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Graph embedding seeks to build a low-dimensional representation of a graph G. This low-dimensional
representation is then used for various downstream tasks. One popular approach is Laplacian Eigenmaps
(LE), which constructs a graph embedding based on the spectral properties of the Laplacian matrix of G. The
intuition behind it, and many other embedding techniques, is that the embedding of a graph must respect
node similarity: similar nodes must have embeddings that are close to one another. Here, we dispose
of this distance-minimization assumption. Instead, we use the Laplacian matrix to find an embedding
with geometric properties instead of spectral ones, by leveraging the so-called simplex geometry of G. We
introduce a new approach, Geometric Laplacian Eigenmap Embedding, and demonstrate that it outperforms
various other techniques (including LE) in the tasks of graph reconstruction and link prediction.

Keywords: graph embedding; graph Laplacian; simplex geometry.

1. Introduction

Graphs are ubiquitous in real-world systems from the internet to the world wide web to social media
to the human brain. The application of machine learning to graphs is a popular and active research
area. One way to apply known machine learning methods to graphs is by transforming the graph into a
representation that can be directly fed to a general machine learning pipeline. For this purpose, the task
of graph representation learning, or graph embedding, seeks to build a vector representation of a graph
by assigning to each node a feature vector that can then be fed into any machine learning algorithm.

Popular graph embedding techniques seek an embedding where the distance between the latent
representations of two nodes represents their similarity. For example, [1] calls this the ‘community
aware’ property (nodes in a community are considered similar, and thus their representations must be
close to one another), while [2] calls it a ‘symmetry’ between the node domain and the embedding
domain. Others call methods based on this property with various names such as ‘positional’ embeddings
[3] or ‘proximity-based’ embeddings [4]. Consequently, many of these approaches are formulated in
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2 TORRES ET AL.

such a way that the distance (in the embedding space) between nodes that are similar (in the original data
domain) is small. Here, we present a different approach. Instead of focusing on minimizing the distance
between similar nodes, we seek an embedding that preserves the most basic structural property of the
graph, namely adjacency; the works [3, 4] call this approach ‘structural’ node embeddings. Concretely, if
the nodes i and j are neighbours in the graph G with n nodes, we seek d-dimensional vectors si and sj such
that the adjacency between i and j is encoded in the geometric properties of si and sj, for some d � n.
Examples of geometric properties are the dot product of two vectors (which is a measure of the angle
between them), the length (or area or volume) of a line segment (or polygon or polyhedron), the centre of
mass or the convex hull of a set of vectors, among others. In Section 3, we propose one such geometric
embedding technique, called Geometric Laplacian Eigenmap Embedding (GLEE), that is based on the
properties of the Laplacian matrix of G, and we then proceed to compare it to the original formulation of
Laplacian Eigenmaps (LE) as well as other popular embedding techniques.

GLEE has deep connections with the so-called simplex geometry of the Laplacian [5, 6]. Fiedler [6]
first made this observation, which highlights the bijective correspondence between the Laplacian matrix
of an undirected, weighted graph and a geometric object known as a simplex. Using this relationship,
we find a graph embedding such that the representations si, sj of two non-adjacent nodes i and j are
always orthogonal, si · sj = 0, thus achieving a geometric encoding of adjacency. Note that this does not
satisfy the ‘community-aware’ property of [1]. For example, the geometric embedding si of node i will
be orthogonal to each non-neighbouring node, including those in its community. Thus, si is not close
to other nodes in its community, whether we define closeness in terms of Euclidean distance or cosine
similarity. However, we show that this embedding—based on the simplex geometry—contains desirable
information, and that it outperforms the original, distance-minimizing, formulation of LE on the tasks of
graph reconstruction and link prediction in certain cases.

The contributions of this work are as follows:

1. We present a geometric framework for graph embedding that departs from the tradition of looking
for representations that minimize the distance between similar nodes by highlighting the intrinsic
geometric properties of the Laplacian matrix.

2. The proposed method, GLEE, while closely related to the LE method, outperforms LE in the tasks
of link prediction and graph reconstruction. Moreover, a common critique of LE is that it only
considers first-order adjacency in the graph. We show that GLEE takes into account higher-order
connections (see Section 3.2).

3. The performance of existing graph embedding methods (which minimize distance between similar
nodes) suffers when the graph’s average clustering coefficient is low. This is not the case for GLEE.

In Section 2, we recall the original formulation of LE, in order to define the GLEE in Section 3 and
discuss its geometric properties. We mention related work in Section 4 and present experimental studies
of GLEE in Section 5. We finish with concluding remarks in Section 6.

2. Background on LE

Belkin and Niyogi [7, 8] introduced LE as a general-purpose method for embedding and clustering an
arbitrary dataset. Given a dataset {xi}n

i=1, a proximity graph G = (V , A) is constructed with node set
V = {xi} and edge weights A = (aij). The edge weights are built using one of many heuristics that
determine which nodes are close to each other and can be binary or real valued. Some examples are k
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GEOMETRIC LAPLACIAN EIGENMAP EMBEDDING 3

nearest neighbours, ε-neighbourhoods, heat kernels, etc. To perform the embedding, one considers the
Laplacian matrix of G, defined as L = D − A, where D is the diagonal matrix whose entries are the
degrees of each node. One of the defining properties of L is the value of the quadratic form:

y�Ly = 1

2

∑
i,j

aij(yi − yj)
2. (2.1)

The vector y∗ that minimizes the value of (2.1) will be such that the total weighted distance between all
pairs of nodes is minimized. Here, yi can be thought of as the one-dimensional embedding of node i. One
can then extend this procedure to arbitrary d-dimensional node embeddings by noting that tr(Y�LY) =∑

i,j aij‖yi − yj‖2, where Y ∈ R
n×d and yi is the ith row of Y. The objective function in this case is

Y∗ = arg min
Y∈Rn×d

tr(Y�LY)

s.t. Y�DY = I.
(2.2)

Importantly, the quantity tr(Y�LY) has a global minimum at Y = 0. Therefore, a restriction is necessary
to guarantee a non-trivial solution. Belkin and Niyogi [7, 8] choose Y�DY = I, though others are possible.
Applying the method of Lagrange multipliers, one can see that the solution of (2) is achieved at the matrix
Y∗ whose rows y∗

i are the solutions to the eigenvalue problem

Ly∗
i = λiDy∗

i . (2.3)

When the graph contains no isolated nodes, y∗
i is then an eigenvector of the matrix D−1L, also known as

the normalized Laplacian matrix. The embedding of a node j is then the vector whose entries are the jth
elements of the eigenvectors y∗

1, y∗
2, ..., y∗

d .

3. Proposed approach: Geometric LE

We first give our definition and then proceed to discuss both the algebraic and geometric motivations
behind it.

Definition 3.1 (GLEE) Given a graph G, consider its Laplacian matrix L. Using singular value decom-
position, we may write L = SS� for a unique matrix S. Define Sd as the matrix of the first d columns of
S. If i is a node of G, define its d-dimensional Geometric Laplacian Eigenmap Embedding (GLEE) as
the ith row of Sd, denoted by sd

i . If the dimension d is unambiguous, we will just write si.

Algebraic motivation. In the case of positive semidefinite matrices, such as the Laplacian, the singular
values coincide with the eigenvalues. Moreover, it is well known that Sd is the matrix of rank d that
is closest to L in Frobenius norm, i.e., ‖L − Sd(Sd)�‖F ≤ ‖L − M‖F for all matrices M of rank d.
Because of this, we expect Sd to achieve better performance in the graph reconstruction task than any
other d-dimensional embedding (see Section 5.1).

As can be seen from Equation (2.1), the original formulation of LE is due to the fact that the distance
between the embeddings of neighbouring nodes is minimized, under the restriction Y�DY = I . We can
also formulate GLEE in terms of the distance between neighbouring nodes. Perhaps counterintuitively,
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4 TORRES ET AL.

GLEE solves a distance maximization problem, as follows. The proof follows from a routinary application
of Lagrange multipliers and is omitted.

Theorem 3.2 Let � be the diagonal matrix whose entries are the eigenvalues of L. Consider the
optimization problem

arg max
Y∈Rn×d

tr(Y�LY)

s.t. Y�Y = �.
(3.1)

Its solution is the matrix Sd whose columns are the eigenvectors corresponding to the largest eigenvalues
of L. If d = n, then L = Sd

(
Sd

)�
. �

The importance of Theorem 3.2 is to highlight the fact that distance-minimization may be misleading
when it comes to exploiting the properties of the embedding space. Indeed, the original formulation of
LE, while well established in Equation 2.2, yields as result the eigenvectors corresponding to the lowest
eigenvalues of L. However, standard results in linear algebra tell us that the best low rank approximation
of L is given by the eigenvectors corresponding to the largest eigenvalues. Therefore, these are the ones
used in the definition of GLEE.

Geometric motivation. The geometric reasons underlying Definition 3.1 are perhaps more interesting
than the algebraic ones. A recent review paper [5] highlights the work of Fiedler [6], who discovered a
bijective correspondence between the Laplacian matrix of a graph and a higher-dimensional geometric
object called a simplex.

Definition 3.3 Given a set of k + 1 k-dimensional points {pi}k
i=0, if they are affinely independent (i.e. if

the set of k points {p0 − pi}k
i=1 is linearly independent), then their convex hull is called a simplex.

A simplex is a high-dimensional polyhedron that is the generalization of a two-dimensional triangle
or a three-dimensional tetrahedron. To see the connection between the Laplacian matrix of a graph and
simplex geometry, we invoke the following result. The interested reader will find the proof in [5, 6].

Theorem 3.4 Let Q be a positive semidefinite k × k matrix. There exists a k × k matrix S such that
Q = SS�. The rows of S lie at the vertices of a simplex if and only if the rank of Q is k − 1. �

Corollary 3.5 Let G be a connected graph with n nodes. Its Laplacian matrix L is positive semidefinite,
has rank n − 1, and has eigendecomposition L = P�P�. Write S = P

√
�. Then, L = SS� and the rows

of S are the vertices of a (n − 1)-dimensional simplex called the simplex of G. �

Corollary 3.5 is central to the approach in [5], providing a correspondence between graphs and
simplices. Corollary 3.5 also shines a new light on GLEE: the matrix Sd from Definition 3.1 corresponds
to the first d dimensions of the simplex of G. In other words, computing the GLEE embeddings of a graph
G is equivalent to computing the simplex of G and projecting it down to d dimensions. We proceed to
explore the geometric properties of this simplex that can aid in the interpretation of GLEE embeddings.
We can find in [5] the following result.
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GEOMETRIC LAPLACIAN EIGENMAP EMBEDDING 5

33-dimensional simplex

...

...

...

n=3 n=34

Example 
graph G

Simplex of G

2-dimensional
GLEE of G

2D simplex (triangle)

n=4

3D simplex (tetrahedron)

Fig. 1. Simplex geometry and GLEE. Given a graph G with n nodes (top row), there is a (n − 1)-dimensional simplex that perfectly
encodes the structure of G, given by the rows of the matrix S from Corollary 3.5 (middle row). The first d columns of S yield the
GLEE of G (bottom row). In each example, embeddings are colour-coded according to the node they represent. For n = 3, all
nodes in the triangle graph are interchangeable. Accordingly, their embeddings all have the same length and subtend equal angles
with each other. For n = 4, the green and purple nodes are interchangeable, and thus their embeddings are symmetric. Note that the
length of each embedding corresponds to the degree of the corresponding node. For n = 34 we show the Karate Club network [9],
in which we highlight one node in green and all of its neighbours in purple. In the bottom right panel, the dotted line is orthogonal
to the green node’s embedding. Note that most of the non-neighbours’ embeddings (in gray) are close to orthogonal to the green
node’s embedding, while all neighbours (in purple) are not.

Corollary 3.6 Let si be the ith row of S in Corollary 3.5. si is the simplex vertex corresponding to
node i, and satisfies ‖si‖2 = deg(i), and si · s�

j = −aij, where deg(i) is the degree of i. In particular, si is
orthogonal to the embedding of any non-neighbouring node j. �

Corollary 3.6 highlights some of the basic geometric properties of the simplex (such as lengths and dot
products) that can be interpreted in graph theoretical terms (respectively degrees and adjacency). In Fig. 1,
we show examples of these properties. It is worth noting that other common matrix representations of
graphs do not present a spectral decomposition that yields a simplex. For example, the adjacency matrix A
is not in general positive semidefinite, and the normalized Laplacian D−1L (used by LE) is not symmetric.
Therefore, Theorem 3.4 does not apply to them. We now proceed to show how to take advantage of the
geometry of GLEE embeddings, which can all be thought of as coming from the simplex, in order to
perform common graph mining tasks. In the following we focus on unweighted, undirected graphs.

3.1 Graph reconstruction

For a graph G with n nodes, consider its d-dimensional GLEE embedding Sd. When d = n, in light of
Corollary 3.6, the dot product between any two embeddings si, sj can only take the values −1 or 0 and one
can reconstruct the graph perfectly from its simplex. However, if d < n, the distribution of dot products
will take on real values around −1 and 0 with varying amounts of noise; the larger the dimension d, the
less noise we find around the two modes. It is important to distinguish which nodes i, j have embeddings
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6 TORRES ET AL.

si, sj whose dot product belongs to the mode at 0 or to the mode at −1, for this determines whether or
not the nodes are neighbours in the graph. One possibility is to simply ‘split the difference’ and consider
i and j as neighbours whenever si · sj < −0.5. More generally, given a graph G and its embedding Sd,
define ˆL(θ) to be the estimated Laplacian matrix using the above heuristic with threshold θ , that is

ˆLij(θ) =
{ −1 si · s�

j < θ

0 otherwise.
(3.2)

Then, we seek the value of θ , call it θopt, that minimizes the loss

θopt = arg min
θ∈[−1,0]

‖L − L̂(θ)‖2
F . (3.3)

If all we have access to is the embedding, but not the original graph, we cannot optimize Equation (3.3)
directly. Thus, we have to estimate θopt heuristically. As explained above, one simple estimator is the
constant θ̂c = −0.5. We develop two other estimators: θ̂k , θ̂g, obtained by applying Kernel Density
Estimation and Gaussian Mixture Models (GMMs), respectively. We do so in Appendix A as their
development has little to do with the geometry of GLEE embeddings. Our experiments show that different
thresholds θc, θk , and θg produce excellent results on different datasets; see Appendix A for discussion.

3.2 Link prediction

Since the objective of GLEE is to directly encode graph structure in a geometric way, rather than solve
any one particular task, we are able to use it in two different ways to perform link prediction. These are
useful in different kinds of networks.

3.2.1 Number of common neighbours. It is well known that heuristics such as number of CN or Jacard
similarity (JS) between neighbourhoods are highly effective for the task of link prediction in networks
with a strong tendency for triadic closure [10]. Here, we show that we can use the geometric properties
of GLEE in order to approximately compute CN. For the purpose of exposition, we assume d = n unless
stated otherwise in this section.

Given an arbitrary subset of nodes V in the graph G, we denote by |V | its number of elements. We
further define the centroid of V , denoted by CV , as the centroid of the simplex vertices that correspond
to its nodes, i.e., CV = 1

|V |
∑

i∈V si. The following lemma, which can be found in [5], highlights the
graph-theoretical interpretation of the geometric object CV .

Lemma 3.7 (From [5]) Given a graph G and its GLEE embedding S, consider two disjoint node sets V1

and V2. Then, the number of edges with one endpoint in V1 and one endpoint in V2, is given by

−|V1||V2| C�
V1

· CV2 . (3.4)

Proof. By linearity of the dot product, we have

|V1||V2|C�
V1

· CV2 =
∑
i∈V1

∑
j∈V2

si · s�
j = −

∑
i∈V1

∑
j∈V2

aij. (3.5)

The expression on the right is precisely the required quantity. �

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article-abstract/8/2/cnaa007/5775302 by guest on 05 August 2020



GEOMETRIC LAPLACIAN EIGENMAP EMBEDDING 7

Lemma 3.7 says that we can use the dot product between the centroids of two node sets to count the
number of edges that are shared by them. Thus, we now reformulate the problem of finding the number
of CN between two nodes in terms of centroids of node sets. In the following, we use N(i) to denote the
neighbourhood of node i, that is, the set of nodes connected to it.

Lemma 3.8 Let i, j ∈ V be non-neighbours. Then, the number of CN of i and j, denoted by CN(i, j), is
given by

CN(i, j) = − deg(i) CN(i) · s�
j = − deg(j) CN(j) · s�

i . (3.6)

Proof. Apply Lemma 3.7 to the node sets V1 = N(i) and V2 = {j}, or, equivalently, to V1 = N(j) and
V2 = {i}. �

Now assume we have the d-dimensional GLEE of G. We approximate CN(i, j) by estimating both
deg(i) and CN(j). First, we know from Corollary 3.6 that deg(i) ≈ ‖sd

i ‖2. Second, we define the approximate
neighbour set of i as N̂(i) = {k : sd

k · (sd
i )

� < θ̂}, where θ̂ is any of the estimators from Section 3.1. We
can now write

CN(i, j) ≈ −‖sd
i ‖2CN̂(i) · (sd

j )
�. (3.7)

The higher the value of this expression, the more confident is our prediction that the link (i, j) exists.

3.2.2 Number of paths of length 3. A common critique of the original LE algorithm is that it only takes
into account first-order connections, which were considered in Section 3.2.1. Furthermore, authors of
[11] point out that the application of link prediction heuristics CN and JS does not have a solid theoretical
grounding for certain types of biological networks such as protein–protein interaction networks. They
further propose to use the (normalized) number of paths of length three (L3) between two nodes to perform
link prediction. We next present a way to approximate L3 using GLEE. This achieves good performance
in those networks where CN and JS are invalid and show that GLEE can take into account higher-order
connectivity of the graph.

Lemma 3.9 Assume S is the GLEE of a graph G of dimension d = n. Then, the number of paths of
length three between two distinct nodes i and j is

L3(i, j) = − deg(i) deg(j) CN(i) · C�
N(j) +

∑
k∈N(i)∩N(j)

‖sk‖2. (3.8)

Proof. The number of paths of length three between i and j is (A3)ij, where A is the adjacency matrix of
G. We have

(A3)ij =
∑

k∈N(i)

∑
l∈N(j)

l �=k

akl = −
∑

k∈N(i)

∑
l∈N(j)

l �=k

sk · s�
l (3.9)
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8 TORRES ET AL.

= −
∑

k∈N(i)

∑
l∈N(j)

sk · s�
l +

∑
k∈N(i)∩N(j)

sk · s�
k (3.10)

= −|N(i)||N(j)|CN(i) · C�
N(j) +

∑
k∈N(i)∩N(j)

‖sk‖2, (3.11)

where the last expression follows by the linearity of the dot product, and is equivalent to (3.8). �

When d < n, we can estimate deg(i) by ‖sd
i ‖2 and N(i) by N̂(i) as before, with the help of an estimator

θ̂ from Section 3.1.

3.3 Runtime analysis

On a graph G with n nodes, finding the k largest eigenvalues and eigenvectors of the Laplacian takes
O(kn2) time, if one uses algorithms for fast approximate singular value decomposition [12, 13]. Given a
k-dimensional embedding matrix S, reconstructing the graph is as fast as computing the product S · S�

and applying the threshold θ to each entry, thus it takes O(nω + n2), where ω is the exponent of matrix
multiplication. Approximating the number of CN between nodes i and j depends only on the dot products
between embeddings corresponding to their neighbours, thus it takes O(k × min(deg(i), deg(j))), while
approximating the number of paths of length 3 takes O(k × deg(i) × deg(j)).

4. Related work

Spectral analyses of the Laplacian matrix have multiple applications in graph theory, network science and
graph mining [14–16]. Indeed, the eigendecomposition of the Laplacian has been used for sparsification
[17], clustering [18], dynamics [19, 20], robustness [21, 22], etc. We here discuss those applications that
are related to the general topic of this work, namely, dimensionality reduction of graphs.

One popular application is the use of Laplacian eigenvectors for graph drawing [23, 24], which can
be thought of as graph embedding for the specific objective of visualization. In [24], one such method
is outlined, which, similarly to GLEE, assigns a vector, or higher-dimensional position, to each node
in a graph using the eigenvectors of its Laplacian matrix, in such a way that the resulting vectors have
certain desirable geometric properties. However, in the case of [24], those geometric properties are
externally enforced as constraints in an optimization problem, whereas GLEE uses the intrinsic geometry
already present in a particular decomposition of the Laplacian. Furthermore, their method focuses on
the eigenvectors corresponding to the smallest eigenvalues of the Laplacian, while GLEE uses those
corresponding to the largest eigenvalues, that is, to the best approximation to the Laplacian through
singular value decomposition.

On another front, many graph embedding algorithms have been proposed, see for example [25, 26]
for extensive reviews. Most of these methods fall in one of the following categories: matrix factorization,
random walks or deep architectures. Of special importance to us are methods that rely on matrix fac-
torization. Among many advantages, we have at our disposal the full toolbox of spectral linear algebra
to study them [27–30]. Examples in this category are the aforementioned Laplacian Eigenmaps (LE)
[7, 8] and graph factorization (GF) [31]. One important difference between GLEE and LE is that LE
uses the small eigenvalues of the normalized Laplacian D−1L, while GLEE uses the large eigenvalues
of L. Furthermore, LE does not present the rich geometry of the simplex. GF finds a decomposition
of the weighted adjacency matrix W with a regularization term. Their objective is to find embeddings
{si} such that si · sj = aij, whereas in our case we try to reconstruct si · sj = Lij. This means that the
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GEOMETRIC LAPLACIAN EIGENMAP EMBEDDING 9

embeddings found by GF will present different geometric properties. There are many other methods of
dimensionality reduction on graphs that depend on matrix factorization [32–34]. However, even if some
parameterization, or special case, of any of these methods results in a method resembling the singular
value decomposition of the Laplacian (thus imitating GLEE), to the authors’ knowledge none of these
methods make direct use of its intrinsic geometry.

Among the methods based on random walks we find DeepWalk [35] and node2vec [36], both of
which adapt the framework of word embeddings [37] to graphs by using random walks and optimize a
shallow architecture. It is also worth mentioning NetMF [38] which unifies several methods in a single
algorithm that depends on matrix factorization and thus unifies the two previous categories.

Among the methods using deep architectures, we have the deep autoencoder Structural Deep Network
Embedding (SDNE) [39]. It penalizes representations of similar nodes that are far from each other using
the same objective as LE. Thus, SDNE is also based on the distance-minimization approach. There is
also [40] which obtains a non-linear mapping between the probabilistic mutual information (PMI) matrix
of a sampled network and the embedding space. This is akin to applying the distance-minimization
assumption not to the graph directly but to the PMI matrix.

Others have used geometric approaches to embedding. For example, [41] and [42] find embeddings
on the surface of a sphere, while [43] and [44] use the hyperbolic plane. These methods are generally
developed under the assumption that the embedding space is used to generate the network itself. They
are therefore aimed at recovering the generating coordinates, and not, as in GLEE’s case, at finding a
general representation suitable for downstream tasks.

5. Experiments

We put into practice the procedures detailed in Sections 3.1 and 3.2 to showcase GLEE’s performance
in the tasks of link prediction and graph reconstruction. Code to compute the GLEE embeddings of
networks and related computations is publicly available at [45]. For our experiments, we use the following
baselines: GF because it is a direct factorization of the adjacency matrix, node2vec because it is regarded
as a reference point among those methods based on random walks, SDNE because it aims to recover
the adjacency matrix of a graph (a task GLEE excels at), NetMF because it generalizes several other
well-known techniques and LE because it is the method that most directly resembles our own. In this
way, we cover all of the categories explained in Section 4 and use either methods that resemble GLEE
closely or methods that have been found to generalize other techniques. For node2vec and SDNE, we use
default parameters. For NetMF, we use the spectral approximation with rank 256. The datasets we use
are outlined in Table 1. Beside comparing GLEE to the other algorithms, we are interested in how the
graph’s structure affects performance of each method. This is why we have chosen datasets have similar
number of nodes and edges, but different values of average clustering coefficient. Accordingly, we report
our results with respect to the average clustering coefficient of each dataset and the number of dimensions
of the embedding (the only parameter of GLEE). In Appendix B, we compare the performance of each
estimator explained in Section 3.1. In the following experiments, we use θ̂k as our estimator for θopt .

5.1 Graph reconstruction

Given a GLEE matrix Sd, how well can we reconstruct the original graph? This is the task of graph
reconstruction. We use as performance metric the precision at k measure, defined as the precision of the
first k reconstructed edges. Note that precision at k must always decrease when k grows large, as there
will be few correct edges left to reconstruct.
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10 TORRES ET AL.

Table 1 Datasets used in this work (all undirected, unweighted): number of nodes n, number of edges m
and average clustering coefficient c̄ of the largest connected component of each network. AS, autonomous
systems of the Internet.

Name n m c̄ Type

PPI [46] 4,182 13,343 0.04 Protein interaction
wiki-vote [47] 7,066 100,736 0.14 Endorsement
caida [47] 26,475 53,381 0.21 AS Internet
CA-HepTh [48] 8,638 4,806 0.48 Co-authorship
CA-GrQc [48] 4,158 13,422 0.56 Co-authorship

k

d=
32

d=
128

d=
512

d
32

d
128

d
512

E
m

bedding dim
ension

Average clustering coefficient

0.04 0.14 0.21 0.48 0.56

Fig. 2. Graph reconstruction. GLEE performs best in networks with low clustering coefficient, presumably because it depends on
the large eigenvalues of the Laplacian, which encode micro-level graph structure.

Following Section 3.1, we reconstruct the edge (i, j) if sd
i · sd

j < θ̂ . The further the dot product is
from 0 (the ideal value for non-edges), the more confident we are in the existence of this edge. For LE,
we reconstruct the edge (i, j) according to how small the distance between their embeddings is. For both
GF, node2vec and NetMF, we reconstruct edges based on how high their dot product is. SDNE is a deep
autoencoder and thus its very architecture involves a mechanism to reconstruct the adjacency matrix of
the input graph.

We show results in Fig. 2, where we have ordered datasets from left to right in ascending order
of clustering coefficient, and from bottom up in ascending order of embedding dimension. GF results
omitted from this figure as it scored close to 0 for all values of k and d. On CA-GrQc, for low embedding
dimension d = 32, SDNE performs best among all methods, followed by node2vec and LE. However, as
d increases, GLEE substantially outperforms all others, reaching an almost perfect precision score at the
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Fig. 3. Link prediction results. We approximate the number of CN (GLEE), or the number of paths of length 3 (GLEE-L3). Each
circle is the average of 10 realizations; error bars too small to show at this scale. GF and SDNE perform close to 0.5 and 0.6
independently of d or dataset (not shown). Datasets ordered from left to right in increasing order of clustering.

first 10,000 reconstructed edges. Interestingly, other methods do not substantially improve performance
as d increases. This analysis is also valid for CA-HepTh, another dataset with high clustering coefficient.
However, on PPI, our dataset with lowest clustering coefficient, GLEE drastically outperforms all other
methods for all values of d. Interestingly, LE and node2vec perform well compared to other methods
in datasets with high clustering, but their performance drops to near zero on PPI. We hypothesize that
this is due to the fact that LE and node2vec depend on the ‘community-aware’ assumption, thereby
assuming that two proteins in the same cluster would interact with each other. This is the exact point
that [11] refutes. On the other hand, GLEE directly encodes graph structure, making no assumptions
about the original graph, and its performance depends more directly on the embedding dimension than
on the clustering coefficient, or on any other assumption about graph structure. GLEE’s performance on
datasets PPI, Wiki-Vote and caida point to the excellent potential of our method in the case of low
clustering coefficient.

5.2 Link prediction

Given the embedding of a large subgraph of some graph G, can we identify which edges are missing?
The experimental setup is as follows. Given a graph G with n nodes, node set V and edge set Eobs, we
randomly split its edges into train and test sets Etrain and Etest . We use |Etrain| = 0.75n, and we make sure
that the subgraph induced by Etrain, denoted by Gtrain, is connected and contains every node of V . We then
proceed to compute the GLEE of Gtrain and test on Etest . We report area under receiver operator curve
(AUC) metric for this task. We use both techniques described in Sections 3.2.1 and 3.2.2, which we label
GLEE and GLEE-L3, respectively.

Figure 3 shows that node2vec repeats the behaviour seen in graph reconstruction of increased per-
formance as clustering coefficient increases, though again it is fairly constant with respect to embedding
dimension. This observation is also true for NetMF. On the high clustering datasets, LE and GLEE have
comparable performance to each other. However, either GLEE or GLEE-L3 perform better than all oth-
ers on the low clustering datasets PPI, Wiki-Vote, as expected. Also as expected, the performance of
GLEE-L3 decreases as average clustering increases. Note that GLEE and LE generally improve perfor-
mance when d increases, whereas node2vec and SDNE do not improve. (GF and SDNE not shown in
Fig. 3 for clarity. They scored close to 0.5 and 0.6 in all datasets independently of d.) The reason why none
of the methods studied here perform better than 0.6 AUC in the caida dataset is an open question left for
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future research. We conclude that the hybrid approach of NetMF is ideal for high clustering coefficient,
whereas GLEE is a viable option in the case of low clustering coefficient as evidenced by the results on
PPI, Wiki-Vote and caida.

6. Conclusions

In this work, we have presented the GLEE, a geometric approach to graph embedding that exploits the
intrinsic geometry of the Laplacian. When compared to other methods, we find that GLEE performs
the best when the underlying graph has low clustering coefficient, while still performing comparably to
other state-of-the-art methods when the clustering coefficient is high. We hypothesize that this is due to
the fact that the large eigenvalues of the Laplacian correspond to the small eigenvalues of the adjacency
matrix and thus represent the structure of the graph at a micro-level. Furthermore, we find that GLEE’s
performance increases as the embedding dimension increases, something we do not see in other methods.
In contrast to techniques based on neural networks, which have many hyperparameters and costly training
phases, GLEE has only one parameter other than the embedding dimension, the threshold θ , and we have
provided three different ways of optimizing for it. Indeed, GLEE only depends on the singular value
decomposition of the Laplacian matrix.

We attribute these desirable properties of GLEE to the fact that it departs from the traditional litera-
ture of graph embedding by replacing the ‘community aware’ notion (similar nodes’ embeddings must
be similar) with the notion of directly encoding graph structure using the geometry of the embedding
space. In all, we find that GLEE is a promising alternative for graph embedding due to its simplicity in
both theoretical background and computational implementation, especially in the case of low clustering
coefficient. By taking a direct geometric encoding of graph structure using the simplex geometry, GLEE
covers the gap left open by the ‘community-aware’ assumption of other embedding techniques, which
requires high clustering. Future lines of work will explore what other geometric properties of the embed-
ding space can yield interesting insight, as well as what are the important structural properties of graphs,
such as clustering coefficient, that affect the performance of these methods.
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A. Threshold estimators

We present two other estimators of θopt to accompany the heuristic θ̂c = −0.5 mentioned in Section 3.1.

A.1 Kernel density estimation

As can be seen in Fig. A.1, the problem of finding a value of θ that sufficiently separates the peaks
corresponding to edges (around the peak centred at −1) and non-edges (around the peak centred at 0)
can be stated in terms of density estimation. That is, given the histogram of values of si · s�

j for all i, j, we
can approximate the density of this empirical distribution by some density function fk . A good heuristic
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Fig. A.1. Distribution of dot products {si · s�
j } in the Karate Club graph. Columns show different dimension d. Dot products of

existing edges are in blue. Non-edges are in orange. Each row shows a different estimator of θopt. Top row shows the constant
value θ̂c = −0.5. Middle row shows our GMM estimator θ̂g (Algorithm 1). Bottom row shows our Kernel Density Estimator θ̂k

(Section A.1).

estimator of θopt is the value that minimizes fk between the peaks near −1 and 0. For this purpose, we
use Kernel Density Estimation over the distribution of si · s�

j and a box kernel (a.k.a. ‘top hat’ kernel)
function to define

fk(x) ∝
n∑

i<j

1{x − si · s�
j < h}. (A.1)

We then use gradient descent to find the minimal value of fk between the values of −1 and 0. We call this
value θ̂k . We have found experimentally that a value of h = 0.3 gives excellent results, achieving near
zero error in the reconstruction task (Fig. A.1, middle row).

A.2 Gaussian mixture models

Here, we use a GMM over the distribution of si · sj. The model will find the two peaks near −1 and 0 and
fit each to a Gaussian distribution. Once the densities of said Gaussians have been found, say f1 and f2,
we define the estimator θ̂g as that point at which the densities are equal (see Fig. A.1, bottom row).
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However, we found that a direct application of this method yields poor results due to the sparsity of
network datasets. High sparsity implies that the peak at 0 is orders of magnitude higher than the one at
−1. Thus, the left peak will usually be hidden by the tail of the right one so that the GMM cannot detect
it. To solve this issue we take two steps. First, we use a Bayesian version of GMM that accepts priors for
the Gaussian means and other parameters. This guides the GMM optimization algorithm to find the right
peaks at the right places. Second, we sub-sample the distribution of dot products in order to minimize the
difference between the peaks, and then to fix it back after the fit. Concretely, put r = ∑

i<j 1{si · s�
j < θ̂c}.

That is, r is the number of dot products less than the constant θ̂c = −0.5. Instead of fitting the GMM to all
the observed dot products, we fit it to the set of all r dot products less than θ̂c plus a random sample of r
dot products larger than θ̂c. This temporarily fixes the class imbalance, which we recover after the model
has been fit as follows. The GMM fit will yield a density for the sub-sample as fg = w1f1 + w2f2, where fi

is the density of the ith Gaussian, and wi are the mixture weights, for i = 1, 2. Since we sub-sampled the
distribution, we will get w1 ≈ w2 ≈ 0.5, but we need the weights to reflect the original class imbalance.
For this purpose, we define ŵ1 = m̂/

(n
2

)
and ŵ2 = 1 − ŵ1, where m̂ is an estimate for the number of

edges in the graph. (This can be estimated in a number of ways, for example one may put m̂ = r, or
m̂ = n log(n).) Finally, we define the estimator as the value that satisfies

ŵ1f1(θ̂g) = ŵ2f2(θ̂g), (A.2)

under the constraint that −1 < θ̂g < 0. Since f1 and f2 are known Gaussian densities, Equation A.2 can
be solved analytically.

In this case, due to sparsity, the problem of optimizing the GMM is one of non-parametric density
estimation with extreme class imbalance. We solve it by utilizing priors for the optimization algorithm,
as well as sub-sampling the distribution of dot products, according to some of its known features (i.e. the
fact that the peaks will be found near −1 and 0), and we account for the class imbalance by estimating
graph sparsity separately. Finally, we define the estimator θ̂g according to Equation A.2. Algorithm 1
gives an overview of this procedure. For a comparison between the effectiveness of the three different
estimators θ̂c, θ̂k , θ̂g, see Appendix B.

Algorithm 1 Estimating θopt with a Gaussian Mixture Model

1. procedure GMM({si}n
i=1, θ̂c, m̂)

2. L ← {si · s�
j : si · s�

j < θ̂c}
3. R ← random sample of size |L| of {si · s�

j : si · s�
j ≥ θ̂c}

4. w1, w2, f1, f2 ← fit a Bayesian GMM to L ∪ R
5. ŵ1 ← m̂/

(n
2

)
6. ŵ2 ← 1 − ŵ1

7. θ̂g ← solution of ŵ1f1(θ) = ŵ2f2(θ)

8. return θ̂g

9. end procedure
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Fig. B.1. Estimator comparison. We compute the three different estimators on three different random graph models: ER, BA and
HG. All graphs have n = 103 nodes, and average degree 〈k〉 ≈ 8. Hyperbolic graphs generated with degree distribution exponent
γ = 2.3. We show the average of 20 experiments; error bars mark two standard deviations. Values normalized in the range [0, 1].

B. Estimator comparison

In Section 3.1 and Appendix A, we outlined three different schemes to estimate θopt which resulted in
θ̂c, θ̂k , θ̂g. Which one is the best? We test each of these estimators on three random graph models: Erdös–
Rényi (ER) [49], Barabási–Albert (BA) [50] and Hyperbolic Graphs (HG) [51]. For each random graph
with adjacency matrix A, we compute the Frobenius norm of the difference between the reconstructed
adjacency matrix Â using each of the three estimators. In Fig. B.1, we show our results. We see that θ̂c and
θ̂k achieve similar performance across datasets, while θ̂g outperforms the other two for ER at d = 512,
though it has high variability in the other models. From these results, we conclude that at low dimensions
d = 32, too much information has been lost and thus there is no hope to learn a value of θ̂ that outperforms
the heuristic θ̂c = −0.5. However, at larger dimensions, the estimators θ̂g and θ̂k perform better, with
different degrees of variability. We conclude also that no single heuristic for θ̂ is best for all types of
graphs. In the rest of our experiments, we use θ̂k as our estimator for θopt. We highlight that even though
θk is better than θc in some datasets, it might be costly to compute, while θc incurs no additional costs.
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11. Kovács, I. A., Luck, K., Spirohn, K., Wang, Y., Pollis, C., Schlabach, S., Bian, W., Kim, D.-K., Kishore,

N., Hao, T., Calderwood, M. A., Vidal, M. & Barabási, A.-L. (2019) Network-based prediction of protein
interactions. Nat. Commun., 10, 1–8.

12. Halko, N., Martinsson, P.-G. &Tropp, J.A. (2011) Finding structure with randomness: probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Rev., 53, 217–288.

13. Trefethen, L. N. & Bau III, D. (1997) Numerical Linear Algebra, vol. 50. Philadelphia, PA: SIAM.
14. Newman, M.E.J. (2018) Networks. Oxford: Oxford University Press.
15. Spielman, D. (2017) Graphs, vectors, and matrices. Bull. Am. Math. Soc., 54, 45–61.
16. Van Mieghem, P. (2010) Graph Spectra for Complex Networks. Cambridge: Cambridge University Press.
17. Spielman, D. & Srivastava, N. (2011) Graph sparsification by effective resistances. SIAM J. Comput., 40,

1913–1926.
18. Von Luxburg, U (2007) A tutorial on spectral clustering. Stat. Comput., 17, 395–416.
19. Prakash, B., Vreeken, J. & Faloutsos, C. (2014) Efficiently spotting the starting points of an epidemic in a

large graph. Knowl. Inform. Syst., 38, 35–59.
20. Van Mieghem, P., Sahnehz, F. D. & Scoglioz, C. (2014) An upper bound for the epidemic threshold in exact

Markovian SIR and SIS epidemics on networks. 53rd IEEE Conference on Decision and Control, CDC 2014.
Piscataway, NJ: IEEE.

21. Jamakovic, A. & Van Mieghem, P. (2008) On the robustness of complex networks by using the algebraic
connectivity. NETWORKING 2008 Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet:
7th International IFIP-TC6 Networking Conference (A. Das, H. K. Pung, F. B.-S. Lee & L. W.-C. Wong eds).
New York, NY: Springer.

22. Shahrivar, E.M., Pirani, M. & Sundaram, S. (2015) Robustness and algebraic connectivity of random
interdependent networks. IFAC-PapersOnLine, 48, 252–257.

23. Koren, Y. (2005) Drawing graphs by eigenvectors: theory and practice. Comput. Math. Appl., 49, 1867–1888.
24. Pisanski, T. & Shawe-Taylor, J. (2000) Characterizing graph drawing with eigenvectors. J. Chem. Inform.

Comput. Sci., 40, 567–571.
25. Goyal, P. & Ferrara, E. (2018) Graph embedding techniques, applications, and performance: a survey. Knowl.-

Based Syst., 151, 78–94.
26. Hamilton, W. L.,Ying, R. & Leskovec, J. (2017) Representation learning on graphs: methods and applications.

IEEE Data Eng. Bull., 40, 52–74.
27. Charisopoulos, V., Benson, A. R. & Damle, A. (2019) Incrementally updated spectral embeddings. CoRR,

abs/1909.01188.
28. Chen, C. & Tong, H. (2015) Fast eigen-functions tracking on dynamic graphs. Proceedings of the 2015 SIAM

International Conference on Data Mining, SDM 2015 (S. Venkatasubramanian & J. Ye eds). Philadelphia, PA:
SIAM, pp. 559–567.

29. Chen, C. & Tong, H.(2017) On the eigen-functions of dynamic graphs: fast tracking and attribution algorithms.
Stat. Anal. Data Mining, 10, 121–135.

30. Levin, K., Roosta-Khorasani, F., Mahoney, M. W. & Priebe, C.E. (2018) Out-of-sample extension of graph
adjacency spectral embedding. Proceedings of the 35th International Conference on Machine Learning, ICML
2018 (J. G. Dy & A. Krause eds), vol. 80. New York , NY: ACM, vol. 80. pp. 2981–2990.

31. Ahmed, A., Shervashidze, N., Narayanamurthy, S. M., Josifovski, V. & Smola, A. J. (2013) Distributed
large-scale natural graph factorization. 22nd International Conference World Wide Web Conference, WWW 2013
(D. Scwabe, V. A. F. Almeida, H. Glaser, R, Baeza-Yates & S. B. Mon eds). New York, NY: ACM, pp. 37–48.

32. Cai, D., He, X., Han, J. & Huang, T. S. (2011) Graph regularized nonnegative matrix factorization for data
representation. IEEE Trans. Pattern Anal. Mach. Intell., 33, 1548–1560.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article-abstract/8/2/cnaa007/5775302 by guest on 05 August 2020



GEOMETRIC LAPLACIAN EIGENMAP EMBEDDING 17

33. Kuang, D., Park, H. & Ding, C. H. Q. (2012) Symmetric nonnegative matrix factorization for graph clustering.
SDM. Proceedings of the 12th SIAM International Conference on Data Mining, SDM 2012. Philadelphia, PA:
SIAM, pp. 106–117.

34. Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W. & Yang, S. (2017) Community preserving network embedding.
AAAI. Proceedings of the 31st AAAI Conference on Artificial Intelligence (S. P. Singh & S. Markovitch eds).
Palo Alto, CA: AAAI Press, pp. 203–209.

35. Perozzi, B., Al-Rfou, R. & Skiena, S. (2014) DeepWalk: online learning of social representations. The
20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014
(S. A. Macskassy, C. Perlich, J. Leskovec, W. Wang & R. Gnani eds). New York, NY: ACM, pp. 701–710.

36. Grover, A. & Leskovec, J. (2016) node2vec: scalable feature learning for networks. Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016 (B. Krish-
napuram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen & R. Rastogi eds). New York, NY: ACM, pp.
855–864.

37. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. (2013) Distributed representations of words
and phrases and their compositionality. Advances in Neural Information Processing Systems, (C. J. C. Burges,
L. Bottou, Z. Ghahramani & K. Q. Weinberger eds). Red Hook, NY: Curran Associates, Inc., pp. 3111–3119.

38. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K. & Tang, J. (2018) Network embedding as matrix factorization:
unifying DeepWalk, LINE, PTE, and node2vec. WSDM. ACM, pp. 459–467.

39. Wang, D., Cui, P. & Zhu, W. (2016) Structural deep network embedding. KDD. pp. 1225–1234.
40. Cao, S., Lu, W. & Xu, Q. (2016) Deep neural networks for learning graph representations. Proceedings of the

13th AAAI Conference on Artificial Intelligence (D. Schuurmans & M. P. Wellman eds). Palo Alto, CA: AAAI,
pp. 1145–1152.

41. Estrada, E., Sánchez-Lirola, M. G. & de la Peña, J. A. (2014) Hyperspherical embedding of graphs and
networks in communicability spaces. Discrete Appl. Math., 176, 53–77.

42. Pereda, M. & Estrada, E. (2019) Machine learning analysis of complex networks in hyperspherical space.
Patt. Recogn., 86, 320–331.
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