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Abstract—We analyze nonlinear dynamics of the Kelvin—Helmholtz quantum instability of the He-II free
surface, which evolves during counterpropagation of the normal and superfluid components of liquid helium.
It is shown that in the vicinity of the linear stability threshold, the evolution of the boundary is described by
the |§|* Klein—Gordon equation for the complex amplitude of the excited wave with cubic nonlinearity. It is
important that for any ratio of the densities of the helium component, the nonlinearity plays a destabilizing
role, accelerating the linear instability evolution of the boundary. The conditions for explosive growth of per-
turbations of the free surface are formulated using the integral inequality approach. Analogy between the Kel-
vin—Helmholtz quantum instability and electrohydrodynamic instability of the free surface of liquid helium

charged by electrons is considered.
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1. INTRODUCTION

The tangential discontinuity of velocities in a liquid
as well as at the interface between two liquids leads to
the emergence of the classical Kelvin—Helmholtz
instability (KHI) [1]. In recent years, the KHI in
superfluid liquids has been actively studied, including
the instability of the interface between different super-
fluid phases of *He [2—6] as well as the instability of
free “He surface [7—9] in the superfluid state (the so-
called He-II phase appearing at a temperature below
2.17 K [10]). The former case realized for *He is the
closest to the classical KHI (the phases are on different
sides of the boundary), while the latter case is princi-
pally different since instability appears due to counter-
propagation of the normal and superfluid “He compo-
nents under the free surface. In this study, we consider
the second case that can naturally be referred to as
quantum KHI since both components are on the same
side of the free surface, and their coexistence is a
quantum effect having no classical analog. A typical
experimental situation, in which such a relative
motion of components is observed, is illustrated in
Fig. 1. Experimental investigations of the emergence
of instability on the free flat surface of superfluid He-
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II with the heat flow in the bulk of the liquid have been
initiated by I.M. Khalatnikov and are actively per-
formed at the Laboratory of Quantum Crystals, Insti-
tute of Solid State Physics, Russian Academy of Sci-
ences (see, for example, [8, 11—14]).

We will use the two-liquid approximation for
describing the dynamics of *He [10] with densities p,
and p, of the superfluid and normal components,
respectively (total density of the liquid is p = p,, + p,.
Both components are treated as incompressible liquids
(p, = const and p, = const).

Quantum KHI instability increment for linear per-

ik-r, —ior

turbations proportional to e of a flat horizontal
surface in the presence of gravity and capillarity is
given by the following dispersion relation obtained in
[15, 16]:

W =p(®—V, k)’

a0 2,3 (D
+p,(@=V, k+i2v,k>) +4p,vik’m,,

where V, and V,, are the mean velocities of the super-
fluid and normal components, r; is the horizontal
coordinate; 7 is the time; v, is the kinematic viscosity
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Heat flow

Fig. 1. (Color online) Counterpropagation (with velocities
V. p) of the superfluid and normal components of super-

fluid “He induced by a heat flow from a heater, which is
carried by the normal component. Both components are
located in the same volume of *He and flow along the tan-
gent to the common free surface.

of the normal component, which is defined as the
dynamic viscosity normalized to p,; k and ® are the
wavevector and frequency of perturbations, £ = |k|, and
m,=[k* —i(® -V, Kk)/v,]/2 Also

o, =gk +0k’/p ()

is the dispersion relation for gravity—capillary waves in
the absence of average motion of the liquid compo-
nents, where g is the acceleration due to gravity and o
is the surface tension coefficient.

In the framework of the simplest nondissipative
two-liquid description [15, 16], the flow of both
phases is treated as a potential flow. In this case, the
velocities of the phases can be writtenas 'V, ;= VO, ,
where @, , are the velocity potentials satisfying (since
p, = const and p, = const) the Laplace equations

V@, =0, V@, =0, (3)

and dispersion relation (1) can be reduced to
@=V, k' =w, -2Lr v k), @)
Y

where V,, = (p,)V, + p,V,)/p is the mean velocity of the
center of mass of the liquid and V=V, —V, is the aver-
age relative velocity for the liquid components. With-
out loss of generality, we will henceforth assume that
V,, = 0, which implies a transition to the correspond-
ing moving frame of reference.

Dispersion relation (4) makes it possible to find
[15, 16] the threshold value of relative velocity

PRI

V. = [ 2 gf‘j , 5)
PuPs

which corresponds to wavenumber k = kj = /pg/o.. A

linear KHI appears at relative velocity V'=[V| > V..

It should be noted that the dispersion relation for
the quantum KHI assumes the same form as the con-
ventional dispersion relation of the KHI for the inter-
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face between two ideal immiscible liquids (see, for
example, [1], p. 346]) if we use in Eq. (4) classical dis-

perSion relation wi,classical = (ps - pn)gk/p + (X'k3/p for
gravity—capillary waves instead of relation (2) for ®, in
the absence of average motion of the liquid compo-
nents (in this case, we presume that the liquid of den-
sity p,, is above the interface, while the liquid with den-
sity p, is below it). To return from @ jusgicar tO T€lation
(2), it is sufficient to perform substitution p,, = —p,
(without changing total density p) in ®; (agica- The
remaining terms in relation (4) are independent of g
and, hence, do not change depending on the position
of the second liquid with density p, under the free sur-
face (quantum case) or above the interface (classical
case). The described difference between the linear dis-
persion relations for quantum and classical KHIs are
only quantitative by nature. A qualitative difference
between the classical and quantum KHIs appears at
nonlinear stages of instability development. For exam-
ple, in the limit V> V, for classical KHI, a tendency
to the formation of weak root singularities appears at
the interface between the liquids, for which the surface
remains smooth, but its curvature becomes infinitely
large over a finite time interval [17, 18]. Under analo-
gous conditions for the quantum KHI, a tendency to
the formation of strong singularities (cusp points)
appears [19].

In this study, we consider nonlinear stages of devel-
opment of the quantum KHI in the vicinity of the sta-
bility threshold (i.e., for |V — V,|/V. < 1). In this situa-
tion, a narrow packet of surface waves in the Fourier
space is excited, which makes it possible to formulate
the equation of the envelope of this wave packet. It will
be shown that the nonlinearity for any relation
between the densities of helium components produces
a destabilizing effect, i.e., accelerates the development
of the linear instability of the interface and leads to
explosive instability with a singularity in the equation
of the envelope appearing over a finite time interval. In
the context of complete hydrodynamic equations, this
means that the solution becomes strongly nonlinear
(values of characteristics slopes become of the order of
unity) over a finite time.

The article is organized as follows. In Section 2, we
consider basic equations in two-liquid hydrodynamics
with kinematic and dynamic boundary conditions on
the free surface. In Section 3, a transformation to the
effective one-liquid description is made for 2D flows
using harmonically conjugate potentials (stream func-
tions). In Section 4, we demonstrate that as a result of
our transformations, the initial problem of description
of nonlinear development of the quantum KHI, which
appears due to relative motion of the normal and
superconducting phases, becomes equivalent (up to
trivial removal of constants) to the problem of dynam-
ics of the electron-charged boundary of liquid helium
in an electric field (the limit when the charge is com-
No. 4
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pletely screens the fields over the liquid). This analogy
has allowed us to use a number of results obtained ear-
lier from analysis of the behavior of liquid helium in an
electric field for the problem considered here. In Sec-
tion 5, using the results obtained in [20, 21], we
demonstrate that the evolution of the interface in the
vicinity of the stability threshold can be described by
the |§|* relativistically invariant Klein—Gordon equa-
tion with nonlinear attraction for the complex enve-
lope of the wave being excited. It is important that for
any relation between the densities of the helium com-
ponents, nonlinearity plays a destabilizing role, accel-
erating the linear instability development. In Section
6, using the integral inequality approach in the Klein—
Gordon equations and analogy with the motion of an
effective Newtonian particle in a certain potential, we
formulate sufficient conditions for explosive buildup
of perturbations of the free surface. In concluding Sec-
tion 7, we consider the hard excitation of strongly non-
linear solutions and their applicability in full two-lig-
uid hydrodynamics.

2. BASIC EQUATIONS

We limit our analysis to 2D flows for which all
quantities depend on pair of variablesr = (x, y), where
x and y are the horizontal and vertical coordinate,
respectively. In this case, we have V = (d/dx, d/dy).

The helium surface in the unperturbed state is plane
y =0, and the motion of helium components along the
x axis is uniform (i.e., equality @, =V, xholds for the
velocity potentials, where V),  are horizontal velocity
components). As mentioned above, we can assume
without loss of generality that p,V, + p,V, = 0, which
corresponds to analysis of the problem in the center-of-
mass system. Then the velocity components can be
expressed in terms of average relative velocity V=V, —

V, > 0 of the componentsas V, ;= Fp,,V/p.

We assume that the perturbed free surface of liquid
helium is defined by equation y = n(x, ?); i.e., the lig-
uid occupies domain

—oo < X < oo, —oo<y<<N(X,1).

Perturbations of velocity potentials, which appear because
of deformation of the boundary, decay in the bulk:

D, >V, x, y——oo (6)

The motion of the boundary is determined by the
dynamic and kinematic boundary conditions. The
dynamic condition (time-dependent Bernoulli equa-
tion for a two-component liquid) has form

2 2
o, (aq% L (Vo,) j o, (aq)s L (Vo) j
)

ot 2 ot 2

0N
ey

X

=—pgn + y=n,
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where 1, = 0n/ox, N, = 0°1/0x?, the first term on the
right-hand side is responsible for the force of gravity,
and the second term, for capillary forces. These forces
tend to return the perturbed boundary of the liquid to
the initial planar state. Quantity I" is the Bernoulli
constant; its value that ensures the fulfillment of con-
dition (7) in the unperturbed state ®, ;= V, x and
N = 0 is given by

ro PV oV eV’
2 2p
Finally, in accordance with the kinematic condition,

normal velocity of the boundary must coincide with
the normal component of the velocity in each phase,

N _3,0,=0,®, y=nxsn, O

where 1,=0dn/dfand d,=n - V indicates the derivative
with respect to the outward normal

1
= (— ’1 —_—
n= e )\/1+n§

to the boundary of the liquid.

3. TRANSITION TO EFFECTIVE
ONE-LIQUID DESCRIPTION

Let us introduce the average velocity of the
medium as

pl’lvl’l ;_ pSVS . (9)

The equations of motion can be written in terms of a
single effective liquid of density p, which flows at
velocity v. Velocity (9) corresponds to potential

¢ — pnq)n + p5¢5
p

i.e., v = VO. We also introduce auxiliary velocity
potential

vV =

, (10)

O = PP (P, —Dy)/p. (1)
Potentials @ and ¢ are linear combinations of har-

monic potentials @ ,; therefore, these potentials sat-
isfy Laplace equations

Vd =0, V=0.

Conditions (6) deep inside fluid can be written as

o - 07 q) — _Vx\lpspn/pa Yy — —oo. (12)
Dynamic boundary condition (7) assumes the form
90 (Vo) om p(Ve)’
=+ —|=—pgn+ X - ,
p[ o 2 PEN a+ny*? 2
(13)
y=n
Vol. 129 No.4 2019
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It can easily be seen from expression (8) that the kine-
matic condition for potential ® becomes

——=0,0,
J1+n2

Finally, the kinematic condition for potential ¢ is
obviously trivial:

2,6=0, y=n (15)

Thus, the initial equations of motion for the two com-
ponents of liquid helium in the nondissipative approx-
imation can be reduced to classical equations for a
potential flow of a single incompressible liquid with a
free surface, which takes into account the capillary
and gravity forces, with additional term p(V$)?/2 on
the right-hand side of time-dependent Bernoulli
equation (13). This term is responsible for the effect of
counterpropagation of the liquid helium components
and, hence, for the evolution of the Kelvin—Helm-
holtz instability. Let us consider this term in greater
detail.

We introduce auxiliary function y which is the har-
monic conjugate with potential ¢; i.e., ¥ and ¢ are
connected by the Cauchy—Riemann relations

20 _dy  20__dy

ox dy dy  Ox
Let us clarify the physical meaning of quantity Y. Sim-
ilarly to relation (11), it can be written as

V= Vpspn(an - ‘Ps)/p’ (16)

where ¥, | is the stream function for the normal and
superconducting He-II components, which are con-
nected with potentials @, by relations

0D, IV, 90, oV,

ox ay dy ox

Therefore, harmonic function y is (to within a con-
stant factor) the difference between the stream func-
tions for different helium components.

As a consequence of the Cauchy—Riemann rela-
tions, we obtain

y=n (14)

an¢|y=n = _at\My:n’
where

is the tangential derivative. Then boundary condition (15)
can be written as

y=mn,
i.e., quantity y does not change along the boundary.
Without loss of generality, we can set \|I|y -n=0.

After the introduction of w, the equations of
motion assume final form

d.y =0,
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V=0, V=0, (17)

D50, Yy -Wnpp,/p, y——o, (18)

_ Mo pVy)® 4
——pgn+W F_T’ y=n

W _3,® wy=0, y=n (20)

Ji+n2

It is important that the problem of determining func-
tion y and, as a consequence, of key term p(Vy)?/2 in
the dynamic boundary condition decouples from the
general problem of motion of the boundary. Indeed, it
can be seen from these equations that quantity y is
completely determined by shape n of the boundary
and is independent of the form of its motion (i.e., of
potential ®). It is exactly this circumstance that deter-
mines the possibility of transition to the one-liquid
description for the given problem.

4. ANALOGY WITH THE DYNAMICS
OF LIQUID HELIUM IN AN ELECTRIC FIELD

Let us demonstrate that Eqs. (17)—(20) are iden-
tical to the equations appearing in the description of
instability of the electron-charged free boundary of
liquid helium in an external electric field. We assume
that liquid helium is at a low temperature so that the
normal phase is absent (p, = 0 and p = p,). The
unperturbed (planar) boundary is charged by elec-
trons with surface charge density ¢. It is well known
that electrons can freely move over the boundary,
thus ensuring that the boundary is equipotential one
[22, 23]. In an applied vertical uniform electric field,
the field strengths over (E,) and inside (£;) the liquid
are connected by relation E, — E; = 4nG.

Velocity potential @ of the (single) liquid and elec-
tric field potentials over (¢,) and inside (@;) the liquid
satisfy Laplace equations

Vo =0, Ve, =0.

These equations must be solved together with the follow-
ing conditions in the bulk and on the free boundary:

® -0 o¢,—>-E,, y— -
oD (VO o,
p( ot 2 Petl a+n2)?
Vo)’ —(Vo,)’
er_( ¢) —(Vo,) Coy=n
81
n[ - anq)’ (‘pl (po = Oa y = na
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where the Bernoulli constant is 'y = (E,A2 — Ef )/8m and
the potential of boundary y = 1 is assumed to be zero.
The last term in the time-dependent Bernoulli equa-
tion is responsible for the electrostatic pressure at the
free boundarys; it includes the pressures over and under
the surface.

The above equations turn out to be identical to
Egs. (17)—(20) for the quantum KHI (derived above
in a particular case when E, = 0 and, accordingly, ¢, =
0 and E; = —4mo). This case (when the surface charge
completely screens the field over the liquid) was real-
ized, for example, in experiments [22, 24]. In the
framework of this analogy, auxiliary flow function
and electric field potential @, in the liquid, as well as
velocity difference V and field strength E;, are con-

nected by relations
VV4npnps/p = Ei'

yanp = @,

It should be noted that the Bernoulli constants also
coincide in this case (I'=Y).

The revealed analogy makes it possible to use the
results obtained earlier from analysis of the electrohy-
drodynamic instability of the charged surface of liquid
helium [20, 21, 25—27] for analyzing the quantum
Kelvin—Helmholtz instability.

Concluding this section, we note that this analogy
cannot be extended to the general 3D case. In the case
of KHI, there exists a preferred direction, viz., the
direction of flow of the liquids (x-axis in our case).
There is no preferred direction for electrohydrody-
namic instability—the problem is invariant to rotation
about the vertical y axis along which the external elec-
tric field is directed.

5. AMPLITUDE EQUATION
FOR THE DYNAMICS
OF THE FREE BOUNDARY

Analysis performed in [20] revealed that the liquid
helium boundary in an electric field becomes unstable
when the following condition holds:

E'+E’>E,

where

Ef = SR@.
In the vicinity of the instability threshold, harmonics
with wavenumbers close to k, = /pg/c. grow. Let us
introduce the supercriticality parameter as
_E+E -E
E? '

c

S

If]8] < 1, it is natural to construct the equation for the
envelope for describing the dynamics of the boundary.
For the 2D case (in the 3D case, it is necessary to con-
sider the interaction of three plane waves with
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wavevectors turned through 2rt/3 [28, 29]), the shape
of the boundary is sought in form

M) = e, 0™ + e, e ™)+ (P,
2k,
where u is the dimensionless complex amplitude
(envelope) of the wave, and asterisk marks complex
conjugation. It was shown in [21] that the evolution of
the boundary is described by the Klein—Gordon
equation with cubic nonlinearity:

2 2
I B_th = du %B_L; + (A2 —i) ulu’,
2gk, ot 2k, 0x 16
where we have introduced notation
2 2
A=£§ﬂ.

c

It can be seen that in the linear approximation (in the
spatially homogeneous case), the amplitude increases
exponentially for & > 0. In this case, the nonlinearity
hampers the instability development for 0 < A2 < 5/16
and accelerates it for A2 > 5/16.

In the case of our interest (when £, = 0), for small
supercriticality 8 ~ 0, we have E; = E, and, hence,
A = 1. In such a case, the amplitude equation takes the
form

2 2
1 a—? =du + %E)_th
i.e., the nonlinearity is destabilizing. Analysis per-
formed in Section 4 shows that this equation also
describes the evolution of the KHI of the He-II
boundary. In this case, supercriticality is given by
_V -V

5 ;
%

c

11 | 2
+=ulu|", 21
16|| (21)

(22)

where the critical velocity is defined by Eq. (5).

Due to the destabilizing effect of the nonlinearity,
atendency to an explosive increase in the amplitude of
the He-II boundary appears during the KHI evolution
in the spatially homogeneous solution; it increases
unlimitedly over a finite time as

1

U o< —

, t—t
t—t,

¢

where 7, is the instant of “explosion.” It is interesting
that this result is independent of the ratio of the densi-
ties of the normal and superfluid helium components.
The coefficient of the nonlinear term in Eq. (21) turns
out to be universal. In the model developed here, the
only quantity depending on the ratio of densities is the
difference in velocities of the components (5), which is
a threshold for the KHI development and appears in
supercriticality condition (22).

Vol. 129
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After scaling
t X 4u
P> —, x>, o
2gk, 2k, NI

amplitude equation (21) for envelope u assumes the
following compact form:

o’u

2
— =0u+ B_L; +|ulu.

(23)
or 0x
It corresponds to Hamiltonian
oul* | |ou y o
H=||= + —du —= wdx, 24
I[at ox d 2 9

which is an integral of motion.

6. CONDITIONS FOR EXPLOSIVE
DEVELOPMENT OF THE QUANTUM
KELVIN-HELMHOLTZ INSTABILITY

Thus, we have established that during the develop-
ment of quantum KHI, wave packet envelope u obeys
the Klein—Gordon complex nonlinear equation with
cubic nonlinearity, which is known as the |0|* model.
The specific feature of Eq. (23) is that the nonlinearity
does not stabilize linear instability, but on the con-
trary, enhances it, leading to an explosive increase in
amplitudes under certain conditions. Indeed, assum-
ing that perturbation of boundary n(x, #) and, hence,
amplitude u(x, f) is localized in space, we consider,
analogously to [30], the temporal evolution of square
of L? norm

B(t) = j lufdx. (25)
Equations (23)—(25) allow us to write
B, = I[2|u,|2 + uu* + il dx
(26)

= —4H + [ (6l — 230 + Y Pls,

where we have used integration by parts with respect to
x with allowance for decreasing boundary conditions
for [x| — oco. It should be noted that contribution from

2J|u|4dx was completely absorbed by term —4H. The

subscripts in Eq. (26) and below indicate differentia-
tion: u, = ou/ot, u, = ou/ox, B, = 0*B/or* = d*B/dr,
and so on.

To obtain the lower estimate of term
I6|u,|2dx =6 j Rdx +6 j 0> R2dx Q27)

in Eq. (26), we write complex amplitude « in form u =
Re™, where R = |u| is the amplitude and ¢ is the phase.
Using the Cauchy—Bunyakovsky inequality

[ = (e fera) "
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which is valid for complex-valued functions fand g, we
obtain inequalities

IBf = 2‘ j RR,dx‘ <28 j R,2dx)1/2 (28)

and

0| = 2‘ I ¢,R2dx‘ < 2B (j ¢,2R2dx)1/2, (29)

where Q = iI[utu* — uu]dx is the integral of motion
(0,=0) of Eq. (23). When Eq. (23) is used in the quan-
tum field theory and the theory of solitons, this inte-
gral is sometimes referred to as the charge (see, for
example, [31, 32]); however, we will not use this term

below since the concept of charge has already been
used in Sections 4 and 5 in another context.

Using inequalities (28) and (29), we obtain the fol-
lowing inequality from (27):

2 2
j6|u,|2dx > 3B, + Q

2B 2B
Substituting this expression into (26) and omitting
term I2 |u,’dx (the disregard of this nonnegative term

is compatible with the sign of the inequality), we arrive
at differential inequality

2 2
B, >3B .39 4y _osp
2B 2B
Change of variables B = A2 allows us to write
inequality (30) in form

(30)

QU(A)
4 <-4 31
1t BA ) ( )
where
HA> <A A°Q
UA) =-22 52+ 2% 32
(A) : ot o (32)

Differential inequality (31) can be written in the
equivalent form of ordinary differential equation

dUA) ,»
A, =————=-h(t),
i A (0
where —A?(f) is an unknown nonpositive force.

Analysis of the formation of singularity in Eq. (23)
can be performed based on the method proposed in
[33] (see [34—36] for the further development of this
method). The method is based on analogy of Eq. (33)
with the equation of motion of an effective Newtonian
“particle” with coordinate A4 in potential (32) under
the action of an additional (generally, nonpotential)
force —A(f)?, which pulls the particle to the origin of
coordinates. When this particle achieves zero (4 = 0),
singularity B = oo is formed in Eq. (23). The form of
potential U(A) (32) is shown qualitatively in Fig. 2 for
0 # 0 depending on values of H and 8. (The particular

(33)
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case of Q = 0 can be considered analogously; see also
[30].)

It is convenient to introduce particle energy

AZ
W) = ?’ +U(A), (34)
which depends on time due to the presence of force
—h(f)? as

dW () _
dt

The complete classification of sufficient conditions
for the formation of the singularity over a finite time
(also known as the wave collapse or just collapse [37])
can be obtained. The corresponding exact theorem
can easily be formulated (when needed) based on the
following considerations that should be analyzed sep-
arately for A(0) > 0 and 4,0) <0.

(a) If for the given initial conditions 4(0) and
A(0) £ 0 the particle reached the origin (4 = 0 in
Eq. (33)) under the action of conservative force
—dU(A)/dA alone, it would definitely reach the origin
of coordinates in the same or shorter time if force
—h(f)? were taken into account. This is due to the fact
that in accordance with relation (35), in the case with
A, <0 considered here, we have inequality W(¢) = W(0)
for energy. In the case depicted in Fig. 2a, collapse
occurs when W/(0) > 0, i.e., when the particle has suf-
ficient initial energy for reaching zero during a finite
time. In the case shown in Fig. 2b, it is necessary that
either A4(0) be on the left of the barrier (for any W/(0)),
or the value of W/(0) be over the barrier (for A(0) on the
right of the barrier). The case illustrated in Fig. 2c is
the simplest because the collapse occurs here for any
values of A(0), A(0), and W(0).

(b) For 4,0) > 0, the sufficient conditions for the
collapse can be formulated for the cases shown in
Figs. 2b and 2c. In the case illustrated in Fig. 2c, the
collapse occurs for any values of 4(0), 4,0), and W/(0),
because the monotonicity of potential U(A) stops the
motion of the particle to the right over a finite time
(nonzero force —h(?)?> only accelerated this process),
after which the particle falls to zero during a finite time
(in this case also, nonzero force —4(f)? only accelerates
this process). To ensure, for example, the fulfillment
of condition H < 0 for § < 0, in is necessary in this case
that nonlinearity be quite strong for the negative con-

aup@}:_ ) 35
A,[A,,+ D] yg,G9)

tribution from term — ‘[ (1/2)|ul*dx in Hamiltonian (24)

to exceed the contributions from all remaining positive
terms. In the case shown in Fig. 2b with 4,0) > 0, the
collapse appears a fortiori when A(0) is on the left of
the barrier, and initial energy W/(0) is insufficient for
overcoming the barrier even when force —h?(f) is
ignored. With allowance for force —/2(f), the particle
necessarily stops on the left of the barrier and then falls
to zero over a finite time. In the remaining cases shown
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Fig. 2. (Color online) Qualitative form of potential U(A)
(32) as a function of H and & for Q # 0.

in Figs. 2a and 2b (A(0) is on the right of the barrier),
the particle can stuck in the vicinity of the potential
minimum because, as follows from Eq. (35) for 4,(0) >
0, we have W(¢) < W(0); i.e., the particle loses energy,
and after the reflection from the wall, the energy may
turn out to be insufficient for overcoming the barrier.
For this reason, the sufficient condition for the col-
lapse in these case cannot be formulated (although
collapse is still possible, but its full description requires
detailed knowledge of the —A(7)> dependence).

If one of the above sufficient conditions for the
explosive KHI evolution holds and 4,(0) <0, time ¢, for
the emergence of the singularity satisfies inequality

A(0)

[ < dA ’
T aAwm 0 -UM)]

following from Egs. (33) and (34).

It should also be noted that for spatially homoge-
neous initial conditions —A?(f) =0 (all integrals in this
case must be considered in the sense of their values
per unit length along the x axis), all inequalities of
this section become equalities; among other things,
inequality (31) becomes an ordinary differential equa-
tion for a Newtonian particle. Therefore, the sufficient
criteria for the collapse on the class of homogeneous
solution in this section become sufficient and neces-
sary conditions for the collapse, which generalizes the
criteria for collapse from [30], where the contribution
from integral of motion Q was not taken into account.
The asymptotic form of falling of the particle to zero
(A = 0) corresponds to constant velocity A,; therefore,
for B= A~?and, accordingly, for squared amplitude |u|?
of the envelope of a surface wave, the asymptotic
dynamics of the collapse corresponds to law (7, — 1)~2.

7. CONCLUSIONS

It should be noted that some of sufficient criteria
for the explosive increase of the amplitudes, which
were formulated in Section 6, are applicable in the
case when a plane surface is stable to small perturba-
tions (& < 0). This means that the excitation of insta-
bility is hard, and a large initial perturbation of a lin-
early stable regime may lead to the emergence of a sin-
Vol. 129
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gularity over a finite time. In all cases, Eq. (23) in the
vicinity of the singularity becomes inapplicable: next
orders of perturbation theory now make a contribution
of the same order of magnitude as the nonlinearity in
Eq. (23). It can then be concluded that the solution
becomes strongly nonlinear in finite time #,; i.e., the
characteristic slopes of the surface become of the order
of unity due to the action of the leading nonlinearity of
the Klein—Gordon equation. After this, we generally
expect the breaking of waves. In this region, it is nec-
essary to consider complete hydrodynamic equations
of Section 3, which is beyond the scope of this article.

It should be noted that indefinitely strongly non-
linear stages of the quantum KHI were analyzed in
[19] disregarding gravity and capillarity; complete
integrability of the equations of motion was demon-
strated in the sense of reduction of exact dynamics to
the Laplace growth equation that has an infinitely
large number of integrals of motion and is associated
with the dispersionless limit of the Toda hierarchy
[38]. Analysis of the possible integrability of complete
hydrodynamic equations of Section 3 is also an inter-
esting subject for future investigations.
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