a cluster
growing algorithm, the success of which has been reported
previously.7,21 Finally the global H(d) can be fit with neural
networks.
With this fit accomplished, we will have constructed a fit

diabatic representation based on high quality ab initio data of the
diabatic potential energy matrix, the dipole and transition dipole
moments, and the spin−orbit interaction for S0, S1, and T1 using
neural networks. Considering the low number of nuclear degrees
of freedom (6) in formaldehyde, full-dimensional quantum
dynamics simulations will be feasible, enabling treatments of
photodissociation of unprecedented accuracy.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c00074.

Symmetry analysis of the adiabatic SOCs for form-
aldehyde (PDF); the codes, fitting data, and details of
neural networks fitting are attached (CODE) (ZIP)

■ AUTHOR INFORMATION

Corresponding Authors
Yafu Guan−Department of Chemistry, Johns Hopkins University,
Baltimore, Maryland 21218, United States; Email: yguan15@
jhu.edu

David R. Yarkony − Department of Chemistry, Johns Hopkins
University, Baltimore, Maryland 21218, United States;
orcid.org/0000-0002-5446-1350; Email: yarkony@jhu.edu

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpclett.0c00074

Notes
The authors declare no competing financial interest.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://dx.doi.org/10.1021/acs.jpclett.0c00074
J. Phys. Chem. Lett. 2020, 11, 1848−1858

1856

https://pubs.acs.org/doi/10.1021/acs.jpclett.0c00074?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.0c00074/suppl_file/jz0c00074_si_001.zip
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yafu+Guan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:yguan15@jhu.edu
mailto:yguan15@jhu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+R.+Yarkony"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-5446-1350
http://orcid.org/0000-0002-5446-1350
mailto:yarkony@jhu.edu
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c00074?ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://dx.doi.org/10.1021/acs.jpclett.0c00074?ref=pdf


■ ACKNOWLEDGMENTS
This work is supported by National Science Foundation grant
CHE 1663692 to D.R.Y. The authors acknowledge a generous
grant of computer time from the Maryland Advanced Research
Computing Center (MARCC) and from the National Energy
Research Scientific Computing Center (NERSC).

■ REFERENCES
(1) Marian, C. M. Spin−orbit coupling and intersystem crossing in
molecules. WIREs Comput. Mol. Sci. 2012, 2, 187−203.
(2) Curchod, B. F. E.; Rauer, C.; Marquetand, P.; Gonzaĺez, L.;
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