
106

ReachNN: Reachability Analysis of Neural-Network

Controlled Systems

CHAO HUANG, Northwestern University

JIAMENG FAN and WENCHAO LI, Boston University

XIN CHEN, University of Dayton

QI ZHU, Northwestern University

Applying neural networks as controllers in dynamical systems has shown great promises. However, it is crit-
ical yet challenging to verify the safety of such control systems with neural-network controllers in the loop.
Previous methods for verifying neural network controlled systems are limited to a few specific activation
functions. In this work, we propose a new reachability analysis approach based on Bernstein polynomials
that can verify neural-network controlled systems with a more general form of activation functions, i.e., as
long as they ensure that the neural networks are Lipschitz continuous. Specifically, we consider abstracting
feedforward neural networks with Bernstein polynomials for a small subset of inputs. To quantify the er-
ror introduced by abstraction, we provide both theoretical error bound estimation based on the theory of
Bernstein polynomials and more practical sampling based error bound estimation, following a tight Lipschitz
constant estimation approach based on forward reachability analysis. Compared with previous methods, our
approach addresses a much broader set of neural networks, including heterogeneous neural networks that
contain multiple types of activation functions. Experiment results on a variety of benchmarks show the ef-
fectiveness of our approach.

CCS Concepts: • Theory of computation→Machine learning theory; • Computer systems organiza-

tion→ Embedded and cyber-physical systems; • Software and its engineering→ Formal methods;

Additional Key Words and Phrases: Neural network controlled systems, reachability, verification, Bernstein
polynomials

ACM Reference format:

Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. 2019. ReachNN: Reachability Analysis of
Neural-Network Controlled Systems. ACM Trans. Embed. Comput. Syst. 18, 5s, Article 106 (October 2019), 22
pages.
https://doi.org/10.1145/3358228

This article appears as part of the ESWEEK-TECS special issue and was presented at the International Conference on
Embedded Software (EMSOFT) 2019.
Authors’ addresses: C. Huang and Q. Zhu, Northwestern University, Evanston, Illinois; emails: {chao.huang, qzhu}@
northwestern.edu; J. Fan andW. Li, Boston University, Boston, Massachusetts; emails: {jmfan, wenchao}@bu.edu; X. Chen,
University of Dayton, Dayton, Ohio; email: xchen4@udayton.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1539-9087/2019/10-ART106 $15.00
https://doi.org/10.1145/3358228

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.

https://doi.org/10.1145/3358228
mailto:permissions@acm.org
https://doi.org/10.1145/3358228


106:2 C. Huang et al.

1 INTRODUCTION

Data-driven control systems, especially neural-network-based controllers [27, 32, 33], have
recently become the subject of intense research and demonstrated great promises. Formally
verifying the safety of these systems however still remains an open problem. A Neural-Network
Controlled System (NNCS) is essentially a continuous system controlled by a neural network,
which produces control inputs at the beginning of each control step based on the current values
of the state variables and feeds them back to the continuous system. Reachability of continuous
or hybrid dynamical systems with traditional controllers has been extensively studied in the last
decades. It has been proven that reachability of most nonlinear systems is undecidable [2, 20].
Recent approaches mainly focus on the overapproximation of reachable sets [13, 17, 22, 29, 34, 40].
The main difficulty impeding the direct application of these approaches to NNCS is the hardness
of formally characterizing or abstracting the input-output mapping of a neural network.
Some recent approaches considered the problem of computing the output range of a neural

network. Given a neural network along with a set of the inputs, these methods seek to compute
an interval or a box (vector of intervals) that contains the set of corresponding outputs. These
techniques are partly motivated by the study of robustness [16] of neural networks to adversarial
examples [38]. Katz et al. [25] propose an SMT-based approach called Reluplex by extending the
simplex algorithm to handle ReLU constraints. Huang et al. [23] use a refinement-by-layer tech-
nique to prove the absence or show the presence of adversarial examples around the neighborhood
of a specific input. General neural networks with Lipschitz continuity are then considered by Ruan
et al. [36], where the authors show that a large number of neural networks are Lipschitz contin-
uous and the Lipschitz constant can help in estimating the output range which requires solving
a global optimization problem. Dutta et al. [16] propose an efficient approach using mixed inte-
ger linear programming to compute the exact interval range of a neural network with only ReLU
activation functions.
However, these existing methods cannot be directly used to analyze the reachability of dynami-

cal systems controlled by neural networks. As the behavior of these systems is based on the inter-
action between the continuous dynamics and the neural-network controller, we need to not only
compute the output range but also describe the input-output mapping for the controller. More
precisely, we need to compute a tractable function model whose domain is the input set of the
controller and its output range contains the set of the controller’s outputs. We call such a func-
tion model a higher-order set, to highlight the distinction from intervals which are 0-order sets.
Computing a tractable function model from the original model can also be viewed as a form of
knowledge distillation [21] from the verification perspective, as the functionmodel should be able to
produce comparable results or replicate the outputs of the target neural network on specific inputs.
There have been some recent efforts on computing higher-order sets for the controllers in NNCS.

Ivanov et al. [24] present a method to equivalently transform a system to a hybrid automaton by
replacing a neuron in the controller with an ordinary differential equation (ODE). This method is
however only applicable to differentiable neural-network controllers – ReLU neural networks are
thus excluded. Dutta et al. [15] use a flowpipe construction scheme to compute overapproximations
for reachable set segments. A piecewise polynomial model is used to provide an approximation of
the input-output mapping of the controller and an error bound on the approximation. This method
is however limited to neural networks with ReLU activation functions. We will discuss technical
features of these related works inmore detail in Section 2whenwe introduce the problem formally.
Neural network controllers in practical applications could involve multiple types of activation

functions [4, 27]. The approaches discussed above for specific activation function may not be able
to handle such cases, and a more general approach is thus needed.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



ReachNN: Reachability Analysis of Neural-Network Controlled Systems 106:3

In this paper, we propose a new reachability analysis approach for verifying NNCS with general
neural-network controllers called ReachNN based on Bernstein polynomial. More specifically,
given an input space and a degree bound, we construct a polynomial approximation for a general
neural-network controller based on Bernstein polynomials. For the critical step of estimating the
approximation error bound, inspired by the observation that most neural networks are Lipschitz
continuous [36], we present two techniques – a priori theoretical approach based on existing
results on Bernstein polynomials and a posteriori approach based on adaptive sampling. By
applying these two techniques together, we are able to capture the behavior of a neural-network
controller during verification via Bernstein polynomial with tight error bound estimation.
Based on the polynomial approximation with the bounded error, we can iteratively compute an
overapproximated reachable set of the neural-network controlled system via flowpipes [42]. By
the Stone-Weierstrass theorem [12], our Bernstein polynomial based approach can approximate
most neural networks with different activation functions (e.g., ReLU, sigmoid, tanh) to arbitrary
precision. Furthermore, as we will illustrate later in Section 3, the approximation error bound can
be conveniently calculated.
Our paper makes the following contributions.

• We proposed a Bernstein polynomial based approach to generate high-order approxima-
tions for the input-output mapping of general neural-network controllers, which is much
tighter than the interval based approaches.

• We developed two techniques to analyze the approximation error bound for neural net-
works with different activation functions and structures based on the Lipschitz continuity
of both the network and the approximation. One is based on the theory of Bernstein poly-
nomials and provides a priori insight of the theoretical upper bound of the approximation
error, while the other achieves a more accurate estimation in practice via adaptive sampling.

• We demonstrated the effectiveness of our approach on multiple benchmarks, showing its
capability in handling dynamical systems with various neural-network controllers, includ-
ing heterogeneous neural networks with multiple types of activation functions. For homo-
geneous networks, compared with state-of-the-art approaches Sherlock and Verisig, our
ReachNN approach can achieve comparable or even better approximation performance, al-
beit with longer computation time.

The rest of the paper is structured as follows. Section 2 introduces the system model, the reach-
ability problem, and more details on the most relevant works. Section 3 presents our approach,
including the construction of polynomial approximation and the estimation of error bound. Sec-
tion 4 presents the experimental results. Section 5 provides further discussion of our approach and
Section 6 concludes the paper.

2 PROBLEM STATEMENT

In this section, we describe the reachability of NNCS and a solution framework that computes
overapproximations for reachable sets. In the paper, a set of ordered variables x1,x2, . . . ,xm is
collectively denoted by x . For a vector x , we denote its i-th component by xi .

A NNCS is illustrated in the Figure 1. The plant is the formal model of a physical system or
process, defined by an ODE in the form of ẋ = f (x ,u) such that x are the n state variables and u
are them control inputs. We require that the function f : Rm ×Rn → Rm is Lipschitz continuous
in x and continuous in u, in order to guarantee the existence of a unique solution of the ODE from
a single initial state (see [31]).
The controller in our system is implemented as a feed-forward neural network, which can be

defined as a functionκ thatmaps the values ofx to the control inputsu. It consists of S layers, where

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



106:4 C. Huang et al.

Fig. 1. Neural-network controlled system (NNCS).

the first S − 1 layers are referred as “hidden layers” and the S-th layer represents the network’s
output. Specifically, we have

κ (x ) = κS (κS−1 (. . .κ1 (x ;W1,b1);W2,b2);WS ,bS )

whereWs and bs for s = 1, 2, . . . , S are learnable parameters as linear transformations connecting
two consecutive layers, which is then followed by an element-wise nonlinear activation function.
κi (zs−1;Ws−1,bs−1) is the function mapping from the output of layer s − 1 to the output layer s
such that zs−1 is the output of layer s − 1. An illustration of a neural network is given in Figure 1.
A NNCS works in the following way. Given a control time stepsize δc > 0, at the time t = iδc

for i = 0, 1, 2, . . . , the neural network takes the current state x (iδc ) as input, computes the input
values u (iδc ) for the next time step and feeds it back to the plant. More precisely, the plant ODE
becomes ẋ = f (x ,u (iδc )) in the time period of [iδc , (i + 1)δc ] for i = 0, 1, 2, . . . . Notice that the
controller does not change the state of the system but the dynamics. The formal definition of a
NNCS is given as below.

Definition 2.1 (Neural-Network Controlled System). A neural-network controlled system (NNCS)

can be denoted by a tuple (X,U , F ,κ,δc ,X0), where X denotes the state space whose dimension
is the number of state variables,U denotes the control input set whose dimension is the number of
control inputs, F defines the continuous dynamics ẋ = f (x ,u),κ : X → U defines the input/output
mapping of the neural-network controller, δc is the control stepsize, andX0 ⊆ X denotes the initial
state set.

Notice that a NNCS is deterministic when the continuous dynamics function f is Lipschitz con-
tinuous. The behavior of a NNCS can be defined by its flowmap. The flowmap of a system (X,U , F ,
κ,δc ,X0) is a function φ : X0 ×R≥0 → X that maps an initial state x0 to the state φ (x0, t ), which is
the system state at the time t from the initial state x0. Given an initial state x0, the flowmap has the
following properties for all i = 0, 1, 2, . . . : (a) φ is the solution of the ODE ẋ = f (x ,u (iδc )) with
the initial condition x (0) = φ (x0, iδc ) in the time interval t ∈ [t − iδc , t − iδc + δc ]; (b) u (iδc ) =
κ (φ (x0, iδc )).

We call a state x reachable at time t ≥ 0 on a system (X,U , F , κ,δc ,X0), if and only if there is
some x0 ∈ X0 such that x = φ (x0, t ). Then, the set of all reachable states is called the reachable set
of the system.

Definition 2.2 (Reachability Problem). The reachability problem on a NNCS is to decide whether
a given state is reachable or not at time t ≥ 0.

In the paper, we focus on the problem of computing the reachable set for a NNCS. Since NNCSs
are at least as expressive as nonlinear continuous systems, the reachability problem on NNCSs is

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



ReachNN: Reachability Analysis of Neural-Network Controlled Systems 106:5

undecidable. Although there are numerous existing techniques for analyzing the reachability of
linear and nonlinear hybrid systems [1, 9, 14, 18, 26], none of them can be directly applied to NNCS,
since equivalent transformation from NNCS to a hybrid automaton is usually very costly due to
the large number of locations in the resulting automaton. Even an on-the-fly transformation may
lead to a large hybrid automaton in general. Hence, we compute flowpipe overapproximations (or
flowpipes) for the reachable sets of NNCS.
Similar to the flowpipe construction techniques for the reachability analysis of hybrid systems,

we also seek to compute overapproximations for the reachable segments of NNCS. A continuous
dynamics can be handled by the existing tools such as SpaceEx [18] when it is linear, and Flow* [10]
or CORA [1] when it is nonlinear. The challenge here is to compute an accurate overapproximation
for input/output mapping of the neural-network controller in each control step, and we will do it
in the following way.
Given a bounded input interval XI , we compute a model (д(x ), ϵ ) where ϵ ≥ 0 such that for

any x ∈ XI , the control input κ (x ) belongs the set {д(x ) + z | z ∈ Bϵ }. д is a function of x , and Bϵ
denotes the box [−ϵ, ϵ] in each dimension. We provide a summary of the existing works which are
close to ours.

Interval overapproximation. The methods described in [36, 39] compute intervals as neural-
network input/output relation and directly feed these intervals in the reachability analysis. Al-
though they can be applied to more general neural-network controllers, using interval overap-
proximation in the reachability analysis cannot capture the dependencies of state variables for
each control step, and it is reported in [16].

Exact neural network model. The approach presented in [24] equivalently transforms the
neural-network controller to a hybrid system, then the whole NNCS becomes a hybrid system
and the existing analysis methods can be applied. The main limitations of the approach are: (a) the
transformation could generate a model whose size is prohibitively large, and (b) it only works on
neural networks with sigmoid and tanh activation functions.

Polynomial approximation with error bound. In [15], the authors describe a method to pro-
duce higher-order sets for neural-network outputs. It is the closest work to ours. In their paper, the
approximation model is a piecewise polynomial over the state variables, and the error bound can
be well limited when the degrees or pieces of the polynomials are sufficiently high. The main limi-
tation of the method is that it only applies to the neural networks with ReLU activation functions.

3 OUR APPROACH

Our approach exploits high-order set approximation of the output of general types neural net-
work in NNCS reachability analysis via Bernstein polynomials and approximation error bound
estimation. The reachable set of NNCS is overapproximated by a finite set of Taylor model flow-
pipes in our method. The main framework of flowpipe construction is presented in Algorithm 1.
Given a NNCS and a bounded time horizon [0,Nδc ], the algorithm computes Nk flowpipes, each
of which is an overapproximation of the reachable set in a small time interval, and the union of the
flowpipes is an overapproximation of the reachable set in the time interval of [0,Nδc ]. As stated
in Theorem 3.1, this fact is guaranteed by (a) the flowpipes are reachable set overapproximations
for the continuous dynamics in each iteration, and (b) the set Ui is an overapproximation of the
neural-network controller output. Notice that this framework is also used in [15]. However, we
present a technique to computeUi for more general neural networks.
Let us briefly revisit the technique of computing Taylor model flowpipes for continuous

dynamics.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



106:6 C. Huang et al.

ALGORITHM 1: Flowpipe construction for NNCS

Data: NNCS (X,U , F ,κ,δc ,X0), time horizon Nδc
Result: Flowpipes

1 Flowpipes← ∅;
2 for i ← 0 to N − 1 do
3 Compute a set Ui which contains the value of κ (x ) for all x ∈ Xi ;
4 Compute the flowpipes F1, . . . ,Fk for the continuous dynamics ẋ = f (x ,y) with

x (0) ∈ Xi and y ∈ Ui ;
5 Evaluate the flowpipe Xi+1 based on Fk for the reachable set at t = (i + 1)δc ;
6 Flowpipes← Flowpipes ∪ {F1, . . . ,Fk };
7 end

8 return Flowpipes;

Taylor model. Taylor models are introduced to provide higher-order enclosures for the solutions
of nonlinear ODEs (see [5]), and then extended to overapproximate reachable sets for hybrid sys-
tems [9] and solve optimization problems [30]. A Taylor Model (TM) is denoted by a pair (p, I )
where p is a (vector-valued) polynomial over a set of variables x and I is an (vector-valued) inter-
val. A continuous function f (x ) can be overapproximated by a TM (p (x ), I ) over a domain D in
the way that f (x ) ∈ p (x ) + I for all x ∈ D. When the approximation p is close to f , I can be made
very small.

TMflowpipe construction.The technique of TMflowpipe construction is introduced to compute
overapproximations for the reachable set segments of continuous dynamics. Given an ODE ẋ =
f (x ), an initial setX0 and a time horizon [0,T ], the method computes a finite set of TMs F1, . . . ,Fk
such that for each i = 1, . . . ,k , the flowpipe Fi contains the reachable set in the time interval of
[ti , ti+1], and

⋃k
i=1[ti , ti+1] = [0,T ], i.e., the union of the flowpipes is an overapproximation of the

reachable set in the given time horizon. The standard TM flowpipe construction is described in [5],
and it is adapted in [8, 11] for better handling the dynamical systems.
The main contribution of our paper is a novel approach to compute a higher-order overapprox-

imationUi for the output set of neural networks with a more general form of activation functions,
including such as ReLU, sigmoid, and tanh. We show that this approach can generate accurate
reachable set overapproximations for NNCSs, in combination with the TM flowpipe construction
framework. Our main idea can be described as follows.
Given a neural-network controller with a single output, we assume that its input/output map-

ping is defined by a function κ and its input interval is defined by a set Xi . In the i-th (control)
step, we seek to compute a TM Ui = P (x ) + [−ε̄, ε̄] such that

κ (x ) ∈ P (x ) + [−ε̄, ε̄] for all x ∈ Xi . (1)

Hence, the TM is an overapproximation of the neural network output. In the paper, we compute
P as a Bernstein polynomial with bounded degrees. Since κ is a continuous function that can be
approximated by a Bernstein polynomial to arbitrary precision, according to the Stone-Weierstrass
theorem [12], we can always ensure that such P exists.

In our reachability computation, the set Xi is given by a TM flowpipe. To obtain a TM for the
neural network output set, we use TM arithmetic to evaluate a TM for P (x ) + [−ε̄, ε̄] with x ∈ Xi .
Then, the polynomial part of the resulting TM can be viewed as an approximation of the map-
ping from the initial set to the neural network output, and the remainder contains the error. Such

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



ReachNN: Reachability Analysis of Neural-Network Controlled Systems 106:7

representation can partially keep the variable dependencies and much better limit the overestima-
tion accumulation than the methods that purely use interval arithmetic.

Theorem 3.1. The union of the flowpipes computed by Algorithm 1 is an overapproximation of the

reachable set of the system in the time horizon of [0,Nδc ], if the flowpipes are overapproximations of

the ODE solutions and the TM Ui in every step satisfies (1).

Remark 1. In our framework, Taylor models can also be considered as a candidate of high-order
approximation for a neural network’s input-output mapping. However, comparing with Bernstein
polynomial based approach adopted in this paper, Taylor models suffer from two main limita-
tions: (1) The validity of Taylor models relies on the function differentiability, while ReLU neural
networks are not differentiable. Thus Taylor models cannot handle a large number of neural net-
works; (2) There is no theoretical upper bound estimation for Taylor models, which further limits
the rationality of using Taylor models.

Remark 2. To avoid technicalities, we consider the neural-network controller with a single out-
put here. For n-output cases, an intuitive extension is to use Bernstein polynomials to approximate
each output respectively.

3.1 Bernstein Polynomials for Approximation

Definition 3.2 (Bernstein Polynomials). Let d = (d1, . . . ,dm ) ∈ Nm and f be a function of x =
(x1. . . . ,xm ) over I = [0, 1]m . The polynomials

Bf ,d (x ) =
∑

0≤kj ≤dj
j∈{1, . . .,m}

f

(
k1
d1
, . . . ,

km
dm

) m∏
j=1

((
dj
kj

)
x
kj
j (1 − x j )dj−kj

)

are called the Bernstein polynomials of f under the degree d .

We then construct P (x ) over X by a series of linear transformation based on Bernstein polyno-
mials. Assume that X = [l1,u1] × · · · × [lm ,um]. Let x ′ = (x ′1, . . . ,x

′
m ), where

x ′j = (x j − lj )/(uj − lj ), j = 1, . . . ,m

and

κ ′(x ′) = κ (x ) = κ
�����
�����
u1 − l1 · · · 0
...

. . .
...

0 · · · um − lm

�����x
′ +

�����
l1
...
lm

�����
����� . (2)

It is easy to see that κ ′ is defined over I . For d = (d1, . . . ,dm ) ∈ Nm , let Bκ′,d (x ′) be the Bernstein
polynomials of κ ′(x ′). We construct the polynomial approximation for κ as:

Pκ,d (x ) = Bκ′,d
�����
�����

1
u1−l1 · · · 0
...

. . .
...

0 · · · 1
um−lm

�����x −
�����

l1
u1−l1
...
lm

um−lm

�����
����� . (3)

When we want to compute a Bernstein polynomial over a non-interval domain I , we may con-
sider an interval enclosure of I , since we only need to ensure that the polynomial is valid on the
domain and it is sufficient to take its superset. Hence, in Algorithm 1, the Bernstein polynomial(s)
in Ui are computed based on an interval enclosure of Xi .

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



106:8 C. Huang et al.

3.2 Approximation Error Estimation

After we obtain the approximation of the neural network controller, a certain question is how to
estimate a valid bound for approximation error ε such that Theorem 3.1 holds. Namely, from any
given initial state set X , the reachable set of the perturbed system ẋ = f (x , Pκ,d , ε ), ε ∈ [−ε̄, ε̄] at
any time t ∈ [0,δc ] is a superset of the one of the NNCS with ODE f (x ,κ). A sufficient condition
can be derived based on the theory of differential inclusive [37]:

Lemma 3.3. Given any state set X , let Pκ,d be the polynomial approximation of κ with respect to

the degree d defined as Equation (3). For any time t ∈ [0,δc ], the reachable set of the perturbed system
ẋ = f (x , Pκ,d + ε ), ε ∈ [−ε̄, ε̄] is a superset of the one of the NNCS with ODE f (x ,κ) from X , if

κ (x ) ∈ { u | u = Pκ,d (x ) + ε, ε ∈ [−ε̄, ε̄]}, ∀x ∈ X . (4)

Intuitively, the approximation error interval E = [−ε̄, ε̄] has a significant impact on the reachable
set overapproximation, namely a tighter ε̄ can lead to a more accurate reachable set estimation.
In this section, we will introduce two approaches to estimate ε̄ , namely theoretical error estima-
tion and sampling-based error estimation. The former gives us a priori insight of how precise the
approximation is, while the latter one helps us to obtain amuch tighter error estimation in practice.

Compute a Lipschitz constant. We start from computing the Lipschitz constant of a neural
network, since Lipschize constant plays a key role in both of our two approaches, which we will
see later.

Definition 3.4. A real-valued function f : X → R is called Lipschitz continuous over X ⊆ Rm ,
if there exists a non-negative real L, such that for any x ,x ′ ∈ X :

��f (x ) − f (x ′)�� ≤ L ��x − x ′�� .
Any such L is called a Lipschitz constant of f over X .

Recent work has shown that a large number of neural networks are Lipschitz continuous, such
as the fully-connected neural networks with ReLU, sigmoid, and tanh activation functions and the
estimation of Lipschitz constant upper bound for a neural network has been preliminary discussed
in [36, 38].

Lemma 3.5 (Lipschitz constant for sigmoid/tanh/ReLU [36, 38]). Convolutional or fully con-
nected layers with the sigmoid activation function S (Wx + b), hyperbolic tangent (tanh) activation
function T (Wx + b), and ReLU activation function R (Wx + b) have 1

4 ‖W ‖, ‖W ‖, ‖W ‖ as their Lip-
schitz constants, respectively.

Based on Lemma 3.5, we further improve the Lipschitz constant upper bound estimation. Specif-
ically, we consider a layer of neural network with n neurons shown in Figure 2, whereW and b
denote the weight and the bias that are applied on the output of the previous layer. Input Interval
and Output Interval denote the variable space before and after applied by the activation functions
of this layer, respectively. Assume X = [l1,u1] × · · · × [ln ,un] be the Input Interval.
We first discuss layers with sigmoid/tanh activation functions based on the following

conclusion:

Lemma 3.6. [35] Given a function f : X → Rm , if ��∂ f /∂x�� ≤ L over X , then f is Lipschitz con-

tinuous and L is a Lipschitz constant.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



ReachNN: Reachability Analysis of Neural-Network Controlled Systems 106:9

Fig. 2. Schematic diagram of Input Interval and Output Interval of a layer.

Sigmoid. For a layer with sigmoid activation function S (y) = 1/(1 + e−y ) with y =Wx + b and
y ∈ X , we have

�����∂S (x )∂x

����� =
�����∂S (y)∂y

∂y

∂x

����� ≤
�����∂S (y)∂y

�����
����� ∂y∂x

�����
= ��diag(S (y1) (1 − S (y1)), . . . ,S (yn ) (1 − S (yn )))�� ‖W ‖
≤ max

1≤i≤n
sup

ai ≤S (yi )≤bi
{S (yi ) (1 − S (yi ))} ‖W ‖

= max
1≤i≤n

��14 −
(
sgn(S (ai ) − 0.5) + sgn(S (bi ) − 0.5)

2

)2

· min

{( 1
2
− S (ai )

)2
,
( 1
2
− S (bi )

)2})
‖W ‖

(5)

Hyperbolic tangent. For a layer with hyperbolic tangent activation function T (y) = 2/(1 +
e−2y ) − 1 with y =Wx + b and y ∈ X , we have

�����∂T (x )

∂x

����� =
�����∂T (y)

∂y

∂y

∂x

����� ≤
�����∂T (y)

∂y

�����
����� ∂y∂x

�����
=
���diag(1 − (T (y1))

2, . . . , 1 − (T (yn ))
2)��� ‖W ‖

= max
1≤i≤n

sup
ai ≤T (yi )≤bi

{1 − (T (yi ))
2} ‖W ‖

= max
1≤i≤n

��1 −
(
sgn(T (ai )) + sgn(T (bi ))

2

)2
· min{(T (ai ))

2, (T (bi ))
2}
)
‖W ‖

(6)

For ReLU networks, we try to derive a Lipschitz constant directly based on its definition:
ReLU. For a layer with ReLU activation function R (y) = max{0,y} with y =Wx + b and y ∈ X ,
we have

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



106:10 C. Huang et al.

ALGORITHM 2: Compute a Lipschitz constant for κ

Data: Neural network κ, input space X
Result: Lipschitz constant L

1 S ← the number of layers of κ;
2 L ← 1;
3 OutputInterval0 ← X ;
4 for s ← 1 to S do

5 act ← the activation function of the s-th layer;
6 InputIntervals ← ComputeInputInterval(OutputIntervals−1);
7 Ls ← ComputeLipchitzConstant(act ,W , InputIntervals );
8 L ← L · Ls ;
9 OutputIntervals ← ComputeOutputInterval(InputIntervals );

10 end

11 return L;

sup
x1�x2

‖R (x1) − R (x2)‖
‖x1 − x2‖

= sup
x1�x2

�������
���
max{0,W1x1 + u1} −max{0,W1x2 + u1}

· · ·
max{0,Wnx1 + un } −max{0,Wnx2 + un }

���
�������

‖x1 − x2‖

≤ sup
x1�x2

���������
�����
(
1+sgn(u1 )

2

)2
W1 |x1 − x2 |
· · ·(

1+sgn(un )
2

)2
Wn |x1 − x2 |

�����
���������

‖x1 − x2‖

≤
��������
(
1 + sgn(u1)

2

)2
W1, . . . ,

(
1 + sgn(un )

2

)2
Wn

��
������ .

(7)

In Algorithm 2, we first do the initialization (line 1–3) by letting the variable denoting Lips-
chitz constant L = 1. Note that OutputIntervali (i = 1, . . . , S) denotes the input interval and output
interval of layer i , as shown in Figure 2. For convenience, we let OutputInterval0 be the input
space X . Then we do the layer-by-layer interval analysis and compute the corresponding Lips-
chitz constant (line 4–10). For each layer s , the function ComputeInputInterval is first invoked
to compute the InputIntervals (line 6). Then the Lipschitz constant Ls of layer s is evaluated by
the function ComputeLipchitzConstant, namely Equations (5), (6), (7) in terms of the activa-
tion function act of this layer (line 7). L is updated to the current layer by multiplying Ls (line
8). Finally, OutputIntervals is computed by the function ComputeOutputInterval (line 9). Note
that the implementation of ComputeInputInterval and ComputeOutputInterval is a typical
interval analysis problem of neural networks, which have been adequately studied in [16, 36, 39].
We do not go into details here due to the space limit.

Naive theoretical error (T-error) estimation. After obtaining a Lipschize constant of κ, we can
directly leverage the existing result on Bernstein polynomials for Lipschitz continuous functions
to derive the error of our polynomial approximation.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



ReachNN: Reachability Analysis of Neural-Network Controlled Systems 106:11

Lemma 3.7. [28] Assume f is a Lipschitz continuous function of x = (x1. . . . ,xm ) over I = [0, 1]m

with a Lipschitz constant L. Let d = (d1, . . . ,dm ) ∈ Nm and Bf ,d be the Bernstein polynomials of f
under the degree d . Then we have

���Bf ,d (x ) − f (x )��� ≤ L

2
���
m∑
j=1

(1/dj )
���

1
2

, ∀x ∈ I . (8)

Theorem 3.8 (T-Error Estimation). Assume κ is a Lipschitz continuous function of x =
(x1, . . . ,xm ) over X = [l1,u1] × · · · × [lm ,um] with a Lipschitz constant L. Let Pκ,d be the polyno-

mial approximation of κ that is defined as Equation (3) with the degree d = (d1, . . . ,dm ) ∈ Nm . Let

ε̄t =
L

2
���
m∑
j=1

1

dj

���
1
2

max
j ∈{1, ...,m }

{uj − lj }. (9)

then ε̄t satisfies (4), namely,

κ (x ) ∈ { u | u = Pκ,d (x ) + ε, ε ∈ [−ε̄t , ε̄t ]}, ∀x ∈ X .

Proof. First, by Equation (2) we know that��∂x/∂x ′�� = max
j ∈{1, ...,m }

{uj − lj }

is a Lipschitz constant Lx (x ′) of the function x (x ′). Note that κ ′ = κ ◦ x , then we can obtain the
Lipschitz constant of κ ′(x ′) by

Lκ′ (x ′) = Lκ (x ) · Lx (x ′) = L max
j ∈{1, ...,m }

{uj − lj }.

By Equation (8), ∀x ∈ X , we have:

��Pκ,d (x )−κ (x )�� = ��Bκ′,d (x ′)−κ ′(x ′)�� ≤ Lκ′ (x ′)

2
���
m∑
j=1

1

dj

���
1
2

. �

Adaptive sampling-based error (S-error) estimation.While Theorem 3.8 can help derive an
approximation error bound easily, such bounds are often over-conservative in practice. Thus we
propose an alternative sampling-based approach to estimate the approximation error. For a given
box X = [l1,u1] × · · · × [lm ,um], we perform a grid-based partition based on an integer vector p =
(p1, . . . ,pm ). That is, we partition X into a set of boxes X =

⋃
0≤k≤p−1 Bk , where 0 ≤ k ≤ p − 1 is

the abbreviation for k = (k1, . . . ,km ), 0 ≤ kj ≤ pj − 1, 1 ≤ j ≤ m, and for any k ,

Bk =

[
l1 +

k1
p1

(u1 − l1), l1 +
k1 + 1

p1
(u1 − l1)

]
× · · · ×

[
lm +

km
pm

(um − lm ), lj +
km + 1

pm
(um − lm )

]
.

It is easy to see that the largest error bound of all the boxes is a valid error bound over X .

Lemma 3.9. Assume κ is a continuous function of x = (x1, . . . ,xm ) over X = [l1,u1] × · · · ×
[lm ,um]. Let Pκ,d be the polynomial approximation of κ that is defined as Equation (3) with the degree

d = (d1, . . . ,dm ) ∈ Nm . Let {Bk } be the box partition of X in terms of p, and ε̄k be the approximation

error bound of Pκ,d over the box Bk . We then have ∀x ∈ X ,

κ (x ) ∈
{
u | u = Pκ,d (x ) + ε, ε ∈

[
− max

0≤k≤p−1
ε̄k , max

0≤k≤p−1
ε̄k

]}
.

Leveraging the Lipschitz continuity of κ, we can estimate the local error bound ε̄k for box Bk by
sampling the value of κ and Pκ,d at the box center.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



106:12 C. Huang et al.

Lemma 3.10. Assume κ is a Lipschitz continuous function of x = (x1, . . . ,xm ) over box Bk with a

Lipschitz constant L. Let Pκ,d be the polynomial approximation of κ that is defined as Equation (3)

with the degree d = (d1, . . . ,dm ) ∈ Nm . Let

ck =

(
l1 +

2k1 + 1

2p1
(u1 − l1), . . . , lm +

2km + 1

2pm
(um − lm )

)
(10)

be the center of Bk . For x ∈ Bk , we have

��Pκ,d (x )−κ (x )�� ≤ L

√√
m∑
j=1

(
uj−lj
pj

)2
+ ��Pκ,d (ck )−κ (ck )�� . (11)

Proof. By [6], we know the Bernstein-based approximation Pκ,d is also Lipschitz continuous
with the Lipschitz constant L. Then for x ∈ Bk , we have��Pκ,d (x ) − κ (x )�� ≤ ��Pκ,d (x ) − Pκ,d (ck )�� + ��Pκ,d (ck ) − κ (ck )�� + ‖κ (ck ) − κ (x )‖

≤ Lmax
x ∈Bk

‖x − c‖ + ��Pκ,d (ck ) − κ (ck )�� + Lmax
x ∈Bk

‖x − ck ‖

= L

√√
m∑
j=1

(
uj − lj
pj

)2
+ ��Pκ,d (ck ) − κ (ck )�� . �

Combining Lemma 3.9 and Lemma 3.10, we can derive the sampling-based error bound over X .

Theorem 3.11 (S-Error Estimation). Assume κ is a Lipschitz continuous function of x =
(x1, . . . ,xm ) over X = [l1,u1] × · · · × [lm ,um] with a Lipschitz constant L. Let Pκ,d be the polyno-

mial approximation of κ that is defined as Equation (3) with the degree d = (d1, . . . ,dm ) ∈ Nm , and

Xc = {ck }0≤k≤p−1 be the sampling set with any given positive integer vector p = (p1, . . . ,pm ). Let

ε̄s (p) = L

√√
m∑
j=1

(
uj−lj
pj

)2
+ max

0≤k≤p−1
��Pκ,d (ck )−κ (ck )�� . (12)

Then, ε̄s (p) satisfies (4), namely,

κ (x ) ∈ { u | u = Pκ,d (x ) + ε, ε ∈ [−ε̄s (p), ε̄s (p)]}, ∀x ∈ X .

Theorem 3.12 (Convergence of ε̄s ). Assume κ is a Lipschitz continuous function of x =
(x1, . . . ,xm ) over X = [l1,u1] × · · · × [lm ,um] with a Lipschitz constant L. Let Pκ,d be the polyno-

mial approximation of κ that is defined as Equation (3) with the degree d = (d1, . . . ,dm ) ∈ Nm . Let

ε̄best = maxx ∈X ��Pκ,d (x ) − κ ( x )‖ be the exact error, we have
lim
p→∞

ε̄s (p) → ε̄best .

Proof. Let δ (p) = L
√∑m

j=1 (
uj−lj
pj

)2, we have

��ε̄s (p) − ε̄best �� ≤ �����ε̄s (p) − max
0≤k≤p−1

��Pκ,d (ck )−κ (ck )������� = δ (p)

Since δ (p) → 0, when p → ∞, the theorem holds. �

Note that δ (p) actually specifies the difference between the exact error and S-error. Thus we call
it sampling error precision.

[Adaptive sampling] By Theorem 3.12, we can always make δ (p) arbitrarily small by increas-
ing p. Then the error bound is mainly determined by the sample difference over Xc . Thus, if our

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



ReachNN: Reachability Analysis of Neural-Network Controlled Systems 106:13

polynomial approximation Pκ,d regresses κ well, we can expect to obtain a tight error bound esti-
mation. To bound the impact of δ (p), we set a hyper parameter δ̄ as its upper bound. Specifically,
given a box X = [l1,u1] × · · · × [lm ,um], we can adaptively change p to sample fewer times while
ensuring δ (p) ≤ δ̄ .

Proposition 1. Given a box X = [l1,u1] × · · · × [lm ,um] and a positive number δ̄ , let

pj =
⌈
L(uj − lj )

√
m/δ̄

⌉
, j = 1, . . . ,m.

Then we have δ (p) ≤ δ̄ .

In practice, we can directly use ε̄s as ε̄ by specifying a small δ̄ , since S-error is more precise. It is
worthy noting that a small δ̄ may lead to a large number of sampling points and thus can be time
consuming. In our implementation, we mitigate this runtime overhead by computing the sampling
errors at ck for each Bk in parallel.

4 EXPERIMENTS

We implemented a prototype tool and used it in cooperation with Flow*. In our experiments, we
first compare our approach ReachNNwith the interval overapproximation approach on an example
with a heterogeneous neural-network controller that has ReLU and tanh as activation functions.
Then we compare our approach with Sherlock [15] and Verisig [24] on multiple benchmarks col-
lected from the related works. All our experiments were run on a desktop, with 12-core 3.60 GHz
Intel Core i7 1.

4.1 Illustrating Example

Consider the following nonlinear control system [19]:

ẋ1 = x2, ẋ2 = ux
2
2 − x1,

whereu is computed from a heterogeneous neural-network controllerκ that has two hidden layers,
twenty neurons in each layer, and ReLU and tanh as activation functions. Given a control stepsize
δc = 0.2, we hope to verify whether the system will reach [0, 0.2] × [0.05, 0.3] from the initial set
[0.8, 0.9] × [0.5, 0.6]. Since the state-of-art verification tools focus on NNCSs with single-type ac-
tivation function and interval overapproximation is the only presented work that can be extended
to heterogeneous neural networks, we compare our method with interval overapproximation in
the illustrating example.
Figure 3(a) shows the result of the reachability analysis with interval overapproximation, while

ReachNN’s result is shown in Figure 3(b). Red curves denote the simulation results of the system
evolution from 100 different initial states, which are randomly sampled from the initial set. Green
rectangles are the constructed flowpipes as the overapproximation of the reachable state set. The
blue rectangle is the goal area. We conduct the reachability analysis from the initial set by com-
bining our neural network approximation approach with Flow*. As shown in Figure 3(a), interval
overapproximation based approach yields over-loose reachable set approximation, which makes
the flowpipes grow uncontrollably and quickly exceeds the tolerance (25 steps). On the contrary,
ReachNN can provide a much tighter estimation for all control steps and thus successfully prove
the reachability property.

4.2 Benchmarks

Table 1 shows the benchmarks settings, while Table 2 shows the experiment results of ReachNN,
Sherlock [15] and Verisig [24]. We can first find that our approach can verify most examples, with

1The experiments are not memory bounded.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



106:14 C. Huang et al.

Fig. 3. Flowpipes computed by interval overapproximation approach and ReachNN on a NNCS with a het-

erogeneous neural-network controller that has ReLU and tanh activation functions.

Table 1. Benchmark Setting: For Each Example #, ODE Denotes the Ordinary Differential Equation of the

Example, V Denotes the Dimension of the State Variable, δc is the Discrete Control Stepsize, N Denotes

the Number of Control Step, Init Denotes the Initial State Set, Goal Denotes the Goal
Set that we Hope to Verify the System will Enter After N Steps

# ODE V δc Init Goal

1
ẋ1 = x2,

ẋ2 = ux
2
2 − x1.

2 0.2 x1 ∈ [0.8, 0.9], x2 ∈ [0.5, 0.6]
x1 ∈ [0, 0.2],
x2 ∈ [0.05, 0.3]

2
ẋ1 = x2 − x 3

1 ,
ẋ2 = u .

2 0.2 x1 ∈ [0.7, 0.9], x2 ∈ [0.7, 0.9]
x1 ∈ [−0.3, 0.1],
x2 ∈ [−0.35, 0.5]

3
ẋ1 = −x1 (0.1 + (x1 + x2)

2),
ẋ2 = (u + x1) (0.1 + (x1 + x2)

2).
2 0.1 x1 ∈ [0.8, 0.9], x2 ∈ [0.4, 0.5]

x1 ∈ [0.2, 0.3],
x2 ∈ [−0.3, −0.05]

4
ẋ1 = −x1 + x2 − x3,

ẋ2 = −x1 (x3 + 1) − x2,
ẋ3 = −x1 + u

3 0.1 x1, x3 ∈ [0.25, 0.27], x2 ∈ [0.08, 0.1]
x1 ∈ [−0.05, 0.05],
x2 ∈ [−0.05, 0]

5
ẋ1 = x

3
1 − x2,

ẋ2 = x3, ẋ3 = u
3 0.2

x1 ∈ [0.38, 0.4], x2 ∈ [0.45, 0.47],
x3 ∈ [0.25, 0.27]

x1 ∈ [−0.4, −0.28],
x2 ∈ [0.05, 0.22]

6
ẋ1 = x2, ẋ2 = −x1 + 0.1 sin(x3),

ẋ3 = x4, ẋ4 = u
4 0.5

x1 ∈ [−0.77, −0.75], x2 ∈ [−0.45, −0.43],
x3 ∈ [0.51, 0.54], x4 ∈ [−0.3, −0.28]

x1 ∈ [−0.1, 0.2],
x2 ∈ [−0.9, −0.6]

a few exceptions. The simulation trajectories along with overapproximate reachable set computed
by ReachNN, Sherlock and Verisig of some selected examples are shown in Figure 4. The reason
whywe fail in these examples are mainly due to the relatively large approximation error. As shown
later in Section 5, an interesting phenomenon is that Bernstein polynomial based approach may
perform differently with respect to the type of activation functions, which we will consider in our
future work.
Benefiting from its generality, our approach can handle all these examples, while Sherlock and

Verisig are only applicable to a few of them. Furthermore, the heterogeneous neural networks
that contain multiple types of activation functions, which is common in practice [4, 27], can only
be handled by our approach. However we acknowledge that our method costs much more time
than Sherlock and Verisig (see Table 2). The main reason is the large number of samples needed
in estimating the error for a Bernstein polynomial. Since we only require a neural network to be
Lipschitz continuous, the estimation of approximation error is quite conservative. However, such
limitation may be overcome by considering more information of the activation functions. We plan
to explore it in our future work.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



ReachNN: Reachability Analysis of Neural-Network Controlled Systems 106:15

Table 2. Neural Network Controller Setting and Experimental Results: In Each Example #, for a
Neural-Network Controller, Act Denotes the Applied Activation Functions, l and n Denote the

Number of Layers and the Number of Neurons in Each Hidden Layer, Respectively

#
NN Controller ReachNN Sherlock[15] Verisig

Act l n d δ̄ ε̄ ifReach time d ifReach time ifReach time

1

ReLU 3 20 [1, 1] 0.001 0.0009995 Yes(35) 3184 2 Yes(35) 41 – –

sigmoid 3 20 [3, 3] 0.001 0.0077157 Yes(35) 779 – – – Unknown(22) –

tanh 3 20 [3, 3] 0.005 0.0117355 Unknown(35) – – – – Unknown(22) –

ReLU+tanh 3 20 [3, 3] 0.01 0.0150897 Yes(35) 589 – – – – –

2

ReLU 3 20 [1, 1] 0.01 0.0090560 Yes(9) 128 2 Yes(9) 3 – –

sigmoid 3 20 [3, 3] 0.01 0.0200472 Yes(9) 280 – – – Unknown(7) –

tanh 3 20 [3, 3] 0.01 0.0194142 Unknown(7) – – – – Unknown(7) –

ReLU+tanh 3 20 [3, 3] 0.001 0.0214964 Yes(9) 543 – – – – –

3

ReLU 3 20 [1, 1] 0.01 0.0205432 Yes(60) 982 2 Yes(60) 139 – –

sigmoid 3 20 [3, 3] 0.005 0.0060632 Yes(60) 1467 – – – Yes(60) 27

tanh 3 20 [3, 3] 0.01 0.0072984 Yes(60) 1481 – – – Yes(60) 26

ReLU+tanh 3 20 [3, 3] 0.01 0.0230050 Unknown(60) – – – – – –

4

ReLU 3 20 [1, 1, 1] 0.005 0.0048965 Yes(5) 396 2 Yes(5) 19 – –

sigmoid 3 20 [2, 2, 2] 0.01 0.0096400 Yes(10) 253 – – – Yes(10) 7

tanh 3 20 [2, 2, 2] 0.01 0.0095897 Yes(10) 244 – – – Yes(10) 7

ReLU+sigmoid 3 20 [2, 2, 2] 0.01 0.0096322 Yes(5) 108 – – – – –

5

ReLU 4 100 [1, 1, 1] 0.004 0.0039809 Yes(10) 5487 2 Yes(10) 12 – –

sigmoid 4 100 [2, 2, 2] 0.004 0.0039269 No(10) 8842 – – – Unknown(10) –

tanh 4 100 [2, 2, 2] 0.004 0.0038905 Unknown(10) 7051 – – – Unknown(10) –

ReLU+tanh 4 100 [2, 2, 2] 0.04 0.0039028 Unknown(10) 7369 – – – – –

6

ReLU 4 20 [1, 1, 1, 1] 0.001 0.0096789 Yes(10) 7842 2 Yes(10) 33 – –

sigmoid 4 20 [1, 1, 1, 1] 0.001 0.0082784 No(7) 32499 – – – Yes(10) 34

tanh 4 20 [1, 1, 1, 1] 0.001 0.0156596 No(7) 3683 – – – Yes(10) 35

ReLU+tanh 4 20 [1, 1, 1, 1] 0.001 0.0091648 Yes(10) 10032 – – – – –

While applying our approach ReachNN, d denotes the degree of the polynomial approximation, δ̄ denotes the sampling
error precision, ε̄ represents the error bound. For Sherlock, d represents the degree of the Taylor model based approx-
imation. Under general settings of Flow* (the order of taylor models are chosen between 5–12 in terms of the degree d
in ReachNN, the stepsizes for flowpipe construction are chosen between 1/10-1/100), the verification results for each ap-
proach are evaluated by two metrics: Boolean ifReach following by a number indicates whether this approach verifies the
reachability or not: Yes (n) means the system is proven to reach the goal set after n steps, No (n)means that at nth step
the system has not reached the goal set, and Unknown(n) means the reachable set at any step k ≤ n is not a subset of the
goal set and flowpipes start to blow up after n steps. The computation duration time (in seconds) indicates the efficiency.
We use “–” to represent that a certain approach is not applicable.

5 DISCUSSION AND OPEN CHALLENGES

In this section, we will show further insights into our approach and discuss some remaining
challenges.

ReLU v.s. tanh v.s. sigmoid: Approximation performance of Bernstein polynomials. We
empirically explore the approximation performance of Bernstein polynomials for different neural
networks by sampling. We take Example 2 over X = [0.7, 0.9] × [0.7, 0.9] in the benchmark
for instance. For each neural network controller, we sample a large number of points and plot
the function value of the controller and its approximation over X (Figure 5). The orders of

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



106:16 C. Huang et al.

Fig. 4. Flowpipes for the selected examples: Red curves denote the trajectories of x1 and x2 of the system
simulated from sampled states within the initial set. Green rectangles are the constructed flowpipes as the

overapproximation of the reachable state set by our approach, gray rectangles are the flowpipes computed

based on Verisig, and Sherlock computes the flowpipes represented as deep blue rectangles. The blue rec-

tangle is the goal area. Neither Verisig nor Sherlock can analyze the networks in (f), (g) or (h) due to the

presence of both ReLU and tanh activation functions.

magnitude of the error for ReLU network, sigmoid network and tanh network are 10−12, 10−4,
10−4, respectively. First, the approximation errors for all these three networks are fairly small
for the 0.2 × 0.2 box, which indicates that Bernstein polynomial based approach is promising if
more efficient error estimation approaches could be designed. Secondly, we can see that Bernstein
polynomials can achieve a higher approximation precision for the ReLU network than the other
two. This motivates us to further explore the impact of the inner structure of different neural
networks on the approximation performance in future work.

Small Lipschitz constant v.s. Large Lipschitz constant. Given that the approximation error of
Bernstein polynomials is upper bounded linearly by the Lipschitz constant of neural network, we
conducted preliminary study on the impact of the Lipschitz constant on ReachNN. We consider
the dynamical system of an inverted pendulum on a cart:

ẋ1 = x2,

ẋ2 =
−mд sin (x3) cos (x3) +mlx24 sin (x3) + f mx4 cos (x3) + u

M + (1 − cos (x3)2)m
,

ẋ3 = x4,

ẋ4 =
(M +m) ∗ (д sin (x3) − f x4) − (lmx24 sin (x3) + u)

l (M + 1 − cosx32)m
,

where the angular position and velocity of the pendulum are x1 and x2, the position and velocity
of the cart are x3 and x4, the pendulum mass ism = 0.23, the cart mass is M = 2.4, gravitational
acceleration is д = 9.8, the length of pendulum is l = 0.36, and the coefficient of friction is f = 0.1.
The goal is to stabilize the pendulum at the upward position and verify whether the cart position
remains in [2, 4] after 25 control steps. The system will start randomly from x1 ∈ [0.5, 0.55],x2 ∈
[−1,−0.95],x3 ∈ [2.5, 2.55],x4 ∈ [0, 0.05].

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



ReachNN: Reachability Analysis of Neural-Network Controlled Systems 106:17

Fig. 5. Bernstein polynomial based approximation for different neural networks. In Figure 5(a), 5(b), 5(c),

x1-axis and x2-axis are x1 and x2 respectively, while z axis is the value of neural network/polynomial approx-

imation. The blue point and yellow point are the sample values of the neural network and the approximation

polynomial respectively.

Given a trained five-layer ReLU neural networkκ1 with the width of each layer as [100, 1, 2, 1, 2],
the computed Lipschitz constant is 874.5 [36]. Although this Lipschitz constant is an upper bound
of the best Lipschitz constant, by using the same Lipschitz constant computation method, we can
use it as a proxy to estimate the differences between the best Lipschitz constants of different neural
networks. Figure 6(b) illustrates that the Lipschitz constant of a network has a significant impact
on our Bernstein polynomial-based reachablility analysis. For κ1 as shown in Figure 6(b), the error
bound estimation grows rapidly and end up becoming too large at the 10th step. The blue curves
are continuations of the simulation results from 10 to 20 steps after reachability analysis becomes
unreliable.

Neural Network Retraining. Thus, to handle neural-network controllers with large Lipschitz
constants, we retrained the network by sampling input-output data from the original network
and added a penalty term for Lipschitz constant in the loss function. To reduce the Lipschitz con-
stant, Lθ , of the retrained network κ ′(x ;θ ), we consider the following empirical risk minimization
problem:

min
θ

1

N

N∑
i=1

L(κ ′(x ;θ ),κ (x )) + λLθ , (13)

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



106:18 C. Huang et al.

Fig. 6. ReachNN comparison between large Lipschitz constant neural-network controller and the retrained

neural-network controller using Bernstein polynomials of the same degree. In Figure 6(a), x-axis and y-axis
are the pendulum angular position and angular velocity respectively. In Figure 6(b) and 6(c), x-axis andy-axis
are the cart position and velocity respectively.

where λ ∈ R+ is a regularization factor and Lθ =
∏L

l=1 ‖W
l
θ
‖2 as the Lipschitz constant [36]. We

refer to the second term as the Lipschitz constant regularizer. The gradient of the Lipschitz constant
regularizer is only related to the largest singular value and corresponding vectors ofW l

θ
and pro-

jected by weights of other layers. This means each retrained weight matrix,W l
θ
, does not shrink

significantly in the directions orthogonal to the first right singular vector and preserves potential
important information in the original network. We use classical gradient descent method to do the
optimization. A similar approach is also mentioned in [41].
For the inverted pendulum on a cart example, we retrained a three-layer ReLU neural net-

work κ2 with 50 neurons each layer, which has the Lipschitz constant upper bound of 14.7. In
Figure 6(a), we show state evolution of angular position and angular velocity controlled by the
original neural network κ1 and by the retrained neural network κ2, respectively. In Figure 6(b)
and Figure 6(c), we show that the retrained neural network can produce results comparable to the
original neural network. For the neural network with a small Lipschitz constant, we postulate that
Bernstein polynomials can track the behaviors of the neural network better. In addition, ReachNN
provides tighter error bound estimation. As a result, the overapproximation quality is significantly
improved. This idea is aligned with model compression [7] (or distillation [21]), which uses high-
performance neural networks to guide the training of shallower [3] or more structured neural
networks. One key observation in [3] is that deep and complex neural networks perform better
not because of better representation power, but because they are better regularized and therefore
easier to train. Here, we consider the retraining process as a form of regularization that effectively
maintains the performance of the original network but obtains a smaller Lipschitz constant. We
plan to explore the tighter connection between training and verification more thoroughly in future
work.

Low input dimension v.s. High input dimension.Thanks to the universal approximation prop-
erty of Bernstein polynomials, our approach can theoretically approximate any neural network
well, if the degree is high enough. However from the the perspective of implementation, we can
see that the total order of the generated approximation polynomial Pκ,d by ReachNN will increase
exponentially along with the input dimension. Thus, our current approach may not be efficient
enough to handle high dimension inputs in practice. We will investigate methods to address those
high-dimensional cases in the future.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



ReachNN: Reachability Analysis of Neural-Network Controlled Systems 106:19

6 CONCLUSION

In this paper, we address the reachability analysis of neural-network controlled systems, and
present a novel approach ReachNN. Given an input space and a degree bound, our approach con-
structs a polynomial approximation for a neural-network controller based on Bernstein polyno-
mials and provides two techniques to estimate the approximation error bound. Then, leveraging
the off-the-shelf tool Flow*, our approach can iteratively compute flowpipes as over-approximate
reachable sets of the neural-network controlled system. The experiment results show that our
approach can effectively address various neural-network controlled systems. Our future work in-
cludes further tightening the approximation error bound estimation and better addressing high-
dimensional cases.

A APPENDIX

We present the plots of flowpipes for each benchmark (see Figure 7). Red curves denote the tra-
jectories of x1 and x2 of the system simulated from sampled states within the initial set. Green
rectangles are the constructed flowpipes as the overapproximation of the reachable state set by
our approach, gray rectangles are the flowpipes computed based on Verisig, and Sherlock com-
putes the flowpipes represented as deep blue rectangles. The blue rectangle is the goal area.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



106:20 C. Huang et al.

Fig. 7. Examples

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



ReachNN: Reachability Analysis of Neural-Network Controlled Systems 106:21

ACKNOWLEDGMENTS

We gratefully acknowledge the support from the National Science Foundation awards 1834701,
1834324, 1839511, and 1724341. This work is also funded in part by the DARPA BRASS program
under agreement number FA8750-16-C-0043 and NSF grant CCF-1646497.

REFERENCES

[1] M. Althoff. 2015. An introduction to CORA 2015. In Proc. of ARCH’15 (EPiC Series in Computer Science), Vol. 34.
EasyChair, 120–151.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.
1995. The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138, 1 (1995), 3–34.

[3] Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep?. In Advances in Neural Information Processing

Systems. 2654–2662.
[4] Randall D. Beer, Hillel J. Chiel, and Leon S. Sterling. 1989. Heterogeneous neural networks for adaptive behavior in

dynamic environments. In Advances in Neural Information Processing Systems. 577–585.
[5] M. Berz and K. Makino. 1998. Verified integration of ODEs and flows using differential algebraic methods on high-

order taylor models. Reliable Computing 4 (1998), 361–369. Issue 4.
[6] B. M. Brown, D. Elliott, and D. F. Paget. 1987. Lipschitz constants for the Bernstein polynomials of a Lipschitz con-

tinuous function. Journal of Approximation Theory 49, 2 (1987), 196–199.
[7] Cristian Bucilă, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model compression. In Proceedings of the 12th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 535–541.
[8] X. Chen. 2015. Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Models. Ph.D. Dissertation. RWTH

Aachen University.
[9] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2012. Taylor model flowpipe construction for non-linear hybrid

systems. In Proc. of RTSS’12. IEEE Computer Society, 183–192.
[10] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2013. Flow*: An analyzer for non-linear hybrid systems. In Proc. of

CAV’13 (LNCS), Vol. 8044. Springer, 258–263.
[11] X. Chen and S. Sankaranarayanan. 2016. Decomposed reachability analysis for nonlinear systems. In 2016 IEEE Real-

Time Systems Symposium (RTSS). IEEE Press, 13–24.
[12] Louis De Branges. 1959. The stone-weierstrass theorem. Proc. Amer. Math. Soc. 10, 5 (1959), 822–824.
[13] T. Dreossi, T. Dang, and C. Piazza. 2016. Parallelotope bundles for polynomial reachability. In HSCC. ACM, 297–306.
[14] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. 2015. C2E2: A verification tool for stateflow models. In Proc.

of TACAS’15 (LNCS), Vol. 9035. Springer, 68–82.
[15] S. Dutta, X. Chen, and S. Sankaranarayanan. 2019. Reachability analysis for neural feedback systems using regressive

polynomial rule inference. In Hybrid Systems: Computation and Control (HSCC). ACM Press, 157–168.
[16] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. 2018. Output range analysis for deep feedforward neural net-

works. In NASA Formal Methods Symposium. Springer, 121–138.
[17] G. Frehse. 2005. PHAVer: Algorithmic verification of hybrid systems past HyTech. In HSCC. Springer, 258–273.
[18] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler. 2011.

SpaceEx: Scalable verification of hybrid systems. In Proc. of CAV’11 (LNCS), Vol. 6806. Springer, 379–395.
[19] Eduardo Gallestey and Peter Hokayem. 2019. Lecture notes in Nonlinear Systems and Control.
[20] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. 1998. What’s decidable about hybrid automata? Journal of

Computer and System Sciences 57, 1 (1998), 94–124.
[21] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the knowledge in a neural network. CoRR

abs/1503.02531 (2015).
[22] C. Huang, X. Chen, W. Lin, Z. Yang, and X. Li. 2017. Probabilistic safety verification of stochastic hybrid systems

using barrier certificates. TECS 16, 5s (2017), 186.
[23] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. 2017. Safety verification of deep neural networks. In International

Conference on Computer Aided Verification. Springer, 3–29.
[24] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. 2018. Verisig: Verifying safety prop-

erties of hybrid systems with neural network controllers. arXiv preprint arXiv:1811.01828 (2018).
[25] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. 2017. Reluplex: An efficient SMT solver for verifying

deep neural networks. In International Conference on Computer Aided Verification. Springer, 97–117.
[26] S. Kong, S. Gao, W. Chen, and E. M. Clarke. 2015. dReach: δ -reachability analysis for hybrid systems. In Proc. of

TACAS’15 (LNCS), Vol. 9035. Springer, 200–205.
[27] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and

Daan Wierstra. 2016. Continuous control with deep reinforcement learning. CoRR abs/1509.02971 (2016).

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.



106:22 C. Huang et al.

[28] George G. Lorentz. 2013. Bernstein Polynomials. American Mathematical Soc.
[29] J. Lygeros, C. Tomlin, and S. Sastry. 1999. Controllers for reachability specifications for hybrid systems. Automatica

35, 3 (1999), 349–370.
[30] K. Makino and M. Berz. 2005. Verified global optimization with taylor model-based range bounders. Transactions on

Computers 11, 4 (2005), 1611–1618.
[31] J. D. Meiss. 2007. Differential Dynamical Systems. SIAM publishers.
[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,

Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforce-
ment learning. Nature 518, 7540 (2015), 529.

[33] Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos Theodorou, and Byron Boots.
2018. Agile autonomous driving using end-to-end deep imitation learning. Proceedings of Robotics: Science and Sys-

tems. Pittsburgh, Pennsylvania (2018).
[34] S. Prajna and A. Jadbabaie. 2004. Safety verification of hybrid systems using barrier certificates. In HSCC. Springer,

477–492.
[35] H. L. Royden. 1968. Real Analysis. Krishna Prakashan Media.
[36] W. Ruan, X. Huang, and M. Kwiatkowska. 2018. Reachability analysis of deep neural networks with provable guar-

antees. arXiv preprint arXiv:1805.02242 (2018).
[37] Georgi V. Smirnov. 2002. Introduction to the Theory of Differential Inclusions. Vol. 41. American Mathematical Soc.
[38] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. 2013. Intriguing properties of

neural networks. arXiv preprint arXiv:1312.6199 (2013).
[39] W. Xiang and T. T. Johnson. 2018. Reachability analysis and safety verification for neural network control systems.

arXiv preprint arXiv:1805.09944 (2018).
[40] Z. Yang, C. Huang, X. Chen, W. Lin, and Z. Liu. 2016. A linear programming relaxation based approach for generating

barrier certificates of hybrid systems. In FM. Springer, 721–738.
[41] Yuichi Yoshida and Takeru Miyato. 2017. Spectral norm regularization for improving the generalizability of deep

learning. arXiv preprint arXiv:1705.10941 (2017).
[42] F. Zhao. 1992.Automatic Analysis and Synthesis of Controllers for Dynamical Systems Based on Phase-Space Knowledge.

Ph.D. Dissertation. Massachusetts Institute of Technology.

Received April 2019; revised June 2019; accepted July 2019

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 106. Publication date: October 2019.


