
Identifying Privilege Separation
Vulnerabilities in IoT Firmware

with Symbolic Execution

Yao Yao1,2, Wei Zhou2, Yan Jia1,2, Lipeng Zhu1,2, Peng Liu3,
and Yuqing Zhang1,2(B)

1 School of Cyber Engineering, Xidian University, Shaanxi, China
2 National Computer Network Intrusion Protection Center,
University of Chinese Academy of Sciences, Beijing, China

zhangyq@nipc.org.cn
3 College of Information Sciences and Technology, Pennsylvania State University,

State College, PA, USA

Abstract. With the rapid proliferation of IoT devices, we have wit-
nessed increasing security breaches targeting IoT devices. To address
this, considerable attention has been drawn to the vulnerability discov-
ery of IoT firmware. However, in contrast to the traditional firmware
bugs/vulnerabilities (e.g. memory corruption), the privilege separation
model in IoT firmware has not yet been systematically investigated. In
this paper, we conducted an in-depth security analysis of the privilege
separation model of IoT firmware and identified a previously unknown
vulnerability called privilege separation vulnerability. By combining load-
ing information extraction, library function recognition and symbolic
execution, we developed Gerbil, a firmware-analysis-specific extension
of the Angr framework for analyzing binaries to effectively identify priv-
ilege separation vulnerabilities in IoT firmware. So far, we have evalu-
ated Gerbil on 106 real-world IoT firmware images (100 of which are
bare-metal and RTOS-based device firmware. Gerbil have successfully
detected privilege separation vulnerabilities in 69 of them. We have also
verified and exploited the privilege separation vulnerabilities in several
popular smart devices including Xiaomi smart gateway, Changdi smart
oven and TP-Link smart WiFi plug. Our research demonstrates that an
attacker can leverage the privilege separation vulnerability to launch a
border spectrum of attacks such as malicious firmware replacement and
denial of service.

Keywords: Internet of Things · Firmware analysis ·
Privilege separation

1 Introduction

According to latest report [6], the IoT device has eclipsed the mobile phone as
the most common connected device by 2018, which means we have been living
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 638–657, 2019.
https://doi.org/10.1007/978-3-030-29959-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_31&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_31

Identifying Privilege Separation Vulnerabilities in IoT Firmware 639

in a world surrounding by IoT devices. Through interacting with IoT cloud,
mobile app, and other entities, IoT devices allow users to monitor and control
their living spaces from anywhere at any time. When the user is at home, he
can directly send a command to the devices to control it through his mobile
app. If he is not in the same LAN with the IoT devices, he still can monitor and
control the devices via the IoT cloud. The cloud will forward the command to the
devices. Meanwhile, we observe that some operations are performed only when
the IoT device is interacting with the IoT cloud, while some other operations are
performed only when the device is physically touched (e.g., pushing a button)
by a human user. Hence, whether an operation is legitimate (i.e., legal) depends
on whom the IoT device is interacting with. One goal of the attacker could be
maliciously “confusing” the firmware running on the device in such a way that
illegal operations get performed. For example, if a user wants to rebind a smart
cleaning robot to another account, the user has to physically press a button on
the robot to reset it into the initial state. However, if the rebind operation could
accidentally be carried out through commands sent by mobile app or cloud, this
would give an opportunity for attackers to bind the device with the attacker’s
account without physical access.

To understand why an operation triggered by physically pushing a button
could be accidentally carried out through commands sent by a mobile app or
cloud, we have conducted in-depth root cause analysis and found that the main
root cause is as follows. (a) We found that when an operation triggered by
physically pushing a button is being performed on an IoT device, one set of
functions in the firmware binaries will be executed. We denote this set as set
A. (b) We found that when a command sent by a mobile app, cloud or other
entities is being executed on the IoT device, other sets of functions will be
executed. According to sender entity of the command, we denote the set as
set B, C and so on. (c) We found that when the intersection of set A and set
B or C is not empty, the attacker could be provided with the above-mentioned
attacking opportunity. Since the IoT devices are interacting with various entities
such as mobile apps, IoT cloud, gateway, etc., if any two sets are overlapped,
it may cause potential risks. The root cause we found is essentially a privilege
separation vulnerability.

Although researchers have made great efforts in IoT security, we found they
still focus on the classic security issues in IoT research such as privacy leak [9,24],
authentication bypass [14,18] and memory corruption flaws [2]. To our knowl-
edge, few studies have been systematically conducted on privilege separation
vulnerabilities involved in IoT firmware. Furthermore, state-of-the-art dynamic
and static firmware analysis approaches [7,20,23,25] have limited ability to ana-
lyze the lightweight IoT firmware (i.e., RTOS-based or bare-metal firmware) in
large-scale, let alone identify logic privilege separation vulnerabilities due to fol-
lowing challenges. To begin with, converting a lightweight firmware image into an
object that can be statically or dynamically analyzed is an open problem [18]. It
is not clearly known how to identify the necessary loading information, e.g., load
base address architecture and segmentation information, due to the unknown
executable and linkable format of the lightweight firmware, which puts a

640 Y. Yao et al.

barrier to take advantage of current binary code analysis tools (e.g., IDA Pro [15]
and Angr [19]). Also, existing solutions for dynamical analysis of IoT firmware
are far from mature. They are usually designed only for a Linux-based operat-
ing system [23], or must be tightly coupled with real hardware environment [25].
However, a large number of real-world IoT devices run RTOSs or bare-metal sys-
tems. How to test a variety of lightweight firmware images without real devices
remains challenging. Furthermore, even if symbolically executing only a path of
IoT firmware, it might also get stuck with path explosion caused by the infinite
loops or complex calculation functions such as AES encryption.

To systematically detect the privilege separation vulnerabilities in a variety
of IoT firmware, we first collected and analyzed the popular IoT binary formats,
and implemented a tool to automatically extract the loading information from
IoT firmware. Since symbolically executing entire binary IoT firmware without
full-system emulation is not feasible, we developed an assistant tool to slice the
part of IoT firmware where most likely exist privilege separation vulnerabilities
and slice this portion of code for the symbolic execution. Next, we designed and
implemented a path exploration scheme on the top of symbolic execution. It
can skip complex library functions via library function recognition to mitigate
path explosion and is also able to restore indirect call to explore deeper paths.
Finally, we combined the above approaches together as a novel dynamic anal-
ysis framework called Gerbil for detecting privilege separation vulnerabilities
in large-scale IoT firmware. According to Gerbil output, we successfully iden-
tify privilege separation vulnerabilities in 60 real-world IoT firmware. Through
further verification, we found the most of them can be exploited.

In summary, our contributions are as follows:

1. We performed the first in-depth analysis of the privilege separation vulnera-
bility associated with IoT firmware to fill gaps in previous research.

2. We developed an extension of the Angr framework for IoT firmware analy-
sis including loading information extraction, library function recognition and
indirect control flow recovery.

3. We designed and implemented a path exploration scheme on the top of sym-
bolic execution to explore more paths, mitigate the path explosion and output
more meaning path constrains at same time.

4. We successfully discovered privilege separation vulnerabilities in 69 out of 106
real-world IoT firmware images and evaluated the hazards of the privilege
separation vulnerability with several real smart devices.

We are releasing Gerbil as an open-source tool in Github repo1 in the hope
that it will be used for further IoT firmware analysis research.

2 Background

In this section, we first introduce the general privilege separation model
involved in real-world IoT firmware. Then, we demonstrate the potential
1 https://github.com/daumbrella/Gerbil.

https://github.com/daumbrella/Gerbil

Identifying Privilege Separation Vulnerabilities in IoT Firmware 641

privilege separation vulnerability behind this model. Note that to clarify the
remainder of the presentation, we highlight the key terminologies in bold.

task_main

process_cmd_from_localprocess_cmd_from_cloud

func_0x442018func_0x4447B0ssl_recv

func_0x45498C

extract_cmds

cmd_unbind cmd_rebootcmd_readDID

func_0x441E18

func_0x51A97C func_0x51AC34 func_0x52E8C0 func_0x53CF98

func_0x440010

Function name Function name Function name Function name

Functions in neither sub-
graph U nor sub-graph R.

Functions in sub-graph U. Functions in sub-graph R. Shared functions.

...

func_0x4D5A34

...

tcp_recv

Fig. 1. A part of call graph of an IoT firmware image. (Color figure online)

2.1 Privilege Separation Model Involved in IoT Firmware

IoT devices are designed to interact with human beings via mobile app, cloud or
physical access (e.g., pushing a button), to perform a variety of operations. Thus,
the main logic of IoT firmware is to perform specific operations corresponding to
different commands sent by its interactive entities (e.g., the mobile app, the IoT
cloud, and the gateway). To be specific, after receiving messages from various
interactive entities, the device deciphers and parses the messages and performs
the specific tasks corresponding to the commands extracted from the messages.

Figure 1 shows the call graph of the major functions of task main (generated
by disassembling the firmware) which is responsible for processing all receiving
network data. Some library functions have been renamed according to their orig-
inal semantic. Section 3.2 details how we recognize library functions. Each node

642 Y. Yao et al.

denotes a function and each edge represents the calling relationship between two
functions. To finally finish the tasks corresponding to a specific command in the
interactive message, a sequence of functions will be invoked. Thus, the collec-
tion of functions in the execution path from receiving a message to executing
a specific command can be considered as an individual call sub-graph of the
whole call graph in IoT firmware. For instance, as shown in Fig. 1, to perform
a remote “unbind” command received from ssl recv function, the sub-graph U ,
which is indicated in red will be invoked, while the sub-graph R, which is used
to handle a local “reboot” command from tcp recv function is indicated in blue.
The functions shared by multiple sub-graph U and R are in green. We refer to
a function shared by two or more call sub-graphs as shared function.

There are two kinds of key function in a call sub-graph. The caller function
represents the highest node (i.e, start point) of a call sub-graph. For example,
function process cmd from cloud function and process cmd from local in Fig. 1
are the caller functions of sub-graph U and R respectively. We refer to the
caller function used to process commands from local interactive entities such as
a mobile app and a gateway as a local caller function. The caller function used
to process commands from a remote interactive entity (i.e., the IoT cloud) is
a remote caller function. The caller function used to process commands corre-
sponding to physical access is a physical caller function. The command func-
tion represents the nearest node to the last shared functions in a call sub-graph,
which is always the first function used to perform a specific command (e.g.,
cmd reboot and the cmd unbind in sub-graph U and R in Fig. 1). Similar to
caller function, generally the three most common kinds of command functions
in IoT firmware are local, remote and physical.

In addition, commands sent by different interactive entities usually serve
different purposes. For example, remote commands sent by the cloud are usually
responsible for device management services such as unbinding the device with
an owner and updating the firmware, while the device control commands (e.g.,
turn on/off the device) are usually sent by a mobile app locally. To this end, the
developer should implement a strict privilege separation model to divides a
firmware into parts and grant each part with different privileges to finish specific
tasks through letting the IoT device perform certain operations.

2.2 Privilege Separation Vulnerability

Ideally, if an IoT firmware image strictly implements the privilege separation
model, its call graph should have the following property: the two sub-graphs
of any two different caller functions should not have any common nodes unless
the common nodes have identical set of descendant (callee) nodes in the two
sub-graphs. For instance, the shared function func 0x442018 only calls shared
function func 0x441E18 function in sub-graph U or R. However, due to time-
to-market pressure and the limited storage space of IoT devices, we found that
developers usually implement some over-privileged shared functions which
can be reached from different caller functions but can also call different command
functions in real-world IoT firmware. Due to the over-privileged shared function,

Identifying Privilege Separation Vulnerabilities in IoT Firmware 643

Path1: caller1->FA
-> FV->CmdA
Constraints Of path1:

Back-end

Loading
Information
Extraction

Caller1

CmdA

Path2: caller2-> FV-
>CmdA
Constraints of path2:

Fore-end

...
Symbolic
Execution

Library Function
Recognition

Path Exploration
Scheme

User-defined Slice
Specification

Open SDKs

IoT
Firmware Over-privileged funtion:

FV in Path1 and Path 2

Caller2

CmdB

Fig. 2. Gerbil overview.

there will be an execution path from the caller function of one sub-graph to
the command function which belongs to another sub-graph with different caller
function. We call such an unexpected execution path as a privilege separation
vulnerability.

As an example, the extract cmds function in Fig. 1 can be reached from caller
function process cmd from cloud in sub-graph U , but it can also be reached from
process cmd from local in sub-graph R. Thus, extract cmds function is an over-
privileged shared function. Consequently, an unexpected execution path from the
process cmd from local function to the func unbind function can be triggered. In
this case, a local attacker has a chance to send a remote “unbind” command to
the device to unbind user’s device unconsciously. Other severe consequences can
happen when IoT firmware opens up other unexpected execution paths. We dis-
cuss further attack effects through exploiting privilege separation vulnerability
with real-world IoT firmware in Sect. 4.4.

3 Gerbil Framework Design and Implementation

In this section, we detail the design and implementation of core components
of Gerbil as shown in Fig. 2. Gerbil is a firmware-analysis-specific extension of
Angr [19], which is a python framework for analyzing binaries. Angr combines
both static and dynamic symbolic analysis; accordingly, the fore-end modules
of Gerbil are used to extract loading information and restore library function
semantic of IoT firmware. In the back-end, we propose a novel path exploration
scheme on top of the symbolic execution engine of Angr to mitigate the path
explosion and explore more promising paths for IoT firmware. Furthermore,
to effectively identify privilege separation vulnerabilities, the user-defined slice
specification could help the analyst to slice the firmware which parts is most
likely to contain privilege separation vulnerabilities for symbolic execution.

644 Y. Yao et al.

3.1 Loading Information Extraction

Before analyzing firmware, the analysis tools have to know the basic load-
ing information, including architecture, base address, entry point, segmenta-
tion information, etc. For Unix-based (e.g., Linux) firmware they usually adopt
the common standard executable and linkable format (ELF). Thus, their load-
ing information can be easily extracted from the ELF header of the firmware.
However, many lightweight firmware images (i.e., bare-metal and RTOS-based
firmware) do not have a common fixed binary format and it is generally unknown
for state-of-the-art binary analysis tools to properly initialize the loading envi-
ronment of these firmware.

0 1 2 3 0 1 2 3

|-+|

| Magic = ‘MRVL ’ | SDK version |

|-+|

| Creation time | Number of segments |

|-+|

| ELF version | Segment_i type=0x2 |

|-+|

| Segment_i Offset | Segment_i Size |

|-+|

| Segment_i Load_address | Segment_i CRC32 -checksum |

|-+|

| Segment Data |

|-+|

Listing 1. Binary Format of Marvell MW300/302 MCU (Byte Width)

We found that the lightweight firmware running on the same series of micro-
controllers (MCU) adopts a similar binary format, which can be easily found
in the corresponding public MCU datasheet. In addition, identifying the MCU
model of IoT firmware is also effortless, because it is common practice that devel-
opers hard-code the corresponding MCU model in the firmware. For instance, we
find “MRVL” and “MW300” string in XiaoMi plug firmware, which indicates it
runs on Marvell MW300 MCU. As an example, we show the binary format of the
firmware which runs on Marvell MW300/302 MCU in Listing 1. As indicated by
each field of the binary format, we can easily extract the corresponding loading
information such as load address and segmentation information.

Therefore, we maintained an up-to-date binary format database of popular
IoT MCUs2. Then we implemented a Python script to automatically search the
strings referring to the MCU model in the IoT firmware. If its MCU model
matches one MCU record in the database, the script extracts the loading infor-
mation according to the corresponding binary format. Otherwise, we will try to
find the binary format of this unknown MCU model and add it to our database.

In addition, some functions use absolutely-addressed memory accesses to call
the function pointers stored sequentially in device memory. In most cases, such

2 https://www.postscapes.com/iot-chips-modules/.

https://www.postscapes.com/iot-chips-modules/

Identifying Privilege Separation Vulnerabilities in IoT Firmware 645

memory pointers are hard-coded in the data segment of firmware and loaded to
the memory during booting. Thus, after identifying the data segment of firmware,
we also copy it to the memory map used beforehand by the symbolic execution.

3.2 Library Function Recognition

Typically, to protect the intellectual property of the company, IoT manufactur-
ers have stripped the symbols and most of debug strings. However, to reduce
the time to market and to be compatible with the central IoT cloud interfaces,
manufacturers usually implement the same system and communication libraries
and even common peripheral functions (e.g., FreeRTOS, lwIP and WiFi inter-
faces) in all their firmware. Since these library functions usually take charge of
the core functionality of IoT devices, restoring the original function context of
libraries can greatly minimize the manual work involved in the firmware anal-
ysis, particularly, for security analysis. For example, if we can follow the data
and control flow of specific encryption functions and we are able to locate the
cryptographic keys or the derived key for data encryption and decryption.

To address this challenge, we implemented a function matching algorithm
used by FLIRT [17] to recognize the library functions of IoT firmware. To be
specific, we collected widely used IoT libraries from official GitHub repos of
popular MCU manufacturers and IoT platform providers. Then we compiled
them to conduct a library function comparison with the tested firmware. If a
matching was found, we directly got its semantic and are able to restore it
during static and dynamic analysis.

3.3 Path Exploration Scheme

The original symbolic execution engine of Angr has some drawbacks for exploring
paths of IoT firmware, including overlooking indirect call and path explosion. In
the following, we detail how to solve them in practice. The overview of our path
exploration scheme is shown in Fig. 3.

Adding High-Level Constraints. The original path constraints generated
by Angr are directly based on the byte value of registers and memory, which
is obscure for analyst and inconvenient for further manual analysis. Thus, we
add library function context to the symbolic execution path constraints to pro-
vide more useful and meaning information for analyst. Specifically, if current
jump address is a library function address (line 4 in Fig. 3) we add library func-
tion name and parameters corresponding to the current register values of Sim-
State (which is used to synchronize execution context during symbolic execution
including register value, memory data, symbol variable constraints, etc.) as high-
level constraints to current path constraints.

Skipping Selected Library Function. Library functions are usually irrele-
vant to application-specific logic and most logic vulnerabilities such as our iden-
tified privilege separation vulnerability are associated with application scenar-
ios. Thus, to mitigate the well-known path explosion problem, Gerbil is able

646 Y. Yao et al.

Input: CS /*Current SimState*/
Input: ES /*End Set*/
1: if CS.addr in ES:
2: return CS
3: end if
4: if CS.addr is library function addr:
5: CS.add_high_level_constraints()
6: if library function needs to skip:
7: CS.regs.pc CS.regs.lr
8: CS.regs.r0 symbol value
9: end if
10: if CS.addr is indirect call function addr:
11: CS.regs.pc jump addr
12: end if
13: end if

SimState

User-defined Slice
Specification

Fig. 3. Path exploration scheme (Color figure online).

to exclude the complicated library functions selected by the analyst from sym-
bolic execution and assign a new symbol value as the return value for skipped
functions. Lines 6–9 in Fig. 3 clearly demonstrate this process.

Indirect Call Restoration. Through manual analysis, we found there are two
kinds of typical indirect call (i.e., callback and message queue) that cannot be
identified by Angr, but have been frequently used in IoT firmware.

A callback, also known as a “call-after” function, is any executable code
that is passed as an argument to other functions that are expected to call
execute the argument under a certain conditions. For instance, as shown in
Fig. 4a, the local/remote process function passes a callback function pointer
tcp/udp calback to tcp/udp register function to parse a network packet. When
the tcp/udp register function receives a network packet, it will automatically call
the callback function. Thus, we consider the function which registers a callback
function to have a call relationship with this callback function.

Message queues are frequently used to send data between functions, which
also implies a indirect call relationship. For example, handle msg function waits
for the data from message queue through recv msg from queue function and
data process function writes processed data to this queue as shown in Fig. 4b.
Therefore, the functions which send and receive the data from the same message
queue have an indirect call relationship.

To add the above indirect call paths to the original execution path, we first
record the address of all functions which have an indirect call relationship with
other functions. Then during symbolic execution, we check whether the current
jump address of the Angr SimState matches these addresses as shown in line 10 in
Fig. 3. If a match is found, we replace the jump address with the indirect function
address in line 11. For instance, when a symbolic execution engine complete the
right red circle function in Fig. 3 which has an indirect call relationship with the
left one, it will not stop exploring this path but continue to execute the left red
function.

Identifying Privilege Separation Vulnerabilities in IoT Firmware 647

tcp/udp_register

local/remote_process

tcp/udp_callback

packet_parse

callback
network
packet

data_process

send_msg_to_queue

handle_msgrecv_msg_from_queue

data

data

Message Queue

Fig. 4. Two typical modes of indirect call in IoT firmware

3.4 User-Defined Slice Specification

Since Gerbil is not a full system emulation, we have to let analysts set the start
and end points of symbolic execution. In this work, we carry out symbolic execu-
tion on the parts of the firmware may occur privilege separation vulnerabilities.
As we mentioned in Sect. 2.2, the privilege separation vulnerability is caused
by over-privileged shared functions involved in the paths from caller functions
to command functions. Thus, we need to set caller functions as start points
and command functions as end points. However, it is difficult to recognize the
call and command functions through manual analysis. We provide an assistant
tool, User-defined Slice Specification, based on the call graph to help analysts
locate the caller and command functions. To provide a more complete call graph
beforehand, we first improve the control flow graph generation tool CFGFast3

used by Angr. To be specific, we restore the indirect control flows as we did in
path exploration scheme implementation. In addition, we also found the func-
tion prologues used by CFGFast to identify the start point of functions were
incomplete, so we also added the missing function prologues for it.

Command Function. Although identifying all interactive commands by man-
ual analysis is impossible, it is simple to find several specific commands. For
example, we can easily find some strings such as “unbind” and “reset” which refer
to the names of specific commands in the firmware, then further identify which
functions use these strings. These functions are the command functions in most
cases. Next, we search the nearest shared parent node of any two command func-
tions, which is most likely to deal with other commands in the call graph. Then
we can use these functions to find more command functions. For instance, as
shown in Fig. 1, the cmd reboot and the cmd unbind functions use “unbind” and
“reset” strings respectively. Their nearest common parent node is extact cmds
and it is also used to call other command functions like cmd readDID. Therefore,
we only ask the analyst to input at least two command functions and our tool
is able to list most command functions in the firmware.

3 https://docs.angr.io/built-in-analyses/cfg.

https://docs.angr.io/built-in-analyses/cfg

648 Y. Yao et al.

Caller Function. In comparison to caller functions, it is much easier to find
functions which are used for receiving the network data at first, because IoT
firmware usually uses common library functions such as ssl recv and tcp recv
to receive network data. Therefore, instead of inputting all the caller function
address, we only ask analyst to input the name of these library functions. After
determining receiving network data functions and commands functions, we can
find all the paths between them. Then we can list all the highest nodes in every
path, which are the caller functions as mentioned in Sect. 2.1.

Note that in case we miss or choose the wrong caller or command functions,
we also provide an interface for analysts to override the output of caller and
command function sets.

3.5 Result Generation

After determining the caller and command function collection, we first input the
caller functions as the start point collection and command functions as the end
point collection to the symbolic execution engine. Then the symbolic execution
engine explores all possible paths based on the path exploration scheme and
outputs possible routes from the caller functions to command functions and
corresponding path constraints. Finally, we mark all the functions (except for
command functions) which can be reached from more than one caller function
as over-privileged shared functions according to our definition in Sect. 2.2. For
example, where the right side of Fig. 3 shows the output of Gerbil, the function
FV can be passed from different caller functions in path 1 and path 2, which is
an over-privileged function.

4 Evaluation

We first evaluate the performance of components of Gerbil and how their capabil-
ities of them benefit IoT firmware analysis. Then we show the result of using Ger-
bil to identify privilege separation vulnerabilities with real-world IoT firmware.
Finally, we elaborate three cases to show how to verify and exploit privilege sep-
aration vulnerabilities based on the Gerbil output results (i.e., identified over-
privileged shared functions).

Gerbil comprises over 1,000 lines Python in total. More specifically, the load-
ing information extraction module has 93 lines, the library function recognition
module (excluding FLIRT library functions) has 288 lines, the path exploration
scheme implement has 460 lines (excluding Angr SDK functions), the assistant
tool used to identify caller and command function collection for used-define pol-
icy has 110 lines and the result generation module has 70 lines. We run Gerbil
on a machine running GNU/Linux Ubuntu 16.04 LTS with a dual-core 3.6 GHz
CPU and 16 GB memory.

Identifying Privilege Separation Vulnerabilities in IoT Firmware 649

4.1 Lightweight Firmware Collection

To protect intellectual property (IP), most IoT device manufacturers do not
make their firmware public especially for the devices running RTOS or bare-
metal systems. Thus, to test how Gerbil deals with diverse lightweight IoT
firmware used in real-world, we first leveraged the phantom devices introduced by
research [22] to download and collect a total of 173 firmware images used by dif-
ferent kinds of IoT devices (e.g., gateways, cameras, air conditioners, etc.) from
cloud service of five popular IoT device vendors including Alibaba, JD, XiaoMi,
TP-Link, and iRobot. In this paper, we focus on the ARM-based and MIPS
microcontrollers which are most widely used in IoT device, thus the firmware
run on other architecture like Xtensa cannot support by most analysis tools such
as Angr are out of our evaluation. Note that the design of Gerbil is applicable
to other architectures as well. We also leave the encrypted firmware out of our
scope. Finally, we evaluated Gerbil on the rest 106 IoT firmware including 100
lightweight firmware images and 6 linux-based firmware images.

4.2 Performance Analysis of Gerbil

Loading Information Extraction. Except for six Linux-based firmware which
can be automatically loaded by Angr, we successfully identified the different
kinds of binary format of all tested lightweight firmware as shown in Table 1.
Then, we extracted all the loading information used by symbolic execution with
100% accuracy. We have shared our collection of all binary formats of lightweight
firmware at GitHub repo4.

Table 1. Accuracy of the loading information extraction

MCU model MW300 RTL8711B RTL8159A RTL8159A HF-MC101 STM32F4

Firmware 43 26 15 11 3 2

Accuracy rate 100% 100% 100% 100% 100% 100%

#: the number of

Library Function Recognition. The IoT library database we collected mostly
from two sources. One is MCU-related SDKs on the official GitHub repos of
popular MCU manufacturers (e.g., Marvell and STMicroelectronics) which are
usually implemented in the firmware running on corresponding MCUs, includ-
ing RTOS and common cryptographic functions and peripheral interfaces. The
another is platform-related SDKs implemented by device vendors to support
devices communicating with popular IoT platform such as Joylink, Alink, MIJIA,
and AWS IoT. Our database contains over 20,000 library functions including
2,893 functions of platform-related SDKs and 17,538 functions in MCU-related
SDKs.
4 https://github.com/daumbrella/LoadLightweightFirmware.

https://github.com/daumbrella/LoadLightweightFirmware

650 Y. Yao et al.

To measure the performance of our library function recognition, we calculated
the ratio of recognized library functions to total functions as shown in Table 2.
The lower rate is mainly due to our insufficient database rather than techni-
cal reasons. For example, we did not gather the MCU-related SDKs running
on RTL8711B, RTL8159A and STM32F4XX MCUs. In addition, the platform-
related SDKs used by tested firmware running on STM32F4XX are previous
versions of those we collected. The technical limitations of our library function
recognition are discussed in Sect. 5.1

Table 2. The recognition ratio of library function recognition

MCU model Platform # Firmware $ Function number Recognition ratio

MW300/302 MiJia 36 2084 21.81%

Joylink 1 1748 23.05%

Alink 2 1707 26.36%

AWS IoT 4 2246 26.97%

HF-MC3000 Alink 3 4957 30.57%

Joylink 8 4191 23.59%

HF-MC101 Joylink 3 2648 78.97%

RTL8711B Joylink 8 4169 2.72%

Alink 18 4156 2.74%

RTL8159A Alink 14 4330 2.76%

MiJia 1 3358 3.25%

STM32F4XX Alink 2 2247 1.29%

#: the number of $: the average of

Control Flow Graph Restoration. To identify caller and command functions
in IoT firmware, we first improve the CFG generation tool used by Angr as we
described in Sect. 3.4. Figure 5a and b show a visualized comparison between
the number of call graph nodes and edges generated by Gerbil and original Angr
with all tested firmware. We can clearly see that Gerbil’s restoration of control
graphs of most tested firmware was significantly improved compared to original
Angr.

4.3 Identifying the Privilege Separation Vulnerability

Gerbil run the 106 test firmware within ten minutes in average (including only
symbolic execution time). Since firmware which runs on devices fabricated by the
same vendor usually adopts the same privilege separation model, the results of
Gerbil’s output are categorized according to device vendor as shown in Table 3.
The results show that Gerbil identified 69 firmware images have one or more
over-privileged shared functions (i.e, privilege separation vulnerabilities). After
manual verification, we found that most privilege separation vulnerabilities can

Identifying Privilege Separation Vulnerabilities in IoT Firmware 651

0

20000

40000

60000

80000

100000

120000
Th

e
nu

m
be

r o
f C

FG
 n

od
es

 in
 e

ac
h

fir
m

w
ar

e Gerbil
Angr

0

20000

40000

60000

80000

100000

120000

140000

Th
e

nu
m

be
r o

f C
FG

 e
dg

es
 in

 e
ac

h
fir

m
w

ar
e Gerbil

Angr

Fig. 5. Comparison of CFG restoration between Angr and Gerbil

be exploited. In general, there are two or three caller functions of one firmware
corresponding to the three different interactive entities (local mobile app, remote
IoT cloud and physical user access). However, the Alibaba devices only sup-
port remote commands, which means there is only one caller function in their
firmware. Thus, their devices are immune to privilege separation vulnerabilities.

Table 3. Detection results of tested firmware

Detection results XiaoMi Alibaba JD TP-Link iRobot

firmware 37 39 20 6 4

vulnerable firmware 37 0 14 4 4

caller functions in each firmware 3 1 2 2 or 3 2

$ command functions in each firmware 36.5 31.3 26.2 21.3 13

#: the number of $: the average of

4.4 Impact Analysis of Privilege Separation Vulnerabilities
Exploitation

In this subsection, we use three vulnerable firmware, including the TP-Link
smart WiFi plug, Xiaomi Smart Gateway and JD smart oven with model
Changdi CRWF321ML, to demonstrate how to exploit our identified privilege
separation vulnerabilities and several attack effects.

TP-Link Smart WiFi Plug. We found one over-privileged shared function
can be reached by remote and local caller functions in the firmware of the TP-
Link smart WiFi plug and 52 command functions can be invoked by this over-
privileged shared function. Thus, we can send remote device control commands
locally. Next, we use an example of how to achieve an illegal device occupation
attack by taking advantage of this over-privileged function.

According to the user manual, we know only one legitimate user is allowed
to bind a TP-Link smart home device at a time. To this end, the TP-Link cloud

652 Y. Yao et al.

assigns a unique device ID (i.e, deviceId) to one device and binds it with one user
account. If other users request to bind the same device again, the cloud will refuse
this request unless the device has already been unbound by the original user. In
addition, we found the command function set device id is normally used by the
IoT cloud to assign deviceId to the device. However, leveraging our identified
over-privileged function, this command can also be performed locally. Therefore,
a local attacker can send a set device id command to change the deviceIdA of a
unsold device to the deviceIdB which has been bound with his account. When
consumers buy this device, they cannot bind it to their accounts, because the
deviceIdB is already bound to the attacker’s account. Worse still, the device
cannot be unbound, because the victim does not have the attacker’s account.
Thus, the attacker can illegally occupy this device forever.

Xiaomi Smart Gateway. Similar to the TP-Link smart plug, the XiaoMi smart
gateway firmware has one over-privileged function shared by local and remote
caller function. Furthermore, all command functions can be directly called by
this function. Therefore, all remote commands can be sent by a local interactive
entity. In addition to abusing the commands which used to complete simple tasks
like setting the device ID in above example, we show how to distribute malicious
firmware to the device through a complicated OTA update command function.

Normally, when new version firmware is available in a cloud, the cloud will
send the download URL to the corresponding device. Then the device downloads
the firmware from the URL. Due to over-privileged shared functions, we can
also trigger this command locally. However, simply invoking the OTA update
command function cannot successfully complete the whole process of updating
firmware. The OTA update function will further call a sequence of functions to
download, parse and verify the firmware. If one function cannot be completely
finished, the whole process will be fail.

To ensure the completion of all necessary functions, we can use Gerbil again
to identify the path constraints. Through manual analysis, we know if firmware
has been successfully updated, the device will reply with a finalization message.
Thus, we input the command function as the start point and functions which
send the finalization message as end point to the Gerbil. According to path
constraints of Gerbil, we can construct a firmware contrived to meet all the
constraints. For example, we found the device uses the MD5 message-digest
algorithm to verify the firmware, so we can calculate the MD5 value matching
our manipulated firmware.

JD Smart Oven with Model Changdi CRWF321ML. There are three
over-privileged shared functions in Changdi smart oven firmware. One of them
can be reached from all three caller functions and invoke most command func-
tions. We identify 22 command functions called by this shared function includ-
ing setting worktime and temperature etc. In contrast to vulnerabilities that
can be successfully exploited, We show some commands cannot be abused by
over-privileged function and explain the reason in this case.

Command function unbind and reset can only be invoked when user physi-
cally pushing the corresponding button on the oven in normal use. Due to the

Identifying Privilege Separation Vulnerabilities in IoT Firmware 653

over-privileged shared function, these functions can also be called by local caller
function. However, we found these two command functions are not successfully
completed if we invoke them from a local or remote caller function. After man-
ual reverse-engineering, we found the button peripheral value will be checked
after these two command functions invoked. Since the value of peripheral regis-
ter can only be changed through physically touching (e.g., pressing or releasing
the button), the oven cannot perform these two commands sent by mobile app
or cloud.

5 Discussion

In this section, we discuss the how to prevent privilege separation vulnerabilities.
At the same time, we also discuss the limitations of Gerbil and how to mitigate
them in our plan for future work.

5.1 Mitigation

Above all, developers should deploy a strict privilege separation model in IoT
firmware. To be specific, operations carried out by the device should be clearly
divided into several mutually independent sets based on interactive entity, e.g.,
cloud-set and local-set. Therefore, depending on which set a command belongs
to, each caller function should be granted appropriate privileges. More impor-
tantly, the control flow and data flow from the cloud caller function, local caller
function and physical caller function should be strictly separated. In addition, if
the developer has to use a shared function to handle commands from different
interactive entities, they should require an additional verification of the identity
of the caller function in the shared function.

As an alternative, the manufacturer can eliminate local interface to IoT
devices, as with Alibaba’s devices. In other words, every command must be
routed to the cloud and IoT devices only accept commands from the cloud. In
this case, even if the user is at home, the commands must go through the cloud,
resulting in a longer latency. However, we argue that latency is not a critical
metric in the smart home scenario, and sacrificing some performance for secu-
rity is worthwhile. In addition, smart devices should enhance authentication of
interactive entities. In the interaction scenarios, the lack of local authentication
makes the privilege separation vulnerability easier to exploit.

5.2 Limitation

First, the function recognition method used by Gerbil is based on the FLIRT
algorithm. However, FLIRT cannot handle the problem of signature conflicts.
Thus, if multiple functions generate the same code signature, only one of them
can be selected for identification. In order to solve the conflict problem, we plan
to integrate other function recognition methods such as the control flow based
method [16] and function semantic based method [12].

654 Y. Yao et al.

Second, using Gerbil to perform symbolic execution requires human inter-
vention. In this work, we have developed an assistant tool to help analyst easily
slice the portion of firmware which is most likely to have privilege separation
vulnerabilities for symbolic execution. However, Gerbil cannot perform symbolic
execution on entire binary firmware images if analysts want to use Gerbil to iden-
tify other kinds of vulnerabilities, they have to rely on manual analysis for the
slice specification. We will integrate other technology like taint track optimize
the Gerbil to minimize manual work.

Third, not all privilege separation vulnerabilities can be successfully exploited
and need to be further verified. Since it is hard to find the entire execution path
for successfully and completely performing one command in firmware, we use
command function which is the first individual function to perform a specific
command as the end point for symbolic execution to identify privilege separa-
tion vulnerabilities. In most cases, if the command functions are invoked, they
will automatically call all necessary program related to finishing the tasks indi-
cated by the corresponding command. However, for some commands associated
with complicated processes like updating the firmware, command function will
carry out some further additional checks to the parameters, as we mentioned in
Sect. 4.4. Thus, the analyst has to invoke target command functions to verify
whether the corresponding commands have actually carried out or not. If not,
the analyst need to do further manual analysis or reuse Gerbil to figure it out.

6 Related Work

We review related research on IoT security from two aspect: privilege manage-
ment and firmware analysis.

Privilege Management. Fernandes et al. [8] revealed that over 55% of Smar-
tApps in Samsung’s store are over-privileged because the privilege management
of capabilities implemented in the programming frameworks are too coarse-
grained. On the other hand, many IoT platforms support trigger-action services
such as IFTTT. Fernandes et al. [10] also found that the OAuth tokens for the
IFTTT services are over-privileged, which can be misused by attacker to invoke
API calls that are outside the capabilities of the trigger-action service itself. Some
corresponding mitigation [11,13,21] also has been proposed. Our work focuses
on the privilege separation model of involved in IoT firmware implementation,
instead of the privilege management problem in IoT cloud services

Firmware Analysis. Several approaches are proposed for detecting the vulner-
abilities in IoT firmware, including static analysis [4], dynamic analysis [1,3,25],
and fuzzing [5,23]. Costin et al. [4] carried out a large-scale analysis of IoT
firmware by coarse-grained comparison of files and modules. Chen et al. [1] pro-
posed and implemented a robust software-based full system emulation, FIR-
MADYNE, based on kernel instrumentation. However, their approaches only
work for Linux-based embedded firmware, whereas a large number of real-world
IoT devices run RTOS or bare-metal systems and have limit ability to find

Identifying Privilege Separation Vulnerabilities in IoT Firmware 655

logic vulnerabilities. Avatar [25] enables dynamic program analysis for embed-
ded firmware by access to the physical hardware, either through a debugging
interface, or by installing a custom proxy in the target environment. However,
such hardware requirements are usually unrealistic for real-world devices (e.g.,
in the presence of locked hardware), and not suitable for testing large-scale
firmware.

For combining static and dynamic analysis, and closest to our work, Firmal-
ice [18], an IoT binary analysis framework, utilizes symbolic execution on the
part of firmware binary to identify the authentication vulnerabilities. Compared
to Firmalice, Gerbil greatly enhances the capabilities for symbolic execution to
deal with unknown lightweight IoT firmware. For example, Gerbil can restore
the library function semantic information in IoT firmware thus it can output
function-level path constraints and skip complicated library functions to miti-
gate path exploration.

7 Conclusion

In this paper, we approached the vulnerability analysis of IoT firmware from a
new angle -the privilege separation model- and identified privilege separation vul-
nerability caused by over-privileged shared function abuse. Then, we presented
Gerbil, a firmware-analysis-specific extension of Angr to detect privilege separa-
tion vulnerabilities in IoT firmware with little manual analysis. The high-level
idea is to identify over-privileged shared functions based on path constraints of
symbolic execution. With the help of Gerbil, we show that privilege separation
vulnerabilities widely exist in real-world IoT firmware. We also demonstrated
how to verify and exploit privilege separation vulnerabilities with real-world
devices. Besides, our evaluation shows that all components of the Gerbil can effi-
ciently help IoT firmware analysis. Finally, we proposed several defensive design
suggestions to prevent the generation of privilege separation vulnerabilities in
the first place and our plan for Gerbil’s future improvement.

Acknowledgments. We would like to thank the anonymous reviewers for their help-
ful feedback. Wei Zhou and Yuqing Zhang were support by National Key R&D Pro-
gram China (2016YFB0800700), National Natural Science Foundation of China (No.
U1836210, No. 61572460) and in part by CSC scholarship. Peng Liu was supported
by NSF CNS-1505664 and NSF CNS-1814679. Note that any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of any funding agencies.

References

1. Chen, D.D., Woo, M., Brumley, D., Egele, M.: Towards automated dynamic anal-
ysis for linux-based embedded firmware. In: NDSS, pp. 1–16 (2016)

2. Chen, J., Diao, W., Zhao, Q., Zuo, C.: IoTFuzzer: discovering memory corrup-
tions in IoT through app-based fuzzing. In: 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA (2018)

656 Y. Yao et al.

3. Choi, Y.H., Park, M.W., Eom, J.H., Chung, T.M.: Dynamic binary analyzer for
scanning vulnerabilities with taint analysis. Multimedia Tools Appl. 74(7), 2301–
2320 (2015)

4. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis of the
security of embedded firmwares. In: 23rd USENIX Security Symposium (USENIX
Security 2014), pp. 95–110 (2014)

5. Costin, A., Zarras, A., Francillon, A.: Automated dynamic firmware analysis at
scale: a case study on embedded web interfaces. In: Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, pp. 437–448. ACM
(2016)

6. Ericson: The Ericsson Mobility Report (2019). https://www.ericsson.com/en/
mobility-report

7. Feng, Q., Zhou, R., Xu, C., Cheng, Y., Testa, B., Yin, H.: Scalable graph-based bug
search for firmware images. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 480–491. ACM (2016)

8. Fernandes, E., Jung, J., Prakash, A.: Security analysis of emerging smart home
applications. In: 2016 IEEE symposium on security and privacy (SP), pp. 636–
654. IEEE (2016)

9. Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.:
FlowFence: practical data protection for emerging IoT application frameworks. In:
Proceedings of Usenix Security Symposium, pp. 531–548 (2016)

10. Fernandes, E., Rahmati, A., Jung, J., Prakash, A.: Decentralized action integrity
for trigger-action IoT platforms. In: Proceedings of Network and Distributed Sys-
tems Symposium (NDSS), pp. 18–21 (2018)

11. He, W., et al.: Rethinking access control and authentication for the home Internet
of Things (IoT). In: 27th USENIX Security Symposium (USENIX Security 2018),
pp. 255–272 (2018)

12. Jacobson, E.R., Rosenblum, N.E., Miller, B.P.: Labeling library functions in
stripped binaries. In: Proceedings of the 10th ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools, pp. 1–8. ACM (2011)

13. Jia, Y.J., et al.: ContexloT: towards providing contextual integrity to appified IoT
platforms. In: NDSS (2017)

14. Jiang, Y., Xie, W., Tang, Y.: Detecting authentication-bypass flaws in a large scale
of IoT embedded web servers. In: Proceedings of the 8th International Conference
on Communication and Network Security, pp. 56–63. ACM (2018)

15. Pro, I.: Fast library identification and recognition technology (2019). https://www.
hex-rays.com/products/ida/tech/flirt/in depth.shtml

16. Qiu, J., Su, X., Ma, P.: Using reduced execution flow graph to identify library
functions in binary code. IEEE Trans. Softw. Eng. 42(2), 187–202 (2016)

17. Rays, H.: Fast library identification and recognition technology (2015). https://
www.hex-rays.com/products/ida/tech/flirt/in depth.shtml

18. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.
In: NDSS (2015)

19. Shoshitaishvili, Y., et al.: SoK: (State of) the art of war: offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy (2016)

20. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: NDSS, pp. 1–16, no. 2016 in 16 (2016)

21. Tian, Y., et al.: Smartauth: user-centered authorization for the Internet of Things.
In: 26th USENIX Security Symposium (USENIX Security 2017), pp. 361–378
(2017)

https://www.ericsson.com/en/mobility-report
https://www.ericsson.com/en/mobility-report
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml

Identifying Privilege Separation Vulnerabilities in IoT Firmware 657

22. Wei, Z., et al.: Discovering and understanding the security hazards in the inter-
actions between IoT devices, mobile apps, and clouds on smart home platforms.
In: 28th USENIX Security Symposium (USENIX Security 2019). USENIX Associ-
ation, Santa Clara (2019). https://www.usenix.org/conference/usenixsecurity19/
presentation/zhou

23. Yaowen, Z., Ali, D., Heng, Y., Chengyu, S., Hongsong, Z., Limin, S.: FIRM-AFL:
high-throughput greybox fuzzing of IoT firmware via augmented process emulation.
In: 28th USENIX Security Symposium (USENIX Security 2019). USENIX Associ-
ation, Santa Clara (2019). https://www.usenix.org/conference/usenixsecurity19/
presentation/zheng

24. Yu, H., Lim, J., Kim, K., Lee, S.B.: Pinto: enabling video privacy for commodity
IoT cameras. In: CCS, pp. 1089–1101. ACM (2018)

25. Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D., et al.: AVATAR: a framework
to support dynamic security analysis of embedded systems’ firmwares. In: 21st
Annual Network and Distributed System Security Symposium, NDSS, pp. 1–16
(2014)

https://www.usenix.org/conference/usenixsecurity19/presentation/zhou
https://www.usenix.org/conference/usenixsecurity19/presentation/zhou
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng

	Identifying Privilege Separation Vulnerabilities in IoT Firmware with Symbolic Execution
	1 Introduction
	2 Background
	2.1 Privilege Separation Model Involved in IoT Firmware
	2.2 Privilege Separation Vulnerability

	3 Gerbil Framework Design and Implementation
	3.1 Loading Information Extraction
	3.2 Library Function Recognition
	3.3 Path Exploration Scheme
	3.4 User-Defined Slice Specification
	3.5 Result Generation

	4 Evaluation
	4.1 Lightweight Firmware Collection
	4.2 Performance Analysis of Gerbil
	4.3 Identifying the Privilege Separation Vulnerability
	4.4 Impact Analysis of Privilege Separation Vulnerabilities Exploitation

	5 Discussion
	5.1 Mitigation
	5.2 Limitation

	6 Related Work
	7 Conclusion
	References

